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Abstract
This paper proposes tailoring image encoding for an approxi-
mate storage substrate. We demonstrate that indiscriminately
storing encoded images in approximate memory generates
unacceptable and uncontrollable quality degradation. The
key finding is that errors in the encoded bit streams have
non-uniform impact on the decoded image quality. We de-
velop a methodology to determine the relative importance
of encoded bits and store them in an approximate storage
substrate. The storage cells are optimized to reduce error rate
via biasing and are tuned to meet the desired reliability re-
quirement via selective error correction. In a case study with
the progressive transform codec (PTC), a precursor to JPEG
XR, the proposed approximate image storage system exhibits
a 2.7× increase in density of pixels per silicon volume under
bounded error rates, and this achievement is additive to the
storage savings of PTC compression.

Categories and Subject Descriptors I.4.2 [Image Pro-
cessing and Computer Vision]: Approximate methods;
B.3.4 [Memory Structures]: Reliability, Testing, and Fault-
Tolerance

Keywords Approximate Storage; Image Encoding; Multi-
level Cells

1. Introduction
Images and video consume significant storage space in both
consumer devices and in the cloud. The emergence of new
applications and new devices with even greater image and
video recording capabilities will only reinforce this trend.
This will result in pressure on storage system capacity, which
is exacerbated by replicas of the data in multiple user devices
and the cloud. Luckily, this also relaxes the requirements
on the quality of data stored in devices because there is
always a high-fidelity copy stored in the cloud. This paper
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proposes an image encoding algorithm co-designed with a
solid-state storage system that supports multiple reliability
levels, resulting in high-density image storage. This allows
users to have more images stored locally, potentially at a
lower quality, all backed up by full-quality images in the
cloud.

Solid-state memories with multi-level cell (MLC) capa-
bility improve storage density by subdividing the range of
values in a cell into a greater number of levels, each of which
being representative of a digital state. Creating more levels
to store multiple bits in a single cell improves density, but it
also increases the cost of storage dramatically because read
and write circuits with much higher precision are required to
ensure that data can be reliably read and written.

Recently proposed approximate storage techniques [27]
relax the costly reliability requirements by allowing occa-
sional errors. Examples of data that can tolerate these errors
are samples of signal inputs that are already noisy, such as
image sensors – an error in one pixel in a raw image affects
quality in a localized manner. However, images are rarely
stored in raw format long-term; instead, they are typically
encoded in compressed form to save space.

Image compression techniques such as JPEG trade-off
image quality against image size via quantization techniques.
This quantization step is lossy, yet applied in a deterministic
way so that all loss happens at encoding time. In contrast,
approximate storage errors are inherently non-deterministic
and accrue over time. This paper makes the observation that
the latter type of error may create large distortions once
the image is decoded because it has not been accounted
for at encoding time. Because image encoding schemes
typically transform pixels to the frequency domain (where
some components matter more than others) and employ
entropy encoding (lossless compression), changes in different
bits in the compressed file lead to different kinds of distortion
in the output image. Hence, to preserve quality in the decoded
image, different bits should be subject to different levels of
approximation (i.e., exposed to different error rates).

An intuitive solution for reducing the error rates of an
unreliable substrate is to treat it as a noisy channel and
uniformly apply an error correcting code to it. This approach
treats source and channel encoding independently, and is
optimal when the conditions for the well-known separation



theorem apply [8, 9]. Unfortunately, at least one of these
conditions does not apply when the source is image data
(which in general cannot be modeled as being generated from
a source with stationary statistics) or when the channel is
MLC storage (where the error probability depends on the
value stored and manufacturing variations). In other words, if
we apply an error-correcting code (channel coding) uniformly
to the entire storage space, we essentially make all cells
similarly reliable, which is wasteful when storing parts of the
encoded image data that can tolerate higher error rates.

This paper advocates for a cooperative design of image
encoding algorithms and approximate storage systems to
maximize storage density while minimizing image distortion.
The key idea is to determine the relative importance of
encoded bits created by the encoding algorithm, and store
them into separate regions of approximate storage, each
of which tuned to match the error tolerance of the bits it
stores. This exploits the case that, when the conditions for
the separation theorem do not apply, best compression is
achieved by joint source-channel coding [8, 32].

We demonstrate our techniques via a case study of the
progressive transform codec (PTC) [17] – a precursor to
JPEG XR – and a phase-change memory (PCM) storage
substrate. Our results show that the proposed scheme achieves
extra quality versus space trade-off that is fundamentally not
possible with the deterministic quantization in the algorithms
of the JPEG family. Compared to plain PTC-encoded images
stored in precise PCM cells, our proposed system increases
the storage substrate density by over 2.7× with negligible
quality degradation in the decoded images.

2. Background
This section presents background on image encoding, multi-
level phase-change memory, and approximate storage.

2.1 Image Encoding
Image encoding algorithms use a variety of strategies to re-
duce the size of a raw image. These algorithms may be loss-
less or lossy. Often, the lossy algorithms (e.g., JPEG [23])
are capable of achieving better compression rates with tolera-
ble degradation in image quality. Hence, we focus on lossy
image encoding. The specific algorithm used in this work is
the progressive transform codec (PTC) [16, 17] – a precursor
to the state-of-the-art JPEG XR [5]. PTC has been used in
several practical applications, such as in game texture storage
for Xbox games.

PTC processes the pixels in the image through typical
steps including time-to-frequency transformation, quantiza-
tion, coefficient mapping from a 2D array to 1D, and entropy
encoding (shown in Figure 1). These steps are also used by
most image codecs, including the popular JPEG [5, 17, 23].
What makes PTC unique is the use of the hierarchical lapped
biorthogonal transform (HLBT) instead of the discrete cosine
transformation (DCT) or wavelets, a ping-pong style scanning

pattern for macroblocks, and an adaptive run-length/Golomb-
Rice (RLGR) entropy encoding [17, 18].

