
The Security Architecture
of the Chromium Browser
Charlie Reis
Adam Barth, Collin Jackson, The Google Chrome Team

Stanford Security Seminar, December 2, 2008

Web is Evolving

More complex, active content

More attack surface: vulnerabilities at many levels

Pages Programs

2

Browser Exploits

Attacks at Many Levels

Web Sites

Web Browser

OS

Phishing,
Web Site Vulns

Web Site Isolation

Malware, File Theft,
Keylogging

3

Browser Exploits

How much damage can they cause?

Can the browser’s architecture reduce it?

4

Impact of a Page Visit
Normally:

Leave cookies, cached objects

Communicate with servers

Downloads, uploads, use devices

With an exploit:

Install malware, steal files,
log keystrokes

Access user’s web accounts

5

Exploits aren’t going away

Browsers are complex, evolving

Unsafe languages

Massive barrier to entry, so unlikely to change

Tools can help, but still let bugs through

Money in malware

6

Limit the Damage

Most browsers are monolithic

Rely on logic, not architecture

Often have full privileges of user

Architecture could help

OSes isolate users, VMs isolate
untrusted code, etc

7

HTML
CSS

DOMJavaScript

Layout

Storage
Network

User Interface

One Protection Domain

Modularize the Browser

Don’t run all parts of browser with full privileges

Some parts more likely to be hacked than others

Use privilege separation

Limit impact of many exploits HTML
CSS

DOMJavaScript

Layout

Storage
Network

User Interface

8

Outline

Motivation

Overview

Chromium’s Architecture

Security Evaluation

Going Further

9

Chromium’s Approach

Divide browser into modules:

Browser kernel (runs as “the User”)

Rendering engine (runs as “the Web”)

Focus on:

Compatibility with existing content

Treating rendering engine as a black box

10

Threat Model

Assume attacker will exploit your browser

In scope: protect the user principal

Malware

Keylogging

File Theft

11

Web Sites

Web Browser

OS

Threat Model

Out of scope: protect user’s web accounts

Phishing

Web site vulnerabilities (XSS, etc)

Violating Same Origin Policy

12

Web Sites

Web Browser

OS

Related Browsers

Monolithic (Popular)

Firefox 3, Safari 3: full user privileges

IE 7: protected mode (read, but no write)

Modular (Proposed)

SubOS, DarpaBrowser, Tahoma, OP: break compat

IE 8: multi-process, still allows file theft

13

Outline

Motivation

Overview

Chromium’s Architecture

Security Evaluation

Going Further

14

Chromium’s Architecture

Browser Kernel

Plug-in
Rendering

Engine

Sandbox

Rendering
Engine

Sandbox

Rendered bitmapHTML, JS, ...
Black Box

15

Rendering Engine

Render HTTP responses into bitmaps

Parse HTML, CSS, SVG, XML, etc

Manage DOM and layout

Interpret scripts, decode images

Most complex, most attack surface

Run inside sandbox to reduce privileges

Browser Kernel

Plug-in
Rendering

Engine

Sandbox

Rendering
Engine

Sandbox

16

Browser Kernel

Interact with user and operating system

Window management, location bar

Storage of cookies, history, cache, downloads

Network stack

Enforces policies on rendering engines

Browser Kernel

Plug-in
Rendering

Engine

Sandbox

Rendering
Engine

Sandbox

17

Plug-ins

Pose a Dilemma:

Widely used, but not under browser’s control

Don’t want in browser kernel (reliability)

Can’t easily be sandboxed (compatibility)

Put in own process, one per plug-in type

Doesn’t address security

Could plug-ins move to a new model?

Browser Kernel

Plug-in
Rendering

Engine

Sandbox

Rendering
Engine

Sandbox

18

Browser Kernel

Plug-in
Rendering

Engine

Sandbox

Rendering
Engine

Sandbox

19

Sandbox

Goal: can’t affect world, except via exposed API

Block access to all objects, resources

Not trying to block system calls

Approach:

Start process, establish IPC channel

Drop all access privileges

Don’t require admin rights

Browser Kernel

Plug-in
Rendering

Engine

Sandbox

Rendering
Engine

Sandbox

20

Implementation

1. Restricted security token

2. Job object

3. Separate Desktop object

Browser Kernel

Plug-in
Rendering

Engine

Sandbox

Rendering
Engine

Sandbox

(on Windows)

See also: David LeBlanc’s blog
21

Restricted Token

Prevents access to (almost) all resources

Derived from user’s security token

Works with existing auditing systems

Vista: also uses a “low integrity level” label

Browser Kernel

Plug-in
Rendering

Engine

Sandbox

Rendering
Engine

Sandbox

22

Job Object

Restricts actions other than resource access

Can’t create processes or desktops

Can’t change system settings or log off

Can’t access clipboard, etc.

