A Friendly Face for Eclipse

Charles Reis
Rice University
6100 S. Main St.
Houston TX 77005
creis@alumni.rice.edu

Abstract

Eclipse is a powerful integrated development environ-
ment (IDE) for Javal targeted at professional software
developers. However, Eclipse is poorly suited for use
in introductory computing education because the com-
plexity of its interface and the associated computing en-
vironment can overwhelm beginners. In contrast, Dr-
Java is a friendly, highly interactive IDE targeted at
teaching Java to beginners. DrJava has a simple inter-
face consisting of a Definitions pane for entering and
editing program text and an Interactions pane for eval-
uating arbitrary Java statements and expressions given
the program in the Definitions pane. This interface
frees students from the complication of defining main
methods for their programs and encourages them to
explore the Java language by conducting simple exper-
iments.

We have developed a plug-in for Eclipse, based largely
on the existing DrJava code base, that provides an In-
teractions pane to Eclipse with precisely the same capa-
bilities as the Interactions pane in DrJava, along with a
simplified user interface. With this plug-in, Eclipse be-
comes a suitable vehicle for teaching introductory pro-
gramming, enabling instructional programs to use the
same IDE for all levels of the programming curriculum.
In addition, it provides professional developers with a
convenient mechanism for interactively evaluating ar-
bitrary program text during program development—a
common feature of programming interfaces for func-
tional languages like Scheme and ML.

1 Introduction

Despite Java’s growing popularity as a language for
teaching programming [3], it has some characteristics
that make teaching programming concepts unnecessar-
ily difficult. Although Java syntax is familiar territory
for experienced C/C++ programmers, it is quite chal-
lenging for beginners to learn. In addition, Java I/O

™™

!Java™ is a trademark of Sun Microsystems, Inc.

Robert Cartwright
Rice University
6100 S. Main St.
Houston TX 77005
cork@cs.rice.edu

and the compile/execute command line interface are
complex and intimidating for students with little pro-
gramming experience. Students who are forced to learn
Java using a conventional text editor and command line
execution interface are often overwhelmed by the me-
chanics of writing and running a program and have diffi-
culty focusing on learning how to design object-oriented
programs. For these reasons, many instructors elect to
use an integrated development environment (IDE) for
Java in an effort to relieve students of some of the cler-
ical burdens involved in writing Java programs.

2 IDEs in the Classroom

In the context of computing education, there are sev-
eral fundamental requirements that an IDE must sat-
isfy. First, the IDE must assist students in writing cor-
rect syntax in a language in which they may not be very
proficient. Many IDEs provide this support by giving
visual cues that highlight a program’s structure. Some,
like Eclipse, perform full incremental parsing to provide
these cues. Second, the IDE must provide a simple in-
terface to the language compiler (such as a “compile”
button) and flag any syntax errors by highlighting the
offending lines of source code. Third, the IDE must en-
able students to execute programs easily without using
a command line interface. Most IDEs provide a mech-
anism for running a program provided that it contains
a proper main method.

While most Java IDEs meet these basic requirements,
there are three additional requirements for IDEs used
in introductory programming courses.

e First, the user interface should be simple and unin-
timidating. Professional IDEs like Eclipse generally
fare poorly in this regard because they are designed
to provide all of the features that professional devel-
opers expect. This array of features is bewilderingly
complex for novices. For these students, the impor-
tance of a simple, intuitive user interface cannot be
overstated. Even well-designed professional tools pre-
sume a reasonable grasp of the language, placing their

target audience well above the introductory level.

e Second, the IDE should provide simple mechanisms
for working around complications in the Java lan-
guage that are pedagogic distractions. The two
most prominent such complications are the public
static void main(String[] args) convention for
starting the execution of a Java program and the syn-
tax required for I/O operations. The main convention
is painful to teach to beginners because it forces a dis-
cussion of access modifiers (public), static meth-
ods, and arrays before students can execute even the
most trivial program, e.g. “Hello World”. Similarly,
console input is a painful mechanism for specifying
the input values for a computation. The Java lan-
guage does not provide a simple external interface
for creating objects and invoking methods on them.
Processing console input to extract argument values
for a method is far more difficult than simply writing
a Java method invocation with constant arguments.

e Finally, a pedagogic IDE should be reasonably
lightweight so that it executes responsively on older,
less capable hardware. In contrast to professional
software developers, students in introductory pro-
gramming courses often do not have access to state-
of-art personal computers.