PTC image encoding process. Figure 1 shows that PTC
encodes an image in six steps: the raw image is partitioned
into rectangular blocks (1), each of which is transformed into
the frequency domain using the HLBT (2). Next, the HLBT
frequency-domain coefficients are quantized, i.e., scaled and
rounded to the nearest integers (3). The quantization reso-
lution and hence the number of bits used to represent the
coefficients is determined by a target quality, typically mea-
sured by peak signal to noise ratio (PSNR). Then, coefficients
with similar frequencies are spatially gathered and grouped
via a ‘clustering’ step (4). Next, a reordering step visits the
coefficient array in a hierarchical ping-pong manner (5), re-
sulting in a vector with lower frequency coefficients clustered
in the beginning and higher frequency coefficients clustered
toward the end. Lower frequency coefficients tend to have
greater absolute values and to be more important to image
quality [15, 17]. Finally, this vector is divided into fixed-size
macroblocks (MB), each of which is subsequently encoded
using the adaptive RLGR algorithm (6).

The RLGR algorithm encodes all of the coefficients in a
macroblock along the vertical direction, i.e., bit-plane encod-
ing [29]. The number of bit planes is determined by the maxi-
mum absolute value of the coefficients. The encoding process
begins at the first bit plane (e.g., bit plane 0 in Figure 1),
and progressively encodes column-by-column toward the last
bit plane (e.g., bit plane 4). Notably, coefficients toward the
beginning of a macroblock are likely to have greater absolute
values than those toward the end of a macroblock (thanks to
the clustering and the reordering steps), which translates into
longer runs of zeros in the bit planes and results in a better
compression rate. For each individual coefficient, the most
important pieces of information are the sign and the bit posi-
tion of the most significant one (underlined) that determine
the magnitude of the coefficient. The remaining bits on the
right hand side of the most significant one refine the corre-
sponding coefficient value, and hence are called ‘refinement
bits’. Prior work observed that the entropy in the refinement
bits is so high that there is little to gain in encoding them [16].
As such, refinement bits are simply appended to the coded
bitstream of the macroblock.

A bit plane is encoded in one of the following three modes
(Figure 1). In the ‘no run’ mode, the coder reads a single
bit and encodes it. In the ‘full run’ mode, the coder finds m
continuous 0s (m = 2k) from the input and uses a single 0
to represent them. If the number of 0s is short for a full run
(m < 2k), the coder uses binary compression, binary(m,k), to
encode the value of m with k bits, and the coder is in ‘partial
run’ mode. To achieve a good compression rate, the RLGR
coder adaptively switches between run modes (controlled by
parameter k) based on the inputs it has observed. The RLGR
coder outputs ‘control bits’ and ‘run-length’ bits. The control
bits inform the decoder the mode used in the encoding and
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Figure 1. Simplified encoding steps in the PTC image codec.

the sign of the corresponding coefficient, and the run-length
bits convey the number of 0s in a partial run. Both control
and run-length bits are precision critical; an error in either
a control or a run-length bit may affect the decoding of all
of the subsequent bits in the bit plane, which results in the
distortion of multiple spots in the decoded image.

2.2 Multi-Level Cells
Memory technologies with a large dynamic range (e.g., be-
tween the minimum and maximum charges in a NAND Flash,
or between the minimum and maximum resistances in emerg-
ing resistive memories) allow for dividing the analog range
into more than two levels, each of the levels representing a dis-
tinct digital value. In contrast to a single-level cell (SLC) that
stores binary states, a multi-level cell (MLC) encodes more
than two bits into a single memory cell. Figure 2 illustrates
a 4-level cell: the analog range is uniformly (in log scale)
partitioned into four levels, L0, L1, L2 and L3, corresponding
to binary values of ‘10’, ‘11’, ‘01’, and ‘00’, from lowest
to highest resistance. A Gray code is used to minimize the
Hamming distance between the codes from adjacent levels.

Phase-change memory (PCM) represents the stored infor-
mation by the resistance of a chalcogenide material, which
ranges from 103Ω (in the crystalline state) to 106.5Ω (in the
amorphous state) [21]. An SLC PCM cell can be programmed
into one of its two states by driving a write current through the
chalcogenide material; the magnitude and the duration of the
current pulse determine which resistance level the cell finally
settles in. Programming an MLC PCM cell is more challeng-
ing because the dynamic range is partitioned into more levels,
each mapping to a narrower ‘band’ than an SLC cell. This
requires higher precision write and read circuitry. In practice,
MLC PCM often employs a write-and-verify approach, which

iteratively issues a write pulse and a subsequent checker read.
The write process completes when the resistance of the cell
is within the boundaries of the target level (2T ) [3, 21]; al-
ternatively, a write fails when the number of trials exceeds a
predefined limit, which creates a write error. We model the fi-
nal write resistance as a normal distribution around the target
resistance of that level, as suggested in prior work [30, 33].
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Figure 2. A 4-level cell: The analog (resistance) range (x
axis) is in log scale, where levels are uniformly distributed.
Write operations set cell resistance according to a normal
distribution around the target resistance in the middle of the
range.

A critical issue with MLC PCM is resistance drift [12, 13]
– an effect of structural relaxation that causes the resistance
of a cell to increase over time. Resistance drift is a major
source of retention errors, in which a cell is written to one of
the levels and, by the time it is read, it has shifted to another
level (e.g., an L0 value drifts beyond L0 +B in Figure 2).
The drift effect increases with the target resistance and the
elapsed time from the last write. In a 4-level PCM cell like
in Figure 2, for instance, level L2 suffers the most resistance
drift and often dominates the combined error rate of the
cell. The drift from L3 does not cause an error. Prior work
proposes tri-level cells [30], in which the most drift-prone
level (i.e., L2) is removed from a 4-level cell. Alternative
solutions for mitigating retention errors include tackling



the time component of the drift, employing error-correcting
codes [2, 14, 24, 36], or periodically scrubbing the entire
memory [1]. Recently, IBM and Macronix proposed novel
circuit techniques that allow reliable reads from 4-level and
8-level PCM cells in the presence of resistance drift [31, 34].

2.3 Approximate Storage
Approximate Storage [27] offers an alternative approach to
the costly error control mechanisms. Instead of detecting
errors and correcting them, an approximate storage system
exposes errors to the application in a controlled manner:
programmers are given the option to specify the objects that
can tolerate errors. As a result, the precision-critical objects
are still protected (yet in a more costly manner) whereas
the error-tolerant objects are stored in memory regions with
relatively low reliability for the benefits of increased density
and performance.

