
The Transactional Memory / Garbage Collection Analogy

Dan Grossman

University of Washington

djg@cs.washington.edu

Abstract
This essay presents remarkable similarities between transac-
tional memory and garbage collection. The connections are
fascinating in their own right, and they let us better under-
stand one technology by thinking about the corresponding
issues for the other.

Categories and Subject DescriptorsD.1.3 [Programming
techniques]: Concurrent Programming—Parallel program-
ming; D.3.3 [Programming languages]: Language Con-
structs and Features—Concurrent programming structures;
D.3.4 [Programming languages]: Processors—Memory man-
agement (garbage collection)

General Terms Languages

Keywords Transactional Memory, Garbage Collection

1. Introduction
Transactional memory is currently one of the hottest topics
in computer-science research, having attracted the focus of
researchers in programming languages, computer architec-
ture, and parallel programming, as well as the attention of
development groups at major software and hardware compa-
nies. The fundamental source of the excitement is the belief
that by replacing locks and condition variables with trans-
actions we can make it easier to write correct and efficient
shared-memory parallel programs.

Having made the semantics and implementation of trans-
actional memory a large piece of my research agenda [44,
46, 32, 19], I believe it is crucial to ask why we believe
transactional memory is such a step forward. If the reasons
are shallow or marginal, then transactional memory should
probably just be a current fad, as some critics think it is.
If we cannot identify crisp and precise reasons why trans-
actions are an improvement over locks, then we are being
neither good scientists nor good engineers.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’07, October 21–25, 2007, Montréal, Qúebec, Canada.
Copyright c© 2007 ACM 978-1-59593-786-5/07/0010. . . $5.00

The purpose of this article is not to rehash excellent but
previously published examples where software transactions
provide an enormous benefit (though for background they
are briefly discussed), nor is it to add some more examples to
the litany. Rather, it is to present a more general perspective
that I have developed over the last two years. This perspec-
tive is summarized in a one-sentence analogy:

Transactional memory (TM) is to
shared-memory concurrency

as
garbage collection (GC) is to

memory management.

Having shared this sentence with many people, I have
come to realize that this sort of pithy analogy has advantages
and disadvantages. On the one hand, it sparks discussion
and is easy to remember. When fully understood, such an
analogy can inspire new research ideas and let one adapt
terminology from one side of the analogy for use in the
other. On the other hand, it is easy to misinterpret an analogy,
apply it too broadly, or dismiss it as just a slogan. The
key is to understand that an analogy like this one is not
a complete argument; it is an introductory remark for a
more complete discussion pointing out the remark’s deeper
meaning and limitations. This article is designed to provide
a cogent starting point for that discussion. The primary goal
is to use our understanding of garbage collection to better
understand transactional memory (and possibly vice-versa).

The presentation of the TM/GC analogy that follows will
demonstrate that the analogy is much deeper than, “here are
two technologies that make programming easier.” However,
it will not conclude that TM will make concurrent program-
ming as easy as sequential programming with GC. Rather,
it will lead us to the balanced and obvious-once-you-say-it
conclusion that transactions make it easy to define critical
sections (which is a huge help in writing and maintaining
shared-memory programs) but provide no help in identifying
where a critical section should begin or end (which remains
an enormous challenge).

I begin by providing a cursory review of memory man-
agement, garbage collection, concurrency, and transactional
memory (Section 2). This non-analogical discussion simply
introduces relevant definitions for the two sides and may

leave you wondering how they could possibly have much to
do with each other. I then present the core of the analogy, un-
covering many uncanny similarities even at a detailed level
(Section 3). This discussion can then be balanced with the
primary place the analogy does not hold, which is exactly the
essence of what makes concurrent programming inherently
more difficult no matter what synchronization mechanisms
are provided (Section 4).

Having completed the crux of the argument, I then pro-
vide some additional context. First is a brief detour for an
analogous type-theoretic treatment of manual memory man-
agement and locking, a prior focus of my research that pro-
vides some backstory for how the TM/GC analogy came to
be (Section 5). Second are some conjectures one can make
by pushing the analogy (perhaps) too far (Section 6). Finally,
the conclusion describes the intended effects of publishing
this article (Section 7).

2. Background
A full introduction to garbage collection and transactional
memory is clearly beyond our scope (excellent overviews
exist for GC [48, 33] and TM [35]), so this section will
just introduce enough definitions to understand most of the
claims that follow and provide some motivation for TM.
Some readers may be able to skip much of this section.

For the sake of specificity, I will assume programs are
written in a modern object-oriented language (e.g., Java) and
interthread communication is via mutable shared-memory.
Much of the discussion applies to other paradigms (e.g.,
mostly-functional programming) but less to communica-
tion via message-passing. (I will not wade into the merits
of shared memory versus message passing. Assuming that
shared memory is one model we will continue to use for the
foreseeable future, it is worth improving.)

2.1 Garbage Collection

When a program creates an object, space for it is allocated in
the heap. In a language with manual memory management,
this space is explicitly reclaimed (freed) by the programmer.
Accessing an object after reclaiming its space is a dangling-
pointer dereference and behavior is typically undefined. Not
reclaiming space in a timely manner is a space leak and hurts
performance.

Garbage collection automates memory reclamation. The
key idea is determining reachability: an object is reclaimed
only after there is no sequence of references (i.e., a path)
from a root (a global variable or (live) local variable) to
the object. Reachability can be determined via tracing (an
algorithm that starts with the roots and finds all reachable
objects) or automatic reference-counting (an algorithm that
maintains the number of references to each object, reclaim-
ing an object when its count reaches zero). These algorithms
are duals [5]. In practice, efficient garbage collectors use var-

ious high-level techniques (e.g., generational collection) and
low-level tricks (e.g., pointer-reversal).

GC eliminates dangling-pointer dereferences. Space leaks
are possible exactly when reachability is an imprecise ap-
proximation of object lifetime. To avoid imprecision, pro-
grammers need to avoid having dead objects (i.e., objects
they are done with) remain reachable from roots. One help-
ful language feature is weak pointers — references that do
not “count for reachability”. If the garbage collector reclaims
the target of a weak pointer, it updates the pointer to indicate
it cannot be used (e.g., by setting it tonull).

