
Architectural Principles for Safe Web Programs

Charles Reis, Steven D. Gribble, and Henry M. Levy
{creis, gribble, levy}@cs.washington.edu

Department of Computer Science and Engineering
University of Washington

Abstract

Web content is migrating away from simple hyper-
linked documents towards a diverse set of programs
that execute within the web browser. Unfortunately,
modern browsers do not provide a safe environment
for running these web programs. In this paper, we
show how current web security threats are symptoms
of four key problems in supporting web programs:
vague program boundaries, unwanted code, poor iso-
lation, and inconsistent security policies. In response,
we introduce abstractions for web programs and pro-
gram instances, and we present a set of architectural
principles to address these fundamental problems.

1 Introduction

Modern browsers must contend with a complex and
hazardous web. Web content has been migrating
away from simple hyperlinked documents towards a
diverse set of programs designed to execute within
the browser. Thanks to new mechanisms and cod-
ing techniques, these programs increasingly resem-
ble their desktop counterparts: they have interactive
user interfaces, they compose with other programs
within the browser, and they communicate with re-
mote servers to exchange data.

This shift demands a change in the way we think
about web browsers, which must now act more like
operating systems than document renderers. The fo-
cus of browser architecture should not only be on
how to transport and render documents efficiently,
but also on how to execute web programs safely.

In an ideal world, web browsers would provide a
safe platform for running instances of web programs,
each clearly defined and easy to manage. Like op-
erating systems, web browsers would provide well-
designed facilities for running program code, load-
ing libraries, and obtaining data from authorized
sources. Browsers would keep program instances sep-
arate from each other and from the rest of the client’s
resources. Threats to this platform may change over

time, so browsers would enforce extensible policies on
the behavior of web programs.

Today’s web browsers are far from this ideal vision,
however, and they do not provide a safe environment
for running code from the web. There has been much
recent attention to web security threats, from browser
exploits [17, 18] to cross-site scripting attacks [15] to
DNS rebinding [13]. These threats are symptomatic
of four fundamental problems that become clear when
viewing the web as a collection of programs:

• Can’t identify program boundaries — A web pro-
gram comprises more than a single document,
yet it is difficult to say where its boundaries are.
Current browsers use the notion of origin, which
we argue is both inappropriate and insecure.

• Can’t prevent unwanted code — It is currently
difficult to distinguish web program code from
data. As a consequence, web developers who in-
tegrate content from multiple sources risk giving
adversaries control over their programs.

• Can’t isolate programs in the browser — Sepa-
rate web programs can interfere with each other
in critical ways, making it unsafe to visit trusted
and untrusted sites in the same web browser.

• Can’t apply uniform security policies — There
are many types of executable code that run in
browsers. Each type defines its own security poli-
cies, potentially creating inconsistencies across
types. The situation is exacerbated by browser
extensions that can breach these policies.

The individual symptoms of these problems may be
alleviated by point solutions, but the problems them-
selves will continue to cause new issues unless we re-
think aspects of the web. Finding solutions requires
looking at the web with a program-centric perspec-
tive, to improve the ways web programs are defined
and change the ways browsers are architected. By ad-
dressing these fundamental problems, we can provide
a much safer environment for browsing the web.



In the rest of this paper, we discuss architectural
principles for web programs that can help resolve
these issues. In Section 2, we discuss the fundamen-
tal problems and their symptoms. We identify a need
for web program and program instance abstractions
in Section 3, and we present principles for supporting
these abstractions and show they can be achieved in
incremental ways. We conclude in Section 4.

2 Web Programs are Unsafe

Current web browsers were built with documents in
mind, not programs. Supporting active code within
documents was an afterthought, and as a result,
browsers continue to have inadequate mechanisms for
safe code execution. In this section, we describe how
the resulting security threats are symptoms of our set
of four basic problems.

2.1 Can’t identify program bound-
aries

Web browsers are expected to isolate the code and
data of unrelated documents, yet it is difficult for
browsers to determine the boundaries separating web
programs from each other. This leads to many diffi-
culties in managing and isolating web programs.

