

Production
Programming in the
Classroom

Eric Allen, Robert Cartwright,
and Charles Reis

Rice University

{eallen, cork, creis}@rice.edu

Missing Part of CS Education

•
•
•
•
• Students are not taught to program in a

production environment
• Projects written from scratch, then discarded
• No project maintenance
• No real users to consider

?

Teach Production Programming

• Students should:
• Maintain an existing codebase
• Support real customers
• Learn effective methodologies

But…

• Where does the project come from?
• Who are the customers?
• How can an instructor manage all this?

Selecting a Project

• On-campus customers
• Ideally, the students themselves
•

• Open Source
• Free, high quality tools
• Easy to gain customers
•

• At least one year old, sustainable

Selecting a Methodology

• Extreme Programming! (XP)

•
• Effective methodology in industry
• Leading edge practices
• Rapid development, reliable products
•

• Translates well to classroom

XP: Pair Programming

• Better Design, Fewer Bugs
• Quick development pace
•

• Knowledge Transfer
• Students pair with experienced developers
• Effective against very high turnover

XP: Unit Testing

• Unit tests for every non-trivial method!

• Enforce tests are run before committing
•

• Confidence to make changes
• Won’t break old functionality
•

• “Executable Documentation”
• Quickly learn the code

XP: Continuous Refactoring

• Let students improve any part of the code
• Collective ownership: sense of pride
• Prevents fragile code
•

• Unit tests provide safeguard
• Always safe to refactor!

XP: Incremental Development

• Break down into small tasks
• Estimate time-to-completion
• Keeps codebase stable
•

• Release frequently
• Students get feedback from real users
• Much more powerful than just grades

But… XP in the classroom?

• Difficult to apply XP in a course:
• Scheduling pair programming time?
• Maintaining unit test coverage?
• Finding on-site customers?
• Managing a work force?

Applying Pair Programming

• Schedule time to pair program in class
• Two lectures, one closed lab per week
•

• Allow students to choose pairs
• Avoid scheduling conflicts

Ensure Unit Tests are Written

• Hard to get students in right mindset
• Early assignments for writing tests
• Emphasize the importance of tests!
•

• Test-Driven Development
• Write the test first, then the code

Providing On-site Customers

• Students themselves should be customers
• Careful selection of project
•

• Discuss new features, specs in class
•
• Also support off-campus customers

Course Management

• Experienced TA’s as Project Managers
• Pair program with new students
• Sustainable
•

• Supervise progress on tasks
• Monitor students like employees

SourceForge.net

• Free open source project hosting
•
• Professional Management Tools
• Track features/bugs online
• Task management
• Respond to customers

Open Source Tools

• JUnit
• Framework for writing unit tests
•

• Ant

• Build tool with XML build scripts
• Enforce all tests pass before committing code

Case Study: DrJava

• Pedagogic IDE developed at Rice University
• Used in intro Java courses
• Also useful for advanced developers

DrJava: Ideal Candidate

• Open Source
•
• Full unit test coverage
• >35% of codebase is test code

•
• Students can be customers!
• Other customers around the world
• 14+ schools, 10+ countries

DrJava as Course Project

• Many small projects in pairs
• Bug fixes, feature requests from customers

•
• Three major projects
• JUnit Integration
• Configurability
• Integrated Debugger

Results, Spring 2002

• Mostly successful
• High quality code
•

• Large projects not completed
• Two unfinished, one had a bug
• Difficult to estimate
• No fixed deadlines: course became low priority

Changes for Spring 2003

• Students must log 10 hours per week
•
• Emphasize test-first programming!

Conclusion

• You CAN Teach Production Programming
• Extreme Programming works in classroom
• Unit tests are a safeguard
• Open Source tools

