Supplementary Materials for "Reactive Learning: Active Learning with Relabeling"

1 Theorem 1

Proof. We first show that the theorem is true when X_L only contains singly-labeled examples. US^α_X will always pick an unlabeled example x_u over a singly-labeled example x_l, if α is set such that $(1 - α)M_A(x_l) + αM_L(x_l) < (1 - α)M_A(x_u) + αM_L(x_u)$ for all x_l, x_u pairs. This condition holds true when $α > \frac{M_A(x_l) - M_A(x_u)}{M_A(x_l) - M_A(x_u) + M_L(x_u) - M_L(x_l)}$ for all x_l, x_u pairs. We set α' = sup_{xl∈X_L, x_{u∈X_L} $\frac{0.69}{0.69 + (M_L(x_u) - M_L(x_l))}$. Note that since x_l is singly-labeled and will have lower label entropy compared to x_u, which is unlabeled, $M_L(x_u) > M_L(x_l)$. Therefore, α' < 1.0. Also, since M_A is an entropy of a binary random variable, $|M_A(x_l) - M_A(x_u)| < 0.69$. Combining all these facts, the condition holds true when $α > α' > \frac{0.69}{0.69 + (M_L(x_u) - M_L(x_l))}$ for all x_l, x_u and $α < \frac{0.69}{0.69 - (M_L(x_u) - M_L(x_l))} > 1.0$ for all x_l, x_u. Since all unlabeled examples have the same label uncertainty and because US^α_X always picks an unlabeled example, the example it picks will be determined based on the classifier's uncertainty, just as in US_{X_U}. Now, since both US^α_X and US_{X_U} start with X_L = Ø, by induction, X_L will only ever contain singly-labeled examples, and so these two strategies are equivalent.}

2 Theorem 2

Let $P_{\mathcal{A}}(h^*(x_i) = y)$ denote the probability currently output by learning algorithm, \mathcal{A} , that $h^*(x_i) = y$. For ease of notation and clarity, we denote with shorthand $p_0(x_i) = P_{\mathcal{A}}(h^*(x_i) = 0)$ and $p_1(x_i) = P_{\mathcal{A}}(h^*(x_i) = 1)$. Because we are considering a setting with no noise, the total expected impact of a point x_i is $\sum_{y \in \mathcal{Y}} p_y(x_i) \psi_y(x_i)$.

Lemma 1. If

$$\begin{aligned} I. \ (\psi_1(x_i) - \psi_0(x_i)) &\geq \frac{\psi_0(x_j) - \psi_0(x_i) + (\psi_1(x_j) - \psi_0(x_j))p_1(x_j)}{p_1(x_i)}, \text{ or} \\ 2. \ (\psi_0(x_i) - \psi_1(x_i)) &\geq \frac{\psi_1(x_j) - \psi_1(x_i) + (\psi_0(x_j) - \psi_1(x_j))p_0(x_j)}{p_0(x_i)}, \text{ or} \\ 3. \ (\psi_0(x_i) - \psi_1(x_i)) &\geq \frac{\psi_0(x_j) - \psi_1(x_i) + (\psi_1(x_j) - \psi_0(x_j))p_1(x_j)}{p_0(x_i)}, \text{ or} \\ 4. \ (\psi_1(x_i) - \psi_0(x_i)) &\geq \frac{\psi_1(x_j) - \psi_0(x_i) + (\psi_0(x_j) - \psi_1(x_j))p_0(x_j)}{p_1(x_i)}, \end{aligned}$$

then, the total expected impact of x_i is at least as large as that of x_j : $\sum_{y \in \mathcal{Y}} p_y(x_i) \psi_y(x_i) \ge \sum_{y \in \mathcal{Y}} p_y(x_i) \psi_y(x_i)$ $\sum_{y \in \mathcal{Y}} p_y(x_j) \psi_y(x_j).$

Proof. For condition (1), we have that $\sum_{y \in \mathcal{Y}} p_y(x_i) \psi_y(x_i)$

$$\begin{split} &= p_0(x_i)\psi_0(x_i) + p_1(x_i)\psi_1(x_i) \\ &= p_1(x_i)(\psi_1(x_i) - \psi_0(x_i)) + \psi_0(x_i) \\ &\geq p_1(x_i)\frac{\psi_0(x_j) - \psi_0(x_i) + (\psi_1(x_j) - \psi_0(x_j))p_1(x_j)}{p_1(x_i)} + \psi_0(x_i) \\ &= \psi_0(x_j) - \psi_0(x_i) + (\psi_1(x_j) - \psi_0(x_j))p_1(x_j) + \psi_0(x_i) \\ &= \psi_0(x_j) + (\psi_1(x_j) - \psi_0(x_j))p_1(x_j) \\ &= \sum_{y \in \mathcal{Y}} p_y(x_j)\psi_y(x_j). \end{split}$$

Proofs of conditions (2-4) proceed similarly.