While the Eclipse platform is a good match for inter-
mediate and advanced programming courses, it does
not satisfy any of the three requirements for use in
introductory programming courses listed above. The
default Eclipse perspective for Java programs presents
students with a very complex interface containing no
fewer than 10 menus, 6 visible or available panes, and 4
poorly labeled toolbars, each with unconventional con-
text menus. Eclipse has a steep learning curve, due
not only to the abundance of panes and cryptic tool-
bar buttons, but also to the potentially unfamiliar con-
cepts of perspectives, plug-ins, and projects. Moreover,
on many student machines, Eclipse performs sluggishly,
particularly on large programs such as “case studies” in
many introductory courses.

3 A Simple, Interactive IDE

DrJava [1] is a small IDE designed specifically to ad-
dress the difficulties of teaching Java to students at the
introductory level. The DrJava interface primarily con-
sists of two panes: a Definitions pane used to enter
program text and an Interactions pane used to evalu-
ate arbitrary statements and expressions in the context
of the classes defined in the Definitions pane. (See Fig-
ure 1 for a screenshot of DrJava.) In essence, DrJava
converts Java from a “batch-oriented” (command line
based) language to a reactive one comparable in inter-

i ListDemo - DrJava |7 %)
File Edit Tools Debugger Help

[omea] @ [e | [cor| B o] 5 pome] © wnaa| & oo | [86] |compe] ese] v e
. = =

s {|abstract class Li

ListDenaTest abstract puslic int Tength():

apstract String toStringHelp()s

public String toString() { return “[" + toStringHelp() + *1"; }

class Empty extends List {
public static final Empty ONLY = new Ewpty();
private Empty() { }
pUDTiC ANt Tength() { return 0;
String toStringHelp() { return *'; }

class Cons extends List {
protected int first;
protected List rest;
RubTic Cons(int f, List r) {
first = 3
rest = r;
public Nt getFirst() { return first; 3
pubTic List getRest() { return rest; }

public int Tength() { return 1 + rest.lengthi}; }
String ToStringHelp() { return First + " '+ rest.toStringHelp(); 3
¥

interactions [IGaNSGIEN]] a|
Welcone to Drlava.

> L1ST myList = new Cons(3, mew Cons(s, Empry. ONLY));
> mylist

[351

> myList. Tength()

2

-

Jhorne jcreis ftestsre flistolema/ListDerno, java 232

Figure 1: DrJava

active flexibility to (mostly) functional languages like
Scheme and ML.

As a pedagogic IDE, DrJava’s most important benefits
are its simplicity and its interactive interface. The user
interface is designed to be accessible to beginners, with
clearly labeled buttons and few distractions in a simple
graphical layout. Almost all of DrJava’s features and
integrated tools revolve around its Interactions pane,
which is presented as a console-style “read-eval-print
loop” (REPL). This form of interface dates back at least
to early Lisp implementations [12] and has been incor-
porated in many “interactive” programming languages
(e.g., Lisp, Scheme, ML). The particular form of REPL
used in DrJava, where the current “source program” is
maintained in a separate pane, was pioneered in an ear-
lier pedagogic environment called DrScheme [5]. The
DrJava Interactions pane uses DynamicJava [8] to in-
terpret interactions, leveraging reflection and dynamic
class loading for efficiency on par with command line
execution.

The Interactions pane provides students with a very
simple interface for executing Java programs—
eliminating the mneed for public static void
main(...)—and for experimenting with the be-
havior of various parts of the programs that they write.
Just as unit testing focuses on testing individual meth-
ods, the Interactions pane enables students to focus
on executing individual methods in their programs
to see how they behave. The Interactions pane also
provides a simple framework for exploring the behavior
of Java libraries and for conducting computational
experiments at breakpoints during debugging. This
tool can greatly benefit instructors as well, who can
easily demonstrate new concepts and language features

in the Interactions pane in the classroom.

