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Web: Safe to visit any site!



Despite...
● Running untrustworthy code
● Compiled to native code
● Complex formats to parse
● Built in unsafe C++
● With frequently added APIs



There will be bugs

● Finding and fixing bugs is 
important
○ Fuzzing, VRPs, analysis, etc
○ Automated triage, extensive 

testing, auto-updates

● Limiting the damage is 
equally important



System Architecture Matters
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Still not a match for
web's security model
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Site Isolation:
Multi-principal architecture
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Out-of-process iframes
● Challenging to support web platform

○ Secure compositing
○ Frame proxies
○ State replication
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● Accessibility
● Developer tools
● Drag and drop
● Extensions
● Find-in-page
● Focus
● Form autofill
● Fullscreen
● IME
● Input gestures
● JavaScript dialogs

● Mixed content handling
● Multiple monitor and 

device scale factor
● Password manager
● Pointer Lock API
● Printing
● Task manager
● Resource optimizations
● Malware and phishing 

detection
● Save page to disk

● Screen Orientation API
● Scroll bubbling
● Session restore
● Spellcheck
● Tooltips
● Unresponsive renderer 

detector and dialog
● User gesture tracking
● View source
● Visibility APIs
● Webdriver automation
● Zoom



Dedicated renderer processes
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Cross-Origin Read Blocking
● Must allow subresources

● Want to protect sensitive data
(HTML, XML, JSON)

● Mislabeled Content-Types
● Custom sniffing

foo.com

foo.com Cross-site 
images, scripts

Cross-site
data

<!-- This is JS. -->
function a() {...}

Content-Type: text/html

● Must allow responses like: 

<img src=
"bar.com/image.jpg">

<img src=
"bar.com/secret.html">



Site Isolation: Most renderer bugs less harmful
● Shipped on desktop for all sites (2018)
● Shipped on Android for some sites (2019)

○ More memory constraints on mobile

● Compromised renderers can't access most cross-site valuable data!

● Still some tradeoffs and gaps (e.g., Android WebView)
○ Not ready to lower actual severity of renderer compromise bugs yet



Align with OS



Spectre upends 
assumptions

● CPU's predictive behavior 
leaks secrets via cache

● Breaks rules of safe languages
○ Can access any address

● No shortage of transient 
execution attack types

● Works from JavaScript



Difficult to mitigate Spectre in browser
● 1. Remove precise timers? (e.g., SharedArrayBuffers)

○ Not effective: Coarse timers can be amplified
○ Harmful to Web Platform

● 2. Compiler/Runtime mitigations?
○ Not effective: Can't handle all variants



Have to assume access to full address space
● Site Isolation

○ Put data worth stealing out of reach
○ Effective for same-process variants

● Align security model with OS/HW enforcements
○ Hard to trust software boundaries without OS support
○ Reliant on OS/HW mitigations for cross-process variants



Evolve Platform APIs



Push platform towards 
better security

● HTTPS
○ Encourage adoption
○ Required for powerful features

● Flash deprecation

● Better security APIs



Site Isolation: Constrained by Compatibility
● Site vs Origin

○ https://google.com vs https://mail.google.com:443
○ document.domain isn't quite gone yet

● Protecting Cross-Site Data
○ Have to allow through ambiguous resources, for compatibility
○ Not easy to confirm something is JavaScript



Headers, eventually safer defaults
● Cross-Origin-Opener-Policy

○ No cross-window scripting.  Easier process isolation.

● Cross-Origin-Resource-Policy
○ Better hints about what data is accessible cross-origin.

● Cross-Origin-Embedder-Policy
○ Enable powerful features (Shared Array Buffers).
○ Don't allow any cross-origin data without opt-in.



Conclusion

● Site Isolation: research to users
○ Compromises needed, but offers 

best path to protection

● Align security model with OS/HW
● Must push platform forward

● Calls to action:
○ Revisit your architectures
○ Help secure the Web


