
Rodinia Benchmark Suite
CIS 601 Paper Presentation

3/16/2017
Presented by Grayson Honan, Shreyas Shivakumar,

Akshay Sriraman

1

Rodinia: A Benchmark Suite for Heterogeneous Computing
Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha
Lee and Kevin Skadron

Introduction
● What is Rodinia?

○ Benchmarking suite for heterogeneous computing
○ Applications (inspired by Berkeley’s dwarf taxonomy) and kernels to

run on multi-core CPUs (OpenMP), GPUs (CUDA) and *OpenCL
● Why?

○ Standard benchmark program to compare platforms
○ Identify performance bottlenecks, evaluate solutions and study

emerging platforms (GPUs)
○ Illustrate architectural differences between CPUs and GPUs

2

Introduction
● How?

○ By quantitatively measuring parallel communication patterns,
synchronization techniques, power consumption and the effect of
data layouts and bandwidth limitations

○ Each application / kernel is chosen to represent different types of
behaviour - Berkeley Dwarves (*9 dwarves at the time of writing)

● Quick Disclaimer : This paper was written in 2009, and much has changed
since. We have tried to include as much up to date information as possible.

3

Q1. What are Berkeley Dwarves?

4

Introduction
● Berkeley Dwarves:

○ Algorithmic method that captures a pattern of computation and/or
communication

○ Specified at high levels of abstraction to allow reasoning across a
broad range of applications

○ Implementations may be different but the underlying patterns will
persist through generations of changes

○ *While they are useful guiding principles, may not sufficiently ensure
adequate diversity.

5

Introduction K-Means

Particle Filters

Back Propagation

Breadth First Search

Huffman Encoding

Knapsack Problem

Monte Carlo Simulations

6

Introduction
● Observations (GPU)

○ Low ratio of on-chip storage to #threads
○ Compensated for with specialized memory spaces (Shared Memory,

Constant Memory, Texture Memory)
○ Lack of persistence in Shared Memory is less efficient for

communication between kernels
○ No easy way for run-time load balancing among threads
○ High kernel-call and data-transfer costs

7

Q2. I see that some of these benchmarks use texture memory
too. I thought texture memory was only used for graphics
applications. What is texture memory and how does it differ
from constant memory?

8

Texture Memory
● Read only - cached memory
● Traditionally designed for graphics
● Memory is stored on chip, provides higher effective bandwidth
● Used when you read memory often
● Large datasets, spatial locality read access patterns

○ “ The first thing to keep in mind is that texture memory is global memory. The only
difference is that textures are accessed through a dedicated read-only cache, and
that the cache includes hardware filtering which can perform linear floating point
interpolation as part of the read process. ”

9

Motivation
● What to expect from a benchmark for GP computing?

○ Supports diverse applications with broad range of communication
patterns

○ State-of-the-art algorithms
○ Input sets for testing different situations

● At the time of writing, most of the previous benchmarks focused on serial
and parallel applications for conventional GP-CPU architectures rather
than heterogeneous architectures.

10

Motivation
● Compare two architectures and identify inherent architectural

advantages
● Decide what hardware features should be included in the limited area

budgets
● Help compiler efforts to port existing CPU languages/APIs to the GPU

by providing reference implementations
● Provides software developers with exemplars for different applications

11

Benchmark Serial / Parallel GPU / CPU Purpose Updated Since

SPEC S CPU GP-CPU Yes

EEMBC S CPU GP-CPU Yes+

SPLASH-2 S / P CPU GP-CPU No*

PARSEC S / P CPU GP-CPU Yes

MineBench S / P GPU Data Mining Yes

MediaBench S / P GPU Multimedia Yes

ALP-Bench S / P GPU Multimedia No*

BioParallel S / P GPU Biomedical No+

Parboil S / P GPU GP-GPU Yes

12

https://www.spec.org/cpu/
https://www.spec.org/cpu/
https://www.eembc.org/
https://www.eembc.org/
http://parsec.cs.princeton.edu/
http://parsec.cs.princeton.edu/
http://cucis.ece.northwestern.edu/projects/DMS/MineBench.html
http://cucis.ece.northwestern.edu/projects/DMS/MineBench.html
http://mathstat.slu.edu/~fritts/mediabench/
http://mathstat.slu.edu/~fritts/mediabench/
http://rsim.cs.uiuc.edu/alp/alpbench/
http://rsim.cs.uiuc.edu/alp/alpbench/
http://impact.crhc.illinois.edu/parboil/parboil.aspx
http://impact.crhc.illinois.edu/parboil/parboil.aspx

