
High-Level Small-Step Operational Semantics for Transactions

(Technical Companion)

Katherine F. Moore, Dan Grossman

July 15, 2007

Abstract

This document is the technical companion to our POPL’08 submission of the same name.

1 Navigational Guide

This document gives the full definitions and proofs for the AtomsFamily languages presented in our
POPL’08 submission. As explained in more detail in the rest of this introductory section:

• Each section presents a different language. Subsections are used consistently across subsections.
Figures at the end of the document summarize the languages’ differences.

• For historical reasons, the first language we present is StrongNestedParallel and most other languages
are defined in terms of differences from StrongNestedParallel. Most notably, Weak has the thread-
pools necessary for internal parallelism but the type system ensures they remain empty (whereas,
in our paper, these thread-pools are removed from the syntax and run-time state). StrongBasic was
created later for expository purposes and to simplify the equivalence proof for WeakUndo.

• For historical reasons, there are some syntactic differences, particularly the names we use for effects.

• Some theorems are stated more generally than in the paper and have different names. A table
below maps each theorem in the paper to the corresponding theorem in this document.

Despite these minor surface-level differences, this document contains complete proofs and definitions,
including the semantics for WeakOnCommit.

1.1 Organization and Overview

Organization: This document is organized by language, with each subsection following a parallel struc-
ture. Figure 1 provides a quick section and subsection guide for each language in the AtomsFamily. There
is a section for each language, and all sections have similar subsections to preserve parallel structure. For
a comprehensive overview of all the languages, refer to the languages-at-a-glance guide in Section 8.

Overview: In this document, we present a (relatively) comprehensive comparison of different lan-
guages for software transactions. We include an entire family of languages (affectionately dubbed the
AtomsFamily, because transactions are syntactically encapsulated in atomic blocks). We present 6 dif-
ferent languages, each of which has a slightly different set of transactional properties (e.g. internal
parallelism, weak or strong atomicity) and prove equivalence properties among the languages.

Section 2 introduces the first AtomsFamily language we defined, StrongNestedParallel. This language is
the starting point for subsequent sections. It models strong atomicity with internally parallel transactions.
Section 3 introduces a very similar model to StrongNestedParallel, called Weak. Weak has the same
syntax and a similar operational semantics to StrongNestedParallel, and in Section 3.7 we provide a proof
of language equivalence given a partition on the heap.

We have also extended the semantics of Weak to allow rollback (we call this language WeakUndo)
and have obtained a similar equivalence result. We also have a semantics for software transactions with

1

Language Name Section

StrongNestedParallel 2
Weak 3

StrongBasic 4
StrongUndo 5
WeakUndo 6

WeakOnCommit 7

Content Subsection Number

Syntax 1
Evaluation Rules 2
Type-Checking 3

Other Typing Rules 4
Activeness 5

Type Safety 6
Equivalence 7

Figure 1: AtomsFamily Guide

lazy update and a commit phase, WeakOnCommit. The final type system and equivalence result for
WeakOnCommit are future work.

In hindsight, StrongBasic is more of a “base language” than StrongNestedParallel, but for historical
reasons we defined StrongNestedParallel first and proved it equivalent to Weak (rather than defining a
weak-atomicity language without the vestiges of internal parallelism).

1.2 Syntax Differences between the TR and the POPL submission

1. ε: The effects used in this document are represented as 0, 2, and ∅. For clarity, we chose to use the
more meaningful names ot, wt, and emp, respectively, in our POPL submission.

2. e: Although most syntax differences are minor, a few notables ones should be listed here. The
expression syntax for spawn expressions used in this document has numerical subscripts 0, 1, and
2 for tl, oc, and ip, respectively. The operational semantics and typing rules have name changes
accordingly.

3. Weak has vestiges. For historical reasons, the Weak language has extra empty thread-pools in this
document. In our POPL’08 submission, the judgment form of Weak is like StrongBasic, (a; H ; e →
a′; H ′; e′; T). In this document, it looks like StrongNestedParallel, only we enforce that the final two
thread-pools are · using the type system (a; H ; e → a′; H ′; e′; T ; ·; ·).

4. In this document, all our operational rules are defined without evaluation contexts. In the POPL’08
submission, we used evaluation contexts to define many of the inductive rules concisely.

1.3 Result and Citation Reference

For the readers’ convenience, we have created a quick reference to facilitate easy navigation from theo-
rems and citations found in our POPL’08 paper to their corresponding material in this document.

POPL’08 Tech Report

Theorem 3.1 (StrongNestedParallel Type Safety) Section 2.6

Lemma 3.2 (StrongNestedParallel Progress) Theorem 2.1

Lemma 3.3 (StrongNestedParallel Preservation Theorem 2.3

Theorem 4.1 (StrongBasic/ Weak Equivalence) Section 3.7 / Theorem 3.9

Lemma 5.1 (WeakUndo/ StrongBasic Equivalence) Follows from Theorems 6.5 and 5.13

Lemma 5.2 (WeakUndo/ StrongUndo Equivalence) Theorem 6.5

Lemma 5.3 (StrongUndo/ StrongBasic Equivalence) Theorem 5.13

WeakOnCommit Section 7

Activeness judgment from Figure 7 Defined in each section; See in particular Section 2.5

2

2 The StrongNestedParallel language

The StrongNestedParallel language for software transactions models strong atomicity with internal par-
allelism inside transactions. We present semantics that require very few changes to model weak atomicity
in the Weak language.

2.1 Syntax

The following syntax is used as the starting point for every language in the AtomsFamily. We do not
distinguish source programs from run-time states in this document. (See our paper for the subset that
would correspond to source programs.)

We annotate ref-types with a t and have Γ map labels to a type and t. The type systems for
StrongNestedParallel (and StrongBasic) ignore these annotations. The type systems for each of our
weak languages use these annotations to partition the heap.

e ::= c | l | x | e1; e2 | e1 := e2 | ref e |!e | λx.e | e1 e2 | if e1 e2 e3

| spawn0 e | spawn1 e | spawn2 e | atomic e | inatomic(a, e, T1, T2)
v ::= c | l | λx.e

H ::= · | H, l 7→ v
T ::= · | T ‖ e
a ::= ◦ | •

τ ::= int | reftτ | τ
ε
→ τ ′

t ::= 0 | 2
ε ::= t | ∅
Γ ::= · | Γ, l : (τ, t) | Γ, x : τ

2.2 Dynamic Evaluation

2.2.1 Whole Program Evaluation

In this section, we present the evaluation rule under which a program in the StrongNestedParallel lan-
guage steps. Although the rule is slightly different for each member of the AtomsFamily, the form of the
judgment never changes.

a; H ;T → a′; H ′; T ′

program

a; H ; e → a′; H ′; e′; T0; T1; ·

a;H ; TA ‖ e ‖ TB → a′; H ′; TA ‖ e′ ‖ TB ‖ T0 ‖ T1

As a result, the initial and terminal configurations for programs in the AtomsFamily are always the
same: The initial configuration of a source program e has no partially completed transactions and an
empty heap. The terminal configuration for a program state contains no further computation (i.e.
all expressions are values) and requires that no expression can be executing in a transaction.

Initial Configuration: ◦; ·; e Terminal Configuration: ◦; H ; v

2.2.2 Expression Evaluation

In this section, we present the evaluation rules for the StrongNestedParallel language. Note that the
form of the evaluation judgment can create three new thread-pools.

3

a; H ; e → a′; H ′; e′; T0; T1; T2

seq-1

a;H ; e1 → a′; H ′; e′1; T0; T1; T2

a; H ; e1; e2 → a′; H ′; e′1; e2; T0; T1; T2

seq-v

a; H ; v; e2 → a; H ; e2; ·; ·; ·

if-1

a; H ; e1 → a′; H ′; e′1; T0; T1; T2

a; H ; if e1 e2 e3 → a′; H ′; if e′1 e2 e3; T0; T1; T2

if-z

a; H ; if 0 e2 e3 → a′; H ′; e3; ·; ·; ·

if-nz

c 6= 0

a; H ; if c e2 e3 → a′; H ′; e2; ·; ·; ·

set-1

a; H ; e1 → a′; H ′; e′1; T0; T1; T2

a; H ; e1 := e2 → a′; H ′; e′1 := e2; T0; T1; T2

set-2

a;H ; e2 → a′; H ′; e′2; T0; T1; T2

a; H ; l := e2 → a′; H ′; l := e′2; T0; T1; T2

strong-set

◦; H ; l := v → ◦; H, l 7→ v; v; ·; ·; ·

ref-1

a;H ; e → a′; H ′; e′; T0; T1; T2

a; H ; ref e → a′; H ′; ref e′; T0; T1; T2

alloc

l 6∈ Dom(H)

a;H ; ref v → a; H, l 7→ v; l; ·; ·; ·

get-1

a; H ; e → a′; H ′; e′; T0; T1; T2

a;H ; !e → a′; H ′; !e′; T0; T1; T2

strong-get

◦; H ; !l → ◦; H ; H(l); ·; ·; ·

app-1

a; H ; e1 → a′; H ′; e′1; T0; T1; T2

a; H ; e1 e2 → a′; H ′; e′1 e2; T0; T1; T2

app-2

a; H ; e2 → a′; H ′; e′2; T0; T1; T2

a; H ; v e2 → a′; H ′; v e′2; T0; T1; T2

beta

a; H ; (λx.e) v2 → a;H ; e[v2/x]; ·; ·; ·

spawn 0

a; H ; spawn0 e → a; H ; 0; e; ·; ·

spawn 1

a;H ; spawn1 e → a; H ; 0; ·; e; ·

spawn 2

a; H ; spawn2 e → a;H ; 0; ·; ·; e

enter atomic

◦; H ; atomic e → •; H ; inatomic(◦, e, ·, ·); ·; ·; ·

inatomic

a;H ; e → a′; H ′; e′; ·; T ′

1; T
′

2

•; H ; inatomic(a, e, T1, T2) → •; H ; inatomic(a′, e′, (T1 ‖ T ′

1), (T2 ‖ T ′

2)); ·; ·; ·

inatomic helper

a;H ; e → a′; H ′; e′; ·; T ′

1; T
′

2

•; H ; inatomic(a, e0, T1, (T2 ‖ e ‖ T ′′

2)) → •; H ; inatomic(a′, e0, (T1 ‖ T ′

1), (T2 ‖ e′ ‖ T ′′

2 ‖ T ′

2)); ·; ·; ·

exit atomic

•; H ; inatomic(◦, v, T1, v) → ◦; H ; v; ·; T1; ·

Strong atomicity is enforced by requiring that a = ◦ in order to access H . We facilitate internal par-
allelism by nesting the values of a inside transactions so that the parallel siblings can govern themselves.

2.3 Typecheck e

In this section, we give a type-and-effect system to type a single thread (or expression, e) under effect ε
in the StrongNestedParallel language. This type-and-effect system prohibits undesirable forms of spawn

in the wrong place (see the paper for an informal description).

4

Γ; ε ⊢ e : τ

t-const

Γ; ε ⊢ c : int

t-var

Γ; ε ⊢ x : Γ(x)

t-label

Γ(l) = (τ, t)

Γ; ε ⊢ l : reftτ

t-seq

Γ; ε ⊢ e1 : τ1 Γ; ε ⊢ e2 : τ2

Γ; ε ⊢ e1; e2 : τ2

t-if

Γ; ε ⊢ e1 : int Γ; ε ⊢ e2 : τ Γ; ε ⊢ e3 : τ

Γ; ε ⊢ if e1 e2 e3 : τ

t-set

Γ; ε ⊢ e1 : reftτ Γ; ε ⊢ e2 : τ

Γ; ε ⊢ e1 := e2 : τ

t-ref

Γ; ε ⊢ e : τ

Γ; ε ⊢ ref e : reftτ

t-get

Γ; ε ⊢ e : reftτ

Γ; ε ⊢ !e : τ

t-lambda

Γ, x : τ1; ε
′ ⊢ e : τ2 not-active(e)

Γ; ε ⊢ λx.e : τ1

ε′

→ τ2

t-app

Γ; ε ⊢ e1 : τ1

ε′

→ τ2 Γ; ε ⊢ e2 : τ1 ε′ ≤ ε

Γ; ε ⊢ e1 e2 : τ2

t-spawn-0

Γ; 0 ⊢ e : τ

Γ; 0 ⊢ spawn0 e : int

t-spawn-1

Γ; 0 ⊢ e : τ

Γ; ε ⊢ spawn1 e : int

t-spawn-2

Γ; 2 ⊢ e : τ

Γ; 2 ⊢ spawn2 e : int

t-atomic

Γ; 2 ⊢ e : τ

Γ; ε ⊢ atomic e : τ

t-inatomic

Γ; 2 ⊢ e : τ Γ; 0 ⊢ T1 Γ; 2 ⊢ T2 not-active(T1) correct-atomic(a, e ‖ T2)

Γ; ε ⊢ inatomic(a, e, T1, T2) : τ

2.4 Other Typing Rules

Here, we present rules to type-check ε, T , H , and the program state (a; H ;T).

ε ≤ ε′

ε ≤ ε ∅ ≤ ε

Γ; ε ⊢ T

Γ; ε ⊢ ·

Γ; ε ⊢ T Γ; ε ⊢ e : τ

Γ; ε ⊢ T ‖ e

Γ ⊢ H : Γ′

Γ ⊢ · : ·

Γ ⊢ H : Γ′ Γ; ε ⊢ v : τ

Γ ⊢ H, l 7→ v : Γ′, l : (τ, t)

⊢ a; H ;T

top-level

Γ ⊢ H : Γ Γ; 0 ⊢ T correct-atomic(a, T)

⊢ a;H ; T

5

2.5 Activeness

To determine if a program state is valid, we must be able to decide if the value of a corresponds appro-
priately to the number of threads currently executing in a transaction. The following definitions are used
to determine when this is the case.

2.5.1 Not-Active(e)

If not-active(e) then e is not currently executing a transaction and is has no subexpression containing a
partially completed transaction.

not-active(e)

not-active(c) not-active(l) not-active(x)

not-active(e1) not-active(e2)

not-active(e1; e2)

not-active(e1) not-active(e2) not-active(e3)

not-active(if e1 e2 e3)

not-active(e1) not-active(e2)

not-active(e1 := e2)

not-active(e)

not-active(!e)

not-active(e)

not-active(ref e)

not-active(e1)

not-active(λx.e1)

not-active(e1) not-active(e2)

not-active(e1 e2)

not-active(e)

not-active(spawn0 e)

not-active(e)

not-active(spawn1 e)

not-active(e)

not-active(spawn2 e)

not-active(e)

not-active(atomic e)

2.5.2 Active(e)

If active(e) then e is currently executing a transaction and is well-formed in the sense that other than a
single topmost partially completed transaction, it obeys the same structural sensibility of the definition
of not-active(e).

active(e)

active(inatomic(a, e, T1, T2))

active(e1) not-active(e2)

active(e1; e2)

active(e1) not-active(e2) not-active(e3)

active(if e1 e2 e3)

active(e1) not-active(e2)

active(e1 := e2)

active(e2)

active(l := e2)

active(e)

active(ref e)

active(e)

active(!e)

active(e1) not-active(e2)

active(e1 e2)

active(e2)

active(v e2)

2.5.3 Correct Atomic State of T

not-active(T) and active(T) lift not-active(e) and active(e) to thread-pools in the natural way. correct-atomic(a, T)
ensures that a correctly describes whether or not some thread in T is currently executing a transaction.

not-active(T)

not-active(·)

not-active(T1) not-active(e) not-active(T2)

not-active(T1 ‖ e ‖ T2)

active(T)

not-active(T1) active(e) not-active(T2)

active(T1 ‖ e ‖ T2)

6

correct-atomic(a, T)

not-active(T)

correct-atomic(◦, T)

active(T)

correct-atomic(•, T)

2.6 Type Safety

Theorem 2.1 (Top Level Progress) If ⊢ a; H ; T , then either ∃v such that T = v or ∃a′; H ′, T ′ such
that a; H ; T → a′; H ′; T ′

Proof There is only one typing rule for program states, top-level. Using this rule, correct-atomic(a, T)
is true by inversion, and the language definition provides two possible values for a:

1. If a = ◦ then the definition of correct-atomic provides not-active(T). By inversion, every ei ∈ T is
not-active. Either every ei is a value, or there is at least one ei that is not a value. If every ei ∈ T
is a value, then T = v. If there is at least one ei ∈ T that is not a value then the lemma for single
thread progress states that ei must be able to step under a = ◦ when not-active(ei). This provides
a step for T using the rule program.

2. If a = • then the definition of correct-atomic provides active(T). By inversion, there is exactly 1
e0 ∈ T such that active(e0). Single thread progress states that when a = • and active(e0), e0 can
step. This provides a step for T using the rule program.

Lemma 2.2 (Single Thread Progress) If Γ ⊢ H : Γ, then each of the following must be true:

1. If Γ; ε ⊢ e : τ , and active(e) then ∃e′, a′, H ′, T0, T1, T2 such that •; H ; e → a′; H ′; e′; T0; T1; T2.

2. If Γ; ε ⊢ e : τ , and not-active(e) then e is a value or ∃e′, a′, H ′, T0, T1, T2 such that ◦; H ; e →
a′; H ′; e′; T0; T1; T2.

3. If Γ; ε ⊢ T and correct-atomic(a, T) then T is some TA ‖ e ‖ TB such that a; H ; e → a′; H ′; e′; T0; T1; T2

or T is all values.

Proof By mutual induction on the typing derivation of e or T : This proof is organized by cases on the
final rule of the derivation, with part 1 handling the case where active(e) and part 2 handling the case
where not-active(e). A proof of part 3 is after proofs of parts 1 and 2.

• t-const e = c

1. There is no way to derive active(c). This case is vacuously true.

2. e is a value, so this is trivial.

• t-var e = x. In this case, even though Γ ⊢ H : Γ, x 6∈ dom(Γ) by the Variables not in Γ lemma.
As a result, x cannot type check, and thus this case is vacuous.

• t-label e = l

1. There is no way to derive active(l). This case is vacuously true.

2. e is a value, so this is trivial.

• t-lambda e = λx.e1

1. There is no way to derive active(e). This case is vacuously true.

2. e is a value, so this is trivial.

• t-seq e = e1; e2

1. There is only one way to derive active(e). By inversion, active(e) implies active(e1) and
not-active(e2). This can only happen when e1 is not a value. By induction, e1 can step
under • and evaluation rule seq-1 provides a valid step for e.

2. The only way to derive not-active(e) is when not-active(e1) and not-active(e2). There are two
possibilities:

(a) e1 is not a value. By induction, e1 can step, so by the rule seq-1, e can also step.

(b) e1 is a value. The rule seq-v provides a valid step for e.

7

• t-if e = if e1 e2 e3

1. There is only one way to derive active(e). By inversion, active(e) implies active(e1), not-active(e2),
and not-active(e3). This can only happen when e1 is not a value. By induction, e1 can step
under • and the evaluation rule if-1 provides a valid step for e.

2. The only way to derive not-active(e) is when not-active(e1), not-active(e2) and not-active(e3).
There are two possibilities:

(a) e1 is not a value. By induction, e1 can step, so by the rule if-1, e can also step.

(b) e1 is a value. Using the canonical forms lemma tells us that e1 must be some c, and
depending on the value of c, the rules if-z and if-nz provide two possible steps for e.

• t-set e = e1 := e2.

1. There are two ways to derive active(e):

(a) e1 is not a value and active(e1) and not-active(e2). By induction, e1 can step. By applying
the evaluation rule set-1, e can also step.

(b) e1 is some l and e2 is not a value, and active(e2). By induction, e2 can step. By applying
the evaluation rule set-2, e can also step.

2. By inversion, not-active(e) implies not-active(e1) and not-active(e2). There are three cases to
consider:

(a) e1 is not a value. By induction, e1 can step. By applying the evaluation rule set-1, e can
also step.

(b) e1 is some l and e2 is not a value. By induction, e2 can step. By applying the evaluation
rule set-2, e can also step.

(c) e1 is some l and e2 is some v. We need a step for e from ◦; H ; e which is provided by the
evaluation rule strong-set.

• t-ref e = ref e1

1. There is only one way to derive active(e). By inversion, active(e) implies active(e1). This can
only happen when e1 is not a value. By induction, e1 can step under • and the evaluation rule
ref-1 can be used to derive a step for e.

2. By inversion, not-active(e) implies not-active(e1). There are two sub-cases:

(a) e1 is not a value. By induction, e1 can step so rule ref-1 provides a step for e.

(b) e1 is some v. In this case, alloc provides a way for e to step.

• t-get e =!e1

1. There is only one way to derive active(e). By inversion, active(e) implies active(e1). This can
only happen when e1 is not a value. By induction, e1 can step under • so rule get-1 provides
a step for e.

2. By inversion, not-active(e) implies not-active(e1). There are two sub-cases:

(a) e1 is not a value. By induction, e1 can step so rule get-1 provides a step for e.

(b) e1 is some l. We need a step for e from ◦; H ; e which is provided by the evaluation rule
strong-get.

• t-app e = e1 e2

1. There are two ways to derive active(e).

– e1 is not a value and active(e1). By induction, e1 can step, and the rule app-1 provides a
step for e.

– e1 is some v and active(e2). By induction, e2 can step, and the rule app-2 provides a step
for e.

2. By inversion, not-active(e) implies not-active(e1) and not-active(e2). There are three sub-cases:

– e1 is not a value. By induction, e1 can step, and the rule app-1 provides a step for e.

– e1 is some v and e2 is not a value. By induction, e2 can step, and the rule app-2 provides
a step for e.

8

– e1 is some v and e2 is some v′. By inversion, Γ; ε ⊢ e1 : τ1

ε′

→ τ2, and the canonical forms
lemma states that e1 must be some λx.e3. The evaluation rule beta provides a step for e.

• t-spawn-0 e = spawn0 e1.

1. This case is vacuous because there is no way to derive active(e).

2. The evaluation rule spawn 0 provides a valid step for e.

• t-spawn-1 e = spawn1 e1.

1. This case is vacuous because there is no way to derive active(e).

2. The evaluation rule spawn 1 provides a valid step for e.

• t-spawn-2 e = spawn2 e1.

1. This case is vacuous because there is no way to derive active(e).

2. The evaluation rule spawn 2 provides a valid step for e.

• t-atomic e = atomic e1.

1. This case is vacuous because there is no way to derive active(e).

2. The rule enter atomic applies, giving ◦; H ; atomic e1 → •; H ; inatomic(◦, e1, ·, ·); ·; ·; · as a
valid step for e.

• t-inatomic e = inatomic(a′′, e1, T
′

1, T
′

2)

1. Inversion on the typing rule implies correct-atomic(a′′, e1 ‖ T ′

2) and that e1 and T ′

2 type check
under ε = 2. There are three sub-cases to consider:

(a) If a′′ = • and e1 is not a value or T ′

2 contains at least one expression that is not a value,
part 3 of this lemma states that there must be a step for some e0 ∈ e1 ‖ T ′

2. Depending
on the location of e0, there are two sub-cases.

i. It is e1 that actually takes the step via inatomic. In this case, because Γ; 2 ⊢ e1 : τ it
must be that ε 6= 0, which by the effects lemma enforces that T0 = ·. Thus the entire
inatomic expression can step.

ii. It is some e0 ∈ T ′

2 that actually takes the step via inatomic helper. In this case,
because Γ; 2 ⊢ T2 it must be that ε 6= 0, which by the effects lemma enforces that
T0 = ·. Thus the entire inatomic expression can step.