In today’s browsers a web document is the ba-
sic abstraction, but web programs often comprise
more than a single document. Sets of documents in
the browser can fully access and modify each other
through their Document Object Model (DOM) trees,
exchange stored data through cookies, and receive
data from particular servers. Documents with full
access to each other are effectively part of the same
program, while other documents are kept separate.

Current web browsers use the Same Origin Pol-
icy [19] to govern a document’s access rights: two
documents can access each other only if they arrive
from the same origin. Yet the origin of a document is
a mutable property; a document from foo.bar.com
can change its origin to a suffix of that name (e.g.,
bar.com) by modifying its own document.domain
property. This confounds reasoning about the bound-
aries of a web program, as they may change as the
program executes. At best, one can conservatively
define a program’s boundaries by the second level do-
main name of the documents’ origin.

At a deeper level, however, origin itself is a largely
inappropriate and insecure way to define program
boundaries. First, the notion of origin may not
match the desired boundaries of the program. A single
origin may be too narrow: pages often include code

directly from a third party’s server, mashups obtain
data from multiple origins, and a secure session with
a bank or similar party may span documents from
multiple origins. Conversely, a single origin may be
too broad: some social networking services host pages
with user-supplied content that might be considered
separate programs, yet providing a separate origin for
each program may not always be feasible.

Second, the notion of origin can be abused and com-
promised. Recent studies of DNS rebinding attacks
reveal that browsers can be tricked into believing two
documents from different origins belong to the same
origin [13]. This allows an adversary to cross the
boundaries of any program defined by its origin.

These limitations make it difficult to identify a
web program’s boundaries in practice. Without clear
boundaries, any notions of authorization, isolation,
and security policies are difficult to enforce.

2.2 Can’t prevent unwanted code

The current design of web programs makes it very dif-
ficult to distinguish between active code and passive
data. Additionally, modern web programs integrate
content from multiple sources, ranging from user in-
put to data to code libraries from third parties. As a
result, it is difficult to restrict such content to prevent
it from gaining control over the web program itself.

Cross-site scripting (XSS) attacks are one widely
acknowledged symptom of this problem. XSS vul-
nerabilities allow adversaries to inject scripts into an-
other party’s web program via user input, effectively
gaining control of the program. Worse, attacks like
the Samy XSS worm [1] are able to bypass many
server-based security filters using syntactically incor-
rect script code, which slips through filters but runs
in many browsers anyway. This makes XSS attacks
difficult to prevent without support from the browser.
Script injection can also occur via third party code li-
braries that change without warning (e.g., via a com-
promised server [12]) or ISPs that inject advertise-
ment scripts into a page while it is in transit [2].

Mashups are also affected by this fundamental
problem. The Same Origin Policy in browsers pre-
vents web programs from retrieving data from third
party servers, but it places no such restrictions on re-
trieving code. To integrate data from other sources,
many mashups retrieve data in the JSON format [5],
which is executable code presumed to only contain
data. This is analogous to a traditional program load-
ing input data by linking against a code library. As
a result, adversarial data servers could easily include
other code statements in JSON files to gain control
of mashup web programs. Instead, safe mechanisms



for obtaining data are necessary to support mashups
without the risk of unwanted code.

These threats are indicative of a need to explicitly
authorize the code for a web program, and a need to
place limits on other code that might intentionally or
unintentionally appear.

2.3 Can’t isolate programs in the
browser

The Same Origin Policy in current browsers is in-
tended to prevent web programs from interfering with
each other. Even if origins were adequate to infer
program boundaries, though, there are still ample op-
portunities for web programs to interfere with each
other. This interference can exhibit itself in three
ways: leaking private information, taking control of
another program, and causing disruptions or the loss
of potentially unrecoverable state.

First, studies by Felten et al. [9] and Jackson et
al. [14] show that adversarial web programs can learn
about a client’s browsing history using covert chan-
nels. For example, a web program might measure the
time to load an object from another program to see
if it has been cached, or it might query the color of
links to another program to see if the latter has been
visited. Such problems can leak information from a
trusted web program to an untrusted one.

