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ABSTRACT

We describe two systematic procedures for synthesizing mutliple-
input translinear element (MITE) networks that produce an output
current that is equal to product of a number of input currents,
each of which is raised to an arbitrary rational power.  By using
the first procedure, we obtain a MITE network, called a two-layer
network, that is relatively insensitive to mismatch in the MITE
weight values.  By using the second procedure, we arrive at a
MITE network, called a cascade network, that reduces the fan-in
required of each MITE.  We illustrate each of these procedures
with an example.

1.  MITE NETWORKS: THE SYNTHESIS PROBLEM

We recently introduced a class of translinear circuits, called mul-
tiple-input translinear element (MITE) networks, that accurately
embody product-of-power-law relationships in the current signal
domain [1–3].  The MITE is a circuit primitive that produces an
output current that is exponential in a weighted sum of the
MITE’s input voltages [2, 4].  For a given product-of-power-law
relationship, MITE networks often require fewer transistors than
would translinear-loop circuits [5, 6].  In some cases, MITE net-
works can operate on a lower power-supply voltage than could
corresponding translinear-loop circuits.  Here, we describe two
systematic procedures for synthesizing MITE networks to imple-
ment any given product-of-power-law relationship between a
single output and any number of input currents for which the
power-laws are rational numbers.  Using the first of these proce-
dures, we obtain a MITE network, called a two-layer network,
that is relatively insensitive to mismatch in the MITE weight
values.  Using the second procedure, we obtain a MITE network,
called a cascade network, that reduces the fan-in required for
each MITE.

We now define the scope of the synthesis problem that we
shall consider in this paper.  Suppose that we are given an expres-
sion relating a single output current, IN+1, to N input currents, I1

through IN, of the form
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where Λ1 through ΛN are dimensionless rational numbers (either
positive or negative).  In order for the units of Eq. 1 to balance
properly, we must have that
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Our objective in solving the synthesis problem will be to con-
struct a MITE network that embodies Eq. 1, given Λ1 through ΛN.

Because we have restricted the values of Λ1 through ΛN to the
rational numbers, we have that
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where pn and qn are integers for each n.  Further, we assume that,
for each n, pn and qn have no common divisors other than unity.
Without loss of generality, we will also assume that Λ1 through
ΛJ are positive and that ΛJ+1 through ΛN are negative, so IN+1 is of
the form
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We can always renumber the input currents so that the expression
to be implemented with a MITE network is in this form.

We could consider the case of simultaneously implementing a
number of different product-of-power-law relationships of the
form of Eq. 1 holding among overlapping sets of input currents.
In considering multiple expressions simultaneously, we can often
share input MITEs corresponding to the common inputs currents.
In so doing, we would not have to supply multiple copies of these
inputs, as we would if we implemented each expression with an
independent circuit.  Sometimes, we can see where hardware can
be shared between several single-output circuits.  However, sys-
tematic synthesis procedures applicable to the multiple-output
case are difficult to formulate and to state succinctly; such cases
can be handled by formulating the synthesis of MITE networks as
a constrained optimization problem [2].

Seevinck has described various aspects of the systematic syn-
thesis of translinear circuits [6].  He adopts a higher-level view of
the synthesis problem than we do in this paper.  He begins with a
mathematical function of a dimensionless variable to be realized
with translinear-loop circuits.  He discusses various techniques
for decomposing into and approximating these functions by forms
suitable for realization with translinear circuits.  We can use all of
Seevinck’s techniques directly with the synthesis procedures that
we describe in this paper to implement analog signal-processing
functions with MITE networks in place of translinear circuits.