(b) a′′ = ◦ and there is some non-value e0 in (e1 ‖ T ′

2). This case is similar to the cases when
a′′ = •.

(c) a′′ = ◦ and e′ is some v and T ′

2 = v. It is sufficient to find a step for e when a = •. The
evaluation rule exit atomic provides a valid step.

2. This case is vacuous because there is no way to derive not-active(e).

• Part 3 of this lemma is stated again here, with the proof following. If Γ; ε ⊢ T and Γ ⊢ H : Γ and
correct-atomic(a, T) then T is some TA ‖ e ‖ TB such that a; H ; e → a; H ; e′; T0; T1; T2 or T is all
values. There are two cases to consider:

– If a = •, then by inversion on correct-atomic(•, T) it must be that active(T). By inversion on
active(T), T = TA ‖ e ‖ TB with active(e) and not-active(TA) and not-active(TB). By part 1
of this lemma, there is some a′, H ′, e′, T0, T1, T2 such that •; H ; e → a′; H ′; e′; T0; T1; T2.

– If a = ◦, then by inversion on correct-atomic(◦, T) it must be that not-active(T). By inversion
on not-active(T), T = TA ‖ e ‖ TB where not-active(e), not-active(TB) and not-active(TB).
By part 2 of this lemma, either e is some v or there is some a′, H ′, e′, T0, T1, T2 such that
◦; H ; e → a′; H ′; e′; T0; T1; T2. If every such e is a value and thus cannot step, then T is all
values.

Theorem 2.3 (Top Level Preservation) If Γ ⊢ H : Γ and Γ; 0 ⊢ T and correct-atomic(a, T) and
a;H ; T → a′; H ′; T ′, then there exists some Γ′ extending Γ such that:

1. Γ′; 0 ⊢ T ′

2. Γ′ ⊢ H ′ : Γ′

3. correct-atomic(a′, T ′)

9

Proof In this case, there is also only one evaluation rule; program, which gives a; H ; TA ‖ ei ‖ TB →
a′; H ′; TA ‖ e′i ‖ TB ‖ T0 ‖ T1. Γ′ is obtained via Lemma 2.4.

1. T ′ = TA ‖ e′i ‖ TB ‖ T0 ‖ T1. By inversion it must be the case that Γ; 0 ⊢ TA ‖ TB. The weakening
lemma gives Γ′; 0 ⊢ TA ‖ TB. By the single threaded preservation lemma, it is also the case that
Γ′; 0 ⊢ e′i ‖ T0 ‖ T1. Thus, Γ′; 0 ⊢ T ′.

2. Γ′ ⊢ H ′ : Γ′ by Lemma 2.4.

3. By assumption, correct-atomic(a, T). Also, Lemma 2.4 provides not-active(T0 ‖ T1). There are
several possibilities for a and T before evaluating ei one step.

• a = ◦ implies that not-active(ei ‖ TA ‖ TB). If a′ = • then by single thread preservation
it must be that active(e′i). If a′ = ◦ then by single thread preservation it must be that
not-active(e′i ‖ T0 ‖ T1). Thus, correct-atomic(a′, T ′).

• a = • and active(ei) which means not-active(TA ‖ TB). If a′ = • then by single thread
preservation it must be that active(e′i). If a′ = ◦ then by single thread preservation it must be
that not-active(e′i). Thus, correct-atomic(a′, T ′).

• a = • and not-active(ei) which means active(TA) or active(TB). Since the cases for TA and
TB are symmetric, assume active(TA) and not-active(TB). Since TA did not change during
the step, by Lemma 2.4 a′ = • and active(TA) and not-active(TB). Single thread preservation
gives that not-active(e′i). Thus, correct-atomic(a′, T ′).

Lemma 2.4 (Single Thread Preservation) If a; H ; e → a′; H ′; e′; T0; T1; T2 and Γ; ε ⊢ e : τ and
Γ ⊢ H : Γ and one of the following:

1. a = ◦ and not-active(e)

2. a = • and not-active(e)

3. a = • and active(e)

then ∃Γ′ extending Γ such that:

1. Γ′; ε ⊢ e′ : τ

2. Γ′ ⊢ H ′ : Γ′

3. not-active(T0 ‖ T1 ‖ T2)

4. Γ′; 0 ⊢ T0 and
Γ′; 0 ⊢ T1 and
Γ′; 2 ⊢ T2

5. All the following (though exactly one is not vacuous):

• If a = a′ and active(e) then active(e′)

• If a = a′ and not-active(e) then not-active(e′)

• If a = ◦ and a′ = • then not-active(e) and active(e′)

• If a = • and a′ = ◦ then active(e) and not-active(e′)

Proof by induction on the typing derivation of e by cases on the final rule used in the derivation.

• t-var e = x. There are no evaluation rules for x, and thus e cannot step. This case is vacuously
true.

• t-const e = c. e is a value, and thus cannot step. This case is vacuously true.

• t-label e = l. e is a value, and thus cannot step. This case is vacuously true.

• t-lambda e = λx.e1. e is a value, and thus cannot step. This case is vacuously true.

• t-seq e = e1; e2. There are two possible steps from e to e′.

– Under seq-1 e′ = e′1; e2.

1. By induction, it must be that if Γ; ε ⊢ e1 : τ1 then Γ′; ε ⊢ e′1 : τ1. The type for e′ is
preserved under t-seq because Γ′; ε ⊢ e′1 : τ1 by induction, and the weakening lemma
states that Γ; ε ⊢ e2 : τ implies Γ′; ε ⊢ e2 : τ2 so Γ′; ε ⊢ e′ : τ2.

10

2. Γ′ ⊢ H ′ : Γ′ by induction.

3. not-active(T0 ‖ T1 ‖ T2) by induction.

4. Γ′; 0 ⊢ T0, and Γ′; 0 ⊢ T1, and Γ′; 2 ⊢ T2 by induction.

5. ∗ If a = a′ and active(e) then by inversion active(e1) and not-active(e2). By induction,
active(e1) implies active(e′1). From active(e′1) and not-active(e2) it is clear that active(e).

∗ If a = a′ and not-active(e) then by inversion not-active(e1) and not-active(e2). By
induction when a = a′ and not-active(e1), then not-active(e′1) From not-active(e′1) and
not-active(e2) it is clear that not-active(e′).

∗ If a = ◦ and a′ = • then by induction not-active(e1) and active(e′1). By assumption,
a = ◦ implies not-active(e). By inversion, not-active(e) gives not-active(e2). It is
possible to derive active(e′) from active(e′1) and not-active(e2).

∗ If a = • and a′ = ◦ then by induction active(e1) and not-active(e′1). By assumption,
a = • implies either active(e) or not-active(e). However, given active(e1), there is no
way to derive not-active(e) so this case is vacuous. It must be that active(e). Inversion
on the derivation of active(e) gives not-active(e2). It is possible to derive not-active(e′)
from not-active(e′1) and not-active(e2).

– Under seq-v when e1 is some v and e′ = e2. The seq-v rule produces the following thread-pools
and heap: T0 = T1 = T2 = ·, and H ′ = H .

1. Since Γ; ε ⊢ e : τ2 is given, inverting the typing rule gives Γ; ε ⊢ e2 : τ2. Because Γ′ = Γ, it
must also be that Γ′; ε ⊢ e2 : τ2 and thus Γ′; ε ⊢ e′ : τ2.

2. This rule doesn’t change Γ or the heap, so Γ′ = Γ and H ′ = H . By assumption, Γ ⊢ H : Γ
and thus Γ′ ⊢ H ′ : Γ′.

3. not-active(· ‖ · ‖ ·)

4. Γ′; ε ⊢ · for any ε.

5. a = a′ It is sufficient to show that not-active(e) implies not-active(e′) and active(e) implies
active(e′). Assuming not-active(e), gives not-active(e2) by inversion. Since e′ = e2, it must
be that not-active(e′). The case for active(e) is vacuous because there is no way to derive
active(v; e2).

• t-if e = if e1 e2 e3. There are three possible steps from e to e′.

– Under if-1 e′ = if e′1 e2 e3.

1. By induction, it must be that if Γ; ε ⊢ e1 : int then Γ′; ε ⊢ e′1 : τ1. The type for e′ is
preserved under t-if because Γ′; ε ⊢ e′1 : int by induction, and the weakening lemma states
that Γ; ε ⊢ e2 : τ implies Γ′; ε ⊢ e2 : τ and Γ; ε ⊢ e3 : τ implies Γ′; ε ⊢ e3 : τ so Γ′; ε ⊢ e′ : τ2.

2. Γ′ ⊢ H ′ : Γ′ by induction.

3. not-active(T0 ‖ T1 ‖ T2) by induction.

4. Γ′; 0 ⊢ T0, and Γ′; 0 ⊢ T1, and Γ′; 2 ⊢ T2 by induction.

5. ∗ If a = a′ and active(e) then by inversion active(e1), not-active(e2), and not-active(e3).
By induction, active(e1) implies active(e′1). From active(e′1), not-active(e2), and not-active(e3).
it is clear that active(e).

∗ If a = a′ and not-active(e) then by inversion not-active(e1), not-active(e2), and not-active(e3).
By induction when a = a′ and not-active(e1), then not-active(e′1) From not-active(e′1),
not-active(e2), and not-active(e3) it is clear that not-active(e′).

∗ If a = ◦ and a′ = • then by induction not-active(e1) and active(e′1). By assump-
tion, a = ◦ implies not-active(e). By inversion, not-active(e) gives not-active(e2) and
not-active(e3). It is possible to derive active(e′) from active(e′1), not-active(e2), and
not-active(e3).

∗ If a = • and a′ = ◦ then by induction active(e1) and not-active(e′1). By assumption,
a = • implies either active(e) or not-active(e). However, given active(e1), there is no
way to derive not-active(e) so this case is vacuous. It must be that active(e). Inversion
on the derivation of active(e) gives not-active(e2) and not-active(e3). It is possible to
derive not-active(e′) from not-active(e′1), not-active(e2), and not-active(e3).

11

– Under if-z when e1 = 0 and e′ = e3. The if-z rule produces the following thread-pools and
heap: T0 = T1 = T2 = ·, and H ′ = H .

1. Since Γ; ε ⊢ e : τ is given, inverting the typing rule gives Γ; ε ⊢ e3 : τ . Because Γ′ = Γ, it
must also be that Γ′; ε ⊢ e3 : τ and thus Γ′; ε ⊢ e′ : τ3.

2. This rule doesn’t change Γ or the heap, so Γ′ = Γ and H ′ = H . By assumption, Γ ⊢ H : Γ
and thus Γ′ ⊢ H ′ : Γ′.

3. not-active(· ‖ · ‖ ·)

4. Γ′; ε ⊢ · for any ε.

5. a = a′ It is sufficient to show that not-active(e) implies not-active(e′) and active(e) implies
active(e′). Assuming not-active(e), gives not-active(e3) by inversion. Since e′ = e3, it must
be that not-active(e′). The case for active(e) is vacuous because there is no way to derive
active(0).

– Under if-nz when e1 = c and e′ = e2. This case is identical to the prior one.

• t-set e = e1 := e2. There are three ways e could have become e′.

– Under set-1 when e1 steps to e′1, then e′ = e′1 := e2. The proof of this case resembles that for
seq-1.

– Under set-2 when e1 is some l and e2 steps to e′2, then e′ = l := e′2. The proof of this case
resembles that for seq-1.

– Under strong-set e = l := v and e′ = v, and T0 = T1 = T2 = ·. Pick Γ′ = Γ.

1. Inversion on the typing rule gives Γ; ε ⊢ l : reftτ and Γ; ε ⊢ v : τ . Since Γ′ = Γ, it must be
that Γ′; ε ⊢ l : reftτ and Γ′; ε ⊢ v : τ . Since e′ = v, Γ′; ε ⊢ e′ : τ .

2. Since H ′ = H [l 7→ v], then H ′(l) = v. By choosing Γ′ = Γ, Γ′; ε ⊢ v : τ and Γ′(l) = reftτ .
Thus, Γ′ ⊢ H ′ : Γ′.

3. not-active(· ‖ · ‖ ·)

4. Γ; ε ⊢ · is true for any ε.

5. Because e stepped under strong-set, a = a′ = ◦, and not-active(e) is derived from
not-active(l) and not-active(v). Since e′ = v, we know not-active(e′). There is no way to
derive active(e), so that case is vacuous.

• t-ref If e = ref e0 There are two evaluation rules that could have taken e to e′.

– Under ref-1, e0 steps to e′0 giving e′ = ref e′0. This case is similar to the seq-1 case.

– Under alloc, e0 is some v and e′ is some l. Pick Γ′ = Γ, l 7→ reftτ (the choice of t is irrelevant
for this language).

1. Inversion on the typing rule gives Γ; ε ⊢ e : reftτ and Γ; ε ⊢ v : τ . Since Γ′ = Γ, l : reftτ , it
must be that Γ′; ε ⊢ l : reftτ and Γ′; ε ⊢ v : τ . Since e′ = v, we get Γ′; ε ⊢ e′ : τ .

2. By assumption, Γ ⊢ H : Γ. By the weakening lemma, Γ′ ⊢ H : Γ′. However, H ′ = H, l 7→ v
since Γ′(l) = reftτ when H ′(l) = v, and Γ; ε ⊢ v : τ then Γ′ ⊢ H ′ : Γ′.

3. not-active(· ‖ · ‖ ·)

4. Γ; ε ⊢ · is true for any ε.

5. Because e stepped under alloc, a = a′ If a = a′, and not-active(e), then it is sufficient to
show not-active(e’). In this case, not-active(l) can be derived with no assumptions. There
is no way to derive active(e), so that case is vacuous.

• t-app e = e1 e2 There are three evaluation rules that could take e to e′.

– Under app-1, e1 steps to e′1 giving e′ = e′1 e2. This case is similar to the seq-1 case.

– Under app-2, e1 is some v and e2 steps to e′2 giving e′ = v e′2. This case is similar to the seq-1

case.

– Under beta, e1 is some λx.e3 and e2 is some v. In this case, e′ = e3[v/x], T0 = T1 = T2 = ·
and Γ′ = Γ.

1. The Substitution Lemma gives Γ′; ε′ ⊢ e3[v/x] : τ . Since ε′ ≤ ε, the Weakening Lemma
gives Γ′; ε ⊢ e3[v/x] : τ .

2. Here, H ′ = H , and Γ ⊢ H : Γ, so Γ′ ⊢ H ′ : Γ′.

12

3. not-active(· ‖ · ‖ ·)

4. Γ; ε ⊢ · is true for any ε.

5. In this case, a = a′. Because there is no way to derive active(e), that case is vacuous.
Thus, it is sufficient to show that not-active(e) gives not-active(e′). By inversion on the
rule used to derive not-active(λx.e3), it must be that not-active(e3). The Substitution
Lemma gives that not-active(e3[v/x]), thus not-active(e′).

• t-get e =!e0 There are two evaluation rules that could take e to e′.

– Under get-1, e0 steps to e′0 giving e′ =!e′0. This case is similar to the seq-1 case.

– Under strong-get e =!l and e′ = v. This case is similar to the strong-set case.

• t-spawn-0 e = spawn0 e0. Thus, Γ; ε ⊢ e : int. There is only one evaluation rule for spawn0 e0,
spawn 0. After e steps to e′ using this rule, e′ = 0, Γ′ = Γ, H ′ = H , T0 = e0, and T1 = T2 = ·.

1. t-const provides Γ′; ε ⊢ 0 : int.

2. Γ′ = Γ and H ′ = H , and by assumption, Γ ⊢ H : Γ. Thus Γ′ ⊢ H ′ : Γ′.

3. By assumption, active(e) or not-active(e). There is no way to derive active(e) for spawn
expressions, so it must be that not-active(e) and thus not-active(e0). Also, T0 = e0 and
T1 = T2 = ·, so not-active(T0 ‖ · ‖ ·).

4. By inversion on the typing rule t-spawn-0, it is also the case that Γ; 0 ⊢ e0 : τ . Because
T0 = e0, it must be that Γ′; 0 ⊢ T0. Since Γ′; ε ⊢ · is true for any ε we know that T1 and T2

type-check under the required effect.

5. The spawn 0 rule enforces that a = a′. If not-active(e) then it must be shown that not-active(e′).
Since not-active(0) requires no assumption and e′ = 0, this is trivial. The case for active(e) is
vacuous because there is no way to derive active(spawn0 e0).

• t-spawn-1 e = spawn1 e1. This case is similar to that for t-spawn-0.

• t-spawn-2 e = spawn2 e0. This case is similar to that for t-spawn-0.

• t-atomic e = atomic e0. If e steps, it must be via the evaluation rule enter atomic, giving
e′ = inatomic(a′′, e0, ·, ·), and H ′ = H , where Γ′ = Γ. Also, T0 = T1 = T2 = ·.

1. Γ; ε ⊢ e0 : τ is true by inversion on the typing rule, and Γ′; ε ⊢ e0 : τ since Γ′ = Γ.

2. H is unchanged, so Γ′ ⊢ H : Γ′ because Γ′ = Γ.

3. not-active(· ‖ · ‖ ·)

4. Γ′; ε ⊢ · for any ε.

5. Here, a = ◦ and a′ = •. The correct atomicity is preserved because we assume not-active(e)
when a = ◦, and similarly active(e′) requires no assumptions.

• t-inatomic e = inatomic(a′′, e0, T
′

1, T
′

2) with correct-atomic(a′′, e0 ‖ T ′

2). In this case, there are
three possible steps from e to e′:

– Under inatomic, the distinguished expression e0 steps:
a′′; H ; e0 → a′′′; H ′; e′0; ·; T

′′

1 ; T ′′

2 so e′ = inatomic(a′′′, e′0, (T
′

1 ‖ T ′′

1), (T ′

2 ‖ T ′′

2)). T0 = T1 =
T2 = · and Γ′ and H ′ are obtained through induction.

1. Γ′; 2 ⊢ e′0 : τ by induction. Also by induction, Γ′; 2 ⊢ T ′′

2 . By inversion and the weak-
ening lemma, Γ′; 2 ⊢ T ′

2 Thus Γ′; 2 ⊢ T ′

2 ‖ T ′′

2 . not-active(T ′′

1) is given by induction, and
not-active(T ′

1) by inversion on the typing rule, so not-active(T ′

1 ‖ T1). Similarly Γ′; 0 ⊢ T ′′

1

by induction and Γ′; 0 ⊢ T ′

1 by inversion and the weakening lemma, giving Γ′; 0 ⊢ T ′

1 ‖ T ′′

1

All that is still needed that correct-atomic(a′′′, e′0 ‖ T ′

2 ‖ T ′′

2). Inversion on the typing rule
gives correct-atomic(a′′, e0 ‖ T ′

2). Also, not-active(T ′′

2) by induction. By the assumptions
about a and active or not-active, there are three sub-cases:

(a) If a′′ = ◦ then by inversion on the derivation of correct-atomic(◦, e0 ‖ T ′

2), it must be
that not-active(e0) and not-active(T ′

2). After the step, it must be that either a′′′◦ and
not-active(e′0) or a′′′ = • and active(e′0). Either is true by induction. Since T ′

2 has not
changed, it must be that correct-atomic(a′′′, e0 ‖ T ′

2), and thus correct-atomic(a′′′, e0 ‖
T ′

2 ‖ T ′′

2).

13

(b) If a′′ = • then by inversion on the derivation of correct-atomic(◦, e0 ‖ T ′

2), either
active(e0) or active(T ′

2). In this case, assume active(T2) and not-active(e0). After e0

steps, it must be that a′′′ = • and not-active(e′0). Thus, correct-atomic(a′′′, e0 ‖ T ′

2),
and correct-atomic(a′′′, e0 ‖ T ′

2 ‖ T ′′′

2).

(c) If a′′ = • then by inversion on the derivation of correct-atomic(◦, e0 ‖ T ′

2), it must be
that either active(e0) or active(T ′

2). In this case, assume not-active(T2) and active(e0).
After e0 steps, a′′′ = • and active(e′0) or a′′′ = ◦ and not-active(e′0) by induction. Thus,
correct-atomic(a′′′, e0 ‖ T ′

2), and correct-atomic(a′′′, e0 ‖ T ′

2 ‖ T ′′

2).

As a result, it must be that correct-atomic(a′′′, e0 ‖ T ′

2 ‖ T ′′

2). From this it can be derived
that Γ′; ε ⊢ e′ : τ

2. Γ′ ⊢ H ′ : Γ′ by induction.

3. not-active(· ‖ · ‖ ·)

4. Γ′; ε ⊢ · for any ε.

5. Here, a = a′. The case where not-active(e) is vacuous because there is no way to derive
not-active(e). Showing that active(e) implies active(e′) is trivial because active(e′) requires
no assumptions.

– Under inatomic helper, T ′

2 = T ′′

2 ‖ e1 ‖ T ′′′

2 and a′′; H ; e1 → a′′′; H ′; e′1; ·; T1; T2 so e′ =
inatomic(a′′′, e0, T

′

1, (T2 ‖ T ′′

2 ‖ e1 ‖ T ′′′

2)). This case is similar to that when e steps under
inatomic.

– Under exit atomic, a′′ = ◦, e0 = v, and T2 = v. As a result, a; H ; e → ◦; H ; v; ·; T1; ·. Thus,
e′ = v, Γ′ = Γ and H ′ = H . Also, T0 = T2 = ·.

1. By inversion, e0 is some v with type τ , and Γ; 2 ⊢ v : τ . The values effectless lemma (and
Γ′ = Γ) provides that Γ′; ε ⊢ v : τ . Because e′ = v then Γ′; ε ⊢ e′ : τ .

2. By assumption, Γ ⊢ H : Γ. Also, Γ′ = Γ and H ′ = H , so Γ′ ⊢ H ′ : Γ′.

3. By inversion on the typing derivation, not-active(T1) is given. Thus, not-active(· ‖ T1 ‖ ·).

4. By inversion, Γ; 0 ⊢ T1 so by the weakening lemma Γ′; 0 ⊢ T1. For T0 and T2, Γ′; ε ⊢ · for
any ε.

5. Here, a = • and a′ = ◦. The correct atomicity is preserved because active(e) can be
derived with no assumptions, and not-active(e′) can also be derived with no assumptions.

Definition 2.5 (Context Extension) Γ′ extends Γ if for every x or l ∈ Dom(Γ), Γ′(x) = Γ(x) and
Γ′(l) = Γ(l).

Lemma 2.6 (Weakening Lemma) 1. If Γ; ε ⊢ e : τ and Γ′ extends Γ and ε ≤ ε′, then Γ′; ε′ ⊢ e : τ

2. If Γ; ε ⊢ T and Γ′ extends Γ and ε ≤ ε′, then Γ′; ε′ ⊢ T .

Proof 1. By mutual induction on the typing derivation of e or T , by cases on the final typing rule.

