
Production Programming in the Classroom

Eric Allen
Rice University

6100 S. Main St.
Houston TX 77005
eallen@cs.rice.edu

Robert Cartwright
Rice University

6100 S. Main St.
Houston TX 77005
cork@cs.rice.edu

Charles Reis
Rice University

6100 S. Main St.
Houston TX 77005
creis@cs.rice.edu

Abstract

Students in programming courses generally write “toy”
programs that are superficially tested, graded, and then
discarded. This approach to teaching programming
leaves students unprepared for production programming
because the gap between writing toy programs and de-
veloping reliable software products is enormous.

This paper describes how production programming can
be effectively taught to undergraduate students in the
classroom. The key to teaching such a course is us-
ing Extreme Programming methodology to develop a
sustainable open source project with real customers,
including the students themselves. Extreme Program-
ming and open source project management are facili-
tated by a growing collection of free tools such as the
JUnit testing framework, the Ant scripting tool, and the
SourceForge website for managing open source projects.

Categories & Subject Descriptors

K.3 Computers & Education: Computer & Information
Science Education - Computer Science Education.

General Terms

Management, Documentation, Design, Reliability, Ex-
perimentation, Human Factors, Languages.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’03, February 19-23, 2003, Reno, Nevada, USA.
Copyright 2003 ACM 1-58113-648-X/03/0002...$5.00

Keywords:

Extreme Programming, Open Source, DrJava, Produc-
tion Programming, Software Engineering, SourceForge,
Ant, JUnit.

1 Introduction

Despite the best efforts of universities to teach effec-
tive software engineering, few students are properly pre-
pared for professional software development [5]. There
are two primary reasons for this deficiency in the com-
puter science curriculum. First, until recently, there was
little consensus on which software development model
should be used to build production software systems.
Second, the resources and constraints that character-
ize production programming have been difficult if not
impossible to reproduce in the classroom [7].

Production programming involves creating or modifying
a software product to meet the needs of real customers.
Writing large programs is not enough. Without real cus-
tomers, student programmers are not held accountable
for producing software that works “in the field” and has
a usable interface. Of course, it is unrealistic to expect
an instructor to become a software entrepreneur who
produces and markets software products solely for the
sake of teaching a course. However, it is possible for an
instructor to adopt an existing open source project and
develop course assignments that extend this code base
to meet new requirements identified by the project’s
customers.

Not every open source project is a good candidate for
use in the classroom. Many such projects have high
“barriers to entry”—such as inadequate documentation,
poor coding style, and the lack of comprehensive unit
tests—that new developers must overcome before they
can reliably extend the code base.

The key to making an open source project accessible
to students is to augment the code with documentation
and comprehensive unit tests. The unit tests serve two
critical functions. First, they enable new developers to

extend the code base without breaking existing func-
tionality. Second, they serve as formal specifications
that stipulate how each method should behave in both
typical and pathological cases.

When the authors converted the Rice software engineer-
ing course from toy programming to production pro-
gramming last spring, we already owned an open source
project that was ideal for use in the classroom because
of its development model, high quality, and familiarity
to the course staff. During the preceding nine months,
our research group had developed a new pedagogic pro-
gramming environment called DrJava, using Extreme
Programming (XP) methods [6]. The customers of this
project included many students, at Rice and other in-
stitutions, who used DrJava for their coursework.

2 DrJava as a Course Project

The DrJava integrated development environment (IDE)
was designed explicitly to make programming in Java
accessible to beginners. Its signature trait is an inte-
grated “interactions pane”, providing a read-eval-print
loop to manipulate code defined in the definitions pane
(an editor that understands the rudiments of Java syn-
tax) [1]. As it has matured, we have found that Dr-
Java also scales well to the development of larger and
more advanced applications. In fact, all development
on DrJava is done within DrJava itself, making our de-
velopment team a major onsite customer. Furthermore,
because this tool was designed to be easily accessible to
beginners, we have concentrated on making its behavior
well-defined and reliable, a benefit for users at any level
[1].

In our software development process, we have enforced
a policy of providing a comprehensive suite of unit tests
for every non-trivial method in the program. We have
also adhered as closely as possible to the other major
tenets of XP, including:

• writing most of the code using pair programming to
allow for effective knowledge transfer and to audit the
code as it is being written

• developing the program in small, well-defined incre-
ments where each increment is described by a brief
“story” specifying how the new code will affect pro-
gram behavior

• composing most of our unit tests prior to writing the
code to help clarify our specifications and to enforce
a discipline of comprehensive unit testing

• refactoring our code whenever it becomes clear that
the structure of the program could be significantly
streamlined and simplified [3].