The Rodinia Benchmark Suite
● Uses Berkeley Dwarves as guidelines for selecting benchmarks
● *Contains four applications and five kernels

○ CPUs - Parallelized with OpenMP
○ GPUs - CUDA
○ Similarity Score - Mars’ MapReduce API

● Workloads chosen to exhibit
○ Parallelism
○ Data access patterns
○ Data sharing characteristics

13

The Rodinia Benchmark Suite

14

The Rodinia Benchmark Suite - Workloads
Leukocyte Tracking (LC) Detect and track rolling leukocytes in video microscopy

S.R Anisotropic Diffusion (SRAD) Removing speckles in an image without sacrificing features

HotSpot (HS) Thermal simulation tool to estimate processor temperature

Back Propagation (BP) Train neural networks by propagating error and updating weights

Needleman-Wunsch (NW) DNA sequence alignment by score evaluation

K-Means (KM) Clustering by finding centroids and adding points until convergence

Stream Cluster (SC) Online clustering with a predetermined number of medians

Breadth First Search (BFS) Traverse connected components in a graph

Similarity Score (SS) Computing pairwise similarity between pairs of web documents

15

The Rodinia Benchmark Suite
● CUDA

○ GTX 280 GPU | 30 SM , 8 SPs : 240 SPs |16kB SMPB | 1GB
○ “SM contains 8 SP. These SMs only get one instruction at time which

means that the 8 SPs all execute the same instruction. This is done
through a warp where the 8 SPs spend 4 clock cycles executing a
single instruction”[1]

● CUDA vs OpenMP
○ More fine-grained specification of tasks
○ Reductions must be handled manually

[1] https://devtalk.nvidia.com/default/topic/459248/difference-between-cuda-core-amp-streaming-multiprocessor/ 16

Methodology and Experiment Design
● Is the suite diverse enough? - Diversity Analysis
● Does the style of parallelization and optimization affect different target

platforms? - Parallelization and Speedup
● To quantitatively evaluate the communication overhead between GPUs

and CPUs - Computation & Communication
● Do synchronization primitives and strategies affect performance? -

Synchronization
● Do both approaches (CPU , GPU) affect power-efficiency differently? -

Power Consumption

17

Q5. Does this synchronization refer to synchronizing all the
threads only in a block? Also, is this "overhead" occurring
because in a kernel, the next task can't be started before all
the threads in the previous task are done executing, hence
the delay?

18

Diversity Analysis
● Microarchitecture Independent Workload Characterization(MICA) - A plugin

for Linux PIN tool capable of characterizing the kernels independently from
its running architecture by monitoring non-hardware features.

● Fairly accurate despite being compiler dependent. Eg: SSE
● Diversity of applications under consideration is shown in figure 1.
● GPU speedup - 5.5 to 80.8 times over single core and 1.6 to 26.3 times over

quad-core CPUs excluding I/O and initial setup.
● LC, SRAD and HS - compute intensive.
● NW, BFS, KM and SC - memory bandwidth limited. DS dependent.
● SC, KM and SRAD mask memory latency with data parallelism.

19

20

Parallelization and Optimization
● After performance, GPU optimizations: CPU-GPU communications & memory

coalescing. Neighbouring threads access sequential memory. Eg: BFS
● Caching is a good for large read-only data structures.
● If sufficient parallelism is available, then gains from efficient

thread-bandwidth usage can mask memory access latencies.

21

Computation and Communication
● Programs with largest problem sizes have highest miss-rates. True!
● Amdahl’s law! - gives the upper bound of parallelism based performance
● Disjoint CPU-GPU address spaces needs translation.
● Moving work to GPU despite higher CPU efficiency can be beneficial if it

reduces CPU-GPU communication. (Fig *)

22

Synchronization (CUDA)
● Intra-block synchronization

○ Use __syncthreads() to synchronize within a thread block

● Global (inter-block) synchronization
○ Multiple kernel launches are required
○ This adds significant overhead

● Atomic instructions
○ These have likely improved over time, but authors note bandwidth was poor circa 2009
○ We weren’t able to find a recent paper to update this assessment

● Conclusion?
○ Keep synchronization and communication local to thread blocks whenever possible

23

Table II (CUDA Synchronization)

24

Back to Figure 2
● NW and SS have among the

worst speedups compared to
CPU implementations

○ This could partially be attributed to
the relatively large amount of
synchronization needed

○ But there are of course other
factors at play

25

Synchronization (OpenMP)
● Parallel constructs have implicit barriers

○ “Upon completion of the parallel construct, the threads in the team synchronize at an
implicit barrier, [...]”[1]

● Programmers also have a rich set of synchronization features
○ e.g. ATOMIC directive
○ #pragma omp atomic

 expression
○ Parameters: expression - The statement containing the lvalue whose memory location

you want to protect against multiple writes.