• t-var Γ; ε ⊢ x : τ . In this case, Γ; ε ⊢ x : Γ(x), where Γ(x) = τ . In this case, x ∈ Dom(Γ).
By the definition of Γ′ extending Γ, it must be that x ∈ Dom(Γ′) and Γ′(x) = Γ(x). Thus,
Γ′; ε′ ⊢ x : Γ′(x) and Γ′(x) = τ . Note the effect is irrelevant in t-var.

• t-const Γ; ε ⊢ c : int. In this case, neither Γ nor ε is used in the typing derivation of e. This
case is immediate.

• t-label Γ; ε ⊢ l : reftτ . By inversion, Γ(l) = (τ, t). In order to extend Γ, Γ′(l) = Γ(l). Thus,
Γ′; ε′ ⊢ l : reftτ can be derived. Note the effect is irrelevant.

• t-lambda Γ; ε ⊢ λx.e1 : τ1

ε′′

→ τ2. By inversion, Γ, x 7→ τ1; ε
′′ ⊢ e1 : τ2. By induction,

Γ′, x 7→ τ1; ε
′′ ⊢ e1 : τ2 so Γ′; ε′ ⊢ λx.e1 : τ1

ε′′

→ τ2. Note the effect is irrelevant.

• t-seq Γ; ε ⊢ e1; e2 : τ2. By inversion, Γ; ε ⊢ e1 : τ1 and Γ; ε ⊢ e2 : τ2. So by induction,
Γ′; ε′ ⊢ e1 : τ1 and Γ′; ε′ ⊢ e2 : τ2. Thus, Γ′; ε′ ⊢ e1; e2 : τ2.

• t-if This case is very similar to the t-seq case.

• t-set This case is very similar to the t-seq case.

• t-ref This case is very similar to the t-seq case.

• t-get This case is very similar to the t-seq case.

14

• t-app Γ; ε ⊢ e1 e2 : τ . By inversion, Γ; ε ⊢ e1 : τ ′ ε′′

→ τ , Γ; ε ⊢ e2 : τ ′, and ε′′ ≤ ε for some

τ ′ and ε′′. So by induction, Γ′; ε′ ⊢ e1 : τ ′ ε′′

→ τ and Γ; ε′ ⊢ e2 : τ ′. So to us t-app to derive
Γ′; ε′ ⊢ e1 e2 : τ we just need ε′′ ≤ ε′. This follows from ε′′ ≤ ε and ε ≤ ε′ provided subeffecting
is transitive, which we can show by exhaustive case analysis on the small number of effects.

• t-spawn-0 Γ; 0 ⊢ spawn0 e1 : int. Γ is not used so it follows directly that Γ′; 0 ⊢ spawn0 e1 : int.
Since 0 ≤ ε′ implies ε′ = 0, this suffices.

• t-spawn-1 Γ; ε ⊢ spawn1 e1 : int. Γ is not used so it follows directly that Γ′; ε ⊢ spawn1 e1 : int.
Note the effect is irrelevant.

• t-spawn-2 Γ; 2 ⊢ spawn2 e1 : int. Γ is not used so it follows directly that Γ′; 2 ⊢ spawn2 e1 : int.
Since 2 ≤ ε′ implies ε′ = 2, this suffices.

• t-atomic This case is very similar to the t-seq case. Note the effect is irrelevant.

• t-inatomic Γ; ε ⊢ inatomic(a, e′, T1, T2) : τ . By inversion on the typing rule, it must be that:

– Γ; 2 ⊢ e : τ

– Γ; 0 ⊢ T1

– Γ; 2 ⊢ T2

– not-active(T1)

– correct-atomic(a, e ‖ T2)

The following statements are all true by induction from parts 1 or 2 of the weakening lemma.

– Γ′; 2 ⊢ e : τ

– Γ′; 0 ⊢ T1

– Γ′; 2 ⊢ T2

Similarly, the following remain true:

– not-active(T1)

– correct-atomic(a, e ‖ T2)

From these facts, the following can be derived: Γ′; ε′ ⊢ inatomic(a, e′, T1, T2) : τ . Note the
effect is irrelevant.

2. The proof of part 2 has two cases:

• If T = · then the rule used to type T was Γ; ε ⊢ ·. This rule requires no assumption so Γ′; ε′ ⊢ ·
follows trivially.

• If T = T1 ‖ e then the rule used to type T was Γ; ε ⊢ T1 ‖ e. By inversion, it must be that
Γ; ε ⊢ T1 and Γ; ε ⊢ e : τ . By induction, it must be that Γ′; ε′ ⊢ T1 and Γ′; ε′ ⊢ e : τ . From
this, it can be derived that Γ′; ε′ ⊢ T1 ‖ e.

Lemma 2.7 (Substitution) If Γ, x : τ ′; ε ⊢ e : τ , and Γ; ε′ ⊢ v : τ ′, and not-active(e) then:

1. Γ; ε ⊢ e[v/x] : τ , and

2. not-active(e[v/x])

Proof By induction on the typing derivation of e and by induction on the derivation of not-active(e),
organized by cases on the final rule used in the typing derivation:

• t-var.

1. There are two sub-cases. Either e = x or e 6= x.

– When e = x, it must be that Γ, x : τ ′; ε ⊢ x : τ ′. After substituting, x[v/x] = v. Assump-
tion and the values effectless lemma give Γ; ε ⊢ v : τ ′

– When e 6= x let e = y. By inversion on the typing judgment, it must be that Γ; ε ⊢ y : τ .
Since y[v/x] = y, this is still true.

2. When e = x then not-active(v) is given by the values inactive lemma. When e = y 6= x then
not-active(y) requires no assumptions, so it can always be derived.

• t-const e = c

1. In this case, c[v/x] = c. Before and after substitution, e = c. We can derive Γ; ε ⊢ c : int
directly.

15

2. not-active(c) requires no assumption, so it can always be derived.

• t-label e = l This case is similar to the t-const case.

• t-lambda Where e = λy.e1 and τ = τ1

ε′′

→ τ2.

1. By convention, it is acceptable to assume that x 6= y. Permutation on the given sub-derivation
provides Γ, y : τ1, x : τ ′; ε′′ ⊢ e1 : τ2. The weakening lemma and the values effectless lemma
provide that Γ, y : τ1; ε ⊢ v : τ ′ By induction, Γ, y : τ1; ε

′′ ⊢ e1[v/x] : τ2. By inversion,
not-active(e1), so by induction not-active(e1[v/x]). These facts can be used to derive the
following via t-lambda: Γ; ε ⊢ λy.e1[v/x] : τ .

2. By inversion on the typing derivation of e, it must be that not-active(e1). Thus, not-active(e1[v/x])
by induction. This provides a derivation for not-active(λx.e1[v/x]).

• t-seq Where e = e1; e2

1. By inversion on the typing rule, Γ; ε ⊢ e1 : τ1 and Γ; ε ⊢ e2 : τ2. By induction, Γ; ε ⊢ e1[v/x] : τ1

and Γ; ε ⊢ e2[v/x : τ2. This provides a derivation for Γ; ε ⊢ (e1; e2)[v/x] : τ2.

2. By inversion on the rule for not-active(e1; e2), it must be that not-active(e1) and not-active(e2).
By induction, not-active(e1[v/x]) and not-active(e2[v/x]). Thus, we can derive not-active(e1; e2).

• t-if Where e = if e1 e2 e3

1. By inversion on the typing rule, Γ; ε ⊢ e1 : int, Γ; ε ⊢ e2 : τ , and Γ; ε ⊢ e3 : τ . By induction,
Γ; ε ⊢ e1[v/x] : int Γ; ε ⊢ e2[v/x : τ , and Γ; ε ⊢ e3[v/x : τ . This provides a derivation for
Γ; ε ⊢ (if e1 e2 e3)[v/x] : τ .

2. By inversion on the rule for not-active(if e1 e2 e3), it must be that not-active(e1), not-active(e2),
and not-active(e3). By induction, not-active(e1[v/x]), not-active(e2[v/x]), and not-active(e3[v/x]).
Thus, we can derive not-active(if e1 e2 e3).

• t-set The proof for this case is by induction, using an argument similar to that for t-seq.

• t-ref The proof for this case is by induction, using an argument similar to that for t-seq.

• t-get The proof for this case is by induction, using an argument similar to that for t-seq.

• t-app The proof for this case is by induction, using an argument similar to that for t-seq.

• t-spawn-0 The proof for this case is by induction, using an argument similar to that for t-seq.

• t-spawn-1 The proof for this case is by induction, using an argument similar to that for t-seq.

• t-spawn-2 The proof for this case is by induction, using an argument similar to that for t-seq.

• t-atomic The proof for this case is by induction, using an argument similar to that for t-seq.

• t-inatomic It is never the case that not-active(inatomic(a, e′, T1, T2)). Thus, this case is vacuous.

Lemma 2.8 (Values Effectless) If Γ; ε ⊢ v : τ then Γ; ε′ ⊢ v : τ .

Proof To prove the Values Effectless lemma, examine each of the value expressions in StrongNestedPar-

allel, of which there are three: c, l, and λx.e. The proof is organized by cases on the typing rule for each
value expression.

• If the rule used to type v was t-const, then v is some c. This rule places no restriction on ε, so ε
could be replaced with any ε′.

• If the rule used to type v was t-label, then v is some l. This rule places no restriction on ε, so ε
could be replaced with any ε′.

• If the rule used to type v was t-lambda, then v is some λx.e′. This rule places no restriction on
ε, so ε could be replaced with any ε′.

Lemma 2.9 (Canonical Forms) If Γ; ε ⊢ v : τ and

• τ = τ1

ε
→ τ2 then v is some λx.e

• τ = reftτ
′ then v is some l

• τ = int then v is some c

16

Proof Follows from inspection of the typing rules for v

Lemma 2.10 (Variables not in Γ′) If Γ ⊢ H : Γ′ then x 6∈ Dom(Γ′).

Proof By induction on the typing derivation of H : If H = · then Γ′ = · and x 6∈ Dom(·). If H is
non-empty then Γ ⊢ H, l 7→ v : Γ′′, l:(τ, t). By inversion, Γ ⊢ H : Γ′′. By induction, x 6∈ Dom(Γ′′) and x
is not added by the conclusion of the typing rule.

Lemma 2.11 (Values Inactive) If Γ; ε ⊢ v : τ then not-active(v).

Proof This language has three value expressions, c, l, and λx.e. Proof is by cases on the typing rule for
each value expression.

• If the rule used to type v was t-const, then v is some c. Deriving not-active(c) requires no
assumption.

• If the rule used to type v was t-label, then v is some l. Deriving not-active(l) requires to assump-
tion.

• If the rule used to type v was t-lambda, then v is some λx.e′. By inversion on the typing rule, it
must be that not-active(e′). Thus, it is possible to derive not-active(λx.e′).

Lemma 2.12 (Effects Lemma) Suppose Γ; ε ⊢ e : τ and a; H ; e → a′; H ′; e′; T0; T1; T2 then the follow-
ing must hold:

1. If ε 6= 0, then T0 = ·.

2. If ε 6= 2, then =⇒ T2 = ·.

Proof by induction on the typing derivation of e by cases on the final rule used in the derivation. If the
final rule was:

• t-var e = x. There are no evaluation rules for x, and thus e cannot step. This case is vacuously
true.

• t-const e = c. e is a value, and thus cannot step. This case is vacuously true.

• t-label e = l. e is a value, and thus cannot step. This case is vacuously true.

• t-lambda e = λx.e1. e is a value, and thus cannot step. This case is vacuously true.

• t-seq e = e1; e2. There are two possible situations:

1. e1 is not a value. Thus, the evaluation rule seq-1 applies. By induction, if ε 6= 0 then T0 = ·
and if ε 6= 2 then T2 = ·.

2. e1 is a value. The evaluation rule seq-v applies, so T0 = T1 = T2 = ·.

• t-if e = if e1 e2 e3. There are two possible situations:

1. e1 is not a value. Thus, the evaluation rule if-1 applies. By induction, if ε 6= 0 then T0 = ·
and if ε 6= 2 then T2 = ·.

2. e1 is a value. Depending on the value, the evaluation rules if-z or if-nz apply, so T0 = T1 =
T2 = ·.

• t-set e = e1 := e2. There are three possible situations:

1. e1 is not a value. Thus, the evaluation rule set-1 applies. By induction, if ε 6= 0 then T0 = ·
and if ε 6= 2 then T2 = ·.

2. e1 is some l and e2 is not a value. The evaluation rule set-2 applies. By induction, if ε 6= 0
then T0 = · and if ε 6= 2 then T2 = ·.

3. e1 is some l and e2 is some v. The evaluation rule strong-set applies, which always creates
T0 = T1 = T2 = ·.

• t-ref If e = ref e′ There are two possibilities:

1. e′ is not a value. The evaluation rule ref-1 applies. By induction, if ε 6= 0 then T0 = · and if
ε 6= 2 then T2 = ·.

17

2. e′ is some v. The evaluation rule alloc applies, and creates T0 = T1 = T2 = ·.

• t-get e =!e1 has two sub-cases:

1. e1 is not a value. The evaluation rule get-1 applies. By induction, if ε 6= 0 then T0 = · and if
ε 6= 2 then T2 = ·.

2. e1 is some v. The evaluation rule strong-get applies, and creates T0 = T1 = T2 = ·.

• t-app e = e1 e2. There are three possible sub-cases:

1. e1 is not a value. Thus, the evaluation rule app-1 applies. By induction, if ε 6= 0 then T0 = ·
and if ε 6= 2 then T2 = ·.

2. e1 is some v and e2 is not a value. Thus, the evaluation rule app-2 applies. By induction, if
ε 6= 0 then T0 = · and if ε 6= 2 then T2 = ·.

3. e1 is some λx.e3 and e2 is some v. In this case, beta applies, which creates T0 = T1 = T2 = ·.

• t-spawn-0 e = spawn0 e1. It must be that ε = 0. It is sufficient to show that T2 = ·. The only
evaluation rule that applies is spawn 0, which always creates T2 = ·.

• t-spawn-1 e = spawn1 e1. The only evaluation rule that applies is spawn 1, which always creates
T0 = T2 = ·.

• t-spawn-2 e = spawn2 e1. It must be that ε = 2. It is sufficient to show that T0 = ·. The only
evaluation rule that applies is spawn 2, which always creates T0 = ·.

• t-atomic e = atomic e1. The only evaluation rule that applies in this case is enter atomic, which
creates T0 = T1 = T2 = ·.

• t-inatomic e = inatomic(a, e′, T1, T2). There are three possible sub-cases:

1. Assume e′ is not a value, and the chosen evaluation rule was inatomic. inatomic always
creates T0 = T1 = T2 = ·.

2. Assume T2 contains at least one expression that is not a value, and the chosen evaluation rule
was inatomic helper. inatomic helper always creates T0 = T1 = T2 = ·.

3. e′ is some v and T2 = v. The evaluation rule that applies here is exit atomic which creates
T0 = T2 = ·.

2.7 Equivalence

The StrongNestedParallel language is trivially equivalent to itself.

18

3 The Weak language

This section describes a new language that is equivalent to the StrongNestedParallel language when
given a partition on the heap. The equivalence result in our POPL’08 submission (between Weak and
StrongNestedParallel) is given in Section 3.7.

3.1 Syntax

No Changes.

3.2 Dynamic Evaluation

3.2.1 Whole Program Evaluation

a; H ;T → a′; H ′; T ′

No Changes.

3.2.2 Expression Evaluation

The StrongNestedParallel language enforces strong atomicity because the two evaluation rules that ac-
cess the heap (strong-set and strong-get) require that a = ◦. Because the expression evaluation
form is unchanged, we simply weaken the semantics of this language by relaxing the restrictions on a.
As a result, we replace the strong-set and the strong-get rules from StrongNestedParallel with the
weak-set and weak-get rules below:

a; H ; e → a′; H ′; e′; T1; T2; T3

weak-set

a; H ; l := v → a; H, l 7→ v; v; ·; ·; ·

weak-get

a;H ; !l → a;H ; H(l); ·; ·; ·

3.3 Typecheck e

Definition 3.1 (Heap Partition) A heap H is partitioned when each label (after being initialized) is
read and written always in a transaction or never in a transaction.

We present a type and effect system to partition the heap into two parts; data that is always read or
written in a transaction and data that is never read or written in a transaction. To obtain this partition,
we use the extra information stored in Γ to keep track of and ensure appropriate use of each label. Until
now, it was not used in StrongNestedParallel, although our equivalence result requires that programs in
Weak and StrongNestedParallel both typecheck using the partition rules.

The following changes to the type system for the StrongNestedParallel language (Section 2.3) achieve
this goal:

1. Remove typing rules t-spawn-1 and t-spawn-2 and require that the last two components of any
inatomic expression are ·. Assuming well-typedness, this is equivalent to removing the corresponding
spawn flavors from the language since programs with them would never type-check. This approach
simplifies our definition of a partition and the type system that enforces it.

2. Replace t-set, t-get, t-ref, and t-label with rules that enforce a partition: t-set-partition, t-

get-partition, t-ref-partition, and t-label-partition, listed below. Note the new restrictions
on t when compared to the partner rules in Section 2.3.

t-set-partition

Γ; t ⊢ e1 : reftτ Γ; t ⊢ e2 : τ

Γ; t ⊢ e1 := e2 : τ

t-get-partition

Γ; t ⊢ e : reftτ

Γ; t ⊢ !e : τ

t-ref-partition

Γ; ε ⊢ e : τ

Γ; ε ⊢ ref e : reftτ

t-label-partition

Γ(l) = (τ, t)

Γ; ε ⊢ l : reftτ

19

Notice that t-ref-partition allows programs to create a new label in one part of the partition and
insist that it always be accessed in a different part. This does not introduce data races because when a
label is created it must be thread local.

3.4 Other Typing Rules

No Changes.

3.5 Activeness

No Changes.

3.6 Type Safety

Theorem/Lemma Restated Changes

Top-Level Progress No None.

Single Thread Progress No t-spawn-1: Remove this case
t-spawn-2: Remove this case

Top-Level Preservation No None.

Single Thread Preservation The t-label case is still vacuous.
The t-set and t-get cases change to say a does not
change by the primitive step (rather than assuming a
remains ◦; it may now remain •).

Weakening Lemma No t-spawn-0 and t-spawn-2: The effect becomes irrele-
vant.
t-get and t-set: ǫ is either 0 or 2 so ǫ′ = ǫ.

Substitution Lemma No None.

Values Effectless Lemma No Nothing significant; notice that a label may occur any-
where. Only reading or writing its contents is restricted.

Variables not in Γ′ No None.

Values Inactive No None.

Effects Lemma Remove Part
2

The second part becomes trivial without t-spawn-2.

3.6.1 A Note About Progress

Strictly speaking, the type-safety result from Section 2.6 does not apply to the weak-atomicity semantics
and type system and we should repeat the proof. Type-safety for each language is important because
the equivalence proof in Section 3.7 will assume that if a well-typed initial configuration takes n steps
then the resulting configuration is well-typed.

However, the proofs of Progress require no significant changes since it is a strictly easier result to
show. The type system for Weak is strictly stronger than the one for StrongNestedParallel, and Weak’s
operational semantics is strictly more lenient than the semantics for StrongNestedParallel. The type
system accepts a subset of the configurations accepted by StrongNestedParallel, and the Weak semantics
allows a superset of the transitions.

3.7 Equivalence

In this section, we show that the StrongNestedParallel and Weak languages are equivalent under a heap
partition. Because the syntax of both languages is the same, we distinguish the weak semantic rules and
the strong semantics rules, using →w to mean evaluation under the weak operational rules and →s to
mean evaluation under the strong operational rules. The difference between these semantics is given in
Section 3.2. Any typing judgments, such as Γ ⊢ H : Γ and Γ; ε ⊢ e : τ refer to the partitioned type
system given in Section 3.3. Even though StrongNestedParallel was defined under a slightly different
type system, we limit its syntax and modify the typing rules in the intuitive manner.

20

Lemma 3.2 (Top-level Reordering) Suppose all the following hold:

1. Γ ⊢ H0 : Γ

2. Γ; 0 ⊢ eA : τA

3. Γ; 0 ⊢ eB : τB

4. active(eA)

5. not-active(eB)

6. •; H0; eA ‖ eB ‖ T →s •; H1; e
′

A ‖ eB ‖ T →w •; H2; e
′

A ‖ e′B ‖ T ′

Then there exists some H ′

1 such that •; H0; eA ‖ eB ‖ T →w •; H ′

1; eA ‖ e′B ‖ T ′ →s •; H2; e
′

A ‖ e′B ‖
T ′.

Top-level Reordering Proof by induction on the form of eA, organized by cases on eA.

• eA = v. By the values inactive lemma, eA cannot be active. This case is vacuous.

• eA = x. x has no viable steps, so this case is vacuous.

• eA = spawni e, 0 ≤ i < 2. There is no way to derive that eA is active. This case is vacuous.

• eA = atomic e. There is no way to derive that eA is active. This case is vacuous.

• eA = e1; e2. There is only one way to derive active(eA). This is when active(e1). In this case, it
must be that e1 is not a value, and it must be that e1 stepped. H ′

1 is obtained through induction.

• eA = if e1 e2 e3. This case is similar to that when eA = e1; e2.

• eA = e1 := e2. There are two ways to derive active(eA), either e1 is not a value and active(e1) or
e1 is some l and active(e2).

1. active(e1). Here e1 took a step, and H ′

1 is obtained through induction.

2. active(e2) and e1 = l. Here e2 took a step, and H ′

1 is obtained through induction.

• eA = ref e1. This case is similar to that when eA = e1; e2.

• eA =!e1. This case is similar to that when eA = e1; e2.

• eA = e1 e2. This case is similar to that when eA = e1 := e2.

• eA = inatomic(a′′, e1, ·, ·). Either e1 is a value or it is not.

1. If e1 is not a value, then e1 it must be the expression that steps. To apply Lemma 3.3, we need
to show that each precondition applies:

(a) Γ ⊢ H0 : Γ by assumption.

(b) By inversion on the typing rule for eA, we know Γ; 2 ⊢ e1 : τA.

(c) Γ; 0 ⊢ eB : τB by assumption

(d) not-active(eB) by assumption

(e) Since eA must step under the inatomic rule, we have a′′; H0; e1 →s a′′′; H1; e
′

1; ·; ·; · to
evaluate eA, (so •; H0; eA →s •; H1; e

′

A; ·; ·; ·) and •; H1; eB →w •; H2; e
′

B; T0; ·; · is true
by assumption.

Apply Lemma 3.3 (with e1 and eB). to obtain an appropriate H ′

1.

2. e1 = v. The only evaluation rule that applies to eA is exit atomic, which changes a from •
to ◦. Because we require that a = a′ = •, this case is vacuous.