Conservative collection treats integers as possible point-
ers, so an object allocated at addressa is not reclaimed (nor
therefore, is anything reachable from it) if a live piece of
memory holds the integera. Accurate (i.e., nonconserva-
tive) collection uses tighter coupling between the compiler,
which generates code for creating and accessing objects, and
the run-time system, which includes the garbage-collector
proper. The compiler can provide other static information to
the collector, such as whether local variables are live at cer-
tain program points.

Real-time collection ensures the garbage collector never
pauses the program for longer than a fixed threshold. The key
complication is ensuring the collector can “keep up” (i.e.,
reclaim garbage as fast as it can be created) while meeting
its deadlines, else space can become exhausted even though
there is memory available for reclamation.

2.2 Transactional Memory

The assumed concurrency model allows programmers to
create additional threads to execute code in parallel with all
the other threads. Preemptive scheduling means a thread can
be stopped at any point so other threads can use one of the
available processors. Threads must communicate to coor-
dinate the computation they are completing together. With
shared memory, one thread can write to a field of an object
and another thread can then read the value written. Shared
memory and preemption (or true parallelism) are a diffi-
cult combination (e.g., a thread might be preempted between
executingdata=x; and executingdata_changed=true;),
so languages provide synchronization mechanisms by which
programmers can prevent some thread interleavings.

For example, mutual-exclusion locks have acquire and
release operations. If threadA invokes the acquire operation
on a lock that threadB has acquired but not yet released,
then threadA is blocked (does not run) untilA releases
the lock andB holds the lock. Incorrect locking protocols
can lead to races (undesirable interleavings) or deadlocks (a
cycle of threads that can never proceed because they are all
waiting for a blocked thread to release a lock).

Transactional memory provides a synchronization mech-
anism that is easier-to-use but harder-to-implement than
locks. At its simplest, it is just a new statement form
atomic{s} that executes the statements as thoughthere is
no interleaved computation from other threads. In principle,

s can include arbitrary code, but in practice systems typically
limit some operations, such as I/O, foreign-function calls, or
creating new threads. An explicit abort statement lets pro-
grammers indicate the body of the atomic block should be
retried again later.1 For example, a dequeue method for a
synchronized queue might be:

// block until an object is available.
// getNextObject fails if the queue is empty.
Object dequeue() {
atomic {
if(isEmpty())
abort;

return getNextObject();
}

}

TM implementations try to execute the atomic-block
body s concurrently with other computation, implicitly
aborting and retrying if a conflict is detected. This is im-
portant for performance (not stopping all other threads for
each atomic block) and fairness: ifs runs too long, other
threads must be allowed to continue and the thread executing
s should retry the transaction. In a different shared-memory
state,s may complete quickly. Conflicts are usually defined
as memory conflicts:s and another thread access the same
memory and at least one access is a write. The essence of
a TM implementation is two-fold: detecting conflicts and
ensuring all of a transaction’s updates to shared memory
appear to happen “at once”.

The distinction between weak- and strong-atomicity [8]
refers to a system’s behavior when a memory access not
within the dynamic scope of an atomic block conflicts with
a concurrent access (by another thread) within such a scope.
Weak-atomicity systems can violate a transaction’s isolation
in this case, and can produce much stranger program behav-
ior than is generally appreciated [46].

Prohibiting memory conflicts between parallel transac-
tions is sometimes unnecessarily conservative. For example,
if two transactions both use a unique-ID generator, they may
both increment a counter but there is no logical conflict.
Open nesting is a language construct supporting such non-
conflict access. The statementopen{s} executess within a
transaction, but (1) accesses ins are not considered for con-
flict detection and (2) accesses ins are not undone if the
transaction aborts.

Obstruction-freedom is, roughly speaking, the property
that any transaction can continue (i.e., advance its program
counter) even if all other transactions are suspended. Some
TM implementations have this property and some do not; its
importance is fairly controversial [14].

Transactions are a classic concept in databases and dis-
tributed systems. Transactional support in hardware [30],

1 This abort is an abort-and-retry; some systems also have an abort-and-
continue.

programming languages [21], and libraries [45] had early
advocates, with recent interest beginning with Harris and
Fraser’s work for Java [24]. Approaches to implement-
ing TM in compilers [46, 27, 2, 25, 26, 44, 36, 32], li-
braries [29, 37, 28], hardware [23, 9, 38, 42, 4, 40, 41],
and software/hardware hybrids [12, 34] have been pub-
lished, and transactions are part of several next-generation
languages [3, 10, 11].

2.3 Motivations for Transactional Memory

In general, TM advocates believe it is better than locking be-
cause it has software-engineering benefits—avoiding locks’
difficulties—and performance benefits—due to optimistic
concurrency, transactions proceed in parallel unless there are
dynamic memory conflicts. Several idioms where TM is su-
perior have been given:2

• It is easier to evolve software to include new synchro-
nized operations. For example, consider the simple bank-
account class in Figure 1. If version 1 of the software
did not anticipate the need for atransfer method, the
self-locking approach makes sense. Given this, modi-
fying the software to supporttransfer without po-
tential races (seetransfer_wrong1) or deadlock (see
transfer_wrong2) requires wide-scale changes involv-
ing subtle lock-order protocols. This issue arises in Java’s
StringBuffer append method, which is presumably
why this method is not guaranteed to be atomic [15].

• It is easier to mix fine-grained and coarse-grained op-
erations. For example, most hashtable operations access
only a small part of the table, but supporting parallel
insert and lookup operations while still having a cor-
rectly synchronized “resize table” operation is difficult
with locks and trivial with TM.

• It is easier to write code that is efficient when memory-
conflicts are rare while remaining correct in case they
occur. For example, allowing parallel access to both ends
of a double-ended queue is difficult with locks because
there can be contention, but only when the queue has
fewer than two elements [39]. A solution using TM is
trivial.

