
Architectural Principles for 
Safe Web Programs
Charlie Reis, Steve Gribble, Hank Levy
University of Washington

HotNets VI - November 14, 2007



The Shift to Web Programs

Browsers were built to render HTML

2

JavaScript

Silverlight

Flash

We’ve tacked on active code

Now running web programs
within the browser

Browser must act like OS



[Johns 06]

[Reis 06, Cox 06]

[Grossman 06]

[Felten 00]

[Moshchuk 07]

[Jackson 06]

[Jackson 07]

[Jim 07, Jovanovic 06, Kirda 06,
 Ismail 04, Huang 03/04]

Web Programs are Unsafe

XSS Attacks

CSRF Attacks

DNS Rebinding Attacks

Cache Timing Attacks

Visited Link History

Malicious Extensions
Browser Exploits

Drive-By Downloads

AJAX Worms

Browser Crashes

3

Symptoms of four
fundamental problems

Need safe
architectural principles



Fundamental Problems

4



Can’t identify program boundaries

Which pages can talk?

Same Origin Policy

Flawed approach:

Too narrow

Too broad

Easily compromised

1

5

MyS
pa

ce

MyS
pa

ce

Goo
gle

Map
s

10.1.1.1
(LAN)

128.1.2.3
(Internet)

evil.com



Can’t prevent unwanted code

Scripts injected via 
user input (XSS)

Scripts injected in-flight

Pages request data via 
code files

2

6

URL



Can’t isolate programs in browser

Side channels

Can abuse credentials 
of other sites (CSRF)

Failures, resource 
contention

3

7



Can’t apply uniform policies

Each content type has 
its own security model

No restrictions on 
browser extensions

Can’t reason about a 
web program’s abilities

4

8

SilverlightFlashJavaScript

Greasemonkey AdBlock



Summary of Problems

1. Can’t identify program boundaries

2. Can’t prevent unwanted code

3. Can’t isolate programs in browser

4. Can’t apply uniform policies

9



Architectural Principles

10



Principles for Web Programs

Browsers don’t know what a program is

Support web programs as first class entities

Must improve both program definitions and browsers

11



Program Boundaries

New abstractions:

Web program

Program instance

Must explicitly assign 
resources to programs

1

12



Specifying Boundaries

One solution: key pair

Author holds private key

Web program consists 
of signed pages

No PKI required

13



Authorized Code

Explicitly authorize all 
code in a web program

2

14

Whitelist:
364700f3feb405918a881...
34e523012ce91e1e6956b...

<script>...
</script>

Sandbox

Data
Request

Whitelists
(e.g., BEEP)

Code restrictions
(e.g., MashupOS)

Safe data requests
(e.g., JSONRequest)



Program Isolation

Privacy:

Partition storage 
between programs

Isolate credentials 
between instances

Robustness:

OS process for each 
instance

3

15

Operating System

Process Process Process

Browser
Chrome



Security Policies

Sandbox content types 
& browser extensions

Interposition layer

Extensible policies

4

16

DOM

Renderer JS Engine

HTML JS

Flash, etc.

Flash

Network Filesystem

Interposition Layer



Conclusion

Web programs need first class support

Explicit boundaries, authorized code, isolation, 
uniform policies

Improve program definitions and browsers

Web can be a safe platform

17http://www.cs.washington.edu/homes/creis/