These practices enabled us to develop DrJava very
quickly with scarce resources. Yet DrJava is quite ro-
bust, and it is currently used in a number of univer-
sities and high schools for teaching introductory Java
courses, as well as by independent developers who prefer
a light-weight but powerful development environment.
Several of our customers rely on DrJava to teach hun-
dreds of students, which makes them as demanding as
the customers of many commercial software products.
The latest release of DrJava is available on the web at
http://drjava.sourceforge.net.

Because DrJava was written to be extensible by an ever-
changing team of programmers, it is an ideal application
for extension in the classroom. Adding students to the
staff of a production system for the duration of a course
creates a very high rate of developer turnover. Only ex-
treme measures such as those in Extreme Programming
can cope with such high turnover.

For the inaugural version of the course, our research
group created a list of projects that addressed the most
pressing bugs and feature requests for DrJava. In accord
with XP management practice, students were allowed to
sign up for projects that reflected their individual inter-
ests. Since we had three project managers, we selected
three major extensions to DrJava as the primary goals
of the course, with one manager guiding the develop-
ment of each:

• the integration of the JUnit testing framework

• the addition of a configuration framework for cus-
tomizing DrJava

• the addition of a conventional debugger, complement-
ing the debugging facilities provided by the interac-
tions pane [1].

2.1 Open Source Benefits

Because DrJava is an open source project, we have been
able to leverage many existing tools and some existing
code during development. Most notably, the Source-
Forge website provides us with a central location from
which to distribute our software and a database for log-
ging tasks and organizing feature requests, bug reports,
support requests, and documentation. SourceForge also
provides space for the code repository itself and a sys-
tem for maintaining product newsgroups, among other
services. This system has been invaluable to us in or-
ganizing and addressing user feedback. Many bugs in
DrJava have been discovered and reported by external
users via this system, leading to fixes in subsequent
builds.

We have also relied upon existing open source develop-
ment tools, such as Ant and JUnit, to support the XP

methodology. We have leveraged the Ant scripting tool
to enforce unit testing requirements and to automate
the generation of jar files and Javadoc HTML files. The
JUnit project has provided a comprehensive framework
for implementing our unit tests. The functionality of
these tools is on par with that of most (cost-prohibitive)
commercial tools.

In addition, we have incorporated portions of other open
source projects into DrJava, including the core of the
interpreter used in the Interactions pane. This allows
us to avoid duplicating work unnecessarily, and signifi-
cantly increases our development velocity.

3 Teaching Open Source Extreme Programming

There are two keys to producing quality code in the
context of a classroom XP project. The first is to im-
merse students in a common software design culture
and to stipulate a sensible set of coding standards.
Our core programming curriculum emphasizes object-
oriented program design using design patterns [4], so
that our students have a common design vocabulary and
understand a wide variety of different programming ab-
stractions. Given this context, pair programming and
peer pressure within a team will prevent poorly designed
code from being injected into the code base. Second, all
code must be thoroughly unit tested to codify the be-
havior being implemented. It is impossible to overstate
the importance of comprehensive, rigorous unit testing,
since it provides the safeguard that allows students to
modify the code without breaking it.

Teaching XP in the classroom also poses serious orga-
nizational and logistical problems [7]. These include:

• How can we provide effective software management
for an entire class of student programmers who only
devote a fraction of their “work-week” to our project,
given the limited time that the instructor can devote
to the course?

• How can students pair program consistently when
they have varying schedules and conflicts?

• How can we ensure that computer science students,
who are not experienced developers, will produce in-
telligible, maintainable code?

• How can we provide an onsite customer when the de-
velopers do not maintain a common work schedule?

In the following four sections, we examine these prob-
lems more closely, along with the solutions we employed.

3.1 Project Management in the Classroom

To solve the management problem, we appointed the
three most experienced members of the DrJava develop-

ment team as course teaching assistants and designated
them as project managers. The managers met with the
instructor to determine which tasks had highest prior-
ity and which manager would assume responsibility for
each task. Each manager was assigned a small team of
two to six students to supervise during the semester.
Students were given as much flexibility as possible in
choosing which task to work on.

Our decision to use “veteran” DrJava developers as
project managers has proven to be quite fortuitous, be-
cause it will provide a sustainable flow of managers for
subsequent editions of the course. After students grad-
uate from the class, they can work on the project as
research assistant programmers during the summer and
then serve as project managers the following year, either
as paid teaching assistants or for course credit.