Second, browsers allow untrusted web programs to
take control of other web programs by misusing the
client’s credentials. In an attack known as cross-site
request forgery (CSRF) [25], an adversary’s web pro-
gram sends an action-inducing HTTP request to a
trusted server, such as a bid request to an auction
site. If the client has authenticated itself to the auc-
tion site already, the browser will send the client’s
credentials with the adversary’s request. In this ex-
ample, the auction site can use workarounds to miti-
gate this threat, but the underlying problem is a lack
of isolation between the adversary’s and the auction
site’s programs in the browser.

Third, interference between web programs can oc-
cur due to cross-program failures and resource con-
tention. Current web browsers run multiple web pro-
grams within the same operating system process. As
a result, any bug that causes a crash in the browser
or its plug-ins will lead to the failure of all web pro-
grams running in that process. In this way, a failure
in a poorly implemented or malicious web program
could cause the loss of an unrecoverable session, such
as a partially completed flight reservation. Resource
contention can lead to similar interference, including
CPU starvation or memory leaks that are difficult to
attribute.

In all of these ways, web programs are less isolated
than traditional programs in a modern operating sys-
tem. If the web is to continue its progression towards
supporting richer programs, achieving better isola-
tion and robustness must be a high priority.

2.4 Can’t apply uniform security poli-
cies

The code in web programs is often in the form of
JavaScript embedded in HTML. However, browser
plug-ins offer an increasing variety of code formats,
where each plug-in defines its own security policies.
Furthermore, extensions to the browser’s user inter-
face are not subject to the browser’s security policies.
There is no uniform interface for monitoring web pro-
gram behavior, so it is difficult to reason about what
web programs can and cannot do. Such an interface is
important for applying security policies and reacting
to newly discovered threats.

The widening range of possible content types shows
one symptom of this problem. Flash movies, Java ap-
plets, and new formats such as Microsoft Silverlight
each provide their own runtime environment for code
embedded in web programs, and each has its own
security model. For example, Flash movies have dif-
ferent rules than JavaScript for fetching data from
another origin, and Java applets maintain their own
DNS-pinning database independent of the browser’s
database [13]. Not only must each environment pro-
vide a sufficient security model on its own, but the
combination of environments must not give adversar-
ial programs unexpected capabilities.

Another symptom arises with unnecessarily power-
ful browser extensions. For example, Firefox exten-
sions may contain arbitrary binary code, access all
browser resources, and communicate across origins.
Even worse, they may inadvertently allow web pro-
grams to gain these abilities, as in early versions of
the popular Greasemonkey extension [26].

It is also difficult to introduce new security policies
into this environment, due to the lack of an inter-
position layer on web program behavior. Work on
BrowserShield [18] shows one possible use for new se-
curity policies: defending against initially unforeseen
threats such as browser vulnerabilities. Introducing
such policies into the browser itself is challenging
without a way to uniformly interpose between web
programs and the browser’s runtime environments.

2.5 Summary

Overall, the lack of boundaries, presence of unwanted
code, poor isolation, and inconsistent policies in web



programs leave browsers hampered with safety con-
cerns. The symptoms of these problems are now sur-
facing in many popular applications, from XSS at-
tacks on MySpace [1] and Yahoo Mail [3] to CSRF
vulnerabilities on Gmail [23]. Unfortunately, the cur-
rent fixes tend to be mere band-aids, such as strength-
ening input validation on a web server. These point
fixes do not address the fundamental problems and
further symptoms will continue to arise. In the next
section, we discuss ways to resolve the fundamental
problems by changing how web programs are defined
and how web browsers are architected.

3 Principles for Web Programs

Today’s browsers are architected with a server-based
point of view in mind: browsers merely provide a
remote “terminal” into programs running on servers.
For example, the Same Origin Policy restricts what
programs can do based on their originating server,
and recent proposals to allow cross-origin reads [6, 22]
reinforce this view by allowing a web program to read
a network resource only if its origin server is explicitly
authorized to access it.

However, this server-based view of web programs
is increasingly inaccurate. First, a web program is no
longer controlled by a single server, but instead is a
composition of code and data from multiple servers.
Second, modern web programs contain substantial
amounts of client-side code; by visiting a web page, a
browser will instantiate and execute this code on be-
half of the program. The server-based view overlooks
these realities, conflating the notions of program, pro-
gram instance, and origin.