Lemma 3.3 (Nested Reordering) Suppose all the following hold:

1. Γ ⊢ H0 : Γ

2. Γ; 2 ⊢ eA : τA

3. Γ; 0 ⊢ eB : τB

4. not-active(eB)

5. a; H0; eA →s a′; H1; e
′

A; ·; ·; · and •; H1; eB →w •; H2; e
′

B ; T0; ·; ·

Then there exists some H ′

1 such that •; H0; eB →w •; H ′

1; e
′

B; T0; ·; · and a; H ′

1; eA →s a′; H2; e
′

A; ·; ·; ·

21

Nested Reordering Proof by induction on the evaluation of eA; organized by cases on the form of eA.
(Note the interesting cases use the next two lemmas.)

• eA = v. v has no viable steps, so this case is vacuous.

• eA = x. x has no viable steps, so this case is vacuous.

• eA = ref e′′A There are two cases:

– e′′A is not a value, so e′′A steps. H ′

1 is obtained through induction.

– e′′A = vA. In this case, eA steps in the following manner: a;H0; ref e′′A →s a′; H0, lnew 7→ vA; lnew ; ·; ·; ·
As a result, H1 = H0, lnew 7→ vA, and lnew 6∈ Dom(H0). Since Γ ⊢ H0 : Γ we know that
lnew 6∈ Dom(Γ). By the assumption that eB is well-typed (i.e. Γ; 0 ⊢ eB : τB), it must be eB

cannot refer to lnew and type-check. In this case, choose H ′

1 = H2 \ {lnew 7→ vA}.

• eA = spawn0 e. This is impossible because Γ; 2 ⊢ eA : τA prohibits it.

• eA = spawn1 e. This expression won’t type-check under the available rules, so this case is vacuous.

• eA = spawn2 e. This expression won’t type-check under the available rules, so this case is vacuous.

• eA = atomic e. In this case, eA steps under the enter atomic rule. Using this rule, we know that
H1 = H0, and therefore eB effectively steps under H0 even before reordering. If eB creates some
different heap (H2), then eB was already doing this from H0, so pick H ′

1 = H2. The other evaluation
results for eB (i.e. T0, e′B)are also preserved. Similarly, we know that eA doesn’t read or write any
H when stepping using the inatomic rule, so evaluating eA is also unaffected by reordering.

• eA = e1; e2. There are two cases:

– e1 is not a value. H ′

1 is obtained through induction.

– e1 = v then eA becomes e2 in one step, with no heap reads or writes. Choosing H ′

1 = H2 is
acceptable by an argument similar to that for the atomic e case.

• eA = if e1 e2 e3. This case is similar to that when eA = e1; e2.

• eA = e1 := e2. There are 3 cases:

– e1 is not a value. H ′

1 is obtained through induction.

– e1 = lA and e2 is not a value. H ′

1 is obtained through induction.

– e1 = lA and e2 = vA (eA steps using strong-set) The following are true:

1. By assumption, Γ ⊢ H0 : Γ

2. By the strong-set rule, it must be that H1 = H0, lA 7→ vA.

3. •; H1; eB →w •; H2; e
′

B; T0; ·; · by assumption.

4. By assumption, Γ; 2 ⊢ lA := vA : τA.

5. By assumption, Γ; 0 ⊢ eB : τB

6. By assumption, not-active(eB)

Apply Lemma 3.4 to obtain H ′

1.

• eA =!e1. There are two cases:

– e1 is not a value. H ′

1 is obtained through induction.

– e1 = lA (eA steps using strong-get). All of the following are true:

1. By assumption, Γ ⊢ H0 : Γ

2. By the strong-get rule for reading the heap, it must be that H0(lA) = vA for some vA.
Also, H1 = H0, so H1(lA) = H0(lA) = vA.

3. •; H1; eB →w •; H2; e
′

B; T0; ·; · by assumption.

4. By assumption, Γ; 2 ⊢ !lA : τA.

5. By assumption, Γ; 0 ⊢ eB : τB

6. By assumption, not-active(eB)

Apply Lemma 3.5 to obtain H ′

1.

• eA = e1 e2. There are three cases:

– If e1 is not a value, then H ′

1 is obtained through induction.

22

– If e1 = λx.e3 and e2 is not a value, then H ′

1 is obtained through induction.

– If e1 = λx.e3 and e2 = v then eA steps under the beta rule and e′A = e3[v/x], with H1 = H0.
The argument here is similar to that for the atomic e case.

• eA = inatomic(a, e′′A, ·, ·). There are two cases:

– e′′A is not a value. In this case, H ′

1 is obtained through induction.

– e′′A = vA. Here, eA exits the transaction via exit atomic and gives H1 = H0. The argument
here is similar to that for the atomic e case.

Lemma 3.4 (Independent Write Under Partition) Let eA = lA := vA, so under the strong se-
mantics a; H0; lA := vA →s a′; H1; vA; ·; ·; ·.

1. Γ ⊢ H0 : Γ

2. H1 = H0, lA 7→ vA

3. •; H0, lA 7→ vA; eB →w •; H2; e
′

B ; T0; ·; ·

4. Γ; 2 ⊢ eA : τA (and by inverting on t-set-partition and t-label-partition we know that Γ(lA) =
(τA, 2))

5. Γ; 0 ⊢ eB : τB

6. not-active(eB)

then

1. H2(lA) = vA (i.e. result prior to reorder is preserved for eA)

2. •; H0; eB →w •; H ′

1; e
′

B; T0; ·; · (i.e. eB becomes the same e′B as before with the same T0, and H ′

1 is
like H2 except that H ′

1(lA) = H0(lA))

Proof Independent Write By induction on the evaluation of eB , organized by cases on eB.

• eB = vB . eB does not step, so this case is vacuous.

• eB = x. eB does not step, so this case is vacuous.

• eB = spawn0 e′′B . The only step available to eB is •; H0; spawn0 e′′B →w •; H0; 0; e
′′

B ; ·; ·. From this,
it is clear that before reordering the heaps for evaluation, eB did not change H2’s mapping for lA
(and won’t change H0’s mapping either) so H2(lA) = vA as before. Similarly, eB is unaffected by
the values in H0 and so e′B = 0 and T0 = e′′B are as before.

• eB = spawn1 e′′B. This expression cannot typecheck in the current language, so this case is vacuous.

• eB = spawn2 e′′B. This expression cannot typecheck in the current language, so this case is vacuous.

• eB = atomic e. eB cannot step under •. This case is vacuous.

• eB = e1; e2. There are two cases:

– e1 is not a value. By induction.

– e1 = vB and e2 is not a value. Here, eB steps using the seq-v rule, so •; H0; v; e2 →w

•; H0; e2; ·; ·; ·. Notice that H ′

1 = H0 and so eA executes under H ′

1 to get H2 as before. Thus,
H2(lA) = vA), and e′B = e2 with T0 = · as before.

• eB = if e1 e2 e3. This case is similar to that when eB = e1; e2.

• eB = e1 := e2. There are three cases:

– e1 is not a value. By induction.

– e1 = lB and e2 is not a value. By induction.

– e1 = lB and e2 = vB . By assumption, we have Γ; 0 ⊢ eB : τB , and since e1 is some lB , we can
invert on the typing rules to get: Γ(lB) = (τB, 0). We know that Γ(lA) = (τA, 2), therefore lA
and lB must be distinct. We know from before reordering that H2 = H0, lA 7→ vA, lB 7→ vB ,
so we pick H ′

1 = H0, lB 7→ vB and after evaluating eA we have H2 = H0, lB 7→ vB , lA 7→ vA.
As a result, H2(lA) = vA. Additionally, e′B = vB and T0 = · as before.

• eB =!e1. There are two cases:

23

– e1 is not a value. By induction.

– e1 = lB By assumption, we have Γ; 0 ⊢ eB : τB, and since e1 is some lB, we can invert on the
typing rules to get: Γ(lB) = (τB, 0). It is given that Γ(lA) = (τA, 2), therefore lA and lB must
be distinct. By assumption, H1 = H0, lA 7→ vA. Because the labels are distinct, we also know
that H0(lB) = vB (and therefore e′B = vB = H0(lB) are as before). By picking H ′

1 = H0, eA

evaluates under H0 as it did before, giving H2 = H0, lA 7→ vA with H2(lA) = vA.

• eB = e1 e2. There are three cases:

– e1 is not a value. By induction.

– e1 = λx.e′′B and e2 is not a value. By induction.

– e1 = λx.e′′B and e2 = vB . The only step available to eB is •; H0; λx.e′′B vB → •; H0; e
′′

B [vB/x]; ·; ·; ·.
From this, it is clear that before reordering the heaps for evaluation, eB did not change H2’s
mapping for lA, so H2(lA) = vA as before. Similarly, eB does not use any values in H and so
e′B and T0 are as before.

• eB = inatomic(a, e′′B , ·, ·). By the assumption that not-active(eB), this case is vacuous.

• eB = ref e′′B. There are two cases:

– e′′B is not a value. By induction.

– e′′B is some v In this case, a label is created and H2 = H0, lA 7→ vA, lnew 7→ v and e′B = lnew.
We know that lnew 6∈ Dom(H0), and since Γ ⊢ H0 : Γ it must be that lnew 6∈ Dom(Γ).
Since we also assume that Γ(lA) = (τA, 2), it must be that that lA 6= lnew (otherwise, eA

could not type-check under Γ). As a result, eB can step under H0 in the following way:
•; H0; eB →w •; H0, lnew 7→ v; lnew; ·; ·; ·, giving e′B = lnew and T0 = · as before. By picking
H ′

1 = H0, lnew 7→ v, we have H ′

1(lA) = H0(lA), and after the write to lA we have H2 =
H0, lnew 7→ v, lA 7→ vA with H2(lA) = vA.

Lemma 3.5 (Independent Read Under Partition) Let eA =!lA, so under the strong semantics
a;H0; !lA →s a′; H0; H0(lA); ·; ·; ·

1. Γ ⊢ H0 : Γ

2. H1 = H0, and H0(lA) = vA

3. •; H1; eB →w •; H2; e
′

B; T0; ·; ·

4. Γ; 2 ⊢ eA : τA (and by inverting on t-get-partition and t-label-partition we know that Γ(lA) =
(τA, 2)).

5. Γ; 0 ⊢ eB : τB

6. not-active(eB)

then

1. H2(lA) = vA (i.e. eA reads the same value from H2 as it did from H0)

2. •; H0; eB →w •; H2; e
′

B; T0; ·; · (i.e. eB evaluates to the same T0 and e′B under H0 as it did under
H1. This is relatively obvious since we have picked H1 = H0).

Proof Independent Read by induction on the evaluation of eB , organized by cases on eB.

• eB = vB . eB does not step, so this case is vacuous.

• eB = x. eB does not step, so this case is vacuous.

• eB = spawn0 e′′B. The only step available to eB is •; H0; spawn0 e′′B →w •; H0; 0; e
′′

B; ·; ·. Because
H0 = H1 = H2, it is clear that before reordering the evaluation, eB did not change H2’s mapping
for lA, so H2(lA) = vA. Similarly, eB is unaffected by the heap and so e′B and T0 are as before.

• eB = spawn1 e′′B. This case is vacuous because it violates the assumption that Γ; 0 ⊢ eB : τB.

• eB = spawn2 e′′B. This case is vacuous because it violates the assumption that Γ; 0 ⊢ eB : τB.

• eB = atomic e. This case is vacuous because eB cannot step under •.

• eB = e1; e2. There are two cases:

24

– e1 is not a value. By induction.

– e1 = vB and e2 is not a value. Here, •; H0; v; e2 →w •; H0; e2; ·; ·; ·. Because we have picked
H ′

1 = H0 = H1, eB can evaluate under H0 as it did under H1. As a result, e′B = e2 and T0 = ·
as before. Also, eB steps using seq-v and thus H2 = H1 was true before reordering. The
choice of H ′

1 = H2 = H1 = H0 gives that H2(lA) = vA.

• eB = if e1 e2 e3. This case is similar to that when eB = e1; e2.

• eB = e1 := e2. There are three cases:

– e1 is not a value. By induction.

– e1 = lB and e2 is not a value. By induction.

– e1 = lB and e2 = vB . By assumption, we know that Γ; 0 ⊢ eB : τB , and since eB = lB, inversion
on the typing derivation for eB gives that Γ(lB) = (τB, 0). It is given that Γ(lA) = (τA, 2),
therefore lA and lB are distinct. Thus, H2 = H0, lB 7→ vB . By picking H ′

1 = H2 and noting
that H1 = H0, H2(lA) = vA, with e′B and T0 = · as before.

• eB =!e1. There are two cases:

– e1 is not a value. By induction.

– e1 = lB By assumption, we know that Γ; 0 ⊢ eB : τB, and since eB =!lB , inversion on the
typing derivation for eB gives that Γ(lB) = (τB, 0). It is given that Γ(lA) = (τA, 2), therefore
lA and lB are distinct. By picking H ′

1 = H0 where H0(lB) = vB , and H2 = H0 = H1, we can
show that H2(lA) = vA, and e′B = vB = H0(lB) and T0 = · are as before.

• eB = e1 e2. There are three cases:

– e1 is not a value. By induction.

– e1 = λx.e′′B and e2 is not a value. By induction.

– e1 = λx.e′′B and e2 = vB . The only step available to eB is •; H0; λx.eB′′ vB →w •; H0; e
′′

B[vB/x]; ·; ·; ·.
From this, it is clear that H0 = H2, so H2(lA) = H0(lA) = vA Similarly, e′B is unaffected by
the values on the heap and so e′B and T0 are as before.

• eB = inatomic(a, e′′B , ·, ·). By the assumption that not-active(eB), this case is vacuous.

• eB = ref e′′B. There are two cases:

– e′′B is not a value. By induction.

– e′′B is some v In this case, a label is created and H ′

1 = H0, lnew 7→ v and e′B = lnew . We
know that lnew 6∈ Dom(H0), and since Γ ⊢ H0 : Γ it must be that lnew 6∈ Dom(Γ). Since
we also assume that Γ(lA) = (τA, 2), it must be that that lA 6= lnew (otherwise, eA could not
type-check under Γ). As a result, eB can step under H0 in the following way: •; H0; eB →w

•; H0, lnew 7→ v; lnew ; ·; ·; ·, giving e′B = lnew and T0 = · as before. Similarly, H ′

1(lA) = H0(lA),
so H2(lA) = vA.

Lemma 3.6 (Topmost Enter-Atomic) Suppose

1. Γ ⊢ H : Γ

2. Γ; 0 ⊢ eB : τ ′

3. Γ; 0 ⊢ eA : τ

4. not-active(eA)

5. not-active(eB)

6. ◦; H ; eA ‖ eB ‖ T →s •; H ; e′A ‖ eB ‖ T and
•; H ; e′A ‖ eB ‖ T →w •; H ′; e′A ‖ e′B ‖ T ′.

Then the following must be true:

1. active(e′A)

2. ◦; H ; eA ‖ eB ‖ T →w ◦; H ′; eA ‖ e′B ‖ T and
◦; H ′; eA ‖ e′B ‖ T ′ →s •; H ′; e′A ‖ e′B ‖ T ′

Proof of Lemma 3.6 Proof by cases on eA.

25

• eA = v. v cannot step. This case is vacuous.

• eA = x. x cannot step. This case is vacuous.

• eA = ref e′′A There are two cases:

– If e′′A is not a value, this is true by induction.

– If e′′A is some v, then eA steps using alloc under which a = a′. This violates the assumption
that a = ◦ and a′ = •. This case is vacuous.

• eA = spawn0 e. The only step for eA is spawn-0, under which a = a′. This violates the assumption
that a = ◦ and a′ = •. This case is vacuous.

• eA = spawn1 e. This expression is not in the current language, so this case is vacuous.

• eA = spawn2 e. This expression is not in the current language, so this case is vacuous.

• eA = atomic e0. Here, only one evaluation step applies, enter-atomic. Thus, ◦; H ; eA →s

•; H ; inatomic(◦, e0, ·, ·) Deriving active(e′A) is obvious. Showing that eB can be moved to before
eA entered a transaction requires cases on eB. For each case, we must show: that eB is unaf-
fected by eA’s evaluation in terms of H and T and a. Notice that by assumption, •; H ;T ‖ eB →w

•; H ′; T ′ ‖ e′B. Or rather, that eB stepped using the weak rules under •. Also by assumption, eA

does not change H or T .

– eB = v. v cannot step. This case is vacuous.

– eB = x. x cannot step. This case is vacuous.

– eB = ref e′′B . There are two cases:

∗ If e′′B is not a value, this is true by induction.

∗ If e′′B is some v, then the step for eB is to create a new, thread-local label, lnew, for v
using the alloc rule. By assumption, lnew 6∈ Dom(H) and since Γ ⊢ H : Γ, we know that
lnew 6∈ Dom(Γ). As a result, eA could not type-chek if it referred to lnew . As a result, it
is not possible that eA relies upon or is affected by lnew.

– eB = spawn0 e. eB steps in the following manner: •; H ; eB →w •; H ; (0 ‖ e ‖ T). Since
eB creates H ′ = H and T ′ = e ‖ T , while eA steps under enter-atomic (and, as stated
earlier, preserves H and T), it must be the case that eB neither affects eA nor is affected by
it. Similarly, eA is not affected by eB .

– eB = spawn1 e. This expression is not in the current language, so this case is vacuous.

– eB = spawn2 e. This expression is not in the current language, so this case is vacuous.

– eB = atomic e. Here, eB cannot step under •. This case is vacuous.

– eB = e1; e2. There are two cases:

∗ If e1 is not a value, this is true by induction.

∗ If e1 is some v, then the step for eB is to become e2. Again, eB has no need to access the
heap or create new threads, so H and T are as before.

– eB = if e1 e2 e3. This case is similar to that when eB = e1; e2.

– eB = e1 := e2. There are three cases:

∗ If e1 is not a value, this is true by induction.

∗ If e2 is not a value, this is true by induction.

∗ If e1 is some l and e2 is some v. Here eB writes the heap using weak-set,so H ′ = H, l 7→ v
and since eA doesn’t change H this can happen either before or after eA steps.

– eB =!e1. There are two cases:

∗ If e1 is not a value, this is true by induction.

∗ If e1 is some l, then the step for eB is to read the value at l using weak-get. Thus,
e′B = H(l). By assumption, eA does not write to H or create new threads, so H and T
after eA evaluates are the same as before.

– eB = e1 e2. There are three cases:

∗ If e1 is not a value, this is true by induction.

∗ If e2 is not a value, this is true by induction.

26

∗ If e1 is some λx.e3, and e2 is some v, then the step for eB is to become e3[v/x], under
beta which creates H ′ = H and T ′ = T .

– eB = inatomic(a, e′′B , ·, ·). This case violates the assumption that not-active(eB), so this case is
vacuous.

• eA = e1; e2. If e1 6= v, then we use induction. If e1 = v, then eA steps under the seq-v rule, in
which a = a′. This violates the assumption that a = ◦ and a′ = •. This case is vacuous.

• eA = if e1 e2 e3. If e1 6= v, then we use induction. If e1 = v, then eA steps under the if-z or
if-nz rules, under which a = a′. This violates the assumption that a = ◦ and a′ = •. This case is
vacuous.

• eA = e1 := e2. If e1 6= v, or e2 6= v, then we use induction. If e1 = lA and e2 = vA then eA steps
under the strong-set rule, in which a = a′. This violates the assumption that a = ◦ and a′ = •.
This case is vacuous.

• eA =!e1. If e1 6= v, then we use induction. If e1 = lA, then eA steps under the strong-get rule,
in which a = a′. This violates the assumption that a = ◦ and a′ = •. This case is vacuous.

• eA = e1 e2. If e1 6= v, or e2 6= v. then we use induction. If e1 = λx.e and e2 = vA then eA steps
under the beta rule, in which a = a′. This violates the assumption that a = ◦ and a′ = •. This
case is vacuous.

• eA = inatomic(a, e′′A, ·, ·). This case violates the assumption that not-active(eA), so this case is
vacuous.

Lemma 3.7 (Weak and Strong under different values of a) Each of the following is true: ,

1. ◦; H ;T →w a;H ′; T ′

If and only if
◦; H ;T →s a; H ′; T ′

2. •; H ;T →w ◦; H ; T ′

If and only if
•; H ;T →s ◦; H ; T ′

3. •; H ;TA ‖ e ‖ TB →w •; H ′; TA ‖ e′ ‖ TB and active(e) and active(e′)
If and only if
•; H ;TA ‖ e ‖ TB →s •; H ′; TA ‖ e′ ‖ TB and active(e) and active(e′)

Lemma 3.7 The proof (by induction on the derivation of the assumed evaluation step) follows directly
from examination of the weak and strong evaluation rules.

Lemma 3.8 (Serializability of Transactions) Suppose:

1. ⊢ ◦; ·; e

2. ◦; ·; e →n
w a; H ;T

then there exists some sequence such that

1. ◦; ·; e →n
s a; H ; T

2. If a = • then the sequence ends with ◦; H ;TA ‖ ei ‖ TB →s •; H ; (TA ‖ e′i ‖ TB) •; H ; T ‖ e′i →k
s

•; H ; (TA ‖ e′′i ‖ TB) where TA ‖ e′′i ‖ TB = T

Proof of Lemma 3.8 Proof by induction on n.

• When n = 0, neither semantics takes a step and a = ◦, so this case holds trivially.

• Assume the lemma is true for n − 1, and show that this holds for n. By assumption:
◦; ·; e →n−1

w a; H ; T →w a′; H ′; T ′. The following statements are true by induction on the first
n − 1 steps of evaluation:

(A) ◦; ·; e →n−1
s a; H ; T

(B) If a = • then the sequence ends with
◦; H ; TA ‖ ei ‖ TB →s •; H ; (TA ‖ e′i ‖ TB) →k

s •; H ; (TA ‖ e′′i ‖ TB) where TA ‖ e′′i ‖ TB = T

27

There are two possibilities for a after these (n − 1) steps of evaluation:

1. If a = ◦ then we need to show that the nth step taken under the weak semantics is also valid
under the strong semantics. Lemma 3.7, part 1, gives us that any single step of evaluation
under the weak semantics that begins with a = ◦ is also valid under the strong semantics.
Thus, ◦; H ;T →s a′; H ′; T ′ must be true. By combining this with fact (A) from above, then
we know that ◦; ·; e →n

s a′; H ′; T ′ where TA ‖ e′′i ‖ TB = T ′. If a′ = • then ei entered a
transaction, and the proof conditions are satisfied when we let k = 0.

2. If a = • then by correct-atomic(•, TA ‖ ei ‖ TB), we know that there is some active thread
ei ∈ T . If T contains more than one thread, then all other threads, ej are not active. By
assumption, either the active ei takes a step or (if it exists) a not-active ej takes a step.

(a) ei took the last weak step, and active(ei). Either ei exited the atomic block on the next
weak step, or ei did some evaluation within the transaction.

– If ei’s next step was to exit atomic, then by assumption the final weak evaluation rule
has the following structure: •; H ;T →w ◦; H ′; T ′. Lemma 3.7, part 2, gives us that this
evaluation is equivalent under strong evaluation, so it must be that •; H ; T →s ◦; H ′; T ′.
By combining this statement with fact (A) above, we know that ◦; ·; e →n

s ◦; H ′; T ′.