• With the addition of the “orelse” combinator [25], in
which atomic { s1 } orelse { s2 } tries s2 atom-
ically if s1 aborts (retrying the whole thing ifs2 also
aborts), we can combine alternative atomic actions, such
as trying to dequeue from one of two synchronized
queues, blocking only if both are empty. This addition
affords shared-memory concurrency some of the advan-
tages of Concurrent ML’s choice operator for message
passing [43].

2 None of these examples are new. To the best of my knowledge, they were
originally presented in various forms by Flanagan, Harris, Herlihy, and
Peyton Jones, respectively.

class Account { class Account {
float balance; float balance;
synchronized void deposit(float amt) { void deposit(float amt) {

balance += amt; atomic { balance += amt; }
} }
synchronized void withdraw(float amt) { void withdraw(float amt) {

if(balance < amt) atomic {
throw new OutOfMoneyError(); if(balance < amt)

balance -= amt; throw new OutOfMoneyError();
} balance -= amt;
void transfer_wrong1(Acct other, float amt) { }

other.withdraw(amt); }
// race condition: wrong sum of balances void transfer(Acct other,
this.deposit(amt); float amt) {

} atomic {
synchronized void transfer_wrong2(Acct other, float amt) { other.withdraw(amt);

// can deadlock with parallel reverse-transfer this.deposit(amt);
other.withdraw(amt); }
this.deposit(amt); }

}
}

Figure 1. Example showing the difficulty of extending software written with locks. If thetransfer method must not allow
other threads to see an incorrect sum-of-balances-in-all-accounts, then the first attempt on the left is wrong and the second
attempt can deadlock. In the TM code on the right, addingtransfer is straightforward.

In addition, advocates sometimes claim TM does not suf-
fer from races or deadlocks or that, “it is obviously easier.”
The reasons for these claims and the limitations of them will
become apparent in the subsequent two sections.

3. The Core Analogy
Without further ado, I now present the similarities between
transactional memory and garbage collection, from the prob-
lems they solve, to the way they solve them, to how poor pro-
gramming practice can nullify their advantages. The points
in this section are all technical in nature; any analogies be-
tween the social processes behind the technologies of GC
and TM are relegated to Section 6.

To appreciate fully the analogy I recommend reading
each section twice. First read the descriptions of GC and
TM all at once to make sure they are accurate and relevant.
Then read the descriptions by interleaving sentences (or even
phrases) to appreciate that the structure is identical with the
difference being primarily the substitution of a few nouns.

The Problems

Memory management is difficult because one must use
memory reclamation to balance correctness, i.e., avoiding
dangling-pointer dereferences, and performance, i.e., avoid-
ing the loss of space or even the ability to continue due to
space exhaustion. In programs that manually manage mem-
ory, the programmer uses subtle whole-program protocols to
avoid errors. One of the simpler approaches manually asso-

ciates each data object with a reference count and requires
a nonzero count when accessing the data (freeing the mem-
ory when the count is zero). To avoid lost space, it is suf-
ficient to disallow cycles in the object graph, but in prac-
tice this requirement is too burdensome. Sharing reference
counts among objects (cf. region-based memory manage-
ment [16]) reduces the number of reference counts but may
increase space consumption.

Unfortunately, memory-management protocols are non-
modular: Callers and callees must know what data the other
may access to avoid deallocating needed data or making un-
needed data unreachable. A small change — for example, a
new function that needs data previously deemed no longer
necessary — may require wide-scale changes or introduce
bugs. In essence, memory management involves nonlocal
properties: Correctness requires knowing what data subse-
quent computation will access. One must reason about how
data is used across time to determine when to deallocate an
object. If a program change affects when an object is used
for the last time, the program’s memory management may
become wrong or inefficient.

Concurrent programming is difficult because one must
use synchronization to balance correctness, i.e., avoiding
race conditions, and performance, i.e., avoiding the loss of
parallelism or even the ability to continue due to deadlock. In
programs that manually manage mutual-exclusion locks, the

programmer uses subtle whole-program protocols to avoid
errors. One of the simpler approaches associates each data
object with a lock and holds the lock when accessing the
data. To avoid deadlock, it is sufficient to enforce a partial-
order on the order a thread acquires locks, but in practice
this requirement is too burdensome. Sharing locks among
objects reduces the number of locks but may reduce paral-
lelism.

Unfortunately, concurrency protocols are non-modular:
Callers and callees must know what data the other may ac-
cess to avoid releasing locks still needed or acquiring locks
that could make threads deadlocked. A small change — for
example, a new function that must update two thread-shared
objects atomically with respect to other threads — may
require wide-scale changes or introduce bugs. In essence,
concurrent programming involves nonlocal properties: Cor-
rectness requires knowing what data concurrently executing
computation will access. One must reason about how data is
used across threads to determine when to acquire a lock. If a
program change affects when an object is used concurrently,
the program’s synchronization protocol may become wrong
or inefficient.

The Solutions

GC takes the subtle whole-program protocols sufficient
to avoid dangling-pointer dereferences and space leaks and
moves them into the language implementation. As such, they
can be implemented “once and for all” by experts focused
only on their correct and efficient implementation. Program-
mers specify only what data points to what, relying on the
implementation to be correct (no dangling pointers) and ef-
ficient (reclaiming unreachable memory in a timely man-
ner). Note the garbage collector does maintain subtle whole-
program invariants, often with the support of the compiler
and/or hardware. As examples, header words may identify
which fields hold pointers and a generational collector may
assume there are no unknown pointers from “mature” ob-
jects to “young” objects.

The whole-program protocols necessary for GC are most
easily implemented in some combination of the compiler
(particularly for read and/or write barriers) and the run-
time system (including hardware) because we can localize
the implementation of the protocols. Put another way, the
difficulty of implementation does not increase with the size
of the source program.

In theory, garbage collection can improve performance by
increasing spatial locality (due to object-relocation), but in
practice we pay a moderate performance cost for software-
engineering benefits.