We claim that today’s web demands a new perspec-
tive — one that is based on programs and program
instances as first class abstractions. A web program
is an entity defined by one or more servers, and a pro-
gram can have one or more instances running within
a browser. These abstractions are not the same as an
origin, and they can be used to solve the problems
we discuss in Section 2.

In the rest of this section we discuss the following
four architectural principles, which we derive from
our list of problems:

• Web programs and program instances must have
clear boundaries on the network and in the
browser.
• It must be easy to specify which code is autho-

rized to run in a web program and to impose
limitations on this code.
• Instances of programs must be isolated in the

browser, to prevent interference at the client.

• The behavior of program instances must be gov-
erned by browser-level policies, independent of
content types and browser extensions.

By adhering to these principles, we believe browsers
can become a safe platform for web programs.

3.1 Program Boundaries

We argue that a solution to the web’s current safety
problems must include abstractions for web programs
and instances of such programs. These abstractions
are essential for defining boundaries around resources
in the browser, and they provide building blocks for
solving the remaining safety problems.

A web program must be a named entity that can
be controlled by its authors. It is comprised of docu-
ments, code, data, and embedded objects from one or
more servers. Browsers must be able to identify which
resources belong to which program, and whether to
fork a new program for any given request. Program
boundaries can be derived by attributing the name
of the program to each document associated with it.
Within those documents, programs may embed code
and objects from any source to which the program
has access rights.

A web program instance must be an entity managed
by the browser, containing resources related to a sin-
gle web program and possessing an identifier similar
to an OS process ID. An instance is created when
the user independently navigates to a new program’s
document or when a program instance requests a
document from another program. The instance then
comprises all resources requested from within the in-
stance. Importantly, all requests initiated by a web
program instance must be marked with the program
name and instance identifier, to ensure that servers
can control access to their resources appropriately.

An appropriate system for naming programs is an
open challenge. We have seen that origins are in-
adequate, but other techniques are possible. One
potential solution is to equate program authorship
with knowledge of a secret, such as an asymmetric
key pair. The program author could generate a key
pair, in which the public key names the program and
the private key provides proof of membership. Such
a scheme could support a single program with docu-
ments from multiple origins (by sharing keys) or mul-
tiple programs within the same origin (by generat-
ing multiple key pairs). No public key infrastructure
would be required: keys merely indicate membership
in a given program.

Importantly, such a solution can be deployed in-
crementally. That is, browsers can fall back to the



Same Origin Policy for those sites that do not define
explicit boundaries for their web programs.

3.2 Authorized Code

A web program must be free to compose code, data,
and other objects from multiple sources, but it is crit-
ical that the program’s authors have the ability to
authorize and place limits on any code that runs in
the program. Specifically, web programs must have
the ability to specify an exclusive set of code, so
that adversaries cannot inject new code to gain con-
trol of the program. Moreover, web programs that
compose code from multiple sources must have the
ability to limit the access rights of such code toward
the programs’ resources. Finally, web programs must
have the ability to request data from multiple sources
safely, without resorting to code formats like JSON.

Recent research has begun to explore these require-
ments. To identify which scripts in a document are
authorized, BEEP proposes that browsers ignore any
script whose checksum does not appear in the docu-
ment’s whitelist [15]. Such a whitelist could block all
injected scripts, even those inserted while a page is
in transit. Additional authorization mechanisms are
possible: a program could require all code fragments
to contain proof of authorization, such as a signature
from the program’s key pair.

Researchers have begun to explore limitations for
web program code as well. Including code libraries
from multiple sources is now a popular practice (e.g.,
mashups often include code from Google Maps). To
prevent such embedded libraries from usurping con-
trol of the program, MashupOS has proposed ways
to restrict code, using sandboxes, separate address
spaces, and messaging primitives [24].

Such restriction mechanisms could take many
forms, such as limiting access to DOM subtrees or
restricting specific access rights (e.g., network ac-
cess). Checksums and versioning may also prove use-
ful for library code, to ensure that publishers can
test against a known version without fear of errors if
the library changes. To specify restrictions on code,
web programs could include attributes on script tags,
new types of tags [7], or even program-level manifest
files [4]. The most effective techniques for restricting
web program code remains an open problem.