Browser Kernel

Plug-in
Rendering

Engine

Sandbox

Rendering
Engine

Sandbox

23

Separate Desktop

Receives no input events from user

Prevent messages to more privileged windows

Avoids “shatter attacks” that inject code

One desktop for all sandboxed renderers

Safe: renderers have no windows

Browser Kernel

Plug-in
Rendering

Engine

Sandbox

Rendering
Engine

Sandbox

24

Sandbox Limitations

Can still access FAT32 drives

Can still access some misconfigured objects
(if they have null DACLs)

Theoretical access to TCP/IP on Windows XP

25

Sandboxed Renderers

Sandbox itself is general purpose

Straightforward to sandbox WebKit

Platform-specific glue layer:
talk to browser kernel

Sandbox

26

Browser Kernel API

How renderer influences outside world

Exposes UI, storage, network

Chance to enforce policies on renderer behavior

Browser Kernel

Plug-in
Rendering

Engine

Sandbox

Rendering
Engine

Sandbox

27

Browser Kernel API

User Interaction

Display rendered bitmaps

Forward input events
Browser Kernel

Rendering
Engine

Sandbox

28

Browser Kernel API

Storage

Manage cookies, passwords, etc

Authorize uploads

Restrict downloads

29

Browser Kernel API

Network

HTTP Requests and Responses

Restrict certain schemes (e.g., file://)

30

Summary

Browser Kernel

Plug-in
Rendering

Engine

Sandbox

Rendering
Engine

Sandbox

31

Outline

Motivation

Overview

Chromium’s Architecture

Security Evaluation

Going Further

32

Challenging to Evaluate

Hard to reason about all possible attacks

Instead:

Look at a case study of how it has helped

Generalize from past vulns. in other browsers

33

Case Study: XXE

34

XXE Vulnerability

XML External Entities

Define your own entities, like © for ©

Fetch from a file or URL

Vuln in libXML

Attackers could fetch from filesystem or other origins

35

Impact in Chromium

libXML lives in rendering engine

Cross-origin requests were possible

Browser kernel blocked access to disk

36

Browser
Kernel

Rendering
Engine

Sandbox

Network

StoragelibXML

Vulnerability Analysis

37

Vulnerability Analysis

Chromium is new, so not many vulnerabilities to study

Look at other popular browsers

Questions:

Which modules tend to be more vulnerable?

Where are the biggest threats?

Is Chromium’s architecture focusing on right parts?

38

Past Vulnerabilities

Studied IE, Firefox, and Safari vulns from past year
(can’t compare directly; different methodologies)

Categorize vulns by Chromium module

Internet Explorer 19

Firefox 60

Safari 50

39

Which modules have vulns.?

Renderers twice as vuln
as browser kernels

Complex

Worthy of attention

0

10

20

30

40

Browser Renderer Other

40

Where are the worst vulns.?

Arbitrary code execution

Renderers have twice as
many as browser kernels

Sandbox would mitigate

Block malware,
keyloggers, file theft

0

5

10

15

20

Browser Renderer Other

41

Remaining Vulns.?

11 ACE vulnerabilities in browser kernels

8 of these: insufficient validation of OS calls

Sandbox wouldn’t help

Getting good mileage from sandbox

42

Summary

Rendering engines vulnerability prone

Sandbox helps with most of the worst vulnerabilities

43

Outline

Motivation

Overview

Chromium’s Architecture

Security Evaluation

Going Further

44

Phishing:

User perception issue, use blacklists

Web site vulns:

Some research, rely on sites

Web site isolation:

Room for improvement

Web Sites

Web Browser

OS

Revisit Other Threats

45

Web

Site Isolation

Want to protect web site accounts: banks, mail, etc.

Web principals: web site + user’s credentials

Can we enforce isolation despite renderer exploits?

User

Web Web Web

46

Rendering Engine Isolation

Already have multiple rendering engines

Reliability, performance

Separate pages based on site?

Let sandbox isolate them

Chromium partly there

47

Browser Kernel

Sandbox Sandbox Sandbox

bank.com mail.com untrusted
.com

Freedom is a Challenge
Pages are free to embed
objects from any site

Images, scripts, frames...

Carry user’s credentials

Sensitive info in renderer

Black box:
don’t split out sub-objects

Compatibility:
don’t block credentials

48

Site B Site C

Site A

Site A Site B

Future Work

For now, rely on rendering engine’s logic

Look at ways to isolate web principals,
while preserving compatibility

49

Conclusion

Browser’s architecture can mitigate many exploits

Limit privileges of rendering engines

Help prevent malware, keyloggers, file theft

Opportunities for protecting web principals

50