Naive Image Mapping to Approximate Storage. As
described previously, the encoded PTC bits have different
importance, i.e., errors in them have a different impact on
the resulting decoded image. For example, an error in a low
frequency coefficient affects the corresponding entire block
and may be visible in the decoded image, making the quality
degradation unacceptable in many cases.

If all bits of an encoded image are indiscriminately stored
in unoptimized and untuned approximate cells, errors, already
at a high rate due to the lack of optimization, affect all
encoded bits equally. Such naive use of approximate storage
for images invariably leads to either density loss due to
wasteful overprovisioning of error correction resources to
maintain image quality, or lower storage requirements at the
risk of polluting precision-critical bits, which affects image
quality.

Figure 3 illustrates an example where a 40 dB image (left)
is stored in unoptimized 8-level approximate cells and is read,
decoded, and reconstructed 28 seconds later (right). Despite
improving density by 3×, this degrades image by about 22 dB.
Without any cell optimization or error correction, maintaining
the image quality (40 dB) at decode time would have required
the use of a much higher target quality level (50 dB), which
uses a smaller quantization factor at encode time, resulting
in almost doubled encoded image size. Alternatively, error
correction can be used to protect the image against errors at
the cost of additional storage overheads (e.g., about a third
extra storage for BCH-16).

3. Effective Approximate Storage for Images
This paper advocates that bits with different importance
in output image quality should be treated differently with
respect to how they are stored and that cells storing these
bits should be optimized and tuned to appropriate error
levels. Careful matching of cell error properties with encoded
bits via cooperative design of the encoding algorithm with
selective error correction storage can significantly improve

Figure 3. Original encoded image (left, error rate = 10−16,
PSNR = 40 dB) and the same image naively stored in unop-
timized and untuned approximate cells, with unacceptable
quality degradation (right, error rate = 10−3, PSNR = 18 dB).

image quality while getting most of the density benefit that
approximate storage offers.

Original image
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storage

High
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Medium
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Low
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Lowest error rates Moderate error rates Highest error rates

Error correction overhead
Denser storage (e.g., 3 bits/cell)

Figure 4. Example mapping of encoded bits into error toler-
ance classes, which are placed in storage with appropriately
designed error rates.

As Figure 4 shows, we start by analyzing the PTC image
encoding format (top) and identifying groups of bits with sim-
ilar error rate requirements to form error tolerance classes
(middle). Next, we optimize a multi-level PCM cell design
for high density (e.g., 3×) at reasonably high error rates (e.g.,
10−3). Finally, bits in different error tolerance classes are
stored by the modified algorithm into regions of a single
optimized storage substrate (bottom), yet protected by ap-
propriate error correction codes with different resulting error
rates and storage overheads. The end result is high storage
density with little image quality degradation.

This approach is most suitable to smartphones and other
mobile devices. They make it very easy to take photos and
users want to have all their pictures available to them on these
devices. However, given the importance of small form-factor,
the amount of solid-state storage available in these devices
is limited. Since these devices are commonly backed by the
cloud, it is acceptable to allow image quality degradation, as
there can always be a full-quality version of the image stored
in the cloud.



4. Approximation-Aware Encoding
Algorithm

We analyze the PTC algorithm to identify bits in different er-
ror tolerance classes and make two observations. First, lower
frequency coefficients, often higher in value, are the most im-
portant coefficients for image quality. Luckily, PTC (and other
image encoding algorithms) already organizes coefficients
based on the frequency which they refer to, typically from
lower to higher frequency. As a result, lower frequency coeffi-
cients will be present in the first few macroblocks and can be
easily mapped to memory that offers low error rates. Second,
control bits affect output quality more than the run-length
bits, and run-length bits affect the output quality significantly
more than refinement bits. Consequently, these classes of en-
coded bits should be stored in memory regions of increasing
density and error rates, respectively. Section 8 confirms this
intuition, and Section 2.1 explained how PTC generates these
types of bits. Back to Figure 4, the red shape represents con-
trol and run-length bits for the lowest frequency coefficients,
the orange shapes represent control and run-length bits for
other coefficients, and the yellow shapes represent refinement
bits for all coefficients.

Modifications to PTC. The original PTC algorithm par-
titions data into macroblocks, which makes it straightfor-
ward to direct different macroblocks to different regions of
storage. However, for each macroblock, PTC stores control,
run-length and refinement bits in the same bitstream. During
encoding, refinement bits are already segregated from control
and run-length bits and appended at the end of a macroblock.
However, the latter two need to be pulled apart into different
bitstreams if they are to be stored into memory regions with
different error characteristics. The algorithm uses a header –
typically stored in the precise memory region – to record the
mapping between macroblocks’ bitstreams and the regions
of memory that store them.

Implementation effort and quality control. We envi-
sion these modifications to be implemented by a programmer
expert in image encoding who is familiar with the methodol-
ogy proposed here and the various error correction options
provided by the storage hardware, along with their corre-
sponding error rates. The final algorithm is packaged in a
library. This cooperative design effort may be undertaken
by memory manufacturers, who ship their hardware along
with supporting libraries, or by system integrators designing
a product that includes digital imaging, where the library is
never exposed. Final users of these products are exposed to a
single knob that sets the expected quality of the image – this
is exactly how users interface with lossy encoding algorithms
(such as JPEG) today. This is possible because, from a user’s
perspective, errors caused by approximate storage are simply
one more source of image quality loss.

Application to other encoding algorithms and data
types. Although we use PTC as the base encoding algorithm,
the same principles can be easily applied to other codecs

that employ time-frequency transformation, quantization, and
entropy encoding. For example, modern video codecs such
as H.264 [39] apply motion estimation to predict the current
video frame, and the difference frame between the original
and its prediction is encoded with an image codec, which
has the a similar structure to JPEG, JPEG XR, or PTC. In
essence, the proposed scheme can be applied to other types
of data where more important bits coexist with less important
bits (e.g., video, audio, and sensor data).

5. Storage Substrate Optimization
Our next goal is to optimize a PCM storage substrate to offer
high density while maintaining reasonable error rates. We
use a technique called biasing [33, 37] that, when used in
combination with very low frequency scrubbing, achieves
low error rates in a 4-level configuration (2 bits/cell) and
reasonably low error rates in an 8-level configuration (3
bits/cell).

