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“deterministic deeds, done dirt cheap” 



Debug 
reverse debugging is possible 

Deploy 
more robust production code 

Test 
no need to 
  stress test testing results 

are reproducible 

production bugs 
can be reproduced 

in-house 

tested inputs behave 
identically in production 
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Kendo [ASPLOS ‘09] 

Grace [OOPSLA ‘09] 

Deterministic Execution  
for Restricted Programs 

DMP [ASPLOS ‘09] 

 CoreDet [ASPLOS ‘10] 

dOS [OSDI ‘10] 

Determinator [OSDI ‘10] 

Calvin [HPCA ‘11] 

[ASPLOS ‘11] 

Deterministic Execution  
for Arbitrary Programs 



History of Deterministic Execution 
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DMP [ASPLOS ‘09] 

seq. consistency total store order DRF0 [ISCA ‘90] 

CoreDet [ASPLOS ‘10] 

"Piled Higher and Deeper" by Jorge Cham 
www.phdcomics.com 

Jorge Cham © 2008 

[ASPLOS ‘11] 

http://www.phdcomics.com/
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DMP-HB 
a new deterministic 

consistency model based on 
DRF0 with improved 

performance 

a low-complexity hw/sw 
deterministic execution 

system 
 

hw: store buffers and 
instruction counting 

 
sw: everything else 

C/C++ compiler 
based on LLVM,  

runs on commodity 
multicore 

hardware 
simulation using Pin 

Contributions Outline 



starting simple: serialization 

quantum 

8 

deterministic 
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recovering parallelism  
with DMP-TSO 
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parallel mode: buffer all 
stores (no communication) 

commit mode: 
deterministically publish 
buffers 

serial mode: for atomic ops 

time → 

T1 

T2 

T3 

commit 
parallel 

serial 
lock A 

lock B 

wr A 

rd A 

rd A 



Why is DMP-TSO slow? 
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time → 

commit 
parallel 

T3 
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serialization 

imbalance 

Kendo [ASPLOS ‘09] 

DMP-HB 

parallel-mode synchronization 
complements 
relaxed consistency 



synchronization in  
parallel mode with Kendo  
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instruction count → 

T1 

T2 

T3 

[Olszewski et al., ASPLOS ‘09] 

lock A 

thread with globally min insn 
count can do atomic op 

T2 not globally min insn count T2 is globally min insn count 
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time → 

commit 
parallel 

T3 

T1 

T2 

serialization 

imbalance 
DMP-HB 

Kendo [ASPLOS ‘09] 



DRF0: happens-before consistency 

• happens-before edges defined by 
synchronization operations 

• remote updates visible via cross-thread 
happens-before edges 

• SC for DRF programs 

• upholds C++/Java memory models 

• programmer-visible model doesn’t change 
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[Adve and Hill, ISCA ‘90] 
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relaxed consistency (DRF0) 

sync in parallel mode (Kendo) 

DMP-HB 

deterministic scheduling (DMP) 



DMP-HB : happens-before determinism 
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time → 

T1 

T2 

T3 

commit 
parallel 

lock A unlock A 

lock A 

TSO RC 

no serial mode 
less imbalance 

DRF0 
explicit fence iff  
inter-thread HB 

edge doesn’t 
cross commit 

explicit fences 
rarely necessary 
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DMP-HB 
a new deterministic 

consistency model with 
improved performance 

a low-complexity hw/sw 
deterministic execution 

system 
 

hw: store buffers and 
instruction counting 

 
sw: everything else 

C/C++ compiler 
based on LLVM,  

runs on commodity 
multicore 

hardware 
simulation using Pin 



Architecture 
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L2$ 

Core 

L1$ 

Store Buffers in Private $ 
StoreToSB 
CommitSB 

SaveSB 
RestoreSB 

Precise Insn Counting 
StartInsnCount 
StopInsnCount 
ReadInsnCount 

Core 

L1$ 

Traps 
SBFull 
QuantumReached 

application/OS can 
choose nondeterminism 

align context switches  
with quantum boundaries 

runtime system 
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Experimental Setup 

21 

structure size access latency 

private L1 8-way, 32KB 1 cycle 

private L2 8-way, 256KB 10 cycles 

shared L3 16-way, 8MB 35 cycles 

memory - 120 cycles 

Pin-based simulator 
1 IPC, except for memory ops 
PARSEC v2.1 with simsmall inputs 

extended CoreDet C/C++ compiler [ASPLOS ‘10] 

8-core Intel Harpertown @ 2.8GHz, 10GB RAM 
PARSEC v2.1 with simlarge inputs 



0%

10%

20%

30%

40%

50%

60%

70%

blacksch dedup ferret fluid streamcl swaptions vips x264

%
 o

ve
rh

e
ad

 c
o

m
p

ar
e

d
 t

o
 n

o
n

d
et

 2p

4p

8p

16p

Simulation: Overheads 
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overhead < 60% in worst case 

50k 50k 25k 1k 1k 50k 50k 50k 
quantum size 

(insns) 



Compiler: DMP-HB vs. DMP-TSO 
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Conclusions 

• DMP-HB: a new deterministic  
consistency model 

• : a new deterministic  
multiprocessor design 
– no speculation 

– lightweight hardware support 

• Relaxed consistency is a natural  
optimization for determinism 
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source code and data available at 
http://sampa.cs.washington.edu 

http://sampa.cs.washington.edu/


Thanks! 

 

Questions? 
 

 

 
source code and data available at 
http://sampa.cs.washington.edu 
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DRF0 hardware requirements [ISCA ‘90] 

1. Intra-processor dependencies are preserved. 
2. All writes to the same location can be totally ordered based on their 

commit times, and this is the order in which they are observed by all 
processors. 

3. All synchronization operations to the same location can be totally 
ordered based on their commit times, and this is also the order in which 
they are globally performed. Further, if S1 and S2 are synchronization 
operations and S1 is committed and globally performed before S2, then 
all components of S1 are committed and globally performed before any 
in S2. 

4. A new access is not generated by a processor until all its previous 
synchronization operations (in program order) are committed. 

5. Once a synchronization operation S by processor Pi is committed, no 
other synchronization operations on the same location by another 
processor can commit until after all reads of Pi before S (in program 
order) are committed and all writes of Pi before S are globally 
performed. 
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