TM takes the subtle whole-program protocols sufficient
to avoid races and deadlock and moves them into the lan-
guage implementation. As such, they can be implemented
“once and for all” by experts focused only on their cor-

rect and efficient implementation. Programmers specify
only what must be performed atomically (as viewed from
other threads), relying on the implementation to be correct
(no atomicity violations) and efficient (reasonably paral-
lel, particularly when transactions do not contend for data).
Note the transactional-memory implementation does main-
tain subtle whole-program invariants, often with the sup-
port of the compiler and/or hardware. As examples, header
words may hold version numbers and systems optimizing
for thread-local data may assume there are no pointers from
thread-shared objects to thread-local objects.

The whole-program protocols necessary for TM are most
easily implemented in some combination of the compiler
(particularly for read and/or write barriers) and the run-
time system (including hardware) because we can localize
the implementation of the protocols. Put another way, the
difficulty of implementation does not increase with the size
of the source program.

In theory, transactional memory can improve perfor-
mance by increasing parallelism (due to optimistic concur-
rency), but in practice we may pay a moderate performance
cost for software-engineering benefits.

Incomplete Solutions

GC is probably not a natural match for all parts of all ap-
plications. Examples may include applications where trad-
ing space for time is a bad performance decision or where
heap-allocated data lifetime follows an idiom not closely ap-
proximated by reachability. Language features such as weak
pointers allow reachable memory to be reclaimed, but us-
ing such features correctly is best left to experts or easily
recognized situations such as a software cache. Recogniz-
ing that GC may not always be appropriate, languages can
complement it with support for other idioms, such as re-
gions [6, 22, 20].

In the extreme, programmers can code manual memory
management on top of garbage collection, destroying the
advantages of garbage collection. Figure 2 shows one ba-
sic approach in Java.3 More efficient implementations (e.g.,
using a free list) are straightforward extensions. A program-
mer can then treatmallocT as the way to get freshT objects,
but an object passed tofreeT may be returned bymallocT,
reintroducing the difficulties of dangling pointers.4 In prac-
tice, we can expect less extreme idioms that still introduce
application-level buffers for frequently used objects.

TM is probably not a natural match for all parts of all
applications. Examples may include applications where op-
timistically attempting parallel transactions is a bad perfor-

3 The code supports only objects of a single type, but separate per-type
allocators or fancier tricks such as reflection can avoid this.
4 The fact that the program cannot “seg fault” is little consolation; in fact, if
my C program has dangling-pointer dereferences I hope itdoes“seg fault”
rather than silently use aliases to just-allocated memory.

class AllocT {
T[] buffer = new T[100];
boolean[] available = new boolean[100];
AllocT() {

for(int i=0; i<1000; ++i) buffer[i] = new T();
for(int i=0; i<1000; ++i) available[i] = true;

}
T mallocT() {

for(int i=0; i < 1000; ++i) {
if(!available[i]) continue;
available[i] = false;
return buffer[i];

}
throw new OutOfMemoryError(); //could resize buffer

}
void freeT(T t) {

for(int i=0; i < 1000; ++i)
if(buffer[i]==t) available[i] = true;

}
}

class Lock {
boolean held = false;
void acquire() {
while(true)
atomic {
if(!held) {
held=true;
return;

}
}

}
void release() {
atomic { held = false; }

}
}

Figure 2. Left: Java code building manual memory management on top of garbage collection. Right: Java code withatomic
statements building locks on top of transactional memory.

mance decision or where correct synchronization follows an
idiom not closely approximated by data conflicts. Language
features such as open-nested transactions allow transactions
with data conflicts to succeed in parallel, but using such fea-
tures correctly is best left to experts or easily recognized situ-
ations such as unique-identifier generation. Recognizing that
TM may not always be appropriate, most prototypes con-
tinue to support other idioms, such as locks and condition
variables.

In the extreme, programmers can code locks on top of
transactional memory, destroying the advantages of trans-
actional memory. Figure 2 shows one basic approach in
Java. More powerful libraries (e.g., supporting reentrancy)
are straightforward extensions. A programmer can then treat
theLock methods as synchronization primitives and reintro-
duce the difficulties of locking. In practice, we can expect
less extreme idioms that still reintroduce application-level
races and deadlocks.

Two Basic Approaches

Despite a wide variety of garbage-collection algorithms
in terms of details, there are two fundamental approaches.
First, tracing collection uses tracing code to find all live
data and garbage-collect the rest. The code running the ap-
plication simply treats all data as live, delaying the check
for unreachable data. Second, automatic reference-counting
checks the number of references to an object while the appli-
cation runs, allowing unreachable data to be found immedi-
ately. However, a cycle of garbage can lead to data being kept
when it should not be, so other techniques (e.g., “trial dele-
tion”) can complement the core reference-counting mech-

anism. In practice, compilers employ deferred reference
counting to avoid the overhead of constantly manipulating
reference counts while delaying the check for garbage.

Despite a wide variety of transactional-memory algo-
rithms in terms of details, there are two fundamental ap-
proaches. First, update-on-commit TM uses private copies
of accessed data and relies on a validate/commit protocol
to detect conflicts and reflect changes back to shared mem-
ory. The code running the application simply assumes there
will be no conflicts, delaying the check for inconsistent data.
Second, update-in-place TM checks the consistency of data
while the application runs, allowing inconsistent data to be
detected immediately and the transaction aborted. However,
a cycle of transactions can cause themselves to all abort
when it is unnecessary,5 so other techniques (e.g., priority-
based schemes) can complement the core update-in-place
mechanism. In practice, compilers employ optimistic reads
with update-in-place to avoid the overhead of checking con-
sistency on every field read while delaying the check for
transaction-consistency.

I/O

GC is difficult to reconcile with external effects such as
input and outputof pointersbecause it is not always pos-
sible to establish what pointer values may be encoded by

5 This point is subtle: Suppose transactionA seeks to write to objecto which
has already been written to by transactionB. An update-in-place system
might abortA, but if B is going to abort later (perhaps because it attempts
to write something already written to byA), we could letA proceed.

output. Because such “hidden pointers” do not matter unless
the external world uses them to generate input that “rema-
terializes” the pointer, the essence of the problem is input-
after-output. In a distributed setting, GC becomes more diffi-
cult because it requires consensus on when data is no longer
needed. In practice, serializing objects is often sufficient.