5.1 Biased Levels
A multi-level cell maps each of the levels within the analog
range (in the case of PCM, the range between the highest
and lowest resistances) onto a distinct digital value. Before
biasing was proposed, each level in a multi-level PCM cell
was assigned the same width in log space (Figure 2). However,
such uniform partitioning of the resistance range can lead to
unnecessary drift-related errors in dense approximate cells.
Biasing addresses this problem by tuning the positions of
the resistance levels for minimizing the combined (write and
drift) error rate.

A cell suffers two types of errors. A write error occurs
when the write circuitry is unable to set the cell resistance at
the target level before exceeding a maximum number of trials,
leaving the cell in an undesired resistance level. Material
relaxation causes cell resistances to drift to higher resistance
levels, resulting in the second type of errors – drift errors.
Drift unidirectionally increases the cell resistance and its
effect is more significant in higher resistance levels than the
lower ones (Section 7). As such, the second highest level in a
uniform cell (L2 in Figure 2) becomes the most drift-prone
level and dominates the drift error rate of the cell. The highest
level (L3 in Figure 2) does not suffer from drift errors because
it is the highest range of resistances.

We use biasing to reposition and resize each resistance
level (Figure 5). The drift error rate of the cell can be
minimized by equalizing the drift error rate of each individual
level (assuming the stored data maps to each level with an
even probability). As shown in Figure 5, levels are wider in
value ranges where drift is more likely to have an effect, i.e.,
the higher resistance levels. Biasing is optimized based on a
fixed elapsed time since the last write. This assumes that the
system will scrub the storage contents and reset resistance
levels to the target resistance at this scrubbing interval. It
is worth noting that cells will work at different scrubbing
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Figure 5. Cell configured with biased levels. The goal is to
reduce drift-induced errors by equalizing the error rate of
each individual level.

intervals, but they will suffer higher error rates compared
to the interval they were optimized for because levels’ error
rates will not be completely equalized. To understand why
this is the case, imagine an optimal biasing configuration for
interval t. When this interval is extended to t + t∆, resistances
are allowed to drift longer distances. Since the drift for higher
resistances is stronger than for lower ones, at interval t + t∆
a cell optimized for interval t will experience higher error
rates in higher levels. As such, to equalize error rates, the
optimization needs to compensate by making the higher levels
even wider than before, and the lower levels even narrower
than before.

In addition, note that target resistances are no longer
placed at the center of each level, dividing each level into
two bands; the left band is made narrower (D) to leave more
room for drift in the right band (Bi). However, as the target
resistance is moved to lower values and D is reduced, the
write error rate begins to increase because the tail of the write
resistance distribution gets closer to the lower end of that
level. The sizing of D and Bi is therefore a trade-off between
write error rate and drift error rate. Errors are minimized by
equalizing the number of errors of each type.

Once the resistance range is partitioned into biased levels,
the next step is to map digital values to individual biased
levels. Both in general and in our encoded images, zeros are
the most common (‘00’ for 4-level cells and ‘000’ for 8-level
cells), so the value zero should be mapped to the highest level,
which is immune to drift. We observe no other value that is
more common than others for images, so the values for the
remaining levels are assigned by using a simple Gray code.

Cell density. Based on the cell parameters we assume in
this work (Section 7), we advocate for two cell configurations:
4- and 8-level cells. Notably, none of the two meet the
uncorrectable bit error rate of commercial solid-state storage
products today (10−16) in their raw form [4, 20]; however,
reasonably low error rates can be achieved via biasing and
the industrial standard reliability can be reached with error
correction codes. Even optimized with biasing, unfortunately,
a 16-level cell suffers prohibitively high error rates (i.e., the
write error rate is around 10−4, and the drift error rate is in
the order of 10−1 after 1 second of writing), which cannot
be brought down to a reasonable level by error correction
codes that have storage overheads low enough to justify the
increase in number of levels.

We use 2-level and 3-level cells as precise baselines since
they both exhibit very low error rates. The 2-level cell has a
simpler structure and presents a better performance in terms
of read and write speed. In contrast, the 3-level cell offers
higher density while maintaining a low error rate. However,
additional circuits are required to convert the data from the
rest of the system to the form that is stored in the 3-level cells.
We use 4-level and 8-level cells as approximate memory cells.

5.2 Scrubbing to Reduce the Effect of Drift
After biasing is applied, drift may still be an issue in the long-
term. To mitigate excessive drift, scrubbing can be used to
rewrite a cell and bring the resistance level back down. Based
on our PCM cell model, we expect the scrubbing period to be
in the order of 107 seconds (3 months) – so infrequent that it
is likely to be imperceptible. The average access bandwidth
required by scrubbing at this frequency is on the order of 100
bits/second per gigabit of storage – a negligible figure. Also,
if data is going to be scrubbed anyway, this may also be a
good opportunity to perform wear leveling.

6. Providing Error Rate Diversity
Once cells are optimized, they can finally be tuned to provide
different levels of reliability. The storage controller is respon-
sible for offering a variety of error correction codes, each of
which presenting a different trade-off between the error cor-
rection capability and the storage overhead. The complexity
– and hence the area, power, and latency overheads – of the
error correction circuits can be reduced by using codes within
the same family (e.g., BCH-4 and BCH-16).

Region configuration. The controller is responsible for
organizing the storage into regions, each with a different
error correction capability. The controller stores a region-
to-configuration map in a table resident in the controller,
which is backed by a preconfigured precise region of storage
that persists during power cycles. System software sends
special configuration commands to the controller for region
allocation and configuration. Once configured, the controller
uses the requested address and the information in the region-
to-configuration map to determine which region the request
targets and the appropriate error correction capability to use
in servicing the request. The number of different regions is
small (e.g., 8), so the region-to-configuration map can support
variable-size regions and be fully associative.