DrJava integrates all of the tools that are essential to
Java software development: Java compilers (which are
plug-ins), a unit testing framework known as JUnit,
a source-level debugger, and the Javadoc documenta-
tion tool. The debugger is tightly integrated with the
Interactions pane [11]. Users can set breakpoints in
source code to suspend the evaluation of any method
call from the Interactions pane. During such a pause
in program execution, users can interact with the state
of the program directly in the Interactions pane, calling
any methods and querying or modifying any values that
are in scope. This is an intuitive and familiar interface
to understand and debug existing code.

Unlike other pedagogic IDEs, which are often limited in
scope to small programs, DrJava also scales to develop-
ing large production programs, including itself. For the
past year, DrJava has been developed by a team of stu-
dents using DrJava almost exclusively. On such a code
base, consisting of 40,000 lines of source code plus the
DynamicJava interpreter, DrJava still performs very re-
sponsively on machines that are too slow to run Eclipse,
such as a 500 MHz G3 Apple iBook.

In contrast to Eclipse, DrJava is restricted in scope to
keep its interface simple and uniform and to ensure
that it runs on slower machines. It does not support
a plug-in architecture, but the code base is sufficiently
compact that it is easy for advanced undergraduates to
extend and modify the code base [2]. Despite DrJava’s
effectiveness on sizable projects, the environment lacks
built-in refactoring tools, which can be useful in many
software courses.

4 DrlJava Plug-in For Eclipse

To support the use of Eclipse in introductory program-
ming classes, as well as to facilitate an easier transi-
tion from DrJava to a full-featured professional IDE, it
is desirable to support DrJava’s simple and interactive
interface within Eclipse. Fortunately, Eclipse’s plug-in
architecture makes these modifications to Eclipse easy
to achieve, while DrJava’s modular design enables sig-
nificant code re-use in the implementation of such a
plug-in.

The DrJava plug-in for Eclipse simplifies the Eclipse
user interface for beginning programmers, while also
adding an Interactions pane to Eclipse to facilitate
interactive program development via DrJava’s own
REPL. After installing the plug-in, users can select a
“DrJava Perspective” in Eclipse to obtain a graphical
layout that is visually similar to DrJava, complete with
an Interactions pane (see Figure 2 for a screenshot).
This Interactions pane is closely integrated with the
user’s open projects, as the classpath entries for each

DrJava - Eclipse Platform
File Edit Source Refactor Navigate Search Project Run Window Help

e @ e E |k d g s]nw]BEE] e [[BE]E 2

&7 [o) Package Explorer v x | [ENEEDEROET x

Bl & @w abstract class List { &

abstract public int length();
~ B Listbemo abstract String t0StringHelp();
~ 8 (default package)

public String toString() { return ' + toStringHelp() + 'T'; }
ST }

b Wl JRE System Library (j2

class Empty extends List {
public static final Empty ONLY = new Empty();

private Empty() { }

public int length() { return 0; }
String toStringHelp() { return ™; }
¥

class Cons extends List {
protected int first;
protected List rest;

public Cons(int f, Listr) {
first=f;
rest=r;

i

K| Z] L 2 [2]

JJ Interactions Pane > %

/elcome to Drjava.
> List myList = new Cons(3, new Cons(S, Empty.ONLY));
> myList

>

(351
> myList.length)
2

Kl

Interactions Pane Tasks

|Wiitable: Insert ir:23

Figure 2: The DrJava Plug-in for Eclipse

project are automatically in scope, and changes to open
class files result in a prompt warning the user to reset
his interactions session to load updated class files.

This plug-in is still in active development. The current
release supports a simplified user interface and a fully
functional Interactions pane. The full release of the
plug-in will also integrate the Eclipse debugger with
the Interactions pane, providing Eclipse with the same
interactive debugging capabilities as DrJava. By facil-
itating a simple and interactive interface for develop-
ment and debugging, the DrJava plug-in makes Eclipse
a very attractive and capable environment for teach-
ing Java programming skills at any level, provided that
students have access to machines capable of running
Eclipse responsively.