[1] http://www.openmp.org/wp-content/uploads/cspec20.pdf 26

Table II (OpenMP)

−

27

Back to Figure 2
● SRAD and LC are helped

dramatically by parallelization
○ The authors attribute this to highly

independent computations
within the SRAD and LC kernels

○ But there are of course other
factors at play

28

Power Consumption
● Power benchmarks were done for each kernel’s three versions: GPU,

single CPU core, and four CPU cores
● Extra power dissipation

○ Power idle - Power kernel
○ The authors’ system idles at 186 W, which includes the idle power of the GPU

● The authors seem to be using some notion of average power, although
in our opinion, an energy measurement might’ve been more interesting

29

Figure 5 (Some interesting results)
● In BP, SS, and KM, the

GPU consumes less
power than the four CPU
cores.

○ Why? The answer differs for
each kernel, but here are
some contributing factors:
KM exploits special GPU
memory, KM and BP don’t
use much shared memory,
etc.

30

Figure 5 (Some interesting results)
● In BP, SS, and KM, the

GPU consumes less
power than the four CPU
cores.

● For NW, the CPU and the
GPU consume similar
amounts of power

31

Figure 5 (Some interesting results)
● Speedup per watt

○ It’s mostly more efficient to
run on GPU

○ e.g., SRAD dissipates 24%
more power on GPU than on
four-core CPU, but speedup
over multicore is 5.0

○ NW efficiency is roughly the
same in GPU and CPU

○ Why? NW presents little
parallelism within its
diagonal strip access pattern

32

A small side note...
● Can someone explain

this to me?
○ Smallest difference in

efficiency occurs when
running KM (difference of
0.0027)

○ Did the authors mean KM?
○ This seems to make sense, if

you consider the speedup
for KM was only 1.6x!

33

Can you briefly describe what causes the GPU to require more
energy for the execution of their workloads?

34

Can you briefly describe what causes the GPU to require more energy for the execution of their workloads?

In general, GPUs are executing the workload faster and more
efficiently (see previous speedup per watt slide). Like any
trade off, we don’t get this speedup for free: we’re paying for
the speedup with additional power dissipation.

35

Discussion (CUDA)
● Data structure mapping

○ Programmers must map their application’s data structures to the CUDA domain (CUDA
loves matrices)

● Global memory fence
○ The lack of a global memory fence forces programmers to launch multiple kernel to

synchronize (costly overhead)

● Memory transfer
○ Disjoint memory spaces adds to overhead, but CUDA does provide a streaming interface

■ Overlaps computations with memory transfers

● Offloading Decision
○ It isn’t always intuitive what to run on a GPU

● Resource considerations
○ Per-thread storage is tiny in the register file, texture cache, and shared memory

36

In the "Memory Transfer" section, it’s stated that batch
kernel calls can work efficiently only if "there is no CPU code
between GPU kernel calls, and there are multiple
independent streams of work." How could intermediate CPU
code execution effect the kernel calls since they are being
executed in different hardware?

37

In the "Memory Transfer" section, it’s stated that batch kernel calls can work efficiently only if "there is no CPU code between GPU kernel calls, and there are multiple
independent streams of work." How could intermediate CPU code execution effect the kernel calls since they are being executed in different hardware?

We think the key phrase here is “work efficiently”... You can
introduce intermediate CPU code, but this wouldn’t always
hide the memory transfer as efficiently.

Further reading: https://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-cuda-cc/

38

Discussion (OpenMP)
● Compiler directives, library routines, etc. give programmers control over

parallelism
● Programmers still must determine what to parallelize
● Programmers still must avoid data races

39

Discussion (OpenCL)
● OpenCL platform and memory

models are very similar to CUDA
● If Rodinia applications were

implemented in OpenCL, many
of the same lessons and
optimizations could be applied

○ Today, we have good OpenCL
support in Rodinia

40

Discussion (PGI generated GPU code)
● Paper recommendation: Directive-Based Compilers for GPUs

○ Swapnil Ghike, Ruben Gran, Maria J. Garzaran, and David Padua, 2015

○ “In terms of performance, the versions compiled Cray performed faster than the ones of
PGI compiler for 8 out of 15 Rodinia benchmarks. In comparison to fine-tuned CUDA
versions, 6 out of 15 heterogeneous versions ran over the 85% of the CUDA performance.
This shows the potential of these heterogeneous directives-based compilers to produce
efficient code and at the same time increase programmer productivity.”

41