Hardware/software interface. The code implementing
the modified algorithm must be able to allocate storage in
different configurations. Assuming a storage system that
is directly accessible through the processor address space,
each bitstream can simply be allocated via a persistent
object interface, and pointed to by the header. If a file
system is used, then all storage in a block needs to be in
the same configuration. The file system provides calls to
specify the memory configuration when opening streams
and to concatenate multiple streams to form a single file. If



no changes to the file system are possible or desirable, the
multi-precision memory may be exposed as an independent
volume, providing an ‘image store’ that maintains and serves
the collection of images using approximate storage, where
each image can be linked from the main file system. The
operating system or the storage controller is responsible
for any necessary maintenance tasks, such as wear leveling,
refreshing the memory to limit degradation over time, and
reconfiguring the storage after power failure.

Storage region sizing. Regions with different error cor-
rection capabilities have different storage overheads for meta-
data. As such, different regions will need different number of
cells for storing the same amount of data. The entire storage
space may be managed in one of the two ways. Static man-
agement simply partitions the storage into multiple regions at
manufacturing time. This approach is inflexible in that it does
not allow a different proportion of storage to be dedicated
to a region. The second approach is to allow dynamic recon-
figuration of regions to match application demands. In this
case, region resizing causes additional complexity. Assuming
the storage device leaves manufacturing with all regions ini-
tialized to the strongest available error correction by default,
when a region is configured for the first time, it grows in
density, and thus in usable size. A simple way to cope with
this is to expose this region as two regions, one of the original
size before reconfiguration, and a virtual one with the surplus
storage. This makes addressing simpler. A region can only be
reconfigured to a smaller size if the system can accommodate
the contents of the surplus region elsewhere.

7. Experimental Setup
This section describes experimental setup, assumptions, and
parameters used for this study.

Encoding algorithm. We implement our algorithm
modifications on top of the PTC codec [16–18]. Besides
its state-of-the-art performance, we choose PTC because of
its relatively simple reference code, which makes it easier to
design and implement modifications. In addition, we expect
that the results we report here for PTC, in terms of the impact
of bit errors on reconstructed image quality, should be similar
if we implement the same modifications in other codecs.
That is essentially because of the orthogonality of transforms.
Developers modifying other codecs can follow a methodology
similar to the one presented in this paper to identify and
process most important and less important groups of bits
separately.

Input images. All quality measurements are based on
24 grayscale raw images at 768× 512 pixels resolution
in the Kodak PCD image set [6]. These images provide
diversity in types of features they include, which make them
ideal for benchmarking image encoding algorithms. Color
images have a color component in addition to the grayscale
component. The color component is encoded in the same
manner as the grayscale one and typically produces slightly

more refinement bits. Higher resolution images with more
pixels would have similar behavior. As such, we choose to
use small grayscale images because this makes the algorithm
simple to modify and experiments fast to run, yet they
still provide a conservative lower bound on the benefits of
cooperatively designing the algorithm and hardware.

Cell model. All experiments assume a PCM cell model
with resistance range between 103Ω and 106.5Ω [21]. We use
the power-law drift model from prior studies [12, 13]:

Rd (t) = Rw ·
(

t
tw

)ν

(1)

where Rw is the initial resistance at the time the write oper-
ation concludes (tw), and Rd is the drift resistance after an
elapsed time t. The drift exponent ν grows with logRw. Con-
figurations and parameter settings for 4-level cells and 8-level
cells are summarized in Table 1 and Table 2, respectively.
Note that, compared to uniform cells, biased cells have target
levels (logRT ) and level boundaries (logRB) moved toward
lower resistances by appropriate amounts, resulting in lower
drift-induced errors at the cost of increased write errors (as
discussed in Section 5.1). The overall drift error rate can
be minimized by equalizing the drift error rates for all the
levels (except for the first level and the last level). Cells are
optimized for a scrubbing interval t = 107s (about 3 months)
after they are written. During scrubbing, their original target
resistances are restored.

We use an iterative write-and-verify writing mechanism [3,
38]: a RESET pulse followed by a series of SET pulses are
generated to heat the PCM, with a checker read after each
write trial until the desired resistance level has been reached.
Each pulse has the same width (duration) but different ampli-
tude. Equation 2 describes the in-house model that emulates
the writing process:

Rw = R0 +(Rw−R0)+
√
|∆ · (Rw−R0)| ·N (0,1) (2)

where R0 and Rw are the original and the final resistance,
respectively, and N is the normal distribution. ∆ measures
the imprecision of the writing circuitry (in this case, 10%).
Another parameter is T (shown in Figure 5). A writing
process will succeed when the final resistance falls into the 2T
range of a level, or abort after a predefined number of trials.
This model generates a normal distribution of final write
resistance values, with means shown in the logRT column
(Table 1 and Table 2), and a standard variation of T/3. We
use T = 0.1, like prior work [22, 25]. With the selected target
write error rate (10−6), our model shows that the maximum
number of trials in a biased 4-level cell and a biased 8-level
cell are seven and nine, respectively.

We model the read circuitry in Cadence SPECTRE, and
conclude that a current-mode sensing mechanism (similar to
that used by Bedeschi et al. [3]) and an analog-to-digital con-
verter are capable of distinguishing the worst-case resistance
difference for all cell configurations.



Level Data logRT logRB µ (ν)
σ (ν)

Write BER Drift BER
u b u b u b u b u b

0 10 3.00 3.00 3.58 3.35 0.001 0.001

0.4µ (ν) very low 2.5×10−6

very low very low
1 11 4.17 3.60 4.75 4.27 0.027 0.012 very low very low
2 01 5.33 4.52 5.92 6.25 0.073 0.040 0.3656 very low
3 00 6.50 6.50 – – 0.120 0.120 – –

Table 1. Uniform (u) and biased (b) 4-level cell parameters. RT denotes the mean resistance of a level, and RB denotes
the resistance at the upper boundary of the level. ν follows normal distribution, with µ (ν) being interpolated from prior
work [30, 38].

Level Data logRT logRB µ (ν)
σ (ν)

Write BER Drift BER
u b u b u b u b u b

0 100 3.00 3.00 3.25 3.14 0.001 0.001

0.2µ (ν) 5.6×10−14 5.6×10−6

very low very low
1 101 3.50 3.28 3.75 3.44 0.010 0.006 very low 0.0005
2 111 4.00 3.58 4.25 3.75 0.020 0.012 0.0058 0.0040
3 110 4.50 3.90 4.75 4.12 0.040 0.018 0.6774 0.0042
4 010 5.00 4.28 5.25 4.62 0.060 0.031 0.9700 0.0043
5 011 5.50 4.78 5.75 5.33 0.080 0.051 0.9960 0.0044
6 001 6.00 5.47 6.25 6.36 0.100 0.080 0.9991 0.0045
7 000 6.50 6.50 – – 0.120 0.120 – –

Table 2. Uniform (u) and biased (b) 8-level cell parameters.