Following XP methodology, the managers broke each
project into a series of small “stories,” and each story
was assigned to a pair of programmers. Breaking
projects into small stories of specification enabled us
to correct misconceptions, ambiguities, and inconsisten-
cies in the high level description of each project. The
assigned pair would then break the story up into a series
of tasks, each on the order of one to two pair-weeks of
work. By allowing the pair to determine the set of tasks
themselves, we gave students the opportunity to deter-
mine how long the various components of the project
would take. Not only did this give students more con-
fidence in the tractability of their projects, it also gave
them experience in one of the most difficult skills in-
volved in real-world software engineering: estimating
time to completion. As each task was completed, it was
reviewed by the project manager assigned to it.

The incremental development of programs using stories
and tasks requires a great deal of management to track
the actions of developers. The aforementioned Source-
Forge tools were very well suited to this task.

3.2 Pair Programming

Most software projects have a high turnover rate, en-
dangering the ability of the project team to provide on-
going maintenance and development. To address this
problem, knowledge about the project’s design must be
continually transferred from experienced team members
to newer members. Pair programming provides the ideal
mechanism for such knowledge transfer.

Unfortunately, pair programming presents a major
problem in a classroom setting. Students keep radically
different schedules and often work in different venues.
To alleviate this problem in our course, we used two
complementary tactics. First, although the class was
scheduled to meet three times per week, the third time
(Friday afternoon) was reserved for a common lab ses-

sion. This schedule guaranteed that all of the students
in the class had at least one hour (and typically more
since Friday afternoon classes are rare) per week avail-
able for pair programming with any other student in
the class. Second, students were allowed to form pro-
gramming pairs of their own choosing, enabling them
to find their own best matches. Indeed, some of our
self-selected pairs were roommates, allowing for a great
deal of pair programming time.

3.3 Unit Testing and Continuous Refactoring

In accordance with Extreme Programming guidelines,
no code can be committed to our repository unless all
unit tests pass. This practice has proven to be even
more effective at catching errors than we initially antici-
pated, partly because of the complexity of the project it-
self. DrJava is an inherently concurrent program involv-
ing multiple threads and two JVMs. As a result, syn-
chronization bugs are a constant concern. Fortunately,
unit tests tend to reveal these errors much more fre-
quently than conventional program execution, because
they eliminate human reaction time in program trans-
actions, which can mask race conditions.

To ensure ubiquitous use of unit tests, we rely on the
Ant scripting tool to enforce policies concerning project
builds and commits. All team members are required to
use Ant scripts to perform builds and to commit new
code. Our Ant scripts will not write a new project ver-
sion to the repository unless it passes all tests.

To help students become familiar with test-first pro-
gramming, we gave them a simple standalone practice
assignment at the beginning of the course. Most of the
grade for the assignment was based on the quality of
the unit tests written by the students. We also gave the
students a practice assignment in which the students’
only task was to write unit tests for a program that
we had already written. These warm-up assignments
proved very effective; for the duration of the semester,
the new code that students wrote for the DrJava project
was generally accompanied by suitable tests. As the
DrJava code base grew, the overall percentage of code
devoted to tests (roughly one-third) remained approxi-
mately constant.

Unit testing also allows code to be continually refac-
tored and improved (both to simplify it and to fix bugs)
without breaking functionality. Because all DrJava code
was covered with unit tests, we were able to give all stu-
dents in the class permission to refactor any part of the
existing code base. Providing students with this de-
gree of autonomy would be disastrous if the code were
not controlled so strongly through unit tests. However,
with the tests in place, providing students with this
power and freedom served to increase enthusiasm for

the project. This was quite effective; indeed, several
students took it upon themselves to perform a signif-
icant refactoring of existing functionality (in the form
of vastly improved code indenting) on top of their as-
signed project! Other students tweaked code in ways to
improve behavior on their platform of choice (e.g., Mac
OS X, Windows XP, etc.) while maintaining portability.

3.4 Providing Onsite Customers

XP requires development teams to use onsite customers
to provide immediate feedback on new ideas for func-
tionality. In the context of a software engineering
course, the only potential onsite customers are the stu-
dents, faculty, and staff on campus. Hence, the course
project must involve a tool that members of the campus
community, ideally the students themselves, can regu-
larly use. DrJava is ideal in this regard since the de-
velopment team can use it to develop DrJava. For this
reason, we mandated that all development work for Dr-
Java should be done in DrJava.

This practice provided students with not just one onsite
customer, but many: all other members of the class. To
capture feedback from the class in their role as cus-
tomers, we set aside about 10 minutes of each class
lecture to discuss how to refine the program specifica-
tions, sparking many lively and fruitful debates. This
form of customer feedback has helped us to significantly
improve DrJava’s user interface. Incidentally, such im-
provements have also enhanced DrJava’s effectiveness in
meeting its original pedagogic goal: a tool for teaching
beginning students.