– ei did some evaluation inside a transaction and did not exit the transaction. Thus the
final weak evaluation rule has the following structure: •; H ; T →w •; H ′; T ′. We also
know that active(ei) so Lemma 3.7, part 3, gives us that this step is equivalent under
strong evaluation, so it must be that •; H ; T →s •; H ′; T ′. By combining this statement
with fact (B) above, we know that there is a sequence of n steps of evaluation that
ends with ◦; H ; TA ‖ ei ‖ TB →s •; H ; (TA ‖ e′i ‖ TB) →k+1

s •; H ; (TA ‖ e′′i ‖ TB) where
TA ‖ e′′i ‖ TB = T . Because active transactions do not spawn threads at the top level,
we know that T = T ′.

(b) If the next step was some ej where not-active(ej), then we need to show that this step can
be moved before ei enters the transaction (by symmetry, we assume TB = ej ‖ T ′

B). By
applying Lemma 3.2, k times and using fact (B) above, we can get the following order of
evaluation:
◦; H ; (TA ‖ ei ‖ TB) →s •; H ; (TA ‖ e′i ‖ ej ‖ T ′

B) →w •; H ; (TA ‖ e′i ‖ e′j ‖ T ′

B) →k
s

•; H ; (TA ‖ e′′i ‖ e′j ‖ T ′

B), where TA ‖ e′′i ‖ e′j ‖ T ′

B = T .
Next, it is possible to move the step for ej before ei enters the transaction using Lemma
3.6, which gives:
◦; H ; (TA ‖ ei ‖ ej ‖ T ′

B) →w ◦; H ; (TA ‖ ei ‖ e′j ‖ T ′′

B) →s •; H ; (TA ‖ e′i ‖ e′j ‖ T ′′

B) →k
s

•; H ; (TA ‖ e′′i ‖ e′j ‖ T ′′

B), where TA ‖ e′′i ‖ e′j ‖ T ′′

B = T .
Then, Lemma 3.7, part 1 gives that the step for ej when a = ◦ is equivalent to the same
step under strong semantics, giving the desired result:
◦; H ; (TA ‖ ei ‖ ej ‖ T ′

B) →s ◦; H ; (TA ‖ e′i ‖ e′j ‖ T ′′

B) →s •; H ; (TA ‖ e′i ‖ e′j ‖ T ′′

B) →k
s

•; H ; (TA ‖ e′′i ‖ e′j ‖ T ′′

B), where TA ‖ e′′i ‖ e′j ‖ T ′′

B = T .

Theorem 3.9 (Weak and Strong Equivalence) If ⊢ ◦; ·; e (using the type-system from Section 3.3),
then ◦; ·; e →n

s a; H ; T iff ◦; ·; e →n
w a; H ; T .

Proof There are two directions to prove for the iff statement:

• “strong implies weak”: Every trace using the strong evaluation rules is an equivalent trace under
the weak evaluation rules. This is because the weak rules allow a strict super set of traces.

• “weak implies strong”: Follows as a corollary to Lemma 3.8 (the first conclusion of that lemma is
what we need).

28

4 The StrongBasic language

To explore similar equivalence results to even weaker syntax for software transactions, we simplify the
StrongNestedParallel language by removing internal parallelism and retain the top-level parallelism. We
call this simplified language StrongBasic.

4.1 Syntax

To summarize the syntax for the StrongBasic language, we redefine e by removing the syntax for spawn0,
spawn1, and spawn2 from StrongNestedParallel and add a new generic form of top-level thread creation:
spawn. We have also replaced inatomic with appropriately simplified syntax.

It is valuable to note that the new syntax for inatomic does not contain an internal version of a,
because there are no internally parallel threads. This results in some interesting features in the updated
typing rule in Section 4.3.

e ::= c | l | x | e1; e2 | e1 := e2 | ref e |!e | λx.e | e1 e2

| spawn e | atomic e | inatomic(e)

4.2 Dynamic Evaluation

4.2.1 Whole Program Evaluation

Since we have removed the two internally parallel types of spawn from StrongNestedParallel, we can only
create a single, top-level, inductive T whenever e takes a step. This changes the form program rule only
slightly (to accommodate the new evaluation form for e).

a; H ;T → a′; H ′; T ′

program

a; H ; e → a′; H ′; e′; T

a; H ;TA ‖ e ‖ TB → a′; H ′; TA ‖ e′ ‖ TB ‖ T

4.2.2 Expression Evaluation

Removing the internally parallel versions of spawn changes the judgment form of e in the intuitive manner.
We have included the seq-1 and strong-get rules as examples of how to modify the other evaluation
rules to handle empty and inductive values of T . We have also modified the enter atomic, inatomic,
and exit atomic rules to reflect the syntax changes for atomic blocks and introduced a new spawn rule
to accommodate the syntax changes for thread creation. Although we removed the inatomic helper,
spawn 0, spawn 1, and spawn 2 rules, note the similarities between spawn in this language and spawn

0 in the StrongNestedParallel language.

a; H ; e → a′; H ′; e′; T

seq-1

a;H ; e1 → a′; H ′; e′1; T

a; H ; e1; e2 → a′; H ′; e′1; e2; T

strong-get

◦; H ; !l → ◦; H ;H(l); ·

spawn

a; H ; spawn e → a; H ; 0; e

enter atomic

◦; H ; atomic e → •; H ; inatomic(e); ·

inatomic

a; H ; e → a′; H ′; e′; ·

•; H ; inatomic(e) → •; H ; inatomic(e′); ·

exit atomic

•; H ; inatomic(v) → ◦; H ; v; ·

29

4.3 Typecheck e

As with the syntax and semantics changes, we make minor adjustments to type-checking e under ε. We
remove the typing rules for no-longer-existent syntax (spawn0, spawn1, spawn2) add a rule for the new
spawn syntax, and modify the inatomic rule to accommodate the syntax changes. Note the difference in
the t-inatomic rule’s use of correct-atomic. We still require that there be a meaningful correspondence
between e and a, although without T2 the syntax does not actually need to keep track of an internal
value of a for coordination purposes.

Γ; ε ⊢ e : τ

t-spawn

Γ; 0 ⊢ e : τ

Γ; 0 ⊢ spawn e : int

t-inatomic

Γ; 2 ⊢ e : τ correct-atomic(a, e)

Γ; ε ⊢ inatomic(e) : τ

4.4 Other Typing Rules

No Changes.

4.5 Activeness

4.5.1 Not-Active(e)

We remove the not-active(e) rules for deleted syntax (spawn0, spawn1, and spawn2). We add a rule for
the added syntax (spawn):

not-active(e)

not-active(e)

not-active(spawn e)

4.5.2 Active(e)

Similarly, we update the active(e) rule for inatomic:

active(e)

active(inatomic(e))

4.5.3 Correct Atomic State of T

No Changes.

4.6 Type Safety

It is not necessary to show that this language is typesafe.

4.7 Equivalence

30

5 The StrongUndo language

This language is like StrongBasic in that it has strong atomicity and no internal parallelism, but like
WeakUndo in that it has logging-and-rollback. This combination is bizarre by itself, but our purpose
in defining this language is to stage the equivalence of WeakUndo to StrongBasic by proving WeakUndo

equivalent to StrongUndo, which largely involves serializing transactions much like the proof of equivalence
between StrongNestedParallel and Weak, and proving the equivalence of StrongUndo to WeakUndo, which
largely involves proving that rolled back transactions have no effects other than to allocate unused heap
locations.

To make matters even easier, StrongUndo is “very” strong, meaning that if one thread is active,
then no other thread can take any step (by contrast StrongBasic allows steps like beta-reductions to be
interleaved with transactions).

We also, for now at least, prevent nested transactions by restricting the type system. This dramatically
simplifies the equivalence proof, though we believe the more general result holds. Many of the lemmas
stated for equivalence is false and/or too narrow in the presence of nested transactions.

This language is probably easier to understand after WeakUndo, but putting it in-between StrongBasic

and WeakUndo makes sense from the perspective of the equivalence proof. Note that in both languages,
logs, which are heaps, are treated syntactically. In particular, they may have repeated elements. More
specifically, when H is used as a heap (e.g., as part of a program state), H, l 7→ v or HH ′ is partial-map
update, with the new bindings on the right shadowing those on the left. However, when H is used as a
log, H, l 7→ v or HH ′ is treated as syntactic extension, so if/when we rollback using the log, the leftmost
binding for any l will “win”. This abuse of notation will hopefully be clear from context; perhaps the
conference-paper should not overload juxtaposition in this way.

5.1 Syntax

The syntax is the same as for WeakUndo:

e ::= c | l | x | e1; e2 | e1 := e2 | ref e |!e | λx.e | e1 e2

| spawn e | atomic e | inatomic(a, e, Hlog, e0) | inrollback(Hlog, e0)

5.2 Dynamic Evaluation

The form of the judgments and the treatment of logs is the same as for WeakUndo, but the treatment of
a is like StrongBasic, but “even stronger”.

5.2.1 Whole Program Evaluation

a; H ;T → a′; H ′; T ′

program

a;H ; e → a′; H ′; e′; T ;Hlog

a;H ; TA ‖ e ‖ TB → a′; H ′; TA ‖ e′ ‖ TB ‖ T

5.2.2 Expression Evaluation

Not shown are rules set-1, set-2, ref-1, get-1, app-1 and app-2, which are analogous to seq-1.

a; H ; e → a′; H ′; e′; T ;Hlog

31

seq-1

a; H ; e1 → a′; H ′; e′1; T ;Hlog

a; H ; (e1; e2) → a′; H ′; (e′1; e2); T ;Hlog

seq-v

◦; H ; (v; e2) → ◦; H ; e2; ·; ·

alloc

l 6∈ Dom(H)

◦; H ; ref v → ◦; H, l 7→ v; l; ·; ·

beta

◦; H ; (λx.e) v2 → ◦; H ; e[v2/x]; ·; ·

spawn

◦; H ; spawn e → ◦; H ; 0; e; ·

set-eager

◦; H ; l := v → ◦; H, l 7→ v; v; ·; l 7→ H(l)

get-eager

◦; H ; !l → ◦; H ; H(l); ·; ·

enter atomic

◦; H ; atomic e → •; H ; inatomic(◦, e, ·, e); ·; ·

inatomic

a; H ; e → a′; H ′; e′; ·; H ′

log

•; H ; inatomic(a, e, Hlog, e0) → •; H ′; inatomic(a′, e′, HlogH
′

log, e0); ·; ·

enter rollback

•; H ; inatomic(◦, e, Hlog, e0) → •; H ; inrollback(Hlog, e0); ·; ·

do rollback

•; H ; inrollback(Hlog, l 7→ vold, e0) → •; H, l 7→ vold; inrollback(Hlog, e0); ·; ·

complete rollback

•; H ; inrollback(·, e0) → ◦; H ; atomic e0; ·; ·

commit

•; H ; inatomic(◦, v, Hlog, e0) → ◦; H ; v; ·; Hlog

5.3 Typecheck e

The type system is the same as for WeakUndo except we change t-atomic and t-inatomic to prevent
nested transactions, simplifying the equivalence proof for now. The essential change is putting 0 in the
rules’ conclusions instead of ε; also notice the a inside inatomic is always ◦.

Γ; ε ⊢ e : τ

t-atomic

Γ; 2 ⊢ e : τ

Γ; 0 ⊢ atomic e : τ

t-inrollback

Γ; 2 ⊢ e0 : τ Γ ⊢ Hlog : Γ′ Γ extends Γ′

all2(Γ′) not-active(e0)

Γ; 0 ⊢ inrollback(Hlog, e0) : τ

t-inatomic

Γ; 2 ⊢ e : τ
correct-atomic(◦, e) Γ; 2 ⊢ e0 : τ not-active(e0) Γ ⊢ Hlog : Γ′ Γ extends Γ′

all2(Γ′)

Γ; 0 ⊢ inatomic(◦, e, Hlog, e0) : τ

5.4 Other Typing Rules

No changes

5.5 Activeness

The type system is the same as for WeakUndo. However, it’s convenient when stating lemmas to have a
form of the active judgment that also computes what, if we were to enter rollback, we would use for the
log and the rolled-back expression, as well as whether or not we are already in rollback. We use ir for
“in rollback” and ia for “in atomic” — any active expression is one or the other.

32

r ::= ir | ia

activeplus(e; Hlog; e0; r)

activeplus(inatomic(◦, e, Hlog, e0); Hlog; atomic e0; ia) activeplus(inrollback(Hlog, e0); Hlog; atomic e0; ir)

activeplus(e1; Hlog; e0; r)

activeplus((e1; e2); Hlog; (e0; e2); r)

activeplus(e1; Hlog; e0; r)

activeplus(e1 := e2; Hlog; e0 := e2; r)

activeplus(e1; Hlog; e0; r)

activeplus(v := e1; Hlog; v := e0; r)

activeplus(e1; Hlog; e0; r)

activeplus(ref e1; Hlog; ref e0; r)

activeplus(e1; Hlog; e0; r)

activeplus(!e1; Hlog; !e0; r)

activeplus(e1; Hlog; e0; r)

activeplus(e1 e2; Hlog; e0 e2; r)

activeplus(e1; Hlog; e0; r)

activeplus(v e1; Hlog; v e0; r)

5.6 Type Safety

The type-safety proof is almost the same as for WeakUndo, but we have to account for changes to
the dynamic semantics (being “very” strong instead of weak) and the type system (preventing nested
transactions). We summarize the relevant issues here (this probably deserves fleshing out a bit):

• Progress: The stricter type system cannot be a problem. For the stricter dynamic semantics, note
that when a = • the proof for WeakUndo always chooses the active thread to take a step, which we
can still do, i.e., we never needed the “weak” in weak-atomicity to take a step.

• Preservation: The stricter dynamic semantics cannot be a problem. For the stricter type system, we
need to strengthen Single Thread Preservation to argue as follows: The third bullet in conclusion
6 now reads, “If a = ◦ and a′ = • then not-active(e) and active(e′) and ǫ = 0.” In other words,
the expression can enter a transaction only if it type-checked under effect 0 before the step. This
is relevant in various cases of the proof:

– If e = atomic e1, then under our new t-atomic ǫ = 0, so the conclusion holds.

– If e steps via inatomic, then under our new t-inatomic, the inner expression steps with
◦ and type-checks under 2, so inductively, the inner step must produce ◦ and preserve the
not-activeness of the inner expression.

– For the various inductive cases, we need that the subexpression type-checks under the same
effect as the whole expression, so we can still conclude the third bullet.

The key new corollary of Preservation, which arises directly from inspection of t-inatomic is that the
body of an inatomic expression is not-active.

5.7 Equivalence

We show only that traces in this language are “mostly” possible in StrongBasic. The other direction is
nontrivial (since we are “very” strong instead of strong), but showing traces in StrongBasic are possible
in WeakUndo is trivial, i.e., we do not use this intermediate language for that direction. By “mostly”
we must account for:

• Allocations inside transactions that rollback lead to garbage in the heap for StrongUndo that will
not be there in StrongBasic, so we allow StrongUndo to produce an extension of the heap produced
under StrongBasic.

• When StrongUndo is doing a rollback there is not corresponding trace in StrongBasic, so we have
to say the state after the entire rollback is reachable under StrongBasic. Relatedly, rollback means
StrongBasic may need to take fewer steps to reach a state reached by StrongUndo.

• Though the source languages are the same, inatomic expressions in StrongBasic do not have logs.

33

The heart of the proof is showing that rollback is correct, which requires a strengthened induction
hypothesis to demonstrate that at any point in a transaction, the logging can be used to return to an
appropriate heap. Stating this correctly is complicated significantly by nested transactions (hence we
banned them) and moderately by the “allocations inside transactions” issue. This issues motivate some
of the definitions that precede the key lemmas.

We first define a simple “translate” metafunction for removing the log. The idea is that if translate(e1; e2),
then e1 in StrongUndo corresponds to e2 in StrongBasic. The metafunction is partial (e.g., expressions
doing rollback have no counterpart) and encodes the very simple idea of simplifying the at-most-one
inatomic expression in a program. We also extend it to thread-pools in the natural way.

Note we write a; H ; e → a′; H ′; e′; T ;Hlog for a step in StrongUndo and a; H ; e →no a′; H ′; e′; T for a
step in StrongBasic, and similarly for top-level evaluation.

translate(e1; e2)

not-active(e)

translate(e; e)

not-active(e)

translate(inatomic(◦, e, Hlog, e0); inatomic(e))

translate(e1; e
′

1)

translate((e1; e2); (e
′

1; e2))

translate(e1; e
′

1)

translate(e1 := e2; e
′

1 := e2)

translate(e1; e
′

1)

translate(v := e1; v := e′1)

translate(e1; e
′

1)

translate(ref e1; ref e′1)

translate(e1; e
′

1)

translate(!e1; !e
′

1)

translate(e1; e
′

1)

translate(e1 e2; e
′

1 e2)

translate(e1; e
′

1)

translate(v e1; v e′1)

Definition 5.1 (Heap Extension) H ′ extends H if for all l ∈ Dom(H), H ′(l) = H(l).

Definition 5.2 (Rollsbackto) The definition of rollsbackto(Hpre; Hlog; Hpost) defines when doing roll-
back with log Hlog should transform Hpre to Hpost. We have two inference rules:

rollsbackto(H ; ·; H)

l ∈ Dom(H) rollsbackto(H, l 7→ v; H ′; H ′′)

rollsbackto(H ;H ′, l 7→ v; H ′′)

The H, l 7→ v is in the partial-map sense and the H ′, l 7→ v is in the syntactic-log sense.

Lemma 5.3 (Rollback Extension) If rollsbackto(H ;Hlog; H
′) and l 6∈ Dom(H),

then rollsbackto(H, l 7→ v; Hlog; H
′, l 7→ v)

Proof By induction on the derivation of rollsbackto(H ;Hlog; H
′)

Lemma 5.4 (Active-Plus Determinism) active(e) if and only if there exist unique Hlog, e0, and r
such that activeplus(e; Hlog; e0; r).

Proof By induction on the derivation of not-active(e). The base cases are immediate and the inductive
cases are straightforward.

Lemma 5.5 (Starting Inactive) If:

1. Γ ⊢ H : Γ

2. Γ; ǫ ⊢ e : τ

3. not-active(e)

4. ◦; H ; e → a; H ′; e′; T ; H ′

log

Then ◦; H ; e →no a; H ′; e′′; T where translate(e′; e′′).

Proof By induction on the derivation of assumption 4, with cases on the bottommost rule. Note in the
immediate cases except enter-atomic, not-active(e) and Preservation ensure not-active(e′) so e′′ = e′.

• seq-1 Let e be e1; e2 and e′ = e′1; e2. Inverting assumptions, 2, 3, and 4 ensures induction applies and
◦; H ; e1 →no a;H ′; e′′1 ; · where translate(e′1; e

′′

1). So we can derive ◦; H ; (e1; e2) →no a; H ′; (e′′1 ; e2); ·
and translate(e′1; e2; e

′′

1 ; e2).

34

• set-1 Analogous to seq-1 with e being e1 := e2

• set-2 Analogous to seq-1 with e being v := e1

• ref-1 Analogous to seq-1 with e being ref e1

• get-1 Analogous to seq-1 with e being !e1

• app-1 Analogous to seq-1 with e being e1 e2

• app-2 Analogous to seq-1 with e being v e1

• seq-v Immediate; assumption 4 ensures we can take the same step in StrongBasic.

• alloc Immediate; assumption 4 ensures we can take the same step in StrongBasic.

• beta Immediate; assumption 4 ensures we can take the same step in StrongBasic.

• spawn Immediate; assumption 4 ensures we can take the same step in StrongBasic.

• set-eager Immediate; assumption 4 ensures we can take the same step in StrongBasic.

• get-eager Immediate; assumption 4 ensures we can take the same step in StrongBasic.

• enter-atomic Immediate; assumption 4 ensures we can take a similar step in StrongBasic; the
difference is mediated by translate(e′; e′′).

• inatomic Vacuous given assumption 4 (◦ vs. •)

• enter rollback Vacuous given assumption 4

• do rollback Vacuous given assumption 4

• complete rollback Vacuous given assumption 4

• commit Vacuous given assumption 4

Lemma 5.6 (Becoming Active) If:

1. Γ ⊢ H : Γ

2. Γ; ǫ ⊢ e : τ

3. not-active(e)

4. ◦; H ; e → •; H ′; e′; T ; H ′

log

Then H ′ = H, T = ·, H ′

log = ·, and activeplus(e′; ·; e; ia).

Proof By induction on the derivation of assumption 4, with cases on the bottommost rule used:

• enter atomic: by inspection of the rule H ′ = H , T = ·, and H ′

log = ·. Furthermore, e has the form
atomic e1 and e′ is is inatomic(◦, e1, ·, e1). We can derive activeplus(inatomic(◦, e1, ·, e1); ·; atomic e1; ia),
which is what we need since e is atomic e1.

• seq-1 Let e be e1; e2 and e′ = e′1; e2. Inverting assumptions, 2, 3, and 4 ensures induction applies so
H ′ = H , T = ·, H ′

log = ·, and activeplus(e′1; ·; e1; ia). So we can derive activeplus(e′1; e2; ·; e1; e2; ia),
which is what we need since e is e1; e2.

• set-1, set-2, ref-1, get-1, app-1, and app-2 are analogous to seq-1.

• seq-v, alloc, beta, spawn, set-eager, get-eager, inatomic, enter rollback, do rollback,
complete rollback, and commit are all vacuous since we need to step from a state with ◦ to a
state with •.

Lemma 5.7 (Becoming Inactive) If:

1. Γ ⊢ H : Γ

2. Γ; ǫ ⊢ e : τ

3. activeplus(e; Hlog; e0; r)

4. •; H ; e → ◦; H ′; e′; T ; H ′

log

Then:

35

• If r = ir, then Hlog = H ′

log = ·,, T = ·, H ′ = H, and e′ = e0.

• If r = ia, then H ′ = H and •; H ; e′′ →no ◦; H ; e′; T where translate(e; e′′).

Proof By induction on the derivation of assumption 4, with cases on the bottommost rule used:

• complete rollback: By inspecting the form of the rule and inverting assumption (3), e is
inrollback(·, e0) and e′ is atomic e0. The second result holds vacuously; we can derive only
activeplus(e; ·; atomic e0; ir). The first result then follows directly form the form of the complete

rollback rule.

• commit: By inspecting the form of the rule and inverting assumption (3), there must exist a v such
that e is inatomic(◦, v, Hlog, e0). The first result holds vacuously; we can derive only
activeplus(e; Hlog; e0; ia) The second result holds because translate(e; e′′) ensures e′′ is inatomic(v)
and we can derive •; H ; inatomic(v) →no ◦; H ; v; · (note from the form of the rule H ′ = H and
T = ·).

• seq-1: Let e be e1; e2 and e′ = e′1; e2. Inverting assumptions, 2, 3, and 4 ensures induction applies
so:

– If r = ir, then Hlog = H ′

log = ·, T = ·, and where e′1 = e′0 where e0 = e′0; e2. Hence we can use
•; H ; e1 → ◦; H ; e′0; ·; · to derive •; H ; e1; e2 → ◦; H ; e′0; e2; ·; ·.