Importantly, web programs must have the ability
to safely access data from multiple sources, with-
out resorting to the use of code formats to exchange
data. Both the JSONRequest proposal [6] and a
Mozilla-supported W3C draft [22] offer mechanisms
for retrieving non-executable data from other origins.
To prevent malicious programs from accessing pri-

Operating System

Web Program
Instance

Web Program
Instance

Browser
Chrome

Process 1 Process 2 Process 3

Figure 1: Browsers should isolate web program in-
stances with OS processes, while keeping the browser
user interface (“chrome”) in its own process.

vate client resources, these proposals force the data
provider to acknowledge the origin of the request.
Rather than relying on origins for access control, how-
ever, we would require such requests to be marked
with the program name and instance identifier.

Overall, common practices on the web indicate that
code authorization, code restrictions, and safe data
requests are important features for supporting mod-
ern web programs. Like program boundaries, they
can be incrementally deployed: browsers can continue
to permissively run script code on pages that do not
define restrictions, while web programs that employ
the new mechanisms can be safer from attack.

3.3 Program Isolation

To safely run web programs in the browser, the client-
side effects of each program instance must be inde-
pendent. Having an explicit program instance ab-
straction allows us to support more comprehensive
isolation than current browsers, both for security and
robustness. This must include isolating at least (1)
the information stored by each program, (2) the cre-
dentials acquired by each program instance, and (3)
the OS resources used by each program instance.

For isolating information between web programs,
Felten et al. and Jackson et al. propose specific fixes
for the covert channels they discover, isolating the
browser’s cache and visited link information between
web programs [9, 14]. Jackson offers a further invari-
ant for this isolation: “only the site that stores some
information in the browser may later read or modify
that information” [14]. We support this broader in-
variant, though we equate “site” in this proposal with
a web program. Enforcing such isolation between web
programs is important to preserve the user’s privacy,
though this stored information can be safely shared
between instances of the same program.



Credentials must be isolated between program in-
stances to prevent their misuse by malicious web pro-
grams. For example, many current web programs
use session cookies (i.e., cookies that expire when
the browser exits) to authenticate clients. Browsers
pass such cookies on every request to the server that
created them, even on requests made by other web
programs. To prevent CSRF attacks, we claim that
browsers must isolate session cookies within each pro-
gram instance. In recent work, RequestRodeo uses
similar ideas to restrict the flow of credentials [16],
though it lacks the notion of program instance.

Furthermore, browsers must better isolate web pro-
grams to improve their robustness. We argue this
can be achieved using support from operating sys-
tem services that already exist. In particular, each
program instance in the browser should map to an
OS process. As with traditional programs, processes
can prevent crashes or failures in one web program
instance from affecting other instances. Processes
can also ensure that one instance cannot starve oth-
ers of CPU time, and they allow users to easily at-
tribute memory leaks to the offending instance. To
achieve this, the browser’s user interface and navi-
gational features should reside in one process, while
each instance’s runtime environment should reside in
a process of its own, as shown in Figure 1. Processes
might not securely isolate web programs in the case of
compromised browsers, however, so stronger sandbox
mechanisms may also be desirable [4, 10, 11].

With such isolation in place, browsers would pro-
vide a far safer environment for running trusted and
untrusted web programs side by side.

3.4 Security Policies

Browsers must uniformly apply policies to web pro-
gram instances and the code they run, regardless of
the content type of the code. This is necessary for rea-
soning about what programs can and cannot do in the
browser. To achieve this, browsers must provide ap-
propriate interfaces for interposing on web program
behavior. They must also allow extensible security
policies to be registered with these interfaces, to sup-
port new policies that react to unforeseen threats.

As shown in Figure 2, we envision an interposi-
tion layer in the browser that can govern a program’s
access to the DOM, the network, other web pro-
gram instances, and other browser resources. Such
a layer must apply uniformly to each content type,
so that a single set of policies can govern JavaScript,
Flash, and other types of code. Global policies might
range from preventing access to LAN resources [21]
to blocking exploits of recently discovered vulnera-

JavaScript
Engine Flash JavaHTML

Renderer

AppletMovieScriptHTML

Document Object Model (DOM)

Network

Interposition Layer

Interposition Layer

Browser

Figure 2: Browsers should provide interfaces to in-
terpose on a web program’s behavior and its access
to the DOM and network, regardless of content type.

bilities [18]. Program-specific policies might restrict
or modify certain program instances [8]. Such poli-
cies would be easy to apply if program instances were
properly isolated, as we propose in Section 3.3.