Metrics. We evaluate the proposed scheme through
a combination of two metrics: peak signal to noise ratio
(PSNR) and memory density. PSNR is commonly used in
the image processing community to measure the quality of
reconstructed images. It compares the original image – pixel
by pixel – against the decoded image that contains errors
from lossy compression algorithm (e.g., quantization) and
memory subsystem (in this case, uncorrected write errors
and drift errors). The higher the PSNR value, the smaller
the difference between the original and the reconstructed
images. We evaluate the approximate memory system with
images from several PSNR targets, i.e., 35 dB, 38 dB, 40 dB,
and 42 dB. For most images, 40−42 dB range denotes
high image quality, with distortion visually imperceptible;
whereas, 38 dB and 35 dB represent moderate and low quality,
respectively.

Memory density is defined as the average number of
data bits stored by a cell. Error-prone memories (e.g., PCM)
commonly use error correction codes (ECC) to recover from
certain number of errors. The storage overhead of error
correction code reduces memory density.

Simulation. We conduct Monte Carlo simulations to
model write-induced errors caused by circuit imprecision
(Equation 2), in which a disturbance factor ∆ is applied
to the write target. Read-induced errors are modeled in a
similar manner. Process variation is taken into account and
is reflected by the parameter ν in the cell model (Equation 1,
Tables 1 and 2) – the drift effect varies from cell to cell.

Due to the nondeterministic error patterns in the approxi-
mate memory system, we run each image in the benchmark
through our stochastic model 100 times (errors appear in ran-
dom locations every time) and report the minimum (rather
than the average) PSNR for each image, which gives a con-
servative estimate of the quality loss.

8. Evaluation
In this section, we demonstrate the benefits of tailoring
the PTC image encoding algorithm to a PCM approximate
storage substrate. We start by showing the overall quality and
space improvement of an optimized design over the baseline.
We then show how errors affect different types of encoded
bits and the resulting image quality, evaluate the benefit of
optimizing the PCM substrate, and illustrate how hardware
and software are tuned for best density versus image quality
trade-off. We also show results obtained using the proposed
algorithm and methodology on a Flash substrate.

8.1 Overall Gains
Figure 6 compares quality versus memory area of a fully
optimized design and intermediate alternatives against PTC
on SLC PCM. The memory area (x-axis) is measured by the
number of memory cells being used, normalized to the image
size. The y-axis shows the reconstructed image quality after
having been encoded and stored in the approximate memory
for a scrubbing interval (107s). As high-density memory cells
often suffer higher error rates, image quality and memory
area are at odds. As such, the further left a curve is, the better
the quality versus memory area trade-off it represents.

From right to left, the worst performance comes from
the PTC algorithm on SLC PCM (2LC), where the quality
and area trade-off is solely controlled by the quantization
factor; previously proposed tri-level PCM (3LC) results in
a 1.58× (i.e., log23) increase in density without any quality
loss from the encoded images. However, the circuitry to deal
with base transformations adds complexity to the memory
system interface. In comparison, the biased 4-level (Bias4LC)
cell, which requires no complex base transformation circuitry,
results in a higher density (1.85× over 2LC), while still
maintaining the same level of image quality. The only cost
of biasing is the optimization of cell levels and boundaries at
design time.



Finally, we see three biased 8-level cell configurations on
the left. Note that all of them use error correction because
at this density the quality degrades dramatically if no error
correction is used (10 dB range, which is unacceptable).
The configurations shown include error correction applied
thoroughly and equally to the entire storage (Bias8LC TC),
selective error correction applied based on the algorithm’s
needs (Bias8LC SC), and an idealized correction mechanism
that has no storage overhead and corrects all errors (8LC
ideal). Despite gaining 2.28× in density over 2LC, the
Bias8LC TC uses more correction strength than necessary
to maintain high quality. In contrast, by carefully choosing
the appropriate ECC scheme for each encoded bits class,
Bias8LC SC achieves a density of 2.73× over 2LC (less than
10% lower then the ideal 8-level cell density gain, i.e., 3×),
while keeping quality loss at an acceptable level (≤ 1 dB
loss).
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Figure 6. Overall benefits of the fully optimized design.
Bias4LC, Bias8LC TC, and Bias8LC SC assume a scrubbing
interval of 107 seconds.

8.2 Effect of Errors on Encoded Bit Types
We evaluate the impact of different coded bitstreams on the
quality of reconstructed images. Our goal is to keep the
quality loss within 1 dB of the encoded image. For example,
a target quality of 40 dB will allow degradation only down to
39 dB.

We first evaluate the effects of control, run-length, and
refinement bits across all the macroblocks. Intuitively, control
bits are more precision-critical than run-length bits, then
followed by refinement bits (Section 3). Figure 7 corroborates
this by applying variable error rates over a subset of bits based
on their types and measuring the resulting quality degradation.
All images are encoded with a target quality of 40 dB. Each
curve is labeled with three letters representing whether the
error rate (in the x axis) is applied (A) or not (P) to each of
control, run-length, and refinement bit types, respectively.

P-P-P does not suffer any failures and maintains the quality
at the target 40 dB. Refinement bits affect image quality the
least. As such, P-P-A can tolerate quite high error rates (this
curve starts dropping only when BER reaches 10−4). Next,
P-A-P and P-A-A (with the introduction of run-length errors)
can tolerate failure rates up to 10−7 with no or very little
image quality degradation. Control bits are the most error-
sensitive (A-P-P and A-A-A), also degrading quality quickly

as failure rates go above 10−7. This analysis supports the
idea of adjusting error correction selectively, maintaining a
lower error rate for control and run-length bits (10−7), and a
higher error rate (10−3) for refinement bits. Due to the large
gap between the error rate requirements for refinement bits
and other types of bits, we fix refinement error rates at 10−3,
committing 0.2 dB of our 1 dB quality degradation budget.
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Figure 7. Image quality degradation with approximate bit
streams. P denotes precise substrate, A denotes approximate
substrate with BERs varying along the x-axis. The first letter
represents control bits, the second represents run length bits,
and the third represents refinement bits.