2.  SYNTHESIS OF MITE NETWORKS

Like many circuit synthesis problems, the problem of synthesiz-
ing MITE networks is underconstrained—the given information
(e.g., the values of Λ1 through ΛN) does not uniquely determine
the form of the circuit (e.g., the MITE network) to be synthesized.
We have shown that, if there exists a single MITE network im-
plementing an expression of the form of Eq. 1, then there exists a
countable infinity of such MITE networks [2].  Given this fact, by
what criteria are we to choose one from among them?  In order
that the power-law relationships embodied in our MITE networks
be independent of parasitics and device parameters, we require
that each MITE has the same complement of inputs [2].  Conse-
quently, other considerations aside, it seems as though we would
prefer a MITE network that uses fewer inputs per MITE.
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In general, however, we must consider other criteria to make
this choice.  For example, we could consider the sensitivity of
different MITE network topologies to component mismatch.  In
Section 2.1, we show that Eq. 1 can be implemented in a MITE
network with a two-layer structure.  The first layer, called the
numerator layer, feeds directly into the output MITE and com-
prises all of the input MITEs whose currents are raised to positive
powers.  The second layer, called the denominator layer, feeds
into the numerator layer and comprises all of the input MITEs
whose currents are raised to negative powers.  All of the paths in
a two-layer network are as short as possible, so component mis-
match will not accumulate over long cascades.  However, if there
are a large number of currents raised to positive powers, then
there will be a large number of inputs converging on the output
MITE.  In this case, we will have to use a large number of inputs
for the output MITE, and hence for every MITE.

In Section 2.2, we show that Eq. 1 can be implemented in a
MITE network with a cascade structure.  In this case, we arrange
the input MITEs into a linear sequence, alternating between those
MITEs whose currents appear in the numerator of the expression
implemented by the MITE network and those whose currents
appear in the denominator of the expression.  In this case, each
MITE will have some self connections and inputs the next MITE
in the sequence.  Consequently, for a given expression, a cascade
network will generally have a fewer inputs per MITE than would
a two-layer network.  However, because the average path length
between input and output is longer in a cascade network than it is
in a two-layer network, we expect that a cascade network will be
more sensitive to component mismatch than would be an equiva-
lent two-layer network.

2.1 Construction of a Two-Layer MITE Network

We begin the construction of a two-layer MITE network em-
bodying Eq. 1 by creating a MITE for the output current and la-
beling it QN+1.  The remainder of the procedure is as follows:

1. Constructing the numerator layer:  For each value of n be-
tween 1 and J, we perform the following steps.  First, we
create a MITE for the nth input current, labeling it Qn.  Then,
we diode connect MITE Qn through qn unit weights, and we
connect MITE Qn to MITE QN+1 through pn unit weights.

2. Constructing the denominator layer:  For each value of n
between J+1 and N, we perform the following steps.  First,
we create a MITE for the nth input current, labeling it Qn.
Then, we pick one of the MITEs in the numerator layer—say
MITE Qm.  Let k denote the greatest common divisor (g.c.d.)
of pmqn and pnqm.  Then, we diode connect MITE Qn through
p q km n  unit weights and we connect MITE Qn to MITE Qm

through p q kn m  unit weights.

3. Adding the required number of unused inputs:  We denote by
K the largest number of inputs feeding into any MITE.  If
each MITE happens to have K inputs, we are done.  Other-
wise, we add a sufficient number of grounded unit weights
to each MITE that they each have K inputs.

2.2 Construction of a Cascade MITE Network

We begin the construction of a cascade MITE network imple-
menting Eq. 1 by creating a MITE for the output current, labeling
it QN+1.  The remainder of the procedure is as follows:

1. We begin with an input current from the numerator of Eq.
1—say the nth input current—and we create a MITE for it,
labeling it Qn.  We diode connect MITE Qn through qn unit
weights, and we connect MITE Qn to MITE QN+1 through pn

unit weights.

2. We choose an input current from the denominator of Eq. 1.
If there are none left, then we proceed to step 5.  Otherwise,
if we chose the nth input current, we create a MITE for it,
labeling it Qn.  Suppose that the MITE created in the previ-
ous step was MITE Qm. Let k denote the g.c.d. of pmqn and
pnqm.  Then, we diode connect MITE Qn through p q km n
unit weights and we connect MITE Qn to MITE Qm through
p q kn m  unit weights.