TM is difficult to reconcile with external effects such as
input and output because it is not always meaning-preserving
to delay output until a transaction commits. Because such
output does not matter unless the external world uses it to
generate input needed for the transaction, the essence of
the problem is input-after-output. In a distributed setting,
TM becomes more difficult because it requires consensus
on when a transaction is completed. It is not yet clear what
suffices in practice.

False Sharing

For reasons of performance and simplicity, garbage col-
lectors typically reclaim only entire objects, rather than re-
claiming parts of objects that contain dead fields. That is,
memory management is done with object-level granular-
ity. As a result, extra space can be consumed, but space-
conscious programmers aware of object-level granularity
can restructure data to circumvent this approximation be-
cause object size is under programmer control.

However, with conservative garbage collection, program-
mers can no longer fully control how much memory is reach-
able. Because the memory address at which an object is al-
located is uncontrollable, a collision with a live integer value
could lead to space consumption.

For reasons of performance and simplicity, some im-
plementations of transactional-memory detect memory con-
flicts between entire objects, rather than permitting parallel
access to distinct parts of objects. That is, conflict manage-
ment is done with object-level granularity. As a result, ex-
tra contention can occur, but parallelism-conscious program-
mers aware of object-level granularity can restructure data to
circumvent this approximation because object size is under
programmer control.

However, with granularity coarser than objects (e.g., at
cache lines), programmers can no longer fully control how
many false conflicts occur. Because the memory address
at which an object is allocated is uncontrollable, adjacent
placement of independent objects could lead to lost paral-
lelism.

Progress Guarantees

Most garbage collectors do not make real-time guaran-
tees. Providing such worst-case guarantees can incur sub-
stantial extra cost in the expected case, so real-time collec-
tion is typically eschewed unless an application needs it. The

key complication is continuing to make progress with collec-
tion while the program could be performing arbitrary opera-
tions on the reachable objects the collector is analyzing.

Some implementations of transactional memory do not
make obstruction-freedom guarantees. Providing such worst-
case guarantees can incur substantial extra cost in the ex-
pected case, so obstruction-freedom should perhaps be es-
chewed unless an application needs it. The key complication
is continuing to make progress with any transaction while
another thread could be suspended after having accessed
any of the objects the transaction is accessing.

Static-Analysis Improvements

Compile-time information can improve the performance
of GC. The most common approach is liveness analysis for
determining that the contents of a local variable is not used
after a certain program point. This information allows the
collector to treat fewer local variables as roots. Other anal-
yses can also prove useful. For example, in a generational
setting, static analysis can remove write barriers for objects
that are definitely in the nursery [49].

Compile-time information can improve the performance
of TM. The most common approach is escape analysis for
determining that the contents of a local variable is not reach-
able from multiple threads before a certain program point.
This information allows the transactional-memory imple-
mentation to treat fewer memory accesses as potential mem-
ory conflicts. Other analyses can also prove useful. For ex-
ample, in a strong-atomicity setting, static analysis can re-
move write barriers for objects that are definitely never ac-
cessed in a transaction [46].

Conclusion

Figure 3 summarizes some of the connections discussed.
In general, the point is that GC and TM aim to automate
what is otherwise an error-prone and detailed task of bal-
ancing correctness and performance. As general solutions,
GC and TM rely on approximations that seem to work well
for many but not all applications, and they cannot perform
well with code specifically aimed at circumventing their ad-
vantages. Efficient and elegant approaches to implementing
and improving GC/TM can involve any combination of code
generation, static analysis, run-time systems, and hardware.

4. The Essence of Concurrency
The previous section described many ways that transactional
memory is like garbage collection. The most exciting as-
pect is that it makes developing, maintaining, and evolv-
ing concurrent programs easier, by moving the low-level
synchronization protocols into the programming-language
implementation. In so doing, we let the application develop-

memory management concurrency
dangling pointers races
space exhaustion deadlock
regions locks
garbage collection transactional memory
reachability memory conflicts
nursery data thread-local data
weak pointers open nesting
I/O of pointers I/O in transactions
tracing update-on-commit
automatic reference countingupdate-in-place
deferred reference counting optimistic reads
conservative collection false memory-conflicts
real-time collection obstruction-freedom
liveness analysis escape analysis

Figure 3. Summary of some differences in nouns between
the two sides of the analogy.

ers focus on the higher-level concern of determining where
critical sections should begin and end, i.e., determining
which shared-memory states should be accessible to mul-
tiple threads.

However, the claim that TM makes concurrent program-
ming easier mustnot be misconstrued as a claim that it
makes concurrent programming easy. Delimiting critical
sections is a fundamentally difficult application-specific
challenge with — by definition — no analogue in sequen-
tial programming. Critical sections that are too small lead
to application-level races because other threads may see in-
consistent state (e.g., the sum of two bank-account balances
may be too large). Critical sections that are too large may
impede application-level progress because they deny access
to an intermediate state another thread needs.

An example adapted from Blundell et al. [8] in Figure 4
illustrates this point. In the example, Thread 2’s critical
section can complete successfully only after Thread 1’s first
critical section, and Thread 1’s second critical section can
complete successfully only after Thread 2’s critical section.
Therefore, program behavior is altered (from terminating to
nonterminating) if Thread 1’s critical sections are combined
by placing them in a larger atomic block.

This example, however, does not contradict the claim
that TM enables composable critical sections, such as the
account-transfer example in Section 2. Unlike with programs
built out of locks, wecancreate larger critical sections out of
smaller ones without introducing deadlock or changing the
locking protocol for code already written. Whether doing so
is appropriate for the application falls under the essential
difficulty of shared-memory concurrent programming, i.e.,
delimiting critical sections.