Next, we study the effect of different macroblocks on
quality. Section 4 states that the first macroblock, which holds
the lowest frequency coefficients, plays the most important
role on the decoded image quality. Figure 8 verifies this
statement by applying strong correction (at an error rate of
10−16) to the first n macroblocks in a coded image with a
total of 128 macroblocks, variable error rates for control and
run-length bits in the remaining blocks, and the fixed error
correction (at an error rate of 10−3) for refinement bits in all
blocks.
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Figure 8. Image quality degradation with varying error rates
in control and run-length bits. Ctrl & RL bits outside the
denoted MBs use a BER of 10−16, refinement bits use a BER
of 10−3.

As predicted, Ctrl & RL (MB2-128), which protects
control and run-length bits in the first macroblock, improves
quality substantially compared to Ctrl & RL (MB1-128),
which leaves the first macroblock at the same error rate as
other macroblocks. On the other hand, raising the precision
level of additional macroblocks has diminishing returns.
These results suggest that protecting the first macroblock’s
control and run-length bits with a strong error correction



to reach industrial standard error rates (10−16), and then
protecting the remaining control and run-length bits with an
intermediary strength code (10−6) keeps quality well within
the 1 dB degradation limit.

8.3 Effect of Substrate Biasing
With target error rates for error tolerance classes in hand, we
turn our attention to bringing the PCM substrate up to these
standards. We start by making the substrate as good as it can
possibly be for an arbitrary scrub rate (107s, or approximately
3 months) by optimizing cells via biasing. Figure 9 illustrates
the effect of biasing on error rates, for both 4-level and 8-level
cells, reporting combined error rates across all levels. Error
rates grow over time because of drift effects.

We initially focus on uniform cells (Uniform 4LC and
Uniform 8LC). As expected, error rates for 4-level cells are
always lower than for 8-level cells because fewer levels allow
more room for drift in each level. However, both types of cells
start showing excessively high error rates even only an hour
after being written. In contrast, Biased 4LC maintains very
low drift error rates during the entire range of time (10−20

at 1010s). The raw bit error rate (RBER) of the biased 4LC
is dominated by write errors. Biased 8LC provides an error
rate of about 10−3, which is two orders of magnitude lower
than Uniform 8LC at 107s. Coincidentally, it also matches
the needs of the most error tolerant bits (i.e., the refinement
bits). This allows us not to use any error correction at all for
these bits, eliminating unnecessary metadata overhead.
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Figure 9. Combined RBERs of uniform and biased PCM
cells.

Figure 10 provides insight on which cell configuration
offers the best trade-off between overall density, including
error correction to maintain the uncorrectable bit error rate
(UBER) at the industrial standard rates (10−16) [4, 20], and
scrubbing overhead. SLC and 3LC cells have RBERs as
low as precise memory, and hence do not require error
correction. 3LC provides 1.58× higher density over SLC.
The densities of uniform cells (i.e., 4LC, 8LC, and 16LC),
although high for short scrubbing intervals (so short that
makes them unattractive), fall sharply at longer intervals,
since drift-induced errors accrue fast. In contrast, biasing
suppresses the growth of drift errors significantly: Bias4LC
has a stable 1.86× density gain (the delta between this and the
ideal 2× is caused by the ECC that protects against the write
errors), and Bias8LC experiences a much smoother density

degradation, achieving 2.28× density improvement at 107s
(i.e., the target scrubbing interval).
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Figure 10. Density comparison (target UBER = 10−16).

8.4 Assigning Error Correction to Encoded Bit Types
Once both the algorithmic error rate requirements are de-
termined and the substrate is optimized for lowest possible
error rates, we match the two via error correction. This relies
on understanding the trade-offs between storage overhead
of the error correction mechanism and its correcting power.
Figure 11 presents a variety of error correction mechanisms
(with storage overheads), and the correspondence between
a variety of RBER values and their resulting UBERs when
using each of these mechanisms. The biased 8LC cell already
meets the demands of refinement bits, so they don’t need
any correction. For control and run-length bits in the first
macroblock, we need a correction mechanism that accepts a
RBER of 10−3 and produces a UBER of 10−16. BCH-16 is
the code that provides this capability with the lowest storage
overhead (31.2%). Luckily, the bits that need such a strong
error correction are only a small fraction (2.1%) of all bits. Fi-
nally, BCH-6 provides a 10−6 UBER at an overhead of 11.7%
for the remaining bits that need any correction (81.7%).
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Figure 11. Capabilities and overheads of ECC (at 512 data
bit blocks). SECDED corrects one error and detects up to two
errors in 72 bits; each of the BCH codes corrects up to the
denoted number of errors in 512 data bits plus overhead.

It is also worth noting that as RBER increases, the code
strength required to maintain the same UBER grows rapidly.
This highlights the value of biasing: had it not lowered the
error rate by two orders of magnitude, the 8-level cell design
would have offered RBER so high that the overhead of
correcting all errors would have made it prohibitive.



8.5 Sensitivity to Scrubbing Period
The scrubbing period chosen for the biasing optimization is
long enough to create insignificant overhead and short enough
to preserve quality. This section shows what would happen
if we used this cell design with other scrubbing intervals.
Note that these results do not assume a cell redesign, they
only show what would happen if designers decided to use
these cells “out-of-spec” for different scrubbing intervals.
Thus, if the interval is shorter than the specified, write errors
dominate the RBER of the cell; if the interval is longer, drift
errors dominate instead.

Figure 12 shows how error correction selection would have
changed for different scrubbing intervals (assuming less than
1 dB quality degradation). It compares thorough correction
(Bias8LC TC) with selective correction (Bias8LC SC) side-
by-side at each interval. As the scrubbing interval increases
(towards the right of x-axis), stronger ECC mechanisms must
be employed to suppress the growth of drift errors, resulting in
higher storage overheads. On the other hand, larger intervals
reduce system energy and bandwidth overheads due to data
movement and checker bits computation generated by the
scrubbing. Although we select 107 seconds as the target
scrubbing interval for the dense, approximate image storage
system, shorter intervals might also be acceptable for other
systems if higher density is the top priority.
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Figure 12. Trade-off between ECC storage overhead and
scrubbing interval. Above each set of bars, the code in the
first row is applied to all the bits in thorough correction (TC);
the selective correction (SC) uses the first-row ECC for the
control and run-length bits in MB1, and the second-row ECC
for the control and run-length bits in other MBs, and leaves
all refinement bits unprotected. The third row shows the total
overhead.