– If r = ia, then H ′ = H and •; H ; e′′1 →no ◦; H ; e′1; T where translate(e1; e
′′

1). Hence we can
derive •; H ; e′′1 ; e2 →no ◦; H ; e′1; e2; T and translate(e; e′′) ensures e′′ is e′′1 ; e2.

• set-1, set-2, ref-1, get-1, app-1, and app-2 are analogous to seq-1.

• seq-v, alloc, beta, spawn, set-eager, get-eager, inatomic, enter-rollback, do-rollback,
and enter-atomic are all vacuous since we need to step from a state with • to a state with ◦.

Lemma 5.8 (Correct Logging Inside Transactions) If:

1. Γ ⊢ H : Γ

2. Γ; 2 ⊢ e : τ

3. not-active(e)

4. ◦; H ; e → ◦; H ′; e′; ·; H ′

log

5. rollsbackto(H ; Hlog; H0)

then ∃H ′

0 such that H ′

0 extends H0 and rollsbackto(H ′; HlogH
′

log; H
′

0). (Note by HlogH
′

log we mean syntactic
extension.)

Proof By induction on the derivation of ◦; H ; e → ◦; H ′; e′; ·; ·H ′

log, with cases for the bottommost rule:

• seq-1 Let e be e1; e2 By inverting the derivations of assumptions 2, 3, and 4 we have Γ; 2 ⊢ e1 : τ ,
not-active(e1), and ◦; H ; e1 → ◦; H ′; e′1; ·; ·H

′

log for some e′1. So the result follows from induction.

• set-1 Analogous to seq-1 with e being e1 := e2

• set-2 Analogous to seq-1 with e being v := e1

• ref-1 Analogous to seq-1 with e being ref e1

• get-1 Analogous to seq-1 with e being !e1

• app-1 Analogous to seq-1 with e being e1 e2

• app-2 Analogous to seq-1 with e being v e1

• seq-v The result follows from assumption 5 letting H ′

0 = H0 since H ′ = H and H ′

log = ·.

• alloc The result follows from assumption 5 and the Rollback Extension Lemma letting H ′

0 =
H0, l 7→ v since this H ′

0 extends H0 and H ′

log = ·.

• beta Analogous to seq-v

• spawn Vacuous given assumption 4

36

• set-eager Let e be l := v, H ′ = H, l 7→ v (in the partial-map sense) and H ′

log = l 7→ H(l). Letting
H ′

0 = H0, we need rollsbackto(H, l 7→ v; Hlog, l 7→ H(l); H0). From the definition of rollsbackto, it
suffices to show rollsbackto(H, l 7→ v, l 7→ H(l); Hlog; H0), which is assumption 4 recalling that the
left heap is treated as a partial map.

• get-eager Analogous to seq-v

• enter atomic Vacuous given assumption 4

• inatomic Vacuous given assumption 4

• enter rollback Vacuous given assumption 4

• do rollback Vacuous given assumption 4

• complete rollback Vacuous given assumption 4

• commit Vacuous given assumption 4

Lemma 5.9 (Staying Active) If:

1. Γ ⊢ H : Γ

2. Γ; ǫ ⊢ e : τ

3. activeplus(e; Hlog; e0; r)

4. •; H ; e → •; H ′; e′; T ; H ′′

log

5. rollsbackto(H ; Hlog; H0)

Then there exist H ′

0, H ′

log, and r′ such that:

1. T = · and H ′′

log = ·

2. rollsbackto(H ′; H ′

log; H
′

0) and H ′

0 extends H0

3. activeplus(e′; H ′

log; e0; r
′)

4. If r = ir, then r′ = ir.

5. If r = r′ = ia, then •; H ; eno →no •; H ′; e′no; T where translate(e; eno) and translate(e′; e′no).

Proof By induction on the derivation of assumption (4), proceeding by cases on the bottommost rule
used:

• inatomic Inverting assumptions (2), (3), and (4), e has the form inatomic(◦, e1, Hlog, e0) and e′

has the form inatomic(◦, e′1, HlogHlog1
, e0) where not-active(e1), Γ; 2 ⊢ e1 : τ , and ◦; H ; e1 →

◦; H ′; e′1; ·; Hlog1
. So the Correct Logging Inside Transactions Lemma ensures there exists an H ′

0

that extends H0 and rollsbackto(H ; HlogHlog1
; H ′

0), satisfying result (2). Results (1) and (3) are
immediate from the form of the rule. Result (4) is vacuous because r = ia. Result (5) can be
derived directly from ◦; H ; e1 → ◦; H ′; e′1; ·; Hlog1

.

• enter rollback Assumption (4) ensures e has the form inatomic(◦, e1, Hlog, e0) and e′ has the form
inrollback(Hlog, e0). Also H ′ = H and result (1) is immediate. Letting H ′

log = Hlog and H ′

0 = H0,
result (2) is assumption (5). Further letting r′ = ir, result (3) can be derived directly. Result (4) is
vacuous because r = ia. Result (5) is vacuous because r′ = ir.

• do rollback Assumption (4) ensures e has the form inrollback(Hlog1
, l 7→ v, e0) and e′ has the form

inrollback(Hlog1
, e0). Also H ′ = H, l 7→ v and result (1) is immediate. Letting H ′

log = Hlog1
and

H ′

0 = H0, inverting assumption (5) ensures result (2). Letting r′ = ir, result (3) can be derived
directly and result (4) is immediate. Result (5) is vacuous because r = ir.

• seq-1 Let e be e1; e2 and e′ = e′1; e2. Inverting assumptions, 2, 3, and 4 ensures induction ap-
plies. Inductive results (1), (2), and (4) are the results (1), (2), and (4) we need. For result
(3), activeplus(e′1; H

′

log; e
′

0; r
′) (where e0 is e′0; e2) lets us derive activeplus((e′1; e2); H

′

log; (e
′

0; e2); r
′).

Result (5) follows from induction much like in the Starting Inactive Lemma.

• set-1, set-2, ref-1, get-1, app-1, and app-2 are analogous to seq-1.

• seq-v, alloc, beta, spawn, set-eager, get-eager, enter atomic, complete rollback, and
commit are all vacuous since we need to step from a state with • to a state with •.

37

Lemma 5.10 (Only Active Steps)

1. If not-active(e), then there is no a′, H ′, e′, H ′

log, T ′ such that •; H ; e → a′; H ′; e′; T ′; H ′

log.

2. If not-active(T), then there is no a′, H ′, T ′ such that •; H ; T →rb a′; H ′; T ′.

Proof 1. By induction on the derivation of not-active(e)

2. By induction on the derivation of not-active(T)

Lemma 5.11 (Heap Strengthening)

1. If a′; H ′; e′ → a; H ; e;T ; Hlog, Γ′

1 ⊢ H ′

1 : Γ′

1, Γ′

1; ǫ ⊢ e′ : τ , and H ′ extends H ′

1, then there exists a
H1 such that a′; H ′

1; e
′ → a; H1; e; T ;Hlog and H extends H1.

2. If a′; H ′; T ′ →rb a; H ; T , Γ′

1 ⊢ H ′

1 : Γ′

1, Γ′

1; 0 ⊢ T , and H ′ extends H ′

1, then there exists an H1 such
that a′; H ′

1; T
′ →rb a; H1; T and H extends H1.

Proof 1. By induction on the derivation of a′; H ′; e′ → a; H ; e; T ;Hlog, proceeding by cases on the
last rule used:

• seq-1, set-1, set-2, ref-1, get-1, app-1, app-2 are all by straightforward induction.

• seq-v, beta, spawn, enter-atomic, enter-rollback, complete rollback, and commit

are all immediate because H ′ = H and its from does not affect applicability of the rule.

• set-eager and get-eager follow because Γ′

1; 0 ⊢ e′ : τ ensures the label accessed is in
Dom(H ′

1). H1 is the restriction of H to the domain of H ′

1.

• alloc follows because if l 6∈ Dom(H ′), then l 6∈ Dom(H ′

1). Let H1 be the restriction of H to
the domain of H ′

1.

• inatomic follows from induction. Note T = · and the log from the induction is not the resulting
Hlog, which is ·.

• do rollback follows because Γ′

1; 0 ⊢ e′ : τ ensures the label written to is in Dom(H ′

1) (since
the typing rule for inrollback requires the log’s domain to be a subset of the heap’s domain).
We choose H1 to be the restriction of H to the domain of H ′

1.

2. Follows immediately from part (1) since the top-level steps when some thread takes a step

Lemma 5.12 (Top-Level Equivalence) If ⊢ ◦; ·; esrc and ◦; ·; esrc →∗

rb a; H ; T , then there exist H1,
H2, H3, Γ1, Γ2, e1, e2, and k such that:

1. H extends H1, Γ1 ⊢ H1 : Γ1, and Γ1; 0 ⊢ T

2. If a = ◦, then ◦; ·; esrc →∗

no ◦; H1; T

3. If a = •, activeplus(e; Hlog; e0; ia), and T = TA ‖ e ‖ TB, then

(a) If r = ia, then translate(e; e1) and ◦; ·; esrc →∗

no •; H1; TA ‖ e1 ‖ TB.

(b) The assumed step-sequence ends with k steps where the state has the form •; H ′; T ′ (i.e., “a is
•”) as follows:

i. ◦; ·; esrc →∗

rb ◦; H2; TA ‖ e0 ‖ TB

ii. ◦; H2; TA ‖ e0 ‖ TB →rb •; H2; TA ‖ e2 ‖ TB

iii. •; H2; TA ‖ e2 ‖ TB →k
rb •; H ;TA ‖ e ‖ TB

(c) Γ2 ⊢ H2 : Γ2 and Γ2; 0 ⊢ TA ‖ e0 ‖ TB

(d) rollsbackto(H ;Hlog; H3) and H3 extends H2

Proof (Notice that (4b), (4c), and (4d) are nonvacuous for both values of r.)
The proof is by induction on the number of steps taken for ◦; ·; esrc →∗

rb a; H ; T .
For 0 steps, a = ◦, H = ·, and T = esrc. Result (1) follows by letting H1 = · and Γ1 = ·. Result (2)

is immediate by taking 0 steps. Results (3) and (4) hold vacuously.
For n > 0 steps, there exist a′, H ′, and T ′ such that ◦; ·; esrc →∗

rb a′; H ′; T ′ and a′; H ′; T ′ →rb a; H ; T .
So by induction there exist H ′

1, H ′

2, H ′

3, Γ′

1, Γ′

2, e′1, e′2, and k′ such that:

38

1. H ′ extends H ′

1, Γ′

1 ⊢ H ′

1 : Γ′

1, and Γ′

1; 0 ⊢ T ′

2. If a′ = ◦, then ◦; ·; esrc →∗

no ◦; H ′

1; T
′

3. If a′ = •, T ′ = T ′

A ‖ e′ ‖ T ′

B , and activeplus(e′; H ′

log; e
′

0; r), then

(a) If r = ia, then translate(e′; e′1) and ◦; ·; esrc →∗

no •; H ′

1; T
′

A ‖ e′1 ‖ T ′

B.

(b) The assumed step-sequence ends with k′ steps where the state has the form •; H ′′; T ′′ (i.e., “a
is •”) as follows:

i. ◦; ·; esrc →∗

rb ◦; H ′

2; T
′

A ‖ e′0 ‖ T ′

B

ii. ◦; H ′

2; T
′

A ‖ e′0 ‖ T ′

B →rb •; H ′

2; T
′

A ‖ e′2 ‖ T ′

B

iii. •; H ′

2; T
′

A ‖ e′2 ‖ T ′

B →k′

rb •; H ′; T ′

A ‖ e′ ‖ T ′

B

(c) Γ′

2 ⊢ H ′

2 : Γ′

2 and Γ′

2; 0 ⊢ T ′

A ‖ e′0 ‖ T ′

B

(d) rollsbackto(H ′; H ′

log; H
′

3) and H ′

3 extends H ′

2

For result (1): Γ′

1 ⊢ H ′

1 : Γ′

1, Γ′

1; 0 ⊢ T ′, a′; H ′; T ′ →rb a; H ;T , and the Heap Strengthening Lemma
ensure there exists an H0 such that a′; H ′

1; T
′ →rb a; H0; T and H extends H0. Therefore, by Type Safety

there exists Γ0 such that Γ0 ⊢ H0 : Γ0 and Γ0; 0 ⊢ T . If we choose H1 = H0 and Γ1 = Γ0, then result
(1) is satisfied. However, in the case below where a′ = •, a = ◦, and r = ir, we will choose a different H1

and Γ1, requiring a different justification of result (1).
We continue by cases on a′ and a, using from the argument above that a′; H ′

1; T
′ →rb a;H1; T .

• If a′ = a = ◦, then result (3) holds vacuously. For result (2), by inversion on ◦; H ′

1; T
′ →rb ◦; H1; T

and Γ′

1; 0 ⊢ T ′, there exist TA, TB , e′, e, τ , T ′′, and Hlog such that T ′ = TA ‖ e′ ‖ TB, T = TA ‖
e ‖ TB ‖ T ′′, Γ′

1; 0 ⊢ e′ : τ , not-active(e′), and ◦; H ′

1; e
′ → ◦; H1; e;T

′′; Hlog. So by the Starting
Inactive Lemma, ◦; H ′

1; e
′ →no ◦; H1; e

′′; T ′′Hlog where translate(e; e′′). But Type-Safety and a = ◦
ensure not-active(e), so e′′ = e. So we can derive ◦; H ′

1; T
′ →no ◦; H1; T . Together with inductive

result (2), this gives us result (2).

• If a′ = ◦ and a = •, then result (2) holds vacuously. For result (3), by inversion on ◦; H ′

1; T
′ →rb

•; H1; T and Γ′

1; 0 ⊢ T ′, there exist TA, TB, e′, e, τ , T ′′, and Hlog such that T ′ = TA ‖ e′ ‖
TB , T = TA ‖ e ‖ TB ‖ T ′′, Γ′

1; 0 ⊢ e′ : τ , not-active(e′), not-active(TA), not-active(TB), and
◦; H ′

1; e
′ → •; H1; e; T

′′; Hlog. So by the Preservation Lemma, active(e). So by the Becoming Active
Lemma, activeplus(e; ·; e′; ia) and by the Activeplus-Determinism Lemma and not-active(TA ‖ TB),
it suffices to show results (a)–(d) where Hlog = · and e0 = e′.

(a) Follows from the Starting Inactive Equivalence Lemma and inductive result (2) (like in the
a = a′ = ◦ case).

(b) Follows immediately letting e0 = e′, H2 = H ′, e2 = e, and k = 0.

(c) Follows from Type-Safety (inverting ⊢ •; H ′; T ′), i.e., that the state type-checked before the
step, letting Γ2 = Γ′.

(d) Follows from Hlog = · and H2 = H ′ = H by letting H3 = H2.

• If a = • and a′ = ◦, then result (3) holds vacuously. For result (2), we use inductive result (3)
and the Only Active Steps Lemma to determine only thread e′ steps. We also use, from Type
Safety, Γ′

1 ⊢ H ′

1 : Γ′

1 and Γ′

1; 0 ⊢ e′ : τ . So the conditions of the Becoming Inactive Lemma apply,
providing:

– If r = ir, then H1 = H ′

1, H ′

log = ·, and e = e′0.

– If r = ia, then H1 = H ′

1 and •; H ′

1; e
′′ →no ◦; H1; e; T

′′ where translate(e′; e).

We need to show ◦; ·; esrc →∗

no ◦; H1; T We proceed by cases on r:

– If r = ir, then T is T ′

A ‖ e′0 ‖ T ′

B. Furthermore activeplus(e′; ·; e′0; ir), so inductive result (3d)
ensures H ′

3 = H ′ so H ′ extends H ′

2 (in other words, we have correctly rolled back to the
beginning of the transaction). So letting H1 = H ′

2 and invoking inductive results (3bi) and
(3bc), we establish results (1) and (2).1

1Note this is the case where we do not choose H1 to be the H0 from the Heap Strengthening argument. That choice would
not work because we cannot show ◦; ·; esrc →

∗

no ◦;H1; T . Intuitively, allocated labels in the now-aborted transaction still exist.
In terms of the lemma, because r = ir, the inductive result does not provide ◦; ·; esrc →

∗

no •; H′

1
;T ′. Hence we use inductive

result (3c) instead, a fact we preserved from the time we entered the transaction.

39

– If r = ia, then inductive result (3a) and •; H ′

1; e
′′ →no ◦; H1; e; T

′′ ensure ◦; ·; esrc →∗

no ◦; H1; T .

• If a = a′ = •, then result (2) holds vacuously. For result (3), we use inductive result (3) and
the Only Active Steps Lemma to determine only thread e′ steps. We also use, from Type Safety,
Γ′

1 ⊢ H ′

1 : Γ′

1 and Γ′

1; 0 ⊢ e′ : τ . So the conditions of the Staying Active Lemma apply (twice, once
with H and once with H1 since we need different results from the two), providing:

– rollsbackto(H ;Hlog; H3) for some H3 extending H ′

3

– activeplus(e;Hlog; e0; r)

– If r′ = ir, then r = ir, i.e., if r = ia, then r′ = ia.

– If r = r′ = ia, then •; H ′

1; e
′

no →no •; H1; eno; · where translate(e′; e′no) and translate(e; eno).

From inductive result (b), letting k = k′ + 1 provides result (b). Inductive result (c) is result
(c). From inductive result (d) we know H ′

3 extends H ′

2, so letting H2 = H ′

2 and noting heap
extension is transitive means rollsbackto(H ;Hlog; H3) for some H3 extending H ′

3 provides result
(d). Finally, result (a) is vacuous if r = ir, so assume r = ia. Then r′ = ia so inductive result (a)
and •; H1; eno →no •; H ′

1; e
′

no; T provide ◦; ·; esrc →∗

no •; H1; T .

Theorem 5.13 (StrongUndo StrongBasic Equivalence) If ⊢ ◦; ·; esrc and ◦; ·; esrc →∗

rb ◦; H ;T , then
there exists an H1 such that H extends H1 and ◦; ·; esrc →∗

no ◦; H1; T .

Proof This is a corollary of the Top-Level Equivalence Lemma, particularly results (1) and (2) (since
our theorem assumes the resulting state includes ◦).

40

6 The WeakUndo language

One potential way to model a further weakening of software transactions is with eager update (trans-
actions write to a globally visible version of H) and rollback (if a transaction aborts, it undoes those
changes). In this model, a transaction can abort at any time.

6.1 Syntax

Syntax changes between WeakUndo and StrongBasic are minor. The changes in syntax for inatomic

achieve the following goals:

1. We keep a log of the modifications made in the current transaction (Hlog) in case it aborts.

2. We use a nested value of a to ensure that a transaction cannot rollback if the nested value of e is
executing a transaction. Once the nested transaction commits, then the parent transaction can roll
back the changes made by the nested transaction as well as its own.

3. We keep the original expression e0 to re-execute after rollback.

Similarly, we have added syntax for inrollback that keeps the remaining log entries to rollback as well
as the original expression to re-execute once rollback completes.

e ::= c | l | x | e1; e2 | e1 := e2 | ref e |!e | λx.e | e1 e2

| spawn e | atomic e | inatomic(a, e, Hlog, e0) | inrollback(Hlog, e0)

6.2 Dynamic Evaluation

6.2.1 Whole Program Evaluation

Since we have removed the two internally parallel types of spawn, e can only create a single T . In addition,
introducing rollback has added the log (Hlog) to the evaluation form for e. The program rule changes
to accommodate the new evaluation form in two ways:

1. It is not necessary to keep Hlog once we reach the top-level, so it is discarded.

2. We do the obvious thing with T .

a; H ;T → a′; H ′; T ′

program

a;H ; e → a′; H ′; e′; T ;Hlog

a;H ; TA ‖ e ‖ TB → a′; H ′; TA ‖ e′ ‖ TB ‖ T

6.2.2 Expression Evaluation

Because we need to keep a log of heap changes during nested transactions, it must become part of
the result of evaluation under eager update, yielding a slightly modified form. Many of the rules from
Section 2.2 are only modified slightly. The seq-1, set-1, set-2, ref-1, get-1, app-1 and app-2 rules
all propagate the inductive value for Hlog and T . (seq-1 is included in this section as an example). The
seq-v, alloc and beta rules all create an empty Hlog and empty T . No other rules are adapted from
the StrongNestedParallel language.

We have added new rules for heap accesses and modified or deleted rules to accommodate the syntax
changes. The rules for weak-set-eager and weak-get-eager are included as a way of specifying how
transactions modify and read H . We have also removed inatomic helper, spawn0, spawn1, and spawn2

rules originally defined in StrongNestedParallel since internal parallelism and all supporting syntax has
been deleted.

It is also of interest that this language includes more than one way to exit a transaction. We have
removed the exit atomic rule and introduced two rules that change • to ◦; commit and complete

rollback. As mentioned earlier, by including an internal value of a in the inatomic syntax plays a
critical role in the enter rollback rule because it prevents a transaction from entering rollback when
there is an active nested transaction.

41

a; H ; e → a′; H ′; e′; T ;Hlog

seq-1

a; H ; e1 → a′; H ′; e′1; T ;Hlog

a; H ; e1; e2 → a′; H ′; e′1; e2; T ; Hlog

spawn

a; H ; spawn e → a;H ; 0; e; ·

weak-set-eager

a; H ; l := v → a; H, l 7→ v; v; ·; l 7→ H(l)

weak-get-eager

a; H ; !l → a; H ; H(l); ·; ·

enter atomic

◦; H ; atomic e → •; H ; inatomic(◦, e, ·, e); ·; ·

inatomic

a; H ; e → a′; H ′; e′; ·; H ′

log

•; H ; inatomic(a, e, Hlog, e0) → •; H ′; inatomic(a′, e′, HlogH
′

log, e0); ·; ·

enter rollback

•; H ; inatomic(◦, e, Hlog, e0) → •; H ; inrollback(Hlog, e0); ·; ·

do rollback

•; H ; inrollback(Hlog, l 7→ vold, e0) → •; H, l 7→ vold; inrollback(Hlog, e0); ·; ·

complete rollback

•; H ; inrollback(·, e0) → ◦; H ; atomic e0; ·; ·

commit

•; H ; inatomic(◦, v, Hlog, e0) → ◦; H ; v; ·; Hlog

6.3 Typecheck e

In order to appropriately typecheck e, we use the t-const, t-var, t-seq, t-lambda, t-app, and t-

atomic rules from Section 2.3. These rules are unchanged.
As with all weak languages in the AtomsFamily, WeakUndo uses a type-and-effect system to partition

H . The partition definition and rules are the same for Weak; t-set-partition, t-get-partition, and
t-ref-partition, t-label-partition are all repeated below; see Section 3.3 for intuition.

To handle syntax modifications we define t-spawn, t-inatomic and t-inrollback and remove any-
thing pertaining to syntax not in WeakUndo (e.g. other flavors of spawn that have been removed).
removed, the rule for spawn defined for the The use of Γ′ in the t-inatomic rule is important because
we would like Γ′ and in Hlog to operate on the same set of labels (since this is what we require for Γ and
H). By stating that Γ extends Γ′, we are enforcing that all labels defined in Hlog are also defined in H .
With eager update, even label allocation occurs directly in H .