4.1 Target Audience

We expect the DrJava plug-in to serve three different
constituencies.

e First, many students who learn to program in Java
using DrJava grow accustomed to the convenience
of an Interactions pane and resist using professional
IDEs in more advanced courses because they do not
support program interactions. With the DrJava plug-
in, Eclipse supports precisely the same interactive be-
havior as DrJava.

e Second, some Computer Science programs designate
a single IDE as the supported programming platform
for all courses using Java. This policy creates a po-
tential conflict between the interests of beginning stu-
dents and advanced students since it is difficult to
find an IDE that works well in both contexts. With

the DrJava plug-in, we believe that Eclipse is well-
suited to both groups.

e Third, like the advocates of functional programming
environments, we believe that the ability to evaluate
arbitrary program text in a “read-eval-print loop”
(REPL) is very helpful during program development
by professional software developers. As a result, we
anticipate that some professional developers will use
the DrJava plug-in for Eclipse.

4.2 Plug-in Implementation

Code re-use was a major goal in the design and imple-
mentation of the DrJava plug-in for Eclipse. We wanted
the plug-in to use as much code as possible directly from
the DrJava code base to reduce the work required to de-
velop the plug-in and to minimize the introduction of
new errors. Qur development team emphasizes the use
of design patterns [7] and follows the Extreme Program-
ming practices [9] in software development, facilitating
the refactoring and re-use of the DrJava code base.

DrJava is designed according to the Model-View-
Controller design pattern, separating the logic for the
core application (the model) from the components of
the user interface. Nevertheless, prior to our writing
the plug-in for Eclipse, the logic for DrJava’s Inter-
actions pane was still tightly coupled with the rest of
the DrJava model. Fortunately, Extreme Programming
methodology facilitates and encourages program refac-
toring to improve code and adapt to new requirements
as they arise [6]. This tight coupling between the Inter-
actions pane and the rest of the DrJava model interfered
with re-using the code for the Interactions pane for the
Eclipse plug-in. Thus, we refactored the design of In-
teractions pane and the supporting code that enables it
to run safely in its own Java Virtual Machine, allowing
these components to be re-used in the Eclipse plug-in
independently of the rest of DrJava.

The use of the Model-View-Controller pattern in Dr-
Java also helped us overcome a potential incompatibil-
ity in windowing toolkits between DrJava and Eclipse.
Like most Java GUI applications, DrJava uses the
Swing toolkit to implement its graphical components.
Eclipse, on the other hand, uses a new SWT toolkit
to provide an interface more closely integrated with in-
dividual platforms. Since DrJava’s model is indepen-
dent of its Swing view components, the plug-in could
theoretically just provide alternative SWT view com-
ponents that could be displayed in Eclipse. Unfortu-
nately, there was a catch—the Swing toolkit provides
some model-oriented classes, such as the Document class
used by graphical text components such as the In-
teractions pane. DrJava’s model maintained the con-
tents of the Interactions pane using a Swing Document,

which was incompatible with the SWT view compo-
nents used in the plug-in. Rather than have duplicate
representations of the document in the plug-in, we em-
ployed the Adapter design pattern to create a toolkit-
independent document. In this way, DrJava’s model
uses a DocumentAdapter interface, which abstracts the
differences between Swing and SWT and can be imple-
mented using either Swing or SWT components. Thus,
the DrJava IDE continues to use a Swing Document for
its Interactions pane, while the Eclipse plug-in can use
an SWT StyledText widget.

After we performed these refactoring transformations to
the DrJava code base, very little new code was required
to implement the Eclipse plug-in. In fact, only eight
extra classes comprise the current incremental release
of the plug-in, which provides a fully functional Inter-
actions pane and a simplified user interface. We are
currently extending the plug-in to integrate Eclipse’s
debugging features with the Interactions pane. To sup-
port this integration, we are refactoring the implemen-
tation of the DrJava debugger and its interface to the
Interactions pane to support further code re-use. This
technique ensures that any new features or bug fixes
related to the Interactions pane in DrJava are immedi-
ately available in the Eclipse plug-in as well.

5 Related Work

BluelJ [10] is a pedagogic IDE that also strives to elimi-
nate the dependence on Java’s main method and console
1/0. BlueJ uses class diagrams and a graphical “work-
bench” to allow students to visually interact with their
programs. While this interface is effective for graph-
ically representing some object-oriented program de-
signs, it does not scale to larger projects or compu-
tations. As a result, BlueJ is limited to use in intro-
ductory courses and its interface is sufficiently uncon-
ventional that it does not prepare students to use envi-
ronments suitable for more advanced coursework.