The main takeaway from these results, however, is that
selectively applying error correction only where needed
can significantly reduce the loss in density while bringing
the memory to the algorithmically-required error rates, as
evidenced by the large difference in each pair of bars. Thanks
to the biasing (optimized at the scrubbing interval of 107s),
only 10.2% storage overhead (brought down from almost
32%) is required. This is what ultimately allows us to reach
storage density 2.73× over the 2-level baseline.

8.6 Applicability to Flash
Although the proposed co-design of image encoding algo-
rithm and approximate memory bases the study on multi-level
PCM, the framework is readily applicable to other technolo-
gies, e.g., Flash. Multi-level Flash (e.g., TLC NAND Flash) is
supported by major manufacturers [19, 28]. In such devices,
ECCs (BCH and LDPC are common) are applied to a sector
of 512 bytes (or greater, 1024 bytes). Figure 13 compares
various BCH codes in terms of error correction capability
and storage overhead (similar to Figure 11 but at a larger
granularity).
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Figure 13. Capabilities and overheads of error correcting
codes commonly used with Flash. Each code is able to correct
the denoted number of errors in a 512-byte Flash sector and
the associated ECC checker bits.

Prior studies report that TLC NAND Flash devices have
an initial RBER of 10−4, which increases gradually with
the number of program/erase cycles [35]. Combining this
knowledge with the methodology presented in this paper, a
TLC Flash would use BCH-16 for the cells that store the
control and run-length bits in MB1, and BCH-6 for the re-
maining control and run-length bits, and leave all refinement
bits uncorrected. This results in 2.96× higher density than
SLC while maintaining a less than 1 dB quality loss. In com-
parison, thorough correction, which uses BCH-16 uniformly,
achieves 2.85× higher density. However, these numbers only
apply to a brand new device. As RBER increases along with
program/erase cycles, stronger ECCs are gradually required.
For instance, RBER reaches 10−3 after approximately 3000
program/erase cycles. At this point, the density improve-
ment of selective correction and thorough correction lower to
2.88× and 2.49×, respectively, making selective correction
more attractive.

9. Related Work
Sampson et al. [27] observed that not all applications need
high-precision storage (i.e., storage that has really low error
rates) for all kinds of data, and proposed trading-off storage
accuracy for other desirable characteristics including density,
performance, endurance, and energy efficiency. However,
practical and crucial issues such as how to identify data
structures that have different levels of error tolerance and
how to manage them within a single storage system were not
addressed. This paper advances prior work by demonstrating



a methodology of quantifying the reliability requirements
of different parts of an encoded image and optimizing an
approximate storage substrate to meet them. On top of the
image quality versus storage space trade-off already enabled
by the algorithms in the JPEG family, programmers are
offered explicit control over mapping application data onto
multiple approximation levels to gain extra space savings.

Seong et al. [30, 37] proposed tri-level cell PCM, which
was motivated by the fact that the uniform 4-level cell suffered
high error rates due to drift. The tri-level cell was architected
as a precise memory in prior work (and is used as a baseline
in this paper). In this work we exploit practical use of cells
with more levels as approximate storage. Cell reliability is
significantly improved via biasing and the storage density is
enhanced via selective error correction.

Yoon et al. [37] proposed biasing to address the drift issue
in PCM. We leverage this idea to tune MLC PCM cells and
minimize the combined (i.e., write and drift) error rate at a
certain scrubbing interval. Xu and Tong [33] proposed an
adaptive drift mitigation approach for PCM, which stores
a ‘timestamp’ in a reference cell along with the cells that
store the data. When reading the data, the controller uses the
timestamp to decide the level boundries of the cells. Sala et
al. [26] proposed dynamic thresholding for multi-level cells.
This mechanism adapts read circuitry parameters according
to the elapsed time since the cells were written. Unlike these
and other techniques that dynamically tune the read circuits to
offset the drift effect, biasing settles the optimal positions for
levels at manufacturing time, requiring lower area overheads
and hence lower costs.

Holcomb and Fu [11] proposed an automated method
that maps a data word onto multiple approximate MLCs
such that the worst-case error is minimized at the word-
level. The scheme is based on uniformly partitioned levels
and certain levels that cause high error rates are removed.
In contrast, this work uses biased levels that make better
use of the resistance range of storage cells. In addition, it
leverages relative importance of bits to choose their mapping
to different types of approximate storage cells, and observes
that a non-uniform distribution of values may lead to higher
than expected error rates if the mapping between values and
levels in a cell is not favorable.

In multimedia communication systems, Guo et al. [10] and
Frescura et al. [7] explored an unequal error protection ap-
proach to protect image and video data against channel errors
during transmission. The idea is to choose different coding
parameters and redundancy levels based on the parts of the
compressed bitstream. Specifically, maximum redundancy
is used for headers and lower redundancy for less important
parts of the compressed data. While similar in spirit, this tech-
nique is different from our work in at least two key aspects.
First, we focus on storage systems, which have very differ-
ent properties compared to wireless channels (e.g., packet
drop/loss is the main issue in wireless channels). Second, our

proposal adjusts error correction at a much finer granularity,
considering component frequency as well as the kind of bit-
stream (control, run-length, and refinement). This leads to a
completely different algorithmic structure. To our knowledge,
our proposal is the first to apply selective reliability to image
storage.

10. Conclusion
We proposed to cooperatively design image encoding and
storage mechanisms for denser approximate storage. The
key idea is to identify the relative importance of encoded
bits on output image quality and perform error correction
accordingly. The result is over 2.7× the density of the image
storage with little quality degradation (less than 1 dB). We
focused on PTC image encoding and PCM, but our ideas also
apply to other storage substrates and other algorithms that
use time-frequency transformation followed by quantization
and entropy coding (e.g., audio and video).
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