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1 Theorem 1
Proof. We first show that the theorem is true when XL only contains singly-labeled ex-
amples. USαX will always pick an unlabeled example xu over a singly-labeled example
xl, if α is set such that (1−α)MA(xl)+αML(xl) < (1−α)MA(xu)+αML(xu) for
all xl, xu pairs. This condition holds true when α > MA(xl)−MA(xu)

MA(xl)−MA(xu)+ML(xu)−ML(xl)

for all xl, xu pairs. We set α′ = supxl∈XL,xu∈XL

0.69
0.69+(ML(xu)−ML(xl))

. Note that
since xl is singly-labeled and will have lower label entropy compared to xu, which
is unlabeled, ML(xu) > ML(xl). Therefore, α′ < 1.0. Also, since MA is an en-
tropy of a binary random variable, |MA(xl) −MA(xu)| < 0.69. Combining all these
facts, the condition holds true when α > α′ > 0.69

0.69+(ML(xu)−ML(xl))
for all xl, xu

and α < 0.69
0.69−(ML(xu)−ML(xl))

> 1.0 for all xl, xu. Since all unlabeled examples
have the same label uncertainty and because USαX always picks an unlabeled example,
the example it picks will be determined based on the classifier’s uncertainty, just as in
USXU

. Now, since both USαX and USXU
start with XL = ∅, by induction, XL will only

ever contain singly-labeled examples, and so these two strategies are equivalent.

2 Theorem 2
Let PA(h∗(xi) = y) denote the probability currently output by learning algorithm, A,
that h∗(xi) = y. For ease of notation and clarity, we denote with shorthand p0(xi) =
PA(h

∗(xi) = 0) and p1(xi) = PA(h
∗(xi) = 1). Because we are considering a setting

with no noise, the total expected impact of a point xi is
∑
y∈Y py(xi)ψy(xi).

Lemma 1. If

1. (ψ1(xi)− ψ0(xi)) ≥ ψ0(xj)−ψ0(xi)+(ψ1(xj)−ψ0(xj))p1(xj)
p1(xi)

, or

2. (ψ0(xi)− ψ1(xi)) ≥ ψ1(xj)−ψ1(xi)+(ψ0(xj)−ψ1(xj))p0(xj)
p0(xi)

, or

3. (ψ0(xi)− ψ1(xi)) ≥ ψ0(xj)−ψ1(xi)+(ψ1(xj)−ψ0(xj))p1(xj)
p0(xi)

, or

4. (ψ1(xi)− ψ0(xi)) ≥ ψ1(xj)−ψ0(xi)+(ψ0(xj)−ψ1(xj))p0(xj)
p1(xi)

,
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then, the total expected impact of xi is at least as large as that of xj:
∑
y∈Y py(xi)ψy(xi) ≥∑

y∈Y py(xj)ψy(xj).

Proof. For condition (1), we have that
∑
y∈Y py(xi)ψy(xi)

= p0(xi)ψ0(xi) + p1(xi)ψ1(xi)

= p1(xi)(ψ1(xi)− ψ0(xi)) + ψ0(xi)

≥ p1(xi)
ψ0(xj)− ψ0(xi) + (ψ1(xj)− ψ0(xj))p1(xj)

p1(xi)
+ ψ0(xi)

= ψ0(xj)− ψ0(xi) + (ψ1(xj)− ψ0(xj))p1(xj) + ψ0(xi)

= ψ0(xj) + (ψ1(xj)− ψ0(xj))p1(xj)

=
∑
y∈Y

py(xj)ψy(xj).

Proofs of conditions (2-4) proceed similarly.

2.1 Proof of Theorem 2
Proof. Let xi be the point chosen by uncertainty sampling. We prove the theorem by
showing that P satisfies the conditions of Lemma 1 for xi and all candidate points xj .
We prove the case when xi > t and xj > t (then xj > xi, because otherwise xi would
not have been picked by uncertainty sampling). The 3 other cases proceed in exactly
the same manner, because of symmetry. Let us also assume that xi < x<, because
if not, the theorem holds trivially, because all points will have 0 impact. Let t be the
currently learned threshold, x< = max{x ∈ XL : x < t} denote the current greatest
labeled example less than the threshold, and x> = min{x ∈ XL : x > t} denote the
current smallest labeled example greater than the threshold. Now we define d∗1,∗2 to
be the proportion of points in X between points ∗1 and ∗2. Precisely,

d∗1,∗2 = Px∈D(x ∈ {x : ∗1 < x < ∗2}).

For example, dx<,t is the proportion of points between x< and t. We also know that
dxj ,t ≥ dxi,t because xj > xi. Now we show that condition 1 of Lemma 1 is satisfied,
that (ψ0(xi)− ψ1(xi)) ≥ ψ0(xj)−ψ0(xi)+(ψ1(xj)−ψ0(xj))p1(xj)

p1(xi)
for all xj > xi

We have that for any xj , ψ0(xj) = dt,xj+
dxj,x>

2 and ψ1(xj) = dx<,xj−(
dx<,xj

2 +
dt,xj ). Therefore, ψ1(xj)− ψ0(xj)

= dx<,xj
− (

dx<,xj

2
+ dt,xj

))− (dt,xj
+
dxj ,x>

2
)

= dx<,t −
dx<,xj

2
−
dxj ,x>

2
− dt,xj

= dx<,t − dd<,t − dt,xj

= −dt,xj .
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Next, we have that ψ0(xj)−ψ0(xi)+(ψ1(xj)−ψ0(xj))p1(xj)
p1(xi)

=
dt,xj +

dxj,x>

2 − (dt,xi +
dxi,x>

2 )− dt,xjp1(xj)

p1(xi)

=
dxi,xj

− 0.5(dxi,xj
)− dt,xj

p1(xj)

p1(xi)

=
0.5dxi,xj

− dt,xj
p1(xj)

p1(xi)
.

And then,

0.5dxi,xj
− dt,xj

p1(xj)

p1(xi)
≤ −dt,xi = (ψ1(xi)− ψ0(xj))

m
0.5dxi,xj

− dt,xj
p1(xj) ≤ −dt,xi

p1(xi)

m
0.5dxi,xj

≤ dt,xj
p1(xj)− dt,xi

p1(xi)

m
0.5dxi,xj

≤ dt,xj
[p1(xi) + β]− dt,xi

p1(xi), β = p1(xj)− p1(xi)
m

0.5dxi,xj
≤ p1(xi)dxi,xj

+ βdt,xj
, β = p1(xj)− p1(xi)

β > 0 because xj > xi, and p1(xi) > 0.5 because xi > t, and therefore
0.5dxi,xj

≤ p1(xi)dxi,xj
+ βdt,xj

, and the theorem is proved.
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