I have heard advocates of TM claim that atomic blocks
are more “declarative” than locks, but I have not seen a

Initially, x = y = 0
Thread 1 Thread 2
//atomic { atomic {

atomic { if(x==0)
x = 1; abort;

} y = 1;
atomic { }
if(y==0)
abort;

}
//}

Figure 4. An example showing that enlarging critical sec-
tions can break application correctness. Uncommenting the
atomic statement in Thread 1 leads to application-level dead-
lock.

precise justification of this claim. Here it is: The essence of
shared-memory concurrent programming is deciding where
critical sections should begin and end. With atomic blocks,
programmers do precisely that rather than encode critical
sections via other synchronization mechanisms. That is, they
declare where interleaved computation from other threads is
and is not allowed.

Returning to our analogy, thereis a connection to be
made. Concurrency adds expressiveness (the ability to have
multiple threads of control) and performance potential (via
parallelism) just as memory reclamation adds expressive-
ness (the ability to compute with a conceptually unbounded
amount of memory rather than statically allocating all ob-
jects) and performance potential (via a memory footprint
matching dynamic behavior). On the memory management
side, the essential difficulty introduced is to avoid using too
much memory, something much easier to control, albeit con-
servatively, when you allocate all your memory at the begin-
ning of program execution.

There is, however, a large qualitative difference in the two
essential difficulties.6 Avoiding space leaks in a garbage-
collected program just seems much easier than avoiding
incorrect interleavings in a transactional-memory program.
That is why TM, despite being a great leap forward, will not
make concurrent programming easy.

5. A Brief Digression for Types
It turns out GC and TM are not the only solutions to mem-
ory management and concurrency that enjoy remarkable
similarities. The type systems underlying statically checked
languages for region-based memory management [47] and
lock-based data-race prevention [1] are essentially identi-
cally structured type-and-effect systems. In adapting work
on both to the Cyclone programming language, I was able to
exploit this similarity to provide a simpler and more regular

6 There is also a theoretical difference: Unbounded memory is necessary for
Turing-completeness; concurrency is not.

type system [17, 20, 18]. I will not repeat that development
here, but by very briefly sketching the similarity, my intent
is to:

• Provide further evidence that memory management and
concurrency are problems with very similar structure, not
just, “two different problems in software development.”

• Suggest (though I cannot prove it, even to myself) that
my background in type systems provided the intellectual
grounding that allowed me to stumble across the GC/TM
analogy.

In region-based memory management, we can have these
primitives:7

new_region() create a new region
free_region(rgn) deallocatergn and all its objects
use_region(rgn){s} allow access to objects inrgn

in statements
new (rgn) C() put a new object in regionrgn

A type-and-effect system can ensure a region’s objects
are created or accessed only in the dynamic scope of an
appropriateuse_region and a region is freed only outside
such a statement. As such, the only dynamic checks are for
“has this region already been deallocated” and occur on en-
try to use_region or on free_region. The key to type
soundness (no dangling-pointer dereferences) is using fresh
type variables to ensure every region has a type distinct from
every other region. The key to expressiveness is parametric
polymorphism so that methods can be parameterized over
the regions in which the data they access resides. A compu-
tation’s effect is the set of regions that may need to be live
while the computation is performed.

In lock-based data-race prevention, we can have these
primitives:8

new_lock() create a new lock
synchronized(lk){s} allow access to objects guarded

by lk in statements
new (lk) C() create new object guarded bylk

A type-and-effect system can ensure the objects guarded
by a lock are accessed only in the dynamic scope of an
appropriatesynchronized. As such, the only dynamic
checks are for “is this lock available” and occur on entry to
synchronized. The key to type soundness (no data races)
is using fresh type variables to ensure every lock has a type
distinct from every other lock. The key to expressiveness is

7 This description is similar to the primitives in many systems, but not
exactly like any of them.
8 See previous note.

parametric polymorphism so that methods can be parame-
terized over the locks guarding the data they access. A com-
putation’s effect is the set of locks that may need to be held
while the computation is performed.

6. Unsubstantiated Conjectures
So far, I have been careful to focus on the essence of the
technologies being compared, emphasizing that GC and TM
share a remarkably similar structure without jumping to the
incorrect conclusion that TM will make concurrent program-
ming as easy as sequential programming. While you might
quibble with some specific aspect of the analogy as pre-
sented, the sheer number of correspondences suggests there
is something fundamental between approaches to memory
management and concurrency.

Leaving the realm of thoughtful technological inquiry to
stretch the analogy further proves too irresistible. After all,
GC and TM have both been developed in the real world, with
all the engineering and social pressures that entails. Provided
we do not take the conclusions too seriously, we can try to
draw parallels at this “metalevel” as well. I will make three
claims about the development and success of GC and then
extrapolate to what it would mean for TM to follow a similar
arc.

Claim #1: GC did not need hardware support to succeed.

Hardware support for GC has certainly been considered
and built, and at least some believed GC would never be
fast enough to be accepted without it. But special-purpose
hardware has trouble supporting algorithmic advances in a
timely fashion; GC hardware just never kept up. Business
priorities may have been another, possibly primary, reason
GC hardware never predominated. Nonetheless, architec-
tural features (from the instruction set to the cache write-
back policy) still can have significant effects on the perfor-
mance of languages with GC [13, 7, 31].

TM can also benefit from hardware support, particularly
the ability to detect memory conflicts with technology at the
level of cache-coherence protocols. However, if the history
of GC is a guide, hardware does not need any specific notion
of a transaction for TM to succeed. Moreover, other archi-
tectural features may have a bigger effect on performance
than we currently realize.

Of course, hardware support for transactions, particularly
schemes for mixing software and hardware transactions [12,
34], are currently a more active area in the architecture
community than hardware GC ever was. So, turning the
analogy around, perhaps the time is ripe for a resurgence
of research into GC hardware.

Claim #2: GC took decades longer to reach mainstream
adoption than its initial developers expected.

The lag time between the basic research on GC and its
widespread popularity is a standard example of computer-
science research taking a nearly unbearable amount of time

to “pay off,” but still being well worth it in the end. While
it is possible the excitement around TM will help expedite
the process of widespread adoption — and in general tech-
nology adoption is accelerating — I think we should be pre-
pared for the TM lag time to be longer than anyone expects.
This in no way reduces the importance of TM research.

Claim #3: Mandatory GC is usually sufficient despite its
approximations.