3. We choose an input current from the numerator of Eq. 1.  If
there are none left, then we proceed to step 6.  Otherwise, if
we chose the nth input current, we create a MITE for it, la-
beling it Qn.  Suppose that the MITE created in the previous
step was MITE Qm. Let k denote the g.c.d. of pmqn and pnqm.
Then, we diode connect MITE Qn through p q km n  unit
weights and we connect MITE Qn to MITE Qm through
p q kn m  unit weights.

4. We return to step 2.

5. For each of the remaining numerator input currents, we per-
form the following steps.  For the nth input, we first create a
new MITE, labeling it Qn.  We diode connect MITE Qn

through qn unit weights, and we connect MITE Qn to MITE
QN+1 through pn unit weights.  Once we exhaust the numera-
tor input currents, we proceed to step 7.

6. For each of the remaining denominator input currents, we
perform the following steps.  For the nth input, we first cre-
ate a new MITE, labeling it Qn.  Suppose that the MITE cre-
ated in step 1 was MITE Qm. Let k denote the g.c.d. of pmqn

and pnqm.  Then, we diode connect MITE Qn through
p q km n  unit weights and we connect MITE Qn to MITE Qm

through p q kn m  unit weights.

7. We denote by K the largest number of inputs feeding into
any MITE.  If each MITE happens to have K inputs, we are
done.  Otherwise, we add a sufficient number of grounded
unit weights to each MITE that they each have K inputs.

2.3 An Illustrative Example

In this section, we shall illustrate each of the two MITE-network
construction procedures described in Sections 2.1 and 2.2 by
applying them in turn to generate MITE networks to implement
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Throughout this section, when we first consider a new input or
output current, we shall add another MITE to the circuit being
made, labeling it with the number of the corresponding current.

First, using the procedure described in Section 2.1, we shall
construct a two-layer MITE network realizing Eq. 2.  Each of the
steps in this process is illustrated in Fig. 1.  We begin by making
a MITE for the output current, I6.  Then, we construct the nu-
merator layer, as shown in Figs. 1a, 1b, and 1c.  We begin with
input current I1.  Because I1 is raised to the 12  power in Eq. 2, we
diode connect MITE Q1 through two unit inputs, and we connect
MITE Q1 to MITE Q6 through one unit input, as shown in Fig. 1a.
Next, we consider input current I2.  Because I2 is raised to the 32
power in Eq. 2, we diode connect MITE Q2 through two unit
inputs, and we connect MITE Q2 to MITE Q6 through three unit
inputs, as shown in Fig. 1b.  Finally, we consider input current I3.
Because I 3 is squared in Eq. 2, we diode connect MITE Q3

through one unit input, and we connect MITE Q3 to MITE Q6

through two unit inputs.
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Next, we construct the denominator layer, as shown in Figs. 1d
and 1e.  We begin with input current I4.  We choose to connect
MITE Q4 to MITE Q6 through MITE Q2.  Because I2 is raised to
the 3

2  power and I4 is raised to the –2 power, we need to find the
g.c.d. of 2 2 4× =  and 3 1 3× = , which is equal to 1.  Then, we
diode connect MITE Q4 through 3 1 1 3× =  unit inputs, and we
connect MITE Q4 to MITE Q2 through 2 2 1 4× =  unit inputs, as
shown in Fig. 1d.  Next, we consider input current I5.  We chose
to connect MITE Q5 to MITEQ6 through MITE Q3.  Because I3 is
squared and I5 is raised to the –1 power, we need to find the g.c.d.
of 2 1 2× =  and 1 1 1× = , which is equal to 1.  Then, we diode
connect MITE Q5 through 2 1 1 2× =/  unit inputs, and we connect
MITE Q5 to MITE Q3 through 1 1 1 1× =/  unit input, as shown in
Fig. 1e.  Finally, we count the largest number of inputs possessed
by any MITE in the circuit of Fig. 1e; this number is 6.  We thus
add four grounded inputs to MITEs Q1, Q3, and Q5, and we add
three grounded inputs to MITE Q4, as shown in Fig. 1f.  The re-
sulting two-layer MITE network implements Eq. 2.

