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Abstract

Large networks, such as the Internet, pose an ideal
medium for solving computationally intensive problems,
such as NP-complete problems, yet no well-scaling archi-
tecture for Internet-sized systems exists. I propose a soft-
ware architectural style for large networks, based on a for-
mal mathematical study of crystal growth that will exhibit
properties of (1) discreetness (nodes on the network can-
not learn the algorithm or input of the computation), (2)
fault-tolerance (malicious, faulty, and unstable nodes can-
not break the computation), and (3) scalability (communi-
cation among the nodes does not increase with network or
problem size). I plan to evaluate the style both theoretically
and empirically for these three properties.

1. Research Problem and Motivation

The Internet’s growth has created networks with great

computing potential without a clear way to harness that po-

tential to solve memory- and processor time-intensive prob-

lems. Networks, such as the Internet, have the potential to

solve NP-complete problems quickly, but as their individ-

ual nodes may be unreliable or malicious, users may desire

guarantees that their computations are correct and are kept

confidential.

My work is particularly applicable to problems that are

computationally intensive and easily parallelizable. Com-

putationally intensive problems are ones that a single com-

puter is unlikely to solve quickly, while easily parallelizable

problems are ones that inherently yield a large number of

parallel threads. For example, all NP-complete problems

have both of those properties [3]. Further, my work is ap-

plicable to users that desire discreetness and have access to

large but unreliable networks. By discreetness, I mean that

the user does not want others to find out the input or the al-

gorithm. By large but unreliable network, I mean a network,

such as the Internet, that is partially or entirely outside of

the user’s control, and perhaps even hostile. I describe two

scenarios that are the heart of the problems I am tackling.

Scenario #1: A large university wishes to digitally de-

liver recent graduates’ transcripts to graduate schools and

employers. This information is sensitive, and needs to

be encrypted using the recipient’s public key and digitally

signed using the university’s private key. It may take the

university’s transcript department’s computer months to en-

crypt and sign the thousands of requests, but fortunately it

has access to the university’s network of computers. While

that network may be large, the individual nodes are inse-

cure and cannot be trusted with sensitive data such as the

university’s private key or the students’ transcripts.

Scenario #2: An espionage agency is attempting to

break an RSA code sent by an enemy. The agency wishes

to factor the enemy’s public key; however, it cannot allow

anyone to know the key’s factors or even whose key it is

factoring. Since the agency has access to the Internet, it

is feasible to factor nondeterministically, or through brute

force. However, the problem is to do so discreetly, without

the nodes on the network learning the problem or the input.

Both these scenarios will result in complex distributed

software systems. It has been shown that such systems are

most effectively approached from an architectural perspec-

tive (e.g., [2]). In particular, software architectural styles
present generic design solutions that can be applied to prob-

lems with shared characteristics.

I propose a software architectural style that allows dis-

tributing problems over a large network in a fault-tolerant,

discreet, and scalable manner. To that end, I will rely on a

formal model of crystal growth [4]. This model is Turing

universal, thus it can compute all the functions that a tradi-

tional computer program can. Systems in this model show

remarkable fault-tolerance, distribution of information, and

scalability, and a software architecture that implements the

rules of such systems should inherit these properties. I plan
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Figure 1. A sample tile system that adds numbers.

(a) The system has eight computation tiles. (b) A

seed configuration encodes the inputs, 10 = 10102

and 11 = 10112. (c) The gray computation tiles at-

tach to the seed to form the output 21 = 101012.

to evaluate the architectural style theoretically, mathemati-

cally analyzing the architecture, and empirically on a sys-

tem that solves NP-complete problems.

2. Computing with Tiles

It is somewhat counterintuitive that tile systems can com-

pute complex functions because tiles are limited to local in-

teractions. However, while the individual tiles are simple,

together they become as powerful as every computer. Fig-

ure 1 shows an example of a tile system computing the sum

of 10 = 10102 and 11 = 10112.

The adding system has eight computational tile types

(Figure 1(a)). The center state variable of each tile in Fig-

ure 1(c) represents one bit of the solution, and the west side

represents the next carry bit. Starting from a seed configura-

tion (Figure 1(b)), instances of the gray tile types can attach

if their sides match the neighbors’ sides. The final config-

uration (Figure 1(c)), encodes the answer 21 = 101012 in

the center row. I have designed complex systems that mul-

tiply [1], factor, and solve NP-complete problems.

A tile style architecture is based on a tile system. The

components of the architecture are instantiations of the tile

types. While a system based on this architecture will have

a large number of components, there are only a small num-

ber of different types of components (e.g., eight types for

adding). Nodes on the network represent these components,

and components that are adjacent in an assembly can recruit
other components to attach. Note that many components

(i.e. tiles) can run on a single physical node.

Each component’s external structure is a state variable

(shown in the center of each tile) and four interfaces, i.e.

side variables (shown on the sides of each tile). The loca-

tion in the assembly may also be useful for recruiting. The

topology is a 2-D grid of components that allows neigh-

bors on the grid to interact. The components exhibit two

behaviors: cooperating with neighbors to recruit suitable

new components to attach, and reporting the solution to the

user. Recruitment is the principal functionality performed

by a given tile. The interaction consists of exchanging data

about a component’s sides in order to recruit, and the data
flow is limited to the components’ state variable and sides.

A user who wishes to solve a computationally intensive

and easily parallelizable problem, e.g. an NP problem, and

has access to a large network, may use the tile architectural

style to design a system to solve her problem. The user has

two options: design her own architecture based on the tile

style to solve her particular problem, as I describe in [1], or

reduce her problem to SubsetSum, using a standard polyno-

mial time reduction [3], and use the SubsetSum architecture

I am developing as part of my dissertation. Whichever tile

system the user chooses will serve as the template for the

architecture: the system’s tiles defining the types of compo-

nents. Part of a tile system is the description of seeds that

encode inputs (e.g., Figure 1(b) shows the seed for adding

10 and 11). The user sets up a seed to encode her input and

assigns computers on the network to represent the seed tiles.

Once the initialization is complete, starting with the seed

tiles, adjacent components recruit other nodes to represent

fitting components and eventually produce the solution.

In the addition example, each component represents a

single bit of the solution. It is possible to have individ-

ual components represent larger chunks of data, limiting the

necessary network communication, thus yielding a trade-off

between discreetness, fault-tolerance, and communication.

3. Contributions
The main contribution of my research is a scalable and

fault-tolerant software architectural style for discreet com-

putation on a large network. To that end, I have ex-

tended a theoretical model of self-assembly by defining

the notion of computing functions, designed tile systems

that compute functions deterministically (e.g., adding and

multiplying) and nondeterministically (e.g., factoring), and

proven their correctness and bounds on fault-tolerance, self-

regeneration, and probability of success of computation. I

have also created a preliminary design of the software ar-

chitectural style based on the tile assembly model.
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