
Improving Chrome's
Security Architecture

Charlie Reis

Web: Safe to visit any site!

Despite...
● Running untrustworthy code
● Compiled to native code
● Complex formats to parse
● Built in unsafe C++
● With frequently added APIs

There will be bugs

● Finding and fixing bugs is
important
○ Fuzzing, VRPs, analysis, etc
○ Automated triage, extensive

testing, auto-updates

● Limiting the damage is
equally important

System Architecture Matters

Sandboxes reduce bug
severity

Browser Process

evil.com

Sandboxes reduce bug
severity

Renderer Process

evil.com

Browser Process

Sandboxes reduce bug
severity

Renderer Process

evil.com

Browser Process

Flash Process

evil.com

Network Process

Still not a match for
web's security model

Renderer Process

mail.com

evil.com

Browser Process

Site Isolation:
Multi-principal architecture

Renderer Process

mail.com

Renderer Process

evil.com

Browser Process

Research Production

Out-of-process iframes
● Challenging to support web platform

○ Secure compositing
○ Frame proxies
○ State replication

Browser Process

Renderer Process:
evil.com

evil.com

youtube.
com

Renderer Process:
youtube.com

● Accessibility
● Developer tools
● Drag and drop
● Extensions
● Find-in-page
● Focus
● Form autofill
● Fullscreen
● IME
● Input gestures
● JavaScript dialogs

● Mixed content handling
● Multiple monitor and

device scale factor
● Password manager
● Pointer Lock API
● Printing
● Task manager
● Resource optimizations
● Malware and phishing

detection
● Save page to disk

● Screen Orientation API
● Scroll bubbling
● Session restore
● Spellcheck
● Tooltips
● Unresponsive renderer

detector and dialog
● User gesture tracking
● View source
● Visibility APIs
● Webdriver automation
● Zoom

Dedicated renderer processes

Browser Process

Renderer Process:
evil.com

evil.com

youtube.
com

Renderer Process:
youtube.com

Cross-Origin Read Blocking
● Must allow subresources

● Want to protect sensitive data
(HTML, XML, JSON)

● Mislabeled Content-Types
● Custom sniffing

foo.com

foo.com Cross-site
images, scripts

Cross-site
data

<!-- This is JS. -->
function a() {...}

Content-Type: text/html

● Must allow responses like:

<img src=
"bar.com/image.jpg">

<img src=
"bar.com/secret.html">

Site Isolation: Most renderer bugs less harmful
● Shipped on desktop for all sites (2018)
● Shipped on Android for some sites (2019)

○ More memory constraints on mobile

● Compromised renderers can't access most cross-site valuable data!

● Still some tradeoffs and gaps (e.g., Android WebView)
○ Not ready to lower actual severity of renderer compromise bugs yet

Align with OS

Spectre upends
assumptions

● CPU's predictive behavior
leaks secrets via cache

● Breaks rules of safe languages
○ Can access any address

● No shortage of transient
execution attack types

● Works from JavaScript

Difficult to mitigate Spectre in browser
● 1. Remove precise timers? (e.g., SharedArrayBuffers)

○ Not effective: Coarse timers can be amplified
○ Harmful to Web Platform

● 2. Compiler/Runtime mitigations?
○ Not effective: Can't handle all variants

Have to assume access to full address space
● Site Isolation

○ Put data worth stealing out of reach
○ Effective for same-process variants

● Align security model with OS/HW enforcements
○ Hard to trust software boundaries without OS support
○ Reliant on OS/HW mitigations for cross-process variants

Evolve Platform APIs

Push platform towards
better security

● HTTPS
○ Encourage adoption
○ Required for powerful features

● Flash deprecation

● Better security APIs

Site Isolation: Constrained by Compatibility
● Site vs Origin

○ https://google.com vs https://mail.google.com:443
○ document.domain isn't quite gone yet

● Protecting Cross-Site Data
○ Have to allow through ambiguous resources, for compatibility
○ Not easy to confirm something is JavaScript

Headers, eventually safer defaults
● Cross-Origin-Opener-Policy

○ No cross-window scripting. Easier process isolation.

● Cross-Origin-Resource-Policy
○ Better hints about what data is accessible cross-origin.

● Cross-Origin-Embedder-Policy
○ Enable powerful features (Shared Array Buffers).
○ Don't allow any cross-origin data without opt-in.

Conclusion

● Site Isolation: research to users
○ Compromises needed, but offers

best path to protection

● Align security model with OS/HW
● Must push platform forward

● Calls to action:
○ Revisit your architectures
○ Help secure the Web