Using the procedure described in Section 2.2, we shall con-
struct a cascade MITE network implementing Eq. 2.  This process
is illustrated in Fig. 2.  Again, we begin by creating a MITE for
the output current, I6.  We first consider input current I1 from the
numerator of Eq. 2.  Because I1 is raised to the 12  power, we di-
ode connect MITE Q1 through two unit inputs, and we connect
MITE Q1 to MITE Q6 through one unit input, as shown in Fig 2a.
Next, we chose input current I5 from the denominator of Eq. 2.
Because I 1 is raised to the 12  power and I5 is raised to the –1
power, we need to find the g.c.d. of 1 1 1× =  and 2 1 2× = , which
is equal to 1.  So, we diode connect MITE Q5 through 1 1 1 1× =/
unit input, and we connect MITE Q5 to MITE Q1 through
2 1 1 2× =/  unit inputs, as shown in Fig. 2b.  Next, we chose in-
put current I3 from the numerator of Eq. 2.  Because I5 is raised to
the –1 power and I 3 is squared, we need to find the g.c.d. of
2 1 2× =  and 1 1 1× = , which is equal to 1.  So, we diode connect
MITE Q3 through 1 1 1 1× =/  unit input, and we connect MITE Q3

to MITE Q5 through 2 1 1 2× =/  unit inputs, as shown in Fig. 2c.
Next, we chose input current I4 from the denominator of Eq. 2.
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Figure 1.  Construction of a two-layer MITE network implementing Eq. 2.  We build the numerator layer in parts a, b, and c.  In parts d
and e, we construct the denominator layer.  We add unused inputs in part f to balance the total number of unit inputs to each MITE.
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to MITE Q5 through 2 1 1 2× =/  unit inputs, as shown in Fig. 2c.
Next, we chose input current I4 from the denominator of Eq. 2.
Because I3 is squared and I4 is raised to the –2 power, we need to
find the g.c.d. of 2 1 2× =  and 2 1 2× = , which is equal to 2.  So,
we diode connect MITE Q4 through 2 1 2 1× =/  unit input, and
we connect MITEQ4 to MITE Q3 through 2 1 2 1× =/  unit input,
as shown in Fig. 2d.  Finally, we consider input current I2 from
the numerator of Eq. 2.  Because I4 is raised to the –2 power and
I2 is raised to the 32  power, we need to find the g.c.d. of 3 1 3× =
and 2 2 4× = , which is equal to 1.  So, we diode connect MITE
Q2 through 2 2 1 4× =/  unit inputs, and we connect MITE Q2 to
MITE Q4 through 3 1 1 3× =/  unit inputs, as shown in Fig. 2e.

Finally, we count the largest number of inputs possessed by
any MITE in the network of Fig. 2e; this number is 4.  Conse-
quently, we add one grounded input to MITE Q5, two grounded
inputs to MITE Q3, and three grounded inputs to MITE Q6.  The
resulting cascade MITE network, shown in Fig. 2f, implements
Eq. 2.

3.  CONCLUSIONS

We described two synthesis procedures by which we can con-
struct MITE networks to implement an arbitrary product-of-
power-law relationship among a single output current and any
number of input currents, where the power laws are given by
rational numbers.  Using the first procedure, we obtain a two-
layer MITE network, which minimizes the number of cascaded
stages between any input and the output.  Two-layer networks are
thus minimally sensitive to the accumulation of mismatch in long
cascades.  Using the second procedure, we obtain a cascade net-
work, which reduces the fan-in required for each MITE, but in-
troduces long cascades between some inputs and the output,
causing an accumulation of mismatch through the cascade.  We
illustrated each procedure using a simple example.
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Figure 2.  Construction of a cascade MITE network that implements Eq. 2.  In part a, we begin with a current from the numerator of Eq. 2,
and, in parts b, c, d, and e, we add MITEs toward the left, alternating between currents from the denominator and the numerator of Eq. 2.
In part f, we add unused inputs to balance the total number of unit inputs to each MITE.
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