Most browser extensions should also be subject to
policies via the interposition layer. Some extensions
may legitimately require elevated privileges to accom-
plish their goals, but we propose that the principle of
least privilege [20] be applied to the vast majority of
extensions. For example, a weather report widget in
the browser chrome need not access the DOM trees
of all web programs, while ad blockers need not mod-
ify the browser’s address bar. We propose creating
a class of “safe” browser extensions that either gain
no additional privileges over the web programs they
modify, or that declare the privileges they need.

With a proper interposition layer and sufficient
restrictions on browser extensions, end users could
safely reason about the effects of visiting any given
web program in their browsers. To reach this goal,
browsers might sandbox or wrap existing plug-ins like
Flash and Silverlight. This would allow interposition
on their calls to both browser APIs and the operating
system, much like Janus [11] or Ostia [10].

4 Conclusion

Content on the web has changed substantially, from
documents into interactive programs. In this paper,
we have argued that the numerous threats to safe
web browsing are the result of inadequate support
for these web programs. Unclear program boundaries,



intermingled code and data, poor isolation between
programs, and inconsistent security policies have all
contributed to an environment rife with dangers.

We have argued that these fundamental issues must
be addressed, rather than continuing to provide point
fixes for their symptoms. Proper notions of programs
and program instances should replace the Same Ori-
gin Policy. Code should be clearly delimited from
data, and browsers should support facilities for au-
thorizing code, restricting libraries, and exchanging
data. Browser architectures should be refined to fully
isolate web program instances, and browsers should
offer uniform interposition on the behavior of web
programs, regardless of content type.

With these changes, the behavior of web programs
can be more predictable and manageable. The cur-
rent symptoms can be resolved, and users can have a
safer environment for running both trusted and un-
trusted web programs in their browsers.

Acknowledgments

This research was supported in part by the National
Science Foundation under grants CNS-0132817 and
CNS-0614975, by the Torode Family Endowed Ca-
reer Development Professorship, and by the Wissner-
Slivka Chair.

References

[1] Technical explanation of the MySpace worm. http:

//namb.la/popular/tech.html, 2005.

[2] NebuAd / Service Providers. http://www.nebuad.

com/providers/providers.php, Aug. 2007.

[3] C. Babcock. Yahoo Mail Worm May
Be First Of Many As Ajax Proliferates.
http://www.informationweek.com/security/

showArticle.jhtml?articleID=189400799, 2006.

[4] R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M.
Levy. A Safety-Oriented Platform for Web Applica-
tions. In IEEE Symposium on Security and Privacy,
2006.

[5] D. Crockford. Introducing JSON. http://www.

json.org/, 2006.

[6] D. Crockford. JSONRequest. http://www.json.

org/JSONRequest.html, 2006.

[7] D. Crockford. The module Tag. http://www.json.

org/module.html, 2006.

[8] Ú. Erlingsson, B. Livshits, and Y. Xie. End-to-End
Web Application Security. In HotOS XI, 2007.

[9] E. W. Felten and M. A. Schneider. Timing Attacks
on Web Privacy. In ACM Conference on Computer
and Communications Security, pages 25–32, 2000.

[10] T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A
delegating architecture for secure system call inter-
position. In NDSS, 2004.

[11] I. Goldberg, D. Wagner, R. Thomas, and E. Brewer.
A secure environment for untrusted helper applica-
tions. In USENIX Security Symposium, July 1996.

[12] J. Grossman. Cross-site scripting worms and
viruses. http://www.whitehatsec.com/downloads/

WHXSSThreats.pdf, Apr. 2006.

[13] C. Jackson, A. Barth, A. Bortz, W. Shao, and
D. Boneh. Protecting Browsers from DNS Rebinding
Attacks. In ACM CCS, Oct. 2007.

