
Building a Safer Web
Charles Reis
University of Washington CSE

1

Web is Evolving

More complex, active content

Browser now in role of OS, but not yet safe

Browsers aren’t built for programs

Web content faces real challenges

Pages Programs

2

My Contributions
Problems Projects

Program Interference Multi-Process Browsers

In-Flight Page Changes Web Tripwires

Poor Program Support Architectural Principles

XSS Script Whitelists

Browser Exploits BrowserShield

[EuroSys ’09]

[NSDI ’08]

[OSDI ’06]

[HotNets ’07]

3

Range of Project Types

Program Interference Multi-Process Browsers
Practical, deployed in

Google Chrome

In-Flight Page Changes Web Tripwires
Measurement study of

50,000 clients

Poor Program Support Architectural Principles Position paper

XSS Script Whitelists Research prototype

Browser Exploits BrowserShield
Prototype, influenced

Web Sandbox

4

Consider OS Landscape

Performance isolation

Resource management

Failure isolation

Clear program
abstraction

5

Browsers Fall Short

Unresponsiveness

Jumbled accounting

Browser crashes

Unclear what a
program is!

6

Thesis: Learn from the OS

Improve browser and web content architecture

Define a precise program abstraction

Isolate programs from each other

Make it possible to authorize program code

Interpose on program behavior

[HotNets ’07]
7

Outline

Web Tripwires

Previous Work

Future Directions

8

Browser Architecture: Chromium

Define program abstractions

Isolate programs from each other

Programs in the Browser

Mail

Mail

Consider an example
browsing session

Several independent
programs

Doc List Doc

Doc

News Article

9

Blog

Monolithic Browsers

Mail

Mail

Most browsers put all
pages in one process

Poor performance
isolation

Poor failure isolation

Poor security

Should re-architect
the browser

Doc List Doc

News Article

10

Blog

Process per Window?

Breaks pages that
directly communicate

Shared access to
data structures, etc.

Connected pages
from same-origin

Fails as a program
abstraction

Mail Doc List Doc

11

Mail

News Article

Blog

Need a Program Abstraction

Aim for new groupings that:

Match our intuitions

Preserve compatibility

Take cues from browser’s existing rules

Isolate each grouping in an OS process

Will get performance and failure isolation,
but not security between sites

Doc List Doc

12

Outline

Program Abstractions

Browser Architecture

13

Program Isolation

Evaluation

Ideal Abstractions

Web Program

Set of pages and sub-resources providing a service

Web Program Instance

Live copy of a web program in the browser

Will be isolated in the browser’s architecture

Intuitive, but how to define concretely?

14

Compatible Abstractions

Three ways to group pages into processes:

1. Site: based on browser’s
 access control policies

2. Browsing Instance:
 communication channels
 between pages

3. Site Instance:
 intersection of the first two

15[EuroSys ’09]

1. Sites

Same Origin Policy
dictates some isolation
(host+protocol+port)

Pages can change
document.domain

Registry-controlled
domain name limit

Site: RCDN + protocol

16

docs.zoho.comdocs.zoho.commail.zoho.com
zoho.comzoho.comzoho.com

Mail Doc List Doc

Mail

News Article

Blog

http://bbc.co.uk

https://zoho.com
http://blogger.com

Mail Doc List Doc

Mail

News Article

Blog

2. Browsing Instances

Not all pages can talk

References between
“related” windows

Parents and children

Lifetime of window

Browsing Instance:
connected windows,
regardless of site

17

window.opener

w = window.open(...)

3. Site Instances

Site Instance:
Intersection of site &
browsing instance

Safe to isolate from
any other pages

Compatible notion of a
web program instance

18

Mail Doc List Doc

Mail

News Article

Blog

Site

e.g., All pages from https://bbc.co.uk

Browsing Instance

Windows with script references to each other

Site Instance

Connected, same-site pages

Abstractions Recap

19

Compatibility Compromises

Coarse granularity

Some logical apps grouped together (instances help)

Imperfect isolation

Shared cookies, some window-level JS calls

Not a secure boundary

Must still rely on renderer to prevent certain leaks

20More on Security...

Outline

Program Abstractions

Browser Architecture

21

Program Isolation

Evaluation

Most Browsers are Monolithic

All browser parts in one process

Could divide into separate modules

Isolate with OS processes:
address spaces, concurrency,
failure isolation

22

HTML
CSS

DOMJavaScript

Layout

Storage
Network

User Interface

One OS Process

Multi-Process Browser

Browser Kernel

Storage, network, UI

Rendering Engines

Web program and
runtime environment

Plug-ins

Browser Kernel

Plug-in
Rendering

Engine
Rendering

Engine

23

Implementations

Konqueror Prototype (2006)

Proof of concept on Linux

Chromium (Google Chrome, 2008)

Added support for Site Instance isolation
(including creating processes during navigations)

24

Chromium Process Models

1. Monolithic

2. Process-per-Browsing-Instance

New window = new renderer process

3. Process-per-Site-Instance (default)

Create renderer process when navigating cross-site

4. Process-per-Site

Combine instances: fewer processes, less isolation

25

Browser Kernel

Plug-in
Rendering

Engine
Rendering

Engine

Browser Kernel

Plug-in
Rendering

Engine

Implementation Caveats

Sites may sometimes share processes

Not all cross-site navigations change processes

Frames still in parent process

Process limit (20), then randomly re-used

26

Outline

Program Abstractions

Browser Architecture

27

Program Isolation

Evaluation

Robustness Benefits

Failure Isolation

Accountability

Memory Management

Some additional security
(e.g., Chromium’s sandbox)

