Supplementary Materials for "Reactive Learning: Active Learning with Relabeling"

1 Theorem 1

Proof. We first show that the theorem is true when \mathcal{X}_{L} only contains singly-labeled examples. $\mathrm{US}_{\mathcal{X}}^{\alpha}$ will always pick an unlabeled example x_{u} over a singly-labeled example x_{l}, if α is set such that $(1-\alpha) M_{A}\left(x_{l}\right)+\alpha M_{L}\left(x_{l}\right)<(1-\alpha) M_{A}\left(x_{u}\right)+\alpha M_{L}\left(x_{u}\right)$ for all x_{l}, x_{u} pairs. This condition holds true when $\alpha>\frac{M_{A}\left(x_{l}\right)-M_{A}\left(x_{u}\right)}{M_{A}\left(x_{l}\right)-M_{A}\left(x_{u}\right)+M_{L}\left(x_{u}\right)-M_{L}\left(x_{l}\right)}$ for all x_{l}, x_{u} pairs. We set $\alpha^{\prime}=\sup _{x_{l} \in \mathcal{X}_{L}, x_{u} \in \mathcal{X}_{L}} \frac{0.69}{0.69+\left(M_{L}\left(x_{u}\right)-M_{L}\left(x_{l}\right)\right)}$. Note that since x_{l} is singly-labeled and will have lower label entropy compared to x_{u}, which is unlabeled, $M_{L}\left(x_{u}\right)>M_{L}\left(x_{l}\right)$. Therefore, $\alpha^{\prime}<1.0$. Also, since M_{A} is an entropy of a binary random variable, $\left|M_{A}\left(x_{l}\right)-M_{A}\left(x_{u}\right)\right|<0.69$. Combining all these facts, the condition holds true when $\alpha>\alpha^{\prime}>\frac{0.69}{0.69+\left(M_{L}\left(x_{u}\right)-M_{L}\left(x_{l}\right)\right)}$ for all x_{l}, x_{u} and $\alpha<\frac{0.69}{0.69-\left(M_{L}\left(x_{u}\right)-M_{L}\left(x_{l}\right)\right)}>1.0$ for all x_{l}, x_{u}. Since all unlabeled examples have the same label uncertainty and because $\mathrm{US}_{\mathcal{X}}^{\alpha}$ always picks an unlabeled example, the example it picks will be determined based on the classifier's uncertainty, just as in US \mathcal{X}_{U}. Now, since both $U S_{\mathcal{X}}^{\alpha}$ and $U_{\mathcal{X}}^{U}$ start with $\mathcal{X}_{L}=\emptyset$, by induction, \mathcal{X}_{L} will only ever contain singly-labeled examples, and so these two strategies are equivalent.

2 Theorem 2

Let $P_{\mathcal{A}}\left(h^{*}\left(x_{i}\right)=y\right)$ denote the probability currently output by learning algorithm, \mathcal{A}, that $h^{*}\left(x_{i}\right)=y$. For ease of notation and clarity, we denote with shorthand $p_{0}\left(x_{i}\right)=$ $P_{\mathcal{A}}\left(h^{*}\left(x_{i}\right)=0\right)$ and $p_{1}\left(x_{i}\right)=P_{\mathcal{A}}\left(h^{*}\left(x_{i}\right)=1\right)$. Because we are considering a setting with no noise, the total expected impact of a point x_{i} is $\sum_{y \in \mathcal{Y}} p_{y}\left(x_{i}\right) \psi_{y}\left(x_{i}\right)$.