Γ; ε ⊢ e : τ

t-set-partition

Γ; t ⊢ e1 : reftτ Γ; t ⊢ e2 : τ

Γ; t ⊢ e1 := e2 : τ

t-get-partition

Γ; t ⊢ e : reftτ

Γ; t ⊢ !e : τ

t-ref-partition

Γ; ε ⊢ e : τ

Γ; ε ⊢ ref e : reftτ

t-label-partition

Γ(l) = (τ, t)

Γ; ε ⊢ l : reftτ

t-spawn

Γ; 0 ⊢ e : τ

Γ; 0 ⊢ spawn e : int

t-inrollback

Γ; 2 ⊢ e0 : τ Γ ⊢ Hlog : Γ′ Γ extends Γ′

all2(Γ′) not-active(e0)

Γ; ε ⊢ inrollback(Hlog, e0) : τ

t-inatomic

Γ; 2 ⊢ e : τ
correct-atomic(a, e) Γ; 2 ⊢ e0 : τ not-active(e0) Γ ⊢ Hlog : Γ′ Γ extends Γ′

all2(Γ′)

Γ; ε ⊢ inatomic(a, e, Hlog, e0) : τ

42

6.4 Other Typing Rules

Add a way to state that all labels in a context typecheck under ε = 2. (whenever all2(Γ) and l ∈ Dom(Γ)
then Γ; ε ⊢ l : ref2τ)

all2(Γ)

all2(·)

all2(Γ′)

all2(Γ′, l = (τ, 2))

6.5 Activeness

6.5.1 Not-Active(e)

Like in the StrongBasic language, we remove the not-active(e) rules for deleted syntax (spawn0, spawn1,
and spawn2). We add a rule for the new spawn syntax:

not-active(e)

not-active(e)

not-active(spawn e)

6.5.2 Active(e)

We update the active(e) rule for inatomic and add a rule for inrollback.

active(e)

active(inrollback(Hlog, e0)) active(inatomic(a, e, Hlog, e0))

6.5.3 Correct Atomic State of T

No Changes.

43

6.6 Type Safety

Theorem/Lemma Restated Changes

Top-Level Progress No None

Single Thread Progress See Lemma
6.1 below

See Proof below

Top-Level Preservation No None

Single Thread Preservation See Lemma
6.2 below

See Proof below

Weakening Lemma No None

Canonical Forms Lemma No None

Substitution Lemma No t-spawn-0: Remove this case
t-spawn-1: Remove this case
t-spawn-2: Remove this case
t-spawn: This case is like the t-seq case.
t-inatomic: No changes
t-inrollback: This case is like the t-inatomic case.

Values Effectless Lemma No None (see note in Sec. 3.3)

Variables not in Γ′ No None

Values Inactive No None

Effects Lemma See Lemma
6.3 below

See Proof below

Heap Append Lemma NEW See
Lemma 6.4
below

See Proof below

Lemma 6.1 (Single Thread Progress) If Γ ⊢ H : Γ, then each of the following must be true:

1. If Γ; ε ⊢ e : τ , and active(e) then ∃e′, a′, H ′, T, Hlog such that •; H ; e → a′; H ′; e′; T ; Hlog

2. If Γ; ε ⊢ e : τ , and not-active(e) then e is a value or ∃e′, a′, H ′, T, Hlog such that ◦; H ; e →
a′; H ′; e′; T ;Hlog

3. If Γ; ε ⊢ T and correct-atomic(a, T) then T is some TA ‖ e ‖ TB such that a; H ; e → a′; H ′; e′; T ′; Hlog

or T is all values.

Proof of Lemma 6.1, updated cases only, organized as in Section 2.6. (No changes to proof of part 3).

• t-spawn-0, t-spawn-1, and t-spawn-2 are all removed.

• t-spawn: Add this case. e = spawn (e)

1. This case is vacuous because there is no way to derive active(e).

2. e steps under the spawn rule.

• t-inatomic e = inatomic(a′′, e1, Hlog, e0)

1. Inversion on the typing rule implies correct-atomic(a′′, e1) and that e1 type checks under ε = 2.
There are three sub-cases to consider:

(a) If a′′ = •, then it must be that active(e1). In this case, e1 steps via inatomic. In this
case, because Γ; 2 ⊢ Γ : e1 it must be that ε 6= 0, which by the effects lemma enforces that
T = ·. Thus the entire inatomic expression can step.

(b) If a′′ = ◦ and e1 6= v, then there is a valid step for e via enter rollback or by induction.

(c) If a′′ = ◦ and e1 = v, then there is a valid step for e via commit.

2. This case is vacuous because there is no way to derive not-active(e).

• t-inrollback e = inrollback(Hlog, e0)

1. In this case, we can always derive active(e). Inversion on the typing rule implies that e0 type
checks under ε = 2. There are two sub-cases to consider:

(a) If Hlog 6= · then there is a valid step for e under do rollback.

44

(b) If Hlog = · then there is a valid step for e under complete rollback.

2. This case is vacuous because there is no way to derive not-active(e).

Lemma 6.2 (Single Thread Preservation) If a;H ; e → a′; H ′; e′; T ; Hlog and Γ; ε ⊢ e : τ and Γ ⊢
H : Γ and one of the following:

1. a = ◦ and not-active(e)

2. a = • and not-active(e)

3. a = • and active(e)

then ∃Γ′, Γ′′ with Γ′ extending Γ and Γ′′ such that:

1. Γ′; ε ⊢ e′ : τ

2. Γ′ ⊢ H ′ : Γ′

3. Γ′ ⊢ Hlog : Γ′′ and if ε = 2 then all2(Γ′′)

4. not-active(T)

5. Γ′; 0 ⊢ T

6. All of the following, although all but one case will be vacuous:

• If a = a′ and active(e) then active(e′)

• If a = a′ and not-active(e) then not-active(e′)

• If a = ◦ and a′ = • then not-active(e) and active(e′)

• If a = • and a′ = ◦ then active(e) and not-active(e′)

Proof by induction on the typing derivation of e by cases on the final rule used in the derivation.
Because we have added the conclusion that Γ′ ⊢ Hlog : Γ′′ with Γ′ extending Γ′′, we extend all unlisted
cases with the following statements: If Hlog = · then we have Γ′ ⊢ · : · where any Γ′ extends ·. Also, if
Hlog 6= · then we know that the desired Γ′′ and Γ′ are obtained through induction. Only the interesting
or relevant changes are listed here.

• t-set-partition e = e1 := e2. There are three ways e could have become e′. Only one of these is
different for WeakUndo.

– Under weak-set-eager e = l := v, and e′ = v, and T = ·, H ′ = H [l 7→ v], and Hlog = l 7→
H(l). Pick Γ′ = Γ and Γ′′ = l 7→ (τ, t).

1. Inversion on the typing rule gives Γ; t ⊢ l : reftτ and Γ; t ⊢ v : τ . Since Γ′ = Γ, it must be
that Γ′; t ⊢ l : reftτ and Γ′; t ⊢ v : τ . Since e′ = v, we have Γ′; t ⊢ e′ : τ .

2. Since H ′ = H [l 7→ v], then H ′(l) = v. By the weakening lemma and the chosen Γ,
Γ′; t ⊢ v : τ and Γ′(l) = (τ, t). Thus, Γ′ ⊢ H ′ : Γ′.

3. By assumption, Γ; ε ⊢ v : τ , and Γ(l) = (τ, t). Because Γ′ = Γ, we also have that
Γ′(l) = (τ, t). Γ′′(l) = (τ, t) by definition. Since Hlog = l 7→ H(l), it must be that
Γ′ ⊢ Hlog : Γ′′. Also, If ε = 2 then Γ′; 2 ⊢ e′ : τ so Γ′(l) = (τ, 2) and because Γ′ extends Γ′′

and using our choice for Γ′′′, we know that Γ′′ = l:(τ, 2), and therefore all2(Γ′′).

4. not-active(·)

5. Γ; 0 ⊢ · is always true.

6. Because e stepped under weak-set-eager, a = a′, and not-active(e) is derived from
not-active(l) and not-active(v). Since e′ = v, we know not-active(e′). There is no way to
derive active(e), so that case is vacuous.

• t-get-partition e =!e0 There are two evaluation rules that could take e to e′. Only one of these
is different for WeakUndo.

– Under weak-get-eager e =!l, e′ = H(l) = v, T = ·, and Hlog = ·. Pick Γ′ = Γ and Γ′′ = ·.

1. Inversion on the typing rule gives Γ; t ⊢ l : reftτ , and thus Since Γ′ = Γ, it must be that
Γ′; t ⊢ v : τ .

2. Since H ′ = H , and Γ ⊢ H : Γ by assumption, and Γ′ = Γ, it must be that Γ′ ⊢ H ′ : Γ′.

3. Since Hlog = ·, it must be that Γ′ ⊢ Hlog : · and all2(·) when ε = 2.

45

4. not-active(·)

5. Γ; 0 ⊢ · is always true.

6. Because e stepped under weak-get-eager, a = a′, and not-active(!l) is derived from
not-active(l). Since e′ = v, we know not-active(e′). There is no way to derive active(e), so
that case is vacuous.

• t-spawn e = spawn e0. Thus, Γ; ε ⊢ e : int. There is only one evaluation rule for spawn e0, spawn.
After e steps to e′ using this rule, e′ = 0, H ′ = H , T = e0, and Hlog = ·. Pick Γ′ = Γ, and Γ′′ = ·.

1. t-const provides Γ′; ε ⊢ 0 : int.

2. Γ′ = Γ and H ′ = H , and by assumption, Γ ⊢ H : Γ. Thus Γ′ ⊢ H ′ : Γ′.

3. Γ′ ⊢ · : · and all2(·) when ε = 2

4. By assumption, either active(e) or not-active(e). There is no way to derive active(e) for spawn
expressions, so it must be that not-active(e) and thus not-active(e0). Although e0 was added
to T , it still must be that not-active(e0), and therefore not-active(T).

5. By inversion on the typing rule t-spawn, it is also the case that Γ; 0 ⊢ e0 : τ . Because T = e0,
and using the weakening lemma, it must be that Γ′; 0 ⊢ T .

6. The spawn rule enforces that a = a′. If not-active(e) then it must be shown that not-active(e′).
Since not-active(0) requires no assumption and e′ = 0, this is trivial. The case for active(e) is
vacuous because there is no way to derive active(spawn e0).

• t-spawn-0 Remove this case.

• t-spawn-1 Remove this case.

• t-spawn-2 Remove this case.

• t-atomic e = atomic e0. If e steps, it must be via the evaluation rule enter atomic, giving
e′ = inatomic(a′′, e0, ·, e0), T = ·, H ′ = H , and Hlog = ·. Pick Γ′ = Γ and Γ′′ = ·.

1. Γ; 2 ⊢ e0 : τ is true by inversion on the typing rule, and by induction Γ′; 2 ⊢ e0 : τ since Γ′

extends Γ.

2. H ′ = H is unchanged, and Γ ⊢ H : Γ by assumption, so Γ′ ⊢ H ′ : Γ′.

3. Γ′ ⊢ · : · and all2(·) when ε = 2

4. not-active(·)

5. Γ′; 0 ⊢ · is always true.

6. Here, a = ◦ and a′ = •. The correct atomicity is preserved because we can derive not-active(e)
from assumption 1 when a = ◦. active(e′) requires no assumptions.

• t-inatomic e = inatomic(a′′, e1, H
′

log, e0) By inversion: Γ; 2 ⊢ e1 : τ , correct-atomic(a, e1), Γ; 2 ⊢
e0 : τ , not-active(e0), and Γ ⊢ H ′

log : Γ′′′. Proof is itemized by cases on the possible evaluation. If e
steps...

– Under inatomic, then e′ = inatomic(a′′′, e′1, HlogH
′′

log, e0), Hlog = ·, and T = ·. Pick Γ′′ = ·,
and Γ′ is obtained through induction.

1. By induction, Γ′; 2 ⊢ e′1 : τ , and correct-atomic(a′′′, e′1) are true. Also by induction, there
is some Γ′′

nested such that Γ′ ⊢ H ′′

log : Γ′′

nested and Γ′ extends Γ′′

nested. By inversion we already
knew that Γ ⊢ H ′

log : Γ′′′, with all2(Γ′′′), and since Γ′ extends Γ we know that Γ′ ⊢ H ′

log : Γ′′′.
Dy definition, Γ extends Γ′′′ and Γ′ extends Γ, thus Γ′ extends Γ′′′. Lemma 6.4 provides
that Γ′ ⊢ HlogH

′′

log : Γ′′′Γ′′

nested with Γ′ extends Γ′′′Γ′′

nested. By induction and the weakening
lemma, Γ; 2 ⊢ e0 : τ and not-active(e0) are also both true. Which gives everything we need
to derive Γ; 2 ⊢ e′ : τ

2. Γ′ ⊢ H ′ : Γ′ is true by induction.

3. Γ′ ⊢ · : · and all2(·) when ε = 2

4. not-active(·) is always true.

5. Γ′; 0 ⊢ · is always true.

6. Here, a = a′ = •, and active(e) requires no assumptions. Similarly, active(e′) requires no
assumptions.

46

– Under enter rollback, then e′ = inrollback(H ′

log, e0), Hlog = · and T = ·. Pick Γ′ = Γ and
Γ′′ = ·.

1. Γ ⊢ H ′

log : Γ′′′ is true by inversion on the typing rule, and since Γ′ = Γ, Γ′ ⊢ H ′

log : Γ′′′

must also be true. Γ; 2 ⊢ e0 : τ and not-active(e0) are also true by inversion on the typing
rule, which (when combined with the fact that Γ′ = Γ) gives Γ′; 2 ⊢ e′ : τ .

2. Since Γ′ = Γ and H ′ = H , and Γ ⊢ H : Γ is true by assumption, it must also be that
Γ′ ⊢ H ′ : Γ′.

3. Γ′ ⊢ · : · and all2(·) when ε = 2

4. not-active(·) is always true.

5. Γ′; 0 ⊢ · is always true.

6. Here, a = a′ = •, and active(e) requires no assumptions. Similarly, active(e′) requires no
assumptions.

– Under commit, then e′ = v, Hlog = H ′

log and T = ·. Pick Γ′ = Γ and Γ′′ = Γ′′′

1. By inversion on the typing rule, (and since to take this step is must be that e1 = v) we
know that Γ; 2 ⊢ v : τ . Because Γ′ = Γ we also have Γ′; 2 ⊢ v : τ . Since e′ = v, it must be
that Γ′; 2 ⊢ e′ : τ .

2. Since Γ′ = Γ and H ′ = H , and Γ ⊢ H : Γ is true by assumption, it must also be that
Γ′ ⊢ H ′ : Γ′.

3. We know that Γ ⊢ H ′

log : Γ′′′ and all2(Γ′′′) are true by inversion on the typing rule. S ince
Γ′ = Γ and Γ′′ = Γ′′′ we have Γ′ ⊢ H ′

log : Γ′′′ and all2(Γ′′).

4. not-active(·) is always true.

5. Γ′; 0 ⊢ · is always true.

6. Here, a = • and a′ = ◦, and the Values Inactive Lemma provides not-active(e′).

• t-inrollback e = inrollback(H ′

log, e0) This typing rule gives us each of the following: Γ; 2 ⊢ e0 : τ ,
not-active(e0), and Γ ⊢ H ′

log : Γ′′′. Proof is by cases on the possible evaluation. If e steps...

– Under do rollback, then e′ = inrollback(H ′′

log, e0), where H ′

log = H ′′

log, l 7→ vold, T = ·, and
Hlog = ·, and H ′ = H, l 7→ vold. Pick Γ′ = Γ and Γ′′ = ·.

1. By inversion, we know Γ; 2 ⊢ e0 : τ and not-active(e0). Since Γ ⊢ H ′′

log, l 7→ vold : Γ′′′,
then Γ ⊢ H ′′

log : Γ′′′. Because Γ′ = Γ, we have Γ′; 2 ⊢ e0 : τ and Γ′ ⊢ H ′′

log : Γ′′. Thus,
Γ′; 2 ⊢ e′ : τ is derived.

2. Since Γ′ = Γ and H ′ = H, l 7→ vold, and Γ ⊢ H : Γ is true by assumption, it must also be
that Γ′ ⊢ H : Γ′. We also know that Γ ⊢ H ′′

log, l 7→ vold : Γ by inversion on the typing rule.
Since l ∈ Dom(H), we know that Γ(l) = (τ, ε), which when combined with the weakening
lemma gives Γ′ ⊢ l 7→ vold : Γ′. Thus Γ′ ⊢ H ′ : Γ′ must be true.

3. Γ′ ⊢ · : · and all2(·) when ε = 2

4. not-active(·) is always true.

5. Γ′; 0 ⊢ · is always true.

6. Here, a = a′ = •. Fortunately, both active(e) and active(e′) are always true.

– Under complete rollback, then e′ = atomic e0, T = ·, Hlog = ·, and H ′ = H . Pick Γ′ = Γ
and Γ′′ = ·.

1. By inversion on the typing judgment and choice of Γ′, we know that Γ′; 2 ⊢ e0 : τ and
therefore Γ′; ε ⊢ e′ : τ must be true.

2. Since Γ′ = Γ and H ′ = H , and Γ ⊢ H : Γ is true by assumption, it must also be that
Γ′ ⊢ H ′ : Γ′.

3. Γ′ ⊢ · : · and all2(·).

4. not-active(·) is always true.

5. Γ′; 0 ⊢ · is always true.

6. Here, a = • and a′ = ◦. Since active(e) is always true, we need not-active(e0) (which is
true by inversion on the typing rule) to derive not-active(e′).

Lemma 6.3 (Effects Lemma) Suppose Γ; ε ⊢ e : τ and a; H ; e → a′; H ′; e′; T ; Hlog. If ε 6= 0 then T =
·.

47

Proof of updated cases.

• t-spawn e = spawn e1. It must be that ε = 0, so this is vacuous.

• t-spawn-0, t-spawn-1, or t-spawn-2: Remove these cases.

• t-inatomic There are three possible sub-cases:

1. Assume e1 is not a value, and the chosen evaluation rule was inatomic. inatomic always
creates T = ·.

2. Assume e1 is some v. e steps under commit, which always creates T = ·.

3. Assume that the chosen evaluation rule was enter rollback (independent of e1). enter

rollback always creates T = ·.

• t-inrollback has two subcases.

1. Assume Hlog 6= ·, then the chosen evaluation rule was do rollback, which always creates
T = ·.

2. Assume Hlog = ·, then the chosen evaluation rule was complete rollback, which always
creates T = ·.

Lemma 6.4 (Heap Append) If

1. Γ ⊢ HA : ΓA and Γ extends ΓA

2. Γ ⊢ HB : ΓB and Γ extends ΓB

Then Γ ⊢ HAHB : ΓAΓB and Γ extends ΓAΓB

Proof of Lemma 6.4:
Since Γ extends ΓA and Γ extends ΓB , we know that for every l ∈ Dom(ΓA) that l ∈ Dom(Γ), and for
every l ∈ Dom(ΓB) that l ∈ Dom(Γ), and as a result everywhere some label occurs in ΓA or ΓB then
it has the same type as in Γ and, where applicable, ΓB or ΓA, respectively. Thus, there are no conflicts
between ΓA and ΓB and Γ extends ΓAΓB . By trivial induction on the derivation of Γ ⊢ H : Γ, it must
also be true that Γ ⊢ HAHB : ΓAΓB.

6.7 Equivalence

In this section, we use →s to refer to evaluation in StrongUndo and →w to refer to evaluation in WeakUndo.

Theorem 6.5 (Weak and Strong Rollback Equivalence) If ⊢ ◦; ·; e (using the type system from
Section 6.3), then ◦; ·; e →n

s a; H ;T iff ◦; ·; e →n
w a; H ;T .

Proof There are two directions to prove for the iff statement:

• “strong implies weak”: Every trace using the strong evaluation rules is an equivalent trace under
the weak evaluation rules. This is because the weak rules allow a strict super set of traces.

• “weak implies strong”: Follows as a corollary to Lemma 6.13 (the first conclusion of that lemma is
what we need).

Lemma 6.6 (Top-Level Reordering) (revisited for WeakUndo and StrongUndo). Suppose all of
the following hold:

1. Γ ⊢ H0 : Γ

2. Γ; 0 ⊢ eA : τA

3. Γ; 0 ⊢ eB : τB

4. active(eA)

5. not-active(eB)

6. •; H0; eA ‖ eB ‖ T →s •; H1; e
′

A ‖ eB ‖ T →w •; H2; e
′

A ‖ e′B ‖ T ′

Then there exists some H ′

1 such that •; H0; eA ‖ eB ‖ T →w •; H ′

1; eA ‖ e′B ‖ T ′ →s •; H2; e
′

A ‖ e′B ‖
T ′.

48

Top-level Reordering Proof by induction on the form of eA, organized by cases on the step taken by
eA. (cases with minor changes or no changes are omitted for brevity. Similarly, note that the organization
in this case is slightly different, but the induction is the same as Lemma 3.2.)

• eA = spawnie, 0 ≤ i ≤ 2. remove these cases

• eA = spawn e. There is no way to derive that eA is active. This case is vacuous.

• eA = inatomic(a′′, e1, Hlog, e0). There are three ways in which eA could step:

1. eA steps under inatomic. To apply Lemma 6.7, we need to show that each precondition
applies:

(a) Γ ⊢ H0 : Γ by assumption.

(b) By inversion on the typing rule for eA, we know Γ; 2 ⊢ e1 : τA.

(c) Γ; 0 ⊢ eB : τB by assumption

(d) not-active(eB) by assumption

(e) Since eA stepped under the inatomic rule, it must be the case that e1 is not a value, and
that e1 steps in the following manner to evaluate eA: a′′; H0; e1 →s a′′′; H1; e

′

1; ·; HlogA

By assumption, we know the following step was used to evaluate eB: •; H1; eB →w

•; H2; e
′

B ; TB; HlogB

We can apply Lemma 6.7 to obtain H ′

1.

2. If eA stepped using the commit rule, then a = • and a′ = ◦. Since this violates the assumption
that a = a′ = •, this case is vacuous.

(a) not-active(eB) by assumption

(b) Since eA stepped under the inatomic rule, it must be the case that e1 is not a value, and
that e1 steps in the following manner to evaluate eA: a′′; H0; e1 →s a′′′; H1; e

′

1; ·; HlogA

By assumption, we know the following step was used to evaluate eB: •; H1; eB →w

•; H2; e
′

B ; TB; HlogB

We can apply Lemma 6.7 with e1 and eB to obtain H ′

1.

3. If eA stepped using the commit rule, then a = • and a′ = ◦. Since this violates the assumption
that a = a′ = •, this case is vacuous.

4. If eA stepped using the enter rollback rule, then eA does not change the heap on this step.
Thus, H1 = H0 and eB was already using H0 to step. Thus, eB can step as it did before. eA

can step the same way under any H , so eA is similarly unaffected by reordering.