As already described, GC essentially relies on the ap-
proximation that reachable objects may be live, and this ap-
proximation can make an arbitrary amount of memory live
arbitrarily longer. For programmers to avoid suffering from
this, unsafe languages can provide a “back-door” for explicit
memory deallocation and safe languages can provide fea-
tures like weak pointers. In practice, these features are some-
times necessary, but plenty of practical systems have been
built that rely exclusively on reachability for determining
liveness. Moreover, the exact definition of “what is reach-
able” — which in theory is necessary for reasoning about
program performance — is typically left unspecified and
compiler optimizations are allowed to subtly change reacha-
bility information.

I have argued the TM analogue of the reachability ap-
proximation is the memory-conflict approximation — as-
suming that two transactions accessing the same memory
(where at least one access is a write) cannot proceed in paral-
lel. The “back-door” for letting programmers avoid this ap-
proximation is open-nesting. The question then is whether
open-nesting is so important that it must be addressed as a
primary obstacle to developing transactional-memory imple-
mentations. The limitations of not having open-nesting and
the situations where it is the best solution may be few, just
as many programmers in garbage-collected languages never
bother with weak pointers. Moreover, the exact definition
of “what is a memory conflict” as well as related issues of
how conflicts are arbitrated (e.g., notions of fairness) may
not prove important for most programs.

7. Conclusion
A good analogy can provoke thought, provide perspective,
guide research, and promote an idea. An analogy need not
be valid science (i.e., a proof) nor a complete and total
correspondence. Rather, it can serve to describe concisely
(if imperfectly) one idea in terms of another better-known
idea. Humans often learn and understand via analogies, so
I believe a thought-provoking analogy can in and of itself
serve as a contribution toward our common research goals.

My intent has been to present how one can view trans-
actional memory from the perspective of garbage collec-
tion, which though perhaps surprising at first springs from
fundamental similarities between memory management and
synchronization. In so doing, I have made a case for trans-
actional memory that I personally find quite compelling,

which is why I continue to do research on the topic. To
restate it succinctly, by moving mutual-exclusion protocols
into the language implementation (any combination of com-
piler, run-time system, and hardware), we make it easier to
write and maintain shared-memory concurrent programs in
a more modular fashion. This argument is not the only one
that has been put forth in favor of transactional memory; it
is simply my personal opinion that it is the most important.

Equally important, this argument does not oversell trans-
actional memory: We still need better tools and method-
ologies to help programmers determine where transactions
should begin and end.9 Delimiting transactions is the essen-
tial difficulty of concurrent programming, and making trans-
actions a language primitive does not change this.

For me, the most important conclusion arising from the
analogy is that GC and TM rely on simple and usually-good-
enough approximations (namely, reachability and memory-
conflicts) that are subject to false-sharing problems. This fact
can inform how we teach programmers to use TM (and GC)
effectively and can guide research into reducing the approx-
imations. I can credit it with inspiring the not-accessed-in-
transaction analysis I developed recently [46] and I am hope-
ful it and other points in the analogy can inspire more ideas.

Indeed, the primary intended effect of this presentation is
to incite such thoughts in others, whether readers agree or—
more interestingly—disagree with the analogy. In particular:

• If you believe the GC/TM analogy is useful, can you use
it to advance our understanding of TM or GC? For exam-
ple, is there a TM analogue of generational collection?
This question is crucial if one ascribes to the interpre-
tation of history in which GC was less practical prior to
generational collection. More abstractly, is there a unified
theory of TM as beautiful is Bacon et al’s unified the-
ory of GC [5] in which tracing and automatic reference-
counting are algorithmic duals?

• If you believe the GC/TM analogy is flawed or deem-
phasizes some crucial aspect of TM, can you identify
why? I have essentially ignored issues of fairness and
contention management, which some may feel are essen-
tial aspects of TM. Does considering these issues funda-
mentally change what we should conclude?

• Are my conjectures about TM’s future based on GC’s
past—that hardware support is unnecessary, that TM will
take longer to reach the mainstream than we expect, and
that open-nesting is not always necessary—likely? Are
they preventable? Should we try to prevent them? If you
are in a position to direct TM’s future, can you seek
guidance from the history of GC?

9 This conclusion is not to discount classic and current work in this area, but
such a discussion is beyond the present scope.

Acknowledgments
Conversations with Emery Berger, Jim Larus, Jan Vitek,
members of the WASP group at the University of Washing-
ton, and many others led to some of the ideas presented here.

The author’s research on transactional memory has been
generously supported by Intel Corporation, Microsoft Cor-
poration, and the University of Washington Royalty Re-
search Fund.

References
[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for safe

locking: Static race detection for Java.ACM Transactions on
Programming Languages and Systems, 28(2), 2006.

[2] A.-R. Adl-Tabatabai, B. Lewis, V. Menon, B. R. Murphy,
B. Saha, and T. Shpeisman. Compiler and runtime support for
efficient software transactional memory. InACM Conference
on Programming Language Design and Implementation,
2006.

[3] E. Allen, D. Chase, J. Hallet, V. Luchangco, J.-W. Maessen,
S. Ryu, G. L. Steele Jr., and S. Tobin-Hochstadt. The
Fortress language specification, version 1.0β, Mar. 2007.
http://research.sun.com/projects/plrg/
Publications/fortress1.0beta.pdf.

[4] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson,
and S. Lie. Unbounded transactional memory. In11th
International Symposium on High-Performance Computer
Architecture, 2005.

[5] D. F. Bacon, P. Cheng, and V. T. Rajan. A unified theory of
garbage collection. InACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2004.

[6] G. Bellella, editor. The Real-Time Specification for Java.
Addison-Wesley, 2000.

[7] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and
realities: The performance impact of garbage collection. In
SIGMETRICS - Proceedings of the International Conference
on Measurements and Modeling of Computer Systems, 2004.

[8] C. Blundell, E. C. Lewis, and M. Martin. Subtleties
of transactional memory atomicity semantics.Computer
Architecture Letters, 5(2), 2006.