[14] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell.
Protecting Browser State from Web Privacy Attacks.
In WWW, May 2006.

[15] T. Jim, N. Swamy, and M. Hicks. Defeating Script
Injection Attacks with Browser-Enforced Embedded
Policies. In WWW, May 2007.

[16] M. Johns and J. Winter. RequestRodeo: Client Side
Protection against Session Riding. In OWASP Eu-
rope Conference, May 2006.

[17] A. Moshchuk, T. Bragin, D. Deville, S. D. Gribble,
and H. M. Levy. SpyProxy: On-the-fly Protection
from Malicious Web Content. In Usenix Security,
Aug. 2007.

[18] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky,
and S. Esmeir. BrowserShield: Vulnerability-Driven
Filtering of Dynamic HTML. In OSDI, Nov. 2006.

[19] J. Ruderman. The Same Origin Policy.
http://www.mozilla.org/projects/security/

components/same-origin.html, 2001.

[20] J. H. Saltzer and M. D. Schroeder. The Protection of
Information in Computer Systems. Communications
of the ACM, 17(7), 1974.

[21] SPI Labs. Detecting, Analyzing, and Exploit-
ing Intranet Applications using JavaScript.
http://www.spidynamics.com/assets/documents/

JSportscan.pdf, 2006.

[22] A. van Kesteren. W3C: Enabling Read Ac-
cess for Web Resources. http://www.w3.org/TR/

access-control/, June 2007.

[23] J. Walker. CSRF Attacks or How to avoid exposing
your GMail contacts. http://getahead.org/blog/

joe/2007/01/01/csrf_attacks_or_how_to_avoid_

exposing_your_gmail_contacts.html, Jan. 2007.

[24] H. J. Wang, X. Fan, J. Howell, and C. Jackson. Pro-
tection and Communication Abstractions for Web
Browsers in MashupOS. In SOSP, Oct. 2007.

[25] P. Watkins. Cross-Site Request Forgeries. http:

//www.tux.org/~peterw/csrf.txt, 2001.

[26] S. Willison. Understanding the Greasemonkey vul-
nerability. http://simonwillison.net/2005/Jul/

20/vulnerability/, July 2005.

http://namb.la/popular/tech.html
http://namb.la/popular/tech.html
http://www.nebuad.com/providers/providers.php
http://www.nebuad.com/providers/providers.php
http://www.informationweek.com/security/showArticle.jhtml?articleID=189400799
http://www.informationweek.com/security/showArticle.jhtml?articleID=189400799
http://www.json.org/
http://www.json.org/
http://www.json.org/JSONRequest.html
http://www.json.org/JSONRequest.html
http://www.json.org/module.html
http://www.json.org/module.html
http://www.whitehatsec.com/downloads/WHXSSThreats.pdf
http://www.whitehatsec.com/downloads/WHXSSThreats.pdf
http://www.mozilla.org/projects/security/components/same-origin.html
http://www.mozilla.org/projects/security/components/same-origin.html
http://www.spidynamics.com/assets/documents/JSportscan.pdf
http://www.spidynamics.com/assets/documents/JSportscan.pdf
http://www.w3.org/TR/access-control/
http://www.w3.org/TR/access-control/
http://getahead.org/blog/joe/2007/01/01/csrf_attacks_or_how_to_avoid_exposing_your_gmail_contacts.html
http://getahead.org/blog/joe/2007/01/01/csrf_attacks_or_how_to_avoid_exposing_your_gmail_contacts.html
http://getahead.org/blog/joe/2007/01/01/csrf_attacks_or_how_to_avoid_exposing_your_gmail_contacts.html
http://www.tux.org/~peterw/csrf.txt
http://www.tux.org/~peterw/csrf.txt
http://simonwillison.net/2005/Jul/20/vulnerability/
http://simonwillison.net/2005/Jul/20/vulnerability/

	Introduction
	Web Programs are Unsafe
	Can't identify program boundaries
	Can't prevent unwanted code
	Can't isolate programs in the browser
	Can't apply uniform security policies
	Summary

	Principles for Web Programs
	Program Boundaries
	Authorized Code
	Program Isolation
	Security Policies

	Conclusion