Lemma 1. If

1. $\left(\psi_{1}\left(x_{i}\right)-\psi_{0}\left(x_{i}\right)\right) \geq \frac{\psi_{0}\left(x_{j}\right)-\psi_{0}\left(x_{i}\right)+\left(\psi_{1}\left(x_{j}\right)-\psi_{0}\left(x_{j}\right)\right) p_{1}\left(x_{j}\right)}{p_{1}\left(x_{i}\right)}$,or
2. $\left(\psi_{0}\left(x_{i}\right)-\psi_{1}\left(x_{i}\right)\right) \geq \frac{\psi_{1}\left(x_{j}\right)-\psi_{1}\left(x_{i}\right)+\left(\psi_{0}\left(x_{j}\right)-\psi_{1}\left(x_{j}\right)\right) p_{0}\left(x_{j}\right)}{p_{0}\left(x_{i}\right)}$,or
3. $\left(\psi_{0}\left(x_{i}\right)-\psi_{1}\left(x_{i}\right)\right) \geq \frac{\psi_{0}\left(x_{j}\right)-\psi_{1}\left(x_{i}\right)+\left(\psi_{1}\left(x_{j}\right)-\psi_{0}\left(x_{j}\right)\right) p_{1}\left(x_{j}\right)}{p_{0}\left(x_{i}\right)}$, or
4. $\left(\psi_{1}\left(x_{i}\right)-\psi_{0}\left(x_{i}\right)\right) \geq \frac{\psi_{1}\left(x_{j}\right)-\psi_{0}\left(x_{i}\right)+\left(\psi_{0}\left(x_{j}\right)-\psi_{1}\left(x_{j}\right)\right) p_{0}\left(x_{j}\right)}{p_{1}\left(x_{i}\right)}$,
then, the total expected impact of x_{i} is at least as large as that of $x_{j}: \sum_{y \in \mathcal{Y}} p_{y}\left(x_{i}\right) \psi_{y}\left(x_{i}\right) \geq$ $\sum_{y \in \mathcal{Y}} p_{y}\left(x_{j}\right) \psi_{y}\left(x_{j}\right)$.
Proof. For condition (1), we have that $\sum_{y \in \mathcal{Y}} p_{y}\left(x_{i}\right) \psi_{y}\left(x_{i}\right)$

$$
\begin{aligned}
& =p_{0}\left(x_{i}\right) \psi_{0}\left(x_{i}\right)+p_{1}\left(x_{i}\right) \psi_{1}\left(x_{i}\right) \\
& =p_{1}\left(x_{i}\right)\left(\psi_{1}\left(x_{i}\right)-\psi_{0}\left(x_{i}\right)\right)+\psi_{0}\left(x_{i}\right) \\
& \geq p_{1}\left(x_{i}\right) \frac{\psi_{0}\left(x_{j}\right)-\psi_{0}\left(x_{i}\right)+\left(\psi_{1}\left(x_{j}\right)-\psi_{0}\left(x_{j}\right)\right) p_{1}\left(x_{j}\right)}{p_{1}\left(x_{i}\right)}+\psi_{0}\left(x_{i}\right) \\
& =\psi_{0}\left(x_{j}\right)-\psi_{0}\left(x_{i}\right)+\left(\psi_{1}\left(x_{j}\right)-\psi_{0}\left(x_{j}\right)\right) p_{1}\left(x_{j}\right)+\psi_{0}\left(x_{i}\right) \\
& =\psi_{0}\left(x_{j}\right)+\left(\psi_{1}\left(x_{j}\right)-\psi_{0}\left(x_{j}\right)\right) p_{1}\left(x_{j}\right) \\
& =\sum_{y \in \mathcal{Y}} p_{y}\left(x_{j}\right) \psi_{y}\left(x_{j}\right) .
\end{aligned}
$$

Proofs of conditions (2-4) proceed similarly.

2.1 Proof of Theorem 2

Proof. Let x_{i} be the point chosen by uncertainty sampling. We prove the theorem by showing that \mathcal{P} satisfies the conditions of Lemma 1 for x_{i} and all candidate points x_{j}. We prove the case when $x_{i}>t$ and $x_{j}>t$ (then $x_{j}>x_{i}$, because otherwise x_{i} would not have been picked by uncertainty sampling). The 3 other cases proceed in exactly the same manner, because of symmetry. Let us also assume that $x_{i}<x_{<}$, because if not, the theorem holds trivially, because all points will have 0 impact. Let t be the currently learned threshold, $x_{<}=\max \left\{x \in \mathcal{X}_{L}: x<t\right\}$ denote the current greatest labeled example less than the threshold, and $x_{>}=\min \left\{x \in \mathcal{X}_{L}: x>t\right\}$ denote the current smallest labeled example greater than the threshold. Now we define $d_{*_{1}, *_{2}}$ to be the proportion of points in \mathcal{X} between points $*_{1}$ and $*_{2}$. Precisely,

$$
d_{*_{1}, *_{2}}=P_{x \in \mathcal{D}}\left(x \in\left\{x: *_{1}<x<*_{2}\right\}\right) .
$$

For example, $d_{x_{<, t}}$ is the proportion of points between $x_{<}$and t. We also know that $d_{x_{j}, t} \geq d_{x_{i}, t}$ because $x_{j}>x_{i}$. Now we show that condition 1 of Lemma 1 is satisfied, that $\left(\psi_{0}\left(x_{i}\right)-\psi_{1}\left(x_{i}\right)\right) \geq \frac{\psi_{0}\left(x_{j}\right)-\psi_{0}\left(x_{i}\right)+\left(\psi_{1}\left(x_{j}\right)-\psi_{0}\left(x_{j}\right)\right) p_{1}\left(x_{j}\right)}{p_{1}\left(x_{i}\right)}$ for all $x_{j}>x_{i}$