During the course, we also took input from external
customers logged on the SourceForge website very seri-
ously. Because of differences in language (e.g., French,
Spanish, English) and computing platforms (e.g., Mac
OS X, Linux, Windows 98/NT/2000/XP, Solaris), some
bugs and usability issues in DrJava only show up in
contexts outside of the Rice campus. Several instruc-
tors at other institutions regularly downloaded builds
as they were released, used them in their own classes,
and provided feature requests and bug reports for future
releases. This feedback served as additional customer
interaction for students in the course.

Through incremental development, our software team
was able to release useful functionality to external cus-
tomers as soon as it was available. These releases pro-
vided students with rapid feedback on the quality of
their work. In essence, their homework was immedi-
ately downloaded and evaluated by customers around
the world. No conventional grading system can provide
such powerful feedback.

4 Assessment of the Course

In the course evaluations, all students in the course re-
ported that they were excited about what they learned
about production programming and what they managed
to accomplish. They uniformly rated the course as one
of the best that they had taken at Rice.

The course staff was generally pleased with the results of
the class, but programmer productivity was slightly be-
low our expectations. By the end of the class, one of the
three major projects (JUnit integration) was completed,
and the other two projects were nearly completed, leav-
ing a few unfinished stories. But even JUnit integration
contained a significant bug that was not revealed by the
students’ unit tests, which had to be corrected by the
project staff after the conclusion of the course. Each
of the two unfinished projects required an additional
month of work by a pair of programmers before they
were fully incorporated into DrJava.

Given that none of the project teams finished a fully
functional project by the end of the semester, the ques-
tion arises: why not? In hindsight, the projects that we
chose were slightly too ambitious. Development times
are notoriously difficult to estimate, particularly when
the developers are students taking at least three other
courses, some of which involve programming. Thus, we
should have been more conservative in our planning.
In addition, we believe that our flexible attitude toward
deadlines—an important tenet of XP–contributed to the
problem. To encourage students to write high quality
code, we avoided fixed deadlines. In one sense, this pol-
icy was successful: the quality of code produced by the
students was high. On the other hand, student pro-
ductivity was lower than we expected because students
gave priority to other classes with fixed deadlines.

Although we still want to keep students from rushing
while coding, we also want to ensure that the class
is given an appropriate amount of attention. To ad-
dress this problem, we plan to modify our approach next
spring by requiring students to log the hours that they
spend working on the course, and stipulating that we
expect each student to spend 8 hours per week outside
of class developing software for the class.

We are also investigating new open source tools to en-
force test coverage of new code. These tools promise to
increase the reliability of changes made by new students.

5 Future Plans

We anticipate that DrJava has a long life ahead of it,
both as a pedagogic programming environment and as
a vehicle for supporting practical research on program-
ming languages, such as advanced dialects of Java sup-
porting first class genericity [2]. For this reason, we an-

ticipate that our production programming course will
continue to focus on improving DrJava for the foresee-
able future. We have also started a new project to pro-
vide additional opportunities for production program-
ming experience. This project is a pedagogic program-
ming environment for the C# language called DrC#.
As part of our course next spring, we plan to have one
of the development teams focus on DrC# development.

6 Conclusions

Given the availability of open source program develop-
ment tools and the resounding success of XP method-
ology, there is no reason why colleges and universi-
ties cannot teach production programming in the class-
room. The robustness and functionality of DrJava
demonstrates that students can build production qual-
ity software given appropriate instruction on program
design and programming methodology, an interesting
open source project on which to build, and effective
project management by the course staff.

We believe that our production programming course can
be replicated at other colleges and universities where
resources are available to start a small open source pro-
gramming project, training the “seed” teaching assis-
tants for the first edition of the course.

References

[1] E. Allen, R. Cartwright, B. Stoler. DrJava:
A Lightweight Pedagogic Environment for Java
SIGCSE 2002, March 2002.

[2] E. Allen, R. Cartwright, B. Stoler. Efficient Im-
plementation of Run-time Generic Types for Java.
IFIP WG2.1 Working Conference on Generic Pro-
gramming, July 2002.

[3] M. Fowler, K. Beck, J. Brant. Refactoring: Improv-
ing the Design of Existing Code. Addison-Wesley,
1999.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Read-
ing, Mass. 1995.

[5] A. Hunt, D. Thomas. The Pragmatic Programmer.
Addison-Wesley, 2000.

[6] R. Jefferies, A. Anderson, C. Hendrickson. Extreme
Programming Installed. Addison-Wesley, 2001.

[7] C. Wege, F. Gerhardt. Learn XP: Host a Bootcamp
Extreme Programming Examined. Addison-Wesley,
2001.