Eclipse itself provides a Java Scrapbook feature to pro-
mote interactive evaluation of Java code, but its inter-
face is less intuitive and less flexible than the REPL in
DrJava’s Interactions pane. The Java Scrapbook inter-
face relies on using the mouse to select a region of text
in a document and evaluate it using a context menu.
Any results or corresponding errors are inserted into the
document in editable form, adjacent to the statements
or expressions themselves. Because the same block of
text can be repeatedly modified and evaluated, the cur-
rent program state may be difficult to reconstruct.? The

2This is a weakness shared by a conventional “read-eval-
print-loop” where the current program state is assembled
using “load” statements that are executed by the REPL.
DrJava maintains a separate Definitions pane to eliminate
this problem. The current program state is generated sim-

scrapbook does not maintain a source language descrip-
tion of that state. In contrast, DrJava’s Interactions
pane maintains a history of the interactions which are
used to build up state, with clear distinctions between
interactions, results, and errors.

6 Conclusion

DrJava provides a simple, interactive user interface that
addresses the challenges involved in using an integrated
development environment for Java in introductory pro-
gramming courses. Eclipse, on the other hand, provides
a wide collection of sophisticated features and tools
suitable for production programming and advanced pro-
gramming courses. We have developed an Eclipse plug-
in supporting essentially the same interactive user in-
terface as DrJava, making Eclipse suitable for use by
beginning students and providing advanced users with
a more convenient interface for performing program in-
teractions. In the process, we have shown how design
patterns and Extreme Programming practices facilitate
the re-use of the DrJava code base.

7 About the Authors

Charles Reis received his Masters Degree from Rice Uni-
versity in May 2003, working with the Java Program-
ming Languages and Technology research group. He
has worked on DrJava for two years, serving as its sec-
ond lead developer.

Robert “Corky” Cartwright is a Professor of Computer
Science at Rice University, where he has been a mem-
ber of the faculty since 1980 including a brief stint as
department chair. His principal research interests are
programming languages and software engineering, with
a focus in recent years on object-oriented programming
in Java. He is the director of the Java Programming
Languages and Technology research group at Rice Uni-
versity which is developing DrJava and other tools to
support Java education and research.

References

[1] E. Allen, R. Cartwright, B. Stoler. DrJava:
A Lightweight Pedagogic Environment for Java.
SIGCSE 2002, March 2002.

[2] E. Allen, R. Cartwright, C. Reis. Production Pro-
gramming in the Classroom. SIGCSE 2003, Febru-
ary 2003.

[3] O. Astrachan, R. Cartwright, G. Chapman, D.
Gries, C. Horstmann, R. Kick, F. Trees, H. Walker,

ply by compiling the defined program and executing the
sequence of statements and expressions in the interactions
history.

U. Wolz. Recommendations of the AP Computer
Science Ad Hoc Committee, October 2000. (URL:
http://apcentral.collegeboard.com/repository/
apO1.pdf.ad 7908.pdf)

G. Bracha, M. Odersky, D. Stoutamire, P. Wadler.
Making the future safe for the past: adding gener-
icity to the Java programming language. OOPSLA
’98, October 1998.

R. Findler, C. Flanagan, M. Flatt, S. Krishna-
murthi, M. Felleisen. DrScheme: A pedagogic
programming environment for Scheme. In Inter-
national Symposium on Programming Languages:
Implementations, Logics, and Programs, 1997, 369-
388.

M. Fowler, K. Beck, J. Brant. Refactoring: Improv-
ing the Design of Fxisting Code. Addison-Wesley,
1999.

E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns: FElements of Reusable
Object-Oriented Software. Addison-Wesley, Read-
ing, Mass. 1995.

S. Hillion. “DynamicJava.”
(URL: http://koala.ilog.fr/djava/)

R. Jefferies, A. Anderson, C. Hendrickson. Extreme
Programming Installed. Addison-Wesley, 2001.

M. Kolling, A. Patterson, B. Quig, J. Rosenberg.
“BluelJ, The Interactive Java Environment.”
(URL: http://www.bluej.org)

C. Reis. A Pedagogic Programming Environment
for Java that Scales to Production Programming.
Master’s thesis, Rice University, April 2003.

E. Sandewall. Programming in an interactive en-
vironment: the “Lisp” experience. In Computing
Surveys, 10(1), March 1978, 35-71.