[9] B. D. Carlstrom, J. Chung, A. McDonald, H. Chafi,
C. Kozyrakis, and K. Olukotun. The Atomos transactional
programming language. InACM Conference on Program-
ming Language Design and Implementation, 2006.

[10] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An object-
oriented approach to non-uniform cluster computing. In
ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2005.

[11] Cray Inc. Chapel specification 0.4.
http://chapel.cs.washington.edu/specification.pdf.

[12] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and
D. Nussbaum. Hybrid transactional memory. InInternational
Conference on Architectural Support for Programming
Languages and Operating Systems, 2006.

[13] A. Diwan, D. Tarditi, and J. E. B. Moss. Memory system
performance of programs with intensive heap allocation.
ACM Transactions on Computer Systems, 13(3), 1995.

[14] R. Ennals. Software transactional memory should not
be lock free. Technical Report IRC-TR-06-052, In-
tel Research Cambridge, 2006. http://berkeley.intel-
research.net/rennals/pubs/052RobEnnals.pdf.

[15] C. Flanagan and S. Qadeer. A type and effect system for
atomicity. InACM Conference on Programming Language
Design and Implementation, 2003.

[16] D. Gay and A. Aiken. Language support for regions. In
ACM Conference on Programming Language Design and
Implementation, 2001.

[17] D. Grossman. Safe Programming at the C Level of
Abstraction. PhD thesis, Cornell University, 2003.

[18] D. Grossman. Type-safe multithreading in Cyclone. InACM
Workshop on Types in Language Design and Implementation,
2003.

[19] D. Grossman, J. Manson, and W. Pugh. What do high-level
memory models mean for transactions? InACM SIGPLAN
Workshop on Memory Systems Performance & Correctness,
2006.

[20] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and
J. Cheney. Region-based memory management in Cyclone.
In ACM Conference on Programming Language Design and
Implementation, 2002.

[21] N. Haines, D. Kindred, J. G. Morrisett, S. M. Nettles, and
J. M. Wing. Composing first-class transactions.ACM
Transactions on Programming Languages and Systems,
16(6), 1994.

[22] N. Hallenberg, M. Elsman, and M. Tofte. Combining region
inference and garbage collection. InACM Conference on
Programming Language Design and Implementation, 2002.

[23] L. Hammond, B. D. Carlstrom, V. Wong, B. Hertzberg,
M. Chen, C. Kozyrakis, and K. Olukotun. Programming
with transactional coherence and consistency (TCC). In
International Conference on Architectural Support for
Programming Languages and Operating Systems, 2004.

[24] T. Harris and K. Fraser. Language support for lightweight
transactions. InACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2003.

[25] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy. Composable
memory transactions. InACM Symposium on Principles and
Practice of Parallel Programming, 2005.

[26] T. Harris, S. Marlow, and S. Peyton Jones. Haskell on a
shared-memory multiprocessor. InProceedings of the 2005
ACM SIGPLAN Workshop on Haskell, 2005.

[27] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing
memory transactions. InACM Conference on Programming
Language Design and Implementation, 2006.

[28] M. Herlihy, V. Luchangco, and M. Moir. A flexible
framework for implementing software transactional memory.
In ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, 2006.

[29] M. Herlihy, V. Luchangco, M. Moir, and I. William
N. Scherer. Software transactional memory for dynamic-
sized data structures. InACM Symposium on Principles of
Distributed Computing, 2003.

[30] M. Herlihy and J. E. B. Moss. Transactional memory:
architectural support for lock-free data structures. In
International Symposium on Computer Architecture, 1993.

[31] M. Hertz and E. D. Berger. Quantifying the performance
of garbage collection vs. explicit memory management. In
ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2005.

[32] B. Hindman and D. Grossman. Atomicity via source-to-
source translation. InACM SIGPLAN Workshop on Memory
Systems Performance & Correctness, 2006.

[33] R. E. Jones.Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. Wiley, 1996.

[34] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen.
Hybrid transactional memory. InACM Symposium on
Principles and Practice of Parallel Programming, 2006.

[35] J. R. Larus and R. Rajwar.Transactional Memory. Morgan
& Claypool Publishers, 2006.

[36] J. Manson, J. Baker, A. Cunei, S. Jagannathan, M. Prochazka,
B. Xin, and J. Vitek. Preemptible atomic regions for real-time
Java. In26th IEEE Real-Time Systems Symposium, 2005.

[37] V. J. Marathe, W. N. Scherer, and M. L. Scott. Adaptive
software transactional memory. InInternational Symposium
on Distributed Computing, 2005.

[38] A. McDonald, J. Chung, B. D. Carlstrom, C. Cao Minh,
H. Chafi, C. Kozyrakis, and K. Olukotun. Architectural se-
mantics for practical transactional memory. InInternational
Symposium on Computer Architecture, 2006.

[39] M. M. Michael and M. L. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. In
ACM Symposium on Principles of Distributed Computing,
1996.

[40] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood. LogTM: Log-based transactional memory. In12th
International Symposium on High-Performance Computer
Architecture, 2006.

[41] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill,
B. Liblit, M. M. Swift, and D. A. Wood. Supporting nested
transactional memory in LogTM. In12th International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2006.

[42] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional
memory. In32nd International Symposium on Computer
Architecture, 2005.

[43] J. H. Reppy.Concurrent Programming in ML. Cambridge
University Press, 1999.

[44] M. F. Ringenburg and D. Grossman. AtomCaml: First-
class atomicity via rollback. In10th ACM International
Conference on Functional Programming, 2005.

[45] N. Shavit and D. Touitou. Software transactional memory.

Distributed Computing, Special Issue(10), 1997.

[46] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer,
D. Grossman, R. Hudson, K. Moore, and B. Saha. Enforcing
isolation and ordering in STM. InACM Conference on
Programming Language Design and Implementation, 2007.

[47] M. Tofte and J.-P. Talpin. Region-based memory manage-
ment. Information and Computation, 132(2), 1997.

[48] P. R. Wilson. Uniprocessor garbage collection techniques.
Technical report, University of Texas, 1994.

[49] K. Zee and M. Rinard. Write barrier removal by static anal-
ysis. InACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, 2002.