2.1 **Proof of Theorem 2**

Proof. Let x_i be the point chosen by uncertainty sampling. We prove the theorem by showing that \mathcal{P} satisfies the conditions of Lemma 1 for x_i and all candidate points x_j . We prove the case when $x_i > t$ and $x_j > t$ (then $x_j > x_i$, because otherwise x_i would not have been picked by uncertainty sampling). The 3 other cases proceed in exactly the same manner, because of symmetry. Let us also assume that $x_i < x_{\leq}$, because if not, the theorem holds trivially, because all points will have 0 impact. Let t be the currently learned threshold, $x_{\leq} = \max\{x \in \mathcal{X}_L : x < t\}$ denote the current greatest labeled example less than the threshold, and $x_{>} = \min\{x \in \mathcal{X}_{L} : x > t\}$ denote the current smallest labeled example greater than the threshold. Now we define $d_{*_1,*_2}$ to be the proportion of points in \mathcal{X} between points $*_1$ and $*_2$. Precisely,

$$d_{*_1,*_2} = P_{x \in \mathcal{D}}(x \in \{x : *_1 < x < *_2\}).$$

For example, $d_{x_{<},t}$ is the proportion of points between $x_{<}$ and t. We also know that $\begin{aligned} d_{x_j,t} &\geq d_{x_i,t} \text{ because } x_j > x_i. \text{ Now we show that condition 1 of Lemma 1 is satisfied,} \\ \text{that } (\psi_0(x_i) - \psi_1(x_i)) &\geq \frac{\psi_0(x_j) - \psi_0(x_i) + (\psi_1(x_j) - \psi_0(x_j))p_1(x_j)}{p_1(x_i)} \text{ for all } x_j > x_i \\ \text{We have that for any } x_j, \psi_0(x_j) &= d_{t,x_j} + \frac{d_{x_j,x_j}}{2} \text{ and } \psi_1(x_j) = d_{x_{<},x_j} - (\frac{d_{x_{<},x_j}}{2} + d_{x_{<},x_{<}}) \\ \text{Therefore } d_{x_{<},x_{<}} = (x_i) + (x_i) + (x_i) \\ \text{Therefore } d_{x_{<},x_{<}} = (x_i) + (x_i) + (x_i) + (x_i) + (x_i) \\ \text{Therefore } d_{x_{<},x_{<}} = (x_i) + (x_i)$

 d_{t,x_j}). Therefore, $\psi_1(x_j) - \psi_0(x_j)$

$$= d_{x_{<},x_{j}} - \left(\frac{d_{x_{<},x_{j}}}{2} + d_{t,x_{j}}\right) - \left(d_{t,x_{j}} + \frac{d_{x_{j},x_{>}}}{2}\right)$$
$$= d_{x_{<},t} - \frac{d_{x_{<},x_{j}}}{2} - \frac{d_{x_{j},x_{>}}}{2} - d_{t,x_{j}}$$
$$= d_{x_{<},t} - d_{d_{<},t} - d_{t,x_{j}}$$
$$= -d_{t,x_{j}}.$$

Next, we have that $\frac{\psi_0(x_j)-\psi_0(x_i)+(\psi_1(x_j)-\psi_0(x_j))p_1(x_j)}{p_1(x_i)}$

$$= \frac{d_{t,x_j} + \frac{d_{x_j,x_j}}{2} - (d_{t,x_i} + \frac{d_{x_i,x_j}}{2}) - d_{t,x_j}p_1(x_j)}{p_1(x_i)}$$

=
$$\frac{d_{x_i,x_j} - 0.5(d_{x_i,x_j}) - d_{t,x_j}p_1(x_j)}{p_1(x_i)}$$

=
$$\frac{0.5d_{x_i,x_j} - d_{t,x_j}p_1(x_j)}{p_1(x_i)}.$$

And then,

$$\frac{0.5d_{x_i,x_j} - d_{t,x_j}p_1(x_j)}{p_1(x_i)} \leq -d_{t,x_i} = (\psi_1(x_i) - \psi_0(x_j))$$

$$\begin{array}{c} & \\ & \\ & \\ 0.5d_{x_i,x_j} - d_{t,x_j}p_1(x_j) \leq -d_{t,x_i}p_1(x_i) \\ & \\ & \\ & \\ & \\ 0.5d_{x_i,x_j} \leq d_{t,x_j}p_1(x_j) - d_{t,x_i}p_1(x_i) \\ & \\ & \\ & \\ & \\ 0.5d_{x_i,x_j} \leq d_{t,x_j}[p_1(x_i) + \beta] - d_{t,x_i}p_1(x_i), \quad \beta = p_1(x_j) - p_1(x_i) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ 0.5d_{x_i,x_j} \leq p_1(x_i)d_{x_i,x_j} + \beta d_{t,x_j}, \quad \beta = p_1(x_j) - p_1(x_i)
\end{array}$$

 $\beta > 0$ because $x_j > x_i$, and $p_1(x_i) > 0.5$ because $x_i > t$, and therefore $0.5d_{x_i,x_j} \le p_1(x_i)d_{x_i,x_j} + \beta d_{t,x_j}$, and the theorem is proved.