We have that for any $x_{j}, \psi_{0}\left(x_{j}\right)=d_{t, x_{j}}+\frac{d_{x_{j}, x>}}{2}$ and $\psi_{1}\left(x_{j}\right)=d_{x_{<}, x_{j}}-\left(\frac{d_{x_{<}, x_{j}}}{2}+\right.$ $\left.d_{t, x_{j}}\right)$. Therefore, $\psi_{1}\left(x_{j}\right)-\psi_{0}\left(x_{j}\right)$

$$
\begin{aligned}
& \left.=d_{x_{<, ~}, x_{j}}-\left(\frac{d_{x_{<}, x_{j}}}{2}+d_{t, x_{j}}\right)\right)-\left(d_{t, x_{j}}+\frac{d_{x_{j}, x_{>}}}{2}\right) \\
& =d_{x_{<, t}}-\frac{d_{x_{<}, x_{j}}}{2}-\frac{d_{x_{j}, x_{>}}}{2}-d_{t, x_{j}} \\
& =d_{x_{<, t}}-d_{d_{<, t}}-d_{t, x_{j}} \\
& =-d_{t, x_{j}}
\end{aligned}
$$

Next, we have that $\frac{\psi_{0}\left(x_{j}\right)-\psi_{0}\left(x_{i}\right)+\left(\psi_{1}\left(x_{j}\right)-\psi_{0}\left(x_{j}\right)\right) p_{1}\left(x_{j}\right)}{p_{1}\left(x_{i}\right)}$

$$
\begin{aligned}
& =\frac{d_{t, x_{j}}+\frac{d_{x_{j}, x}>}{2}-\left(d_{t, x_{i}}+\frac{d_{x_{i}, x}>}{2}\right)-d_{t, x_{j}} p_{1}\left(x_{j}\right)}{p_{1}\left(x_{i}\right)} \\
& =\frac{d_{x_{i}, x_{j}}-0.5\left(d_{x_{i}, x_{j}}\right)-d_{t, x_{j}} p_{1}\left(x_{j}\right)}{p_{1}\left(x_{i}\right)} \\
& =\frac{0.5 d_{x_{i}, x_{j}}-d_{t, x_{j}} p_{1}\left(x_{j}\right)}{p_{1}\left(x_{i}\right)} .
\end{aligned}
$$

And then,

$$
\begin{aligned}
\frac{0.5 d_{x_{i}, x_{j}}-d_{t, x_{j}} p_{1}\left(x_{j}\right)}{p_{1}\left(x_{i}\right)} & \leq-d_{t, x_{i}}=\left(\psi_{1}\left(x_{i}\right)-\psi_{0}\left(x_{j}\right)\right) \\
& \Uparrow \\
0.5 d_{x_{i}, x_{j}}-d_{t, x_{j}} p_{1}\left(x_{j}\right) & \leq-d_{t, x_{i}} p_{1}\left(x_{i}\right) \\
& \Uparrow \\
0.5 d_{x_{i}, x_{j}} & \leq d_{t, x_{j}} p_{1}\left(x_{j}\right)-d_{t, x_{i}} p_{1}\left(x_{i}\right) \\
& \Uparrow \\
0.5 d_{x_{i}, x_{j}} & \leq d_{t, x_{j}}\left[p_{1}\left(x_{i}\right)+\beta\right]-d_{t, x_{i}} p_{1}\left(x_{i}\right), \quad \beta=p_{1}\left(x_{j}\right)-p_{1}\left(x_{i}\right) \\
& \Uparrow \\
0.5 d_{x_{i}, x_{j}} & \leq p_{1}\left(x_{i}\right) d_{x_{i}, x_{j}}+\beta d_{t, x_{j}}, \quad \beta=p_{1}\left(x_{j}\right)-p_{1}\left(x_{i}\right)
\end{aligned}
$$

$\beta>0$ because $x_{j}>x_{i}$, and $p_{1}\left(x_{i}\right)>0.5$ because $x_{i}>t$, and therefore $0.5 d_{x_{i}, x_{j}} \leq p_{1}\left(x_{i}\right) d_{x_{i}, x_{j}}+\beta d_{t, x_{j}}$, and the theorem is proved.

