An Empirical Classification of Wireless Network Behavior

Charlie Reis 6/10/2005

Understanding Wireless

- How will my network behave?
 - What assumptions hold in practice?
 - How to predict delivery, throughput?
 - How to build a realistic, usable model?

A Wired Mentality

- Undirected graph of connectivity
- Easy to reason about (eg. routing)

Relevant for Wireless?

- Distance model widely used
- Not realistic, and already tricky

Closer to Reality

- Not a clean graph
 - Irregular RF world
 - Not binary or symmetric
- Routing in this context?

Unsatisfactory Explanations

- Usable simulators inaccurate
- RF models impossible to parametrize

How will a real network behave?

Our Goal

- A better, practical understanding
 - Seek a simple, usable, realistic model
 - Guided by measurements

Contributions

- Testbed software infrastructure
 - Deploy experiments
 - Analyze and graph results
- Test hypotheses
- Evaluate a measurement-based model

SNIR as a Model

- Signal to noise + interference ratio (SNIR)
 - Classical theory for reception

$$\frac{signal}{noise + interference} > threshold$$

But... we only have RSSI!

- Only signal strength is reported by card (RSSI: received signal strength indicator)
 - Not the same "signal strength" as in SNIR
- Can we use RSSI as a proxy for SNIR?
 - Want to predict multiple sender behavior

Investigate RSSI

- I. Basic packet reception
- 2. Variability
- 3. Asymmetry
- 4. Loss Burstiness / Independence

RSSI and Packet Reception

Start in a controlled setting

Wires and Attenuators

Isolate as much as possible

RSSI works in isolation

- Signal strength predicts delivery
- Low variability

Testbed Experiments

- 802.11 ad hoc
 - Avoid acks, etc
- Less repeatable
 - Dept network
 - Changing world

RSSI and Delivery in Reality

Delivery Probability

- Multiple thresholds
 - Receivers don't match
- Not as sharp

RSSI Variation

- Short term variation
- Stable for long term
- Visible "shadowing"

RSSI Over Time

Competing Senders

Signal Interference

 $A \rightarrow C$

 $B \rightarrow C$

- Competing Senders
 - Receiver locks onto stronger signal
 - RSSI not predictive

Other RF Energy

Microwaves show same effect

Microwave

RSSI Observations

- Variability in reality from:
 - Receivers with different thresholds
 - Impact from shadowing and interference
 - High variability at small time scales
- Yet, surprisingly consistent over time

Asymmetric Links

- Many links are asymmetric
 - Poorly understood in general
- Card or Environment?

Asymmetric Links

What Causes Asymmetry?

What Causes Asymmetry?

Implications for RSSI

- Local environments differ greatly
 - Observed RSSIs are unique to receiver

Modeling Delivery

•
$$A|B \rightarrow C = Rx_C (A_{rssi} - B_{rssi})$$

Extending to Throughput

• How many packets will be sent?

Defer if channel not clear (independent events)

throughput ≈ transmitRate x deliveryProbability

Accuracy of Assumptions

- Predict competing sender delivery probabilities
 - 86% prob. accuracy (70% for naive model)
 - 78% for throughput (70% for naive model)

Applications

- Improve routing protocols?
 - Switch routes quickly, but go back
- Similar work:
 - Divert, ExOR

A Wired View, Revisited

New View of Wireless

Conclusions

- Wireless needs different assumptions
 - Physical environment matters
 - Capture it in a usable model via RSSI
- Learn and improve wireless systems
 - Implications for protocol / routing design