28

Browser Kernel

Plug-in
Rendering

Engine

Sandbox

Rendering
Engine

Sandbox

Performance Isolation

Responsive while other
web programs working

No click latency

0

1,000

2,000

3,000

4,000

With Top 5 Pages With Gmail

66

3,307

1,408

Avg Click Delay on Blank Page

Ti
m

e
(m

s)

Monolithic Chromium
Multi-Process Chromium

29

Other Performance Impact

Speedups

More work done concurrently, leveraging cores

e.g., Session restore of several tabs

Process Latency

100 ms, but masked by other speedups in practice

30

Memory Overhead

Robustness benefits
do have a cost

Reasonable for
many real users

31

0

32.5

65.0

97.5

130.0

1 2 3 4 5 6 7 8 9 10

M
em

or
y

(M
B

)

Number of Popular Pages

Monolithic Chromium Multi-Process Chromium

Compatibility Evaluation

No known compat bugs due to architecture

Distributed tests check top million pages

Some minor behavior changes

e.g., Narrower scope of window names:
browsing instance, not global

32

Related Architecture Work

Internet Explorer 8

Multi-process architecture, no program abstractions

Gazelle

Like Chromium, but values security over compatibility

Other research: OP, Tahoma, SubOS

Break compatibility (isolation too fine-grained)

33

Summary

Browsers must recognize programs to support them

Site Instances capture this

Compatible with existing web content

Can prevent interference with process isolation

34

Outline

Browser Architecture

Previous Work

Future Directions

35

Web Tripwires

Simple integrity checks to protect programs

Web Program Integrity

Can users or publishers trust web program contents?

HTTP can be modified in-flight

Changes become part of the site instance

ISP

Server

Browser

36

Is this a concern?

Measurements say it is!

Of 50,000 clients, 1% saw in-flight changes (653)

Ads, exploits, broken pages, new vulnerabilities

37

Detecting Page Changes

Can detect with JavaScript

38http://vancouver.cs.washington.edu

✦ Built a Web Tripwire:

✦ Runs in client’s browser

✦ Finds most changes to HTML

✦ Reports to user & server

ISP

http://vancouver.cs.washington.edu
http://vancouver.cs.washington.edu

Measurement Study

Wanted view of many clients on
many networks

http://vancouver.cs.washington.edu

✦ Posted to Slashdot, Digg, etc.

✦ Visits from over 50,000
unique IP addresses

✦ 653 reported changes

39

http://vancouver.cs.washington.edu
http://vancouver.cs.washington.edu

Diverse Changes Observed

Server ISP Firewall

40http://vancouver.cs.washington.edu

BrowserProxyBot

Ad Injection
(Free wireless,
NebuAd, etc)

Security Checks
(Enterprises) Exploits

(ARP poisoning)

Ad / Popup
Blockers
(on client)

http://vancouver.cs.washington.edu
http://vancouver.cs.washington.edu

The best intentions...

Bugs introduced

Web forums broken by popup blockers

Vulnerabilities introduced

Ad blocker code vulnerable to XSS

User’s web programs are the victims!

41http://vancouver.cs.washington.edu

Proxy

URL

http://vancouver.cs.washington.edu
http://vancouver.cs.washington.edu

Web Tripwires for Publishers

HTTPS too costly for some sites

Can detect changes with JavaScript

Easy for publishers to deploy

Configurable toolkit

Web tripwire service

http://vancouver.cs.washington.edu 42

http://vancouver.cs.washington.edu
http://vancouver.cs.washington.edu

Summary

Not safe to blindly patch code of web programs

Many parties with incentives to do so

Publishers can detect it with web tripwires

43

Outline

Browser Architecture

Web Tripwires

Previous Work

Future Directions

44

BrowserShield

Block exploits of known
browser vulnerabilities

Interpose to enforce
flexible policies

Rewrites JavaScript
code in-flight

Has influenced Live Labs’
Web Sandbox

JS Interposition Layer

BrowserShield Rewriter

45

[OSDI ’06]

Earlier Research

Wireless Networking

Study low-level 802.11 behavior [EWIND ‘05]

Predict behavior from measurements [SIGCOMM ’06]

Education with DrJava

Teach production programming [SIGCSE ’03]

Simplify Eclipse for students [SIGCSE ’04]

46

Outline

Browser Architecture

Web Tripwires

Previous Work

Future Directions

47

Short Term Directions

Secure + Compatible isolation of Site Instances

Better ways to evaluate compatibility

Opt-in mechanisms for secure web apps

e.g., Alternatives to Same Origin Policy

Enforcing policies on content, plug-ins, extensions

48

Long Term Directions

What will networked applications look like?

How will browsers & OSes evolve to support them?

How will trust models change?

How to grant some programs more rights?

Robust and secure systems in general

49

Conclusion

Web is becoming an application platform

Browser architectures must support programs

Web publishers must protect content

Great opportunity to reshape the web

50

Relevant for security?

Pages are free to embed
objects from any site

Scripts, images, plugins

Carry user’s credentials

Inaccessible info within
each Site Instance

Compatibility makes us
rely on internal logic

mail.com images.com

evil.com

evil.com

52Back...