• eA = inrollback(Hlog, e0). There are two cases:

1. If eA stepped using the do rollback rule, (in which case Hlog 6= ·), we would like to apply
Lemma 6.11 to obtain H ′

1. Fist make sure every precondition applies:

(a) Γ ⊢ H0 : Γ is true by assumption.

(b) Γ; ε ⊢ eA : τA is true by assumption. (In this case, ε = 0).

(c) Γ; 0 ⊢ eB : τB is true by assumption.

(d) not-active(eB) is true by assumption.

(e) •; H0; eA ‖ eB ‖ T →s •; H1; e
′

A ‖ eB ‖ T and •; H1; e
′

A ‖ eB ‖ T →w •; H2; e
′

A ‖ e′B ‖ T ′

are true by assumption.

H ′

1 is obtained by applying Lemma 6.11.

2. If eA stepped using the complete rollback rule, then a = • and a′ = ◦. Since this violates
the assumption that a = a′ = •, this case is vacuous.

Lemma 6.7 (Nested Reordering) (revisited for WeakUndo and StrongUndo). Suppose all the fol-
lowing hold:

1. Γ ⊢ H0 : Γ

2. Γ; 2 ⊢ eA : τA

3. Γ; 0 ⊢ eB : τB

4. not-active(eB)

49

5. a; H0; eA →s a′; H1; e
′

A; ·; HlogA and •; H1; eB →w •; H2; e
′

B ; TB; HlogB

Then there exists some H ′

1 such that:

1. •; H0; eB →w •; H ′

1; e
′

B; TB; HlogB
(i.e. eB steps under H0 with no changes)

2. a; H ′

1; eA →s a′; H2; e
′

A; ·; HlogA (i.e. eA steps under H ′

1 with no changes)

Proof of Lemma 6.7 organized by cases on eA. Only relevant changes are listed here.

• eA = spawnie, 0 ≤ i ≤ 2. remove these cases

• eA = spawn e Here, eA cannot typecheck under ε = 2. This case is vacuous.

• eA = e1 := e2 Only one case needs to be revisited, when eA = lA := vA. To apply Lemma 6.8, we
must show that each precondition holds:

1. Γ ⊢ H0 : Γ is true by assumption.

2. H1 = H0, lA 7→ vA is true by the only evaluation step available to eA, strong-set.

3. •; H1; eB →w •; H2; e
′

B ; TB; HlogB
is true by assumption.

4. Γ; 2 ⊢ eA : τA is true by assumption.

5. Γ; 0 ⊢ eB : τB is true by assumption.

6. not-active(eB) is true by assumption.

Applying Lemma 6.8 provides a valid H ′

1.

• eA =!e1 Only one case needs to be revisited, when eA =!lA. To apply Lemma 6.9 we show that
precondition holds:

1. Γ ⊢ H0 : Γ is true by assumption.

2. H1 = H0 is true by the only evaluation step available to eA, strong-get. Also, H0(lA) = vA

3. •; H0, lA 7→ vA; eB →w •; H2; e
′

B; T ; HlogB
is true by assumption.

4. Γ; 2 ⊢ eA : τA is true by assumption.

5. Γ; 0 ⊢ eB : τB is true by assumption.

6. not-active(eB) is true by assumption.

Applying Lemma 6.9 provides a valid H ′

1.

• eA = inatomic(a′′, e1, HlogA, e0). There are three subcases:

1. If eA steps under inatomic then e1 is not a value, and so we use induction to obtain H ′

1.

2. If eA steps under commit then e1 = v, in which case we know that H1 = H0, TA = ·,
and HlogA = Hlog. In this case, eB was already stepping using H0, and so is not affected by
reordering. (i.e. eB = e′B , TB = TB as before, H ′

1 = H2 and HlogB
= HlogB

as before. Similarly,
eA steps under H ′

1 and does not touch the heap, so H2 is the same as before, and we know
that HlogA = Hlog is the same as before.

3. If eA steps under enter rollback then we know that H1 = H0, TA = ·, and HlogA = ·. In this
case, eB was already stepping using H0, and so is not affected by reordering. (i.e. eB = e′B,
TB = TB as before, H ′

1 = H2 and HlogB
= HlogB

as before. Similarly, eA steps under H ′

1 and
does not touch the heap, so H2 is the same as before, and we know that HlogA = · and TA = ·
are the same as before.

• eA = inrollback(Hlog, e0). There are two subcases:

1. If eA steps under complete rollback then we know that Hlog = · and that H1 = H0, and
that HlogA = · and T = ·. In this case, eB was already stepping using H0, and so is not affected
by reordering. (i.e. eB = e′B, TB = TB as before, H ′

1 = H2 and HlogB
= HlogB

as before.
Similarly, eA steps under H ′

1 and does not touch the heap, so H2 is the same as before, and
we know that HlogA = Hlog is the same as before.

2. If eA steps under do rollback we know that eA = inrollback(H ′

log, lA 7→ vA, e0). To apply
Lemma 6.10 we first show that each precondition applies:

(a) Γ ⊢ H0 : Γ is true by assumption.

(b) Γ; 2 ⊢ eA : τ ′

A is true by assumption.

(c) Γ; 0 ⊢ eB : τB is true by assumption.

50

(d) not-active(eB) is true by assumption.

(e) •; H0; eA →s •; H1; inrollback(H ′

log, e0); ·; HlogA and
•; H1; eB →w •; H2; e

′

B; TB ; HlogB
are both true by assumption.

Lemma 6.8 (Independent Write Under Partition) Let eA = lA := vA, so under the strong se-
mantics a; H0; lA := vA →s a′; H1; vA; ·; lA 7→ H0(lA). Suppose:

1. H1 = H0, lA 7→ vA

2. •; H0, lA 7→ vA; eB →w •; H2; e
′

B ; TB; HlogB

3. Γ; 2 ⊢ eA : τA (and by inverting on t-set-partition and t-label-partition we know that Γ(lA) =
(τA, 2))

4. Γ; 0 ⊢ eB : τB

5. not-active(eB)

then there is some H ′

1 such that

1. H2(lA) = vA (i.e. result prior to reorder is preserved for eA)

2. •; H0; eB →w •; H ′

1; e
′

B; TB ; HlogB
(i.e. eB becomes the same e′B as before with the same TB and

HlogB
and H ′

1 is like H2 except that H ′

1(lA) = H0(lA))

Proof of Lemma 6.8. Only relevant changes are listed here.

• Γ ⊢ H0 : Γ

• eB = spawnie, 0 ≤ i ≤ 2. remove these cases

• eB = spawn e′′B. The only step available to eB is •; H0; spawn e′′B →w •; H0; 0; e
′′

B ; ·. From this, it is
clear that before reordering the heaps for evaluation, eB did not change H2’s mapping for lA (and
won’t change H0’s mapping either) so H2(lA) = vA as before. Similarly, eB is unaffected by the
values in H0 and so e′B = 0, HlogB

= · and T = e′′B as before.

• eB = inatomic(a, e′′B , HlogB
, eB0). By the assumption that not-active(eB), this case is vacuous.

• eB = inrollback(HlogB
, eB0). By the assumption that not-active(eB), this case is vacuous.

Lemma 6.9 (Independent Read Under Partition) Let eA =!lA, so under the strong semantics
a;H0; !lA →s a′; H0; H0(lA); ·; ·. Suppose:

1. Γ ⊢ H0 : Γ

2. H1 = H0, and H0(lA) = vA

3. •; H1; eB →w •; H2; e
′

B; TB; HlogB

4. Γ; 2 ⊢ eA : τA (and by inverting on t-get-partition and t-label-partition we know that Γ(lA) =
(τA, 2)).

5. Γ; 0 ⊢ eB : τB

6. not-active(eB)

then there is some H ′

1 such that

1. H2(lA) = vA (i.e. eA reads the same value from H2 as it did from H0)

2. •; H0; eB →w •; H2; e
′

B; TB ; HlogB
(i.e. eB evaluates to the same TB, Hlog and e′B under H0 as it

did under H1. This is relatively obvious since we know H1 = H0).

Proof of Lemma 6.9. Only relevant changes are listed here.

• eB = spawnie, 0 ≤ i ≤ 2. remove these cases

• eB = spawn e′′B. The only step available to eB is •; H0; spawn e′′B →w •; H0; 0; e
′′

B ; ·. From this, it is
clear that before reordering the heaps for evaluation, eB did not change H2’s mapping for lA (and
won’t change H0’s mapping either) so H2(lA) = vA as before. Similarly, eB is unaffected by the
values in H0 and so e′B = 0, HlogB

= · and T = e′′B as before.

• eB = inatomic(a, e′′B , HlogB
, eB0). By the assumption that not-active(eB), this case is vacuous.

51

• eB = inrollback(HlogB
, eB0). By the assumption that not-active(eB), this case is vacuous.

Lemma 6.10 (Nested Rollback) If eA = inrollback(H ′

log, lA 7→ v, e0) and

1. Γ ⊢ H0 : Γ

2. Γ; ε ⊢ eA : τ ′

A. Note that what we care about isn’t the ε under which eA typechecks, since we really
need that Γ(lA) = (τ, 2) for some τ , and this comes from the typing rule for rollback.

3. Γ; 0 ⊢ eB : τB

4. not-active(eB)

5. •; H0; eA →s •; H1; inrollback(H ′

log, e0); ·; HlogA and
•; H1; eB →w •; H2; e

′

B; TB; HlogB
.

Then there is some H ′

1 such that

1. •; H0; eB →w •; H ′

1; e
′

B; T ′; HlogB

2. •; H ′

1; eA →s •; H2; e
′

A; ·; ·.

Proof of Lemma 6.10, organized by cases on eB . Note that because eA typechecks, we know that
all2(H ′

log, l 7→ v), and therefore Γ(lA) = (τA, 2) for some τA.

• eB = vB . eB does not step, so this case is vacuous.

• eB = x. eB does not step, so this case is vacuous.

• eB = spawn e′′B. The only step available to eB is •; H0; spawn e′′B →w •; H0; 0; e
′′

B ; ·. From this, it is
clear that before reordering the heaps for evaluation, eB did not change H2’s mapping for lA (and
won’t change H0’s mapping either) so H2(lA) = vA as before. Similarly, eB is unaffected by the
values in H0 and so e′B = 0 and T0 = e′′B are as before.

• eB = atomic e. eB cannot step under •. This case is vacuous.

• eB = e1; e2. There are two cases:

– e1 is not a value. By induction.

– e1 = vB and e2 is not a value. Here, eB steps using the seq-v rule, so •; H0; v; e2 →w

•; H0; e2; ·; ·. Notice that H ′

1 = H0 and so eA executes under H ′

1 to get H2 as before. Thus,
H2(lA) = vA), and e′B = e2 with T0 = · as before.

• eB = if e1 e2 e3. There are two cases:

– e1 is not a value. By induction.

– e1 = c. Here, eB steps using either the if-z rule or the if-nz rule, so •; H0; eB →w •; H0; e
′

B; ·; ·.
Notice that H ′

1 = H0 and so eA executes under H ′

1 to get H2 as before. Thus, H2(lA) = vA),
and e′B with T0 = · as before.

• eB = e1 := e2. There are three cases:

– e1 is not a value. By induction.

– e1 = lB and e2 is not a value. By induction.

– e1 = lB and e2 = vB . By assumption, we have Γ; 0 ⊢ eB : τB , and since e1 is some lB , we can
invert on the typing rules to get: Γ(lB) = (τB, 0). We know that Γ(lA) = (τ, 2), therefore lA
and lB must be distinct. We know from before reordering that H2 = H0, lA 7→ vA, lB 7→ vB ,
so we pick H ′

1 = H0, lB 7→ vB and after evaluating eA we have H2 = H0, lB 7→ vB , lA 7→ vA.
As a result, H2(lA) = vA. Additionally, e′B = vB and T0 = · as before.

• eB =!e1. There are two cases:

– e1 is not a value. By induction.

– e1 = lB By assumption, we have Γ; 0 ⊢ eB : τB, and since e1 is some lB, we can invert on the
typing rules to get: Γ(lB) = (τB, 0). It is given that Γ(lA) = (τA, 2), therefore lA and lB must
be distinct. By assumption, H1 = H0, lA 7→ vA. Because the labels are distinct, we also know
that H0(lB) = vB (and therefore e′B = vB = H0(lB) are as before). By picking H ′

1 = H0, eA

evaluates under H0 as it did before, giving H2 = H0, lA 7→ vA with H2(lA) = vA.

52

• eB = e1 e2. There are three cases:

– e1 is not a value. By induction.

– e1 = λx.e′′B and e2 is not a value. By induction.

– e1 = λx.e′′B and e2 = vB . The only step available to eB is •; H0; λx.e′′B vB →w •; H0; e
′′

B [vB/x]; ·; ·.
From this, it is clear that before reordering the heaps for evaluation, eB did not change H2’s
mapping for lA, so H2(lA) = vA as before. Similarly, eB does not use any values in H and so
e′B and T0 are as before.

• eB = inatomic(a, e′′B , HlogB
, eB0). By the assumption that not-active(eB), this case is vacuous.

• eB = inrollback(HlogB
, eB0). By the assumption that not-active(eB), this case is vacuous.

• eB = ref e′′B. There are two cases:

– e′′B is not a value. By induction.

– e′′B is some v In this case, a label is created and H2 = H0, lA 7→ vA, lnew 7→ v and e′B = lnew.
We know that lnew 6∈ Dom(H0), and since Γ ⊢ H0 : Γ it must be that lnew 6∈ Dom(Γ). Since
we also assume that Γ(lA) = (τA, 2), it must be that that lA 6= lnew (otherwise, eA could not
type-check under Γ). As a result, eB can step under H0 in the following way: •; H0; eB →w

•; H0, lnew 7→ v; lnew ; ·; ··, giving e′B = lnew and T0 = · as before. By picking H ′

1 = H0, lnew 7→ v,
we have H ′

1(lA) = H0(lA), and after the write to lA we have H2 = H0, lnew 7→ v, lA 7→ vA with
H2(lA) = vA.

Lemma 6.11 (Independent Rollback) If eA = inrollback(H ′

log, l 7→ v, e0) and

1. Γ ⊢ H0 : Γ

2. Γ; ε ⊢ eA : τA

3. Γ; 0 ⊢ eB : τB

4. not-active(eB)

5. •; H0; eA ‖ eB ‖ T →s •; H1; e
′

A ‖ eB ‖ T and
•; H1; e

′

A ‖ eB ‖ T →w •; H2; e
′

A ‖ e′B ‖ T ′.

Then there is some H ′

1 such that:

1. •; H0; eA ‖ eB ‖ T →w •; H ′

1; eA ‖ e′B ‖ T ′

2. •; H ′

1; eA ‖ e′B ‖ T ′ →s •; H2; e
′

A ‖ e′B ‖ T ′.

Proof of Lemma 6.11: Since we know that Lemma 6.10 handles this case whenever eA takes a single
step in rollback while eB takes a single step, we just apply that lemma here.

Lemma 6.12 (Topmost Enter-Atomic) Suppose

1. Γ ⊢ H : Γ

2. Γ; 0 ⊢ eB : τ ′

3. Γ; 0 ⊢ eA : τ

4. not-active(eA)

5. not-active(eB)

6. ◦; H ; eA ‖ eB ‖ T →s •; H ; e′A ‖ eB ‖ T and
•; H ; e′A ‖ eB ‖ T →w •; H ′; e′A ‖ e′B ‖ T ′.

Then the following must be true:

1. active(e′A)

2. ◦; H ; eA ‖ eB ‖ T →w ◦; H ′; eA ‖ e′B ‖ T and
◦; H ′; eA ‖ e′B ‖ T ′ →s •; H ′; e′A ‖ e′B ‖ T ′

Proof of Lemma 6.12 Restricted to the cases that need to be added or updated.

• eA = spawn e. The only step for eA is spawn, under which a = a′. This violates the assumption
that a = ◦ and a′ = •. This case is vacuous.

53

• eA = spawni(e). With 0 ≤ i ≤ 2. Remove these cases.

• eA = atomic e0. Here, only one evaluation step applies, enter-atomic. Thus, ◦; H ; eA →s

•; H ; inatomic(◦, e0, ·, ·). Deriving active(e′A) is obvious. Showing that eB can be moved to before
eA entered a transaction requires cases on eB. For each case, we must show: that eB is unaf-
fected by eA’s evaluation in terms of H and T and a. Notice that by assumption, •; H ;T ‖ eB →w

•; H ′; T ′ ‖ e′B. Or rather, that eB stepped using the weak rules under •. Also by assumption, eA

does not change H or T .

– eB = spawni(e). With 0 ≤ i ≤ 2. Remove these cases.

– eB = spawn e. eB steps in the following manner: •; H ; eB →w •; H ; (0 ‖ e ‖ T). Since eB

creates H ′ = H and T ′ = e ‖ T , while eA steps under enter-atomic (and, as stated earlier,
preserves H and T), it must be the case that eB neither affects eA nor is affected by it.
Similarly, eA is not affected by eB.

– eB = inatomic(a, e′′B , HlogA, eB0). This case violates the assumption that not-active(eB). This
case is vacuous.

– eB = inrollback(HlogB
, e′′B0). This case violates the assumption that not-active(eB). This case

is vacuous.

• eA = inatomic(a, e′′A, HlogA, e0). This case violates the assumption that not-active(eA), so this case
is vacuous.

• eA = inrollback(HlogA, e0). This case violates the assumption that not-active(eA), so this case is
vacuous.

Lemma 6.13 (Serializability of Transactions) Suppose:

1. ⊢ ◦; ·; e

2. ◦; ·; e →n
w a; H ;T

then there exists some sequence such that

1. ◦; ·; e →n
s a; H ; T

2. If a = • then the sequence ends with ◦; H ;TA ‖ ei ‖ TB →s •; H ; (TA ‖ e′i ‖ TB) •; H ; T ‖ e′i →k
s

•; H ; (TA ‖ e′′i ‖ TB) where TA ‖ e′′i ‖ TB = T

Proof of Lemma 6.13 This proof is just like Lemma 3.8 except that it uses the appropriate lemmas
in Section 6.7 where needed.

54

7 The WeakOnCommit language

As an alternative to eager update, we present a final model for software transactions with lazy update
(log the desired changes to H) and a commit phase when the desired changes are written to the global
version of H .

7.1 Syntax

Syntax changes between WeakOnCommit and StrongBasic are minor. The changes in syntax for inatomic

achieve the following goals:

1. We keep a log of the modifications we would like to commit (Hoc) should this transaction succeed
and enter a commit phase.

2. We keep the original expression e0 to re-execute in case of rollback. Both WeakUndo and WeakOn-

Commit model commit and rollback in their operational semantics, although the tricky cases are
different.

Similarly, we have added syntax for incommit that keeps track of the result value v as well as a record
of the heap values to commit to H .

In this situation, we must also add syntax for a stack S of heaps. This way, when a nested transaction
commits, we can to limit the scope of visible changes. This also allows us to define how heap accesses
and memory allocation should work within transactions.

e ::= c | l | x | e1; e2 | e1 := e2 | ref e |!e | λx.e | e1 e2

| spawn e | atomic e | inatomic(e, Hoc, e0) | incommit(Hoc, v)
S ::= · | S::H

7.2 Dynamic Evaluation

7.2.1 Whole Program Evaluation

Again, we adjust the program rule to handle the new form for expression evaluation. Since there is no
need to stratify H using S at the top-level, we “get S started” by using · for S at the top-level.

a; H ;T → a′; H ′; T ′

program

a; ·::H ; e → a′; ·::H ′; e′; T

a;H ; TA ‖ e ‖ TB → a′; H ′; TA ‖ e′ ‖ TB ‖ T

7.2.2 Expression Evaluation

Because we are now using a stack to stratify heap values in various levels of nesting, we have modified
the form of evaluation under lazy update in a minor way. The seq-1, spawn, and weak-get-lazy

rules are included as examples of how we have modified the rules from StrongNestedParallel to handle
the stack. We have also removed the inatomic helper,We have also removed the inatomic helper,
spawn0, spawn1, and spawn2 rules originally defined in StrongNestedParallel.

The rules weak-alloc-lazy and weak-set-lazy define how transactions modify S. The weak-

get-lazy rule and the definitions of lookup define how transactions read S.
As with eager update, we have removed the exit atomic rule and introduced two rules that end

transactions; rollback and complete commit. Note that when we commit, if the label was unallo-
cated before the transaction began then we have no problem because we are using both “branches” of
heap updates.

a; S; e → a′; S′; e′; T

55

seq-1

a; S; e1 → a′; S′; e′1; T

a;S; e1; e2 → a′; S′; e′1; e2; T

spawn

a; S; spawn e → a; S; 0; e

weak-get-lazy

lookup(S, l) = v

a; S; !l → a; S; v; ·

weak-alloc-lazy

a; S::H; ref v → a; S::H, l 7→ v; l; ·

weak-set-lazy

a; S::H; l := v → a; S::H, l 7→ v; v; ·

enter atomic

◦; S; atomic e → •; S; inatomic(e, ·, e); ·

inatomic

a; S::Hoc; e → a′; S::H ′

oc; e
′; ·

•; S; inatomic(e, Hoc, e0) → •; S; inatomic(e′, H ′

oc, e0); ·

enter commit

•; S; inatomic(v, Hoc, e0) → •; S; incommit(Hoc, v); ·

do commit

l ∈ Dom(Hoc) H ′′

oc = Hoc − {l 7→ Hoc(l)}

•; S::H; incommit(Hoc, v) → •; S::(H [l 7→ Hoc(l)]); incommit(H ′′

oc, v); ·

complete commit

•; S; incommit(·, v) → ◦; S; v; ·

rollback

•; S; inatomic(Hoc, e, e0) → ◦; S; atomic e0; ·

We define heap lookup as follows:

l ∈ Dom(H)

lookup(S::H, l) = H(l)

l 6∈ Dom(H) lookup(S, l) = v

lookup(S::H, l) = v

7.3 Typecheck e

As with all weak languages in the AtomsFamily, WeakOnCommit uses a type-and-effect system to parti-
tion H . The partition definition and rules are the same for Weak. Type-checking rules for syntax not in
WeakOnCommit have been removed, the rule for spawn defined for the StrongBasic language is repeated,
the rule for inatomic handles the extended syntax, and a rule for incommit has been added.

Γ; ε ⊢ e : τ

t-set-partition

Γ; t ⊢ e1 : reftτ Γ; t ⊢ e2 : τ

Γ; t ⊢ e1 := e2 : τ

t-get-partition

Γ; t ⊢ e : reftτ

Γ; t ⊢ !e : τ

t-ref-partition

Γ; ε ⊢ e : τ

Γ; ε ⊢ ref e : reftτ

t-label-partition

Γ(l) = (τ, t)

Γ; ε ⊢ l : reftτ

t-spawn

Γ; 0 ⊢ e : τ

Γ; 0 ⊢ spawn e : int

t-incommit

Γ; ε ⊢ v : τ Γ ⊢ Hoc : Γ

Γ; ε ⊢ incommit(Hlog, v) : τ

t-inatomic

ΓΓ′; 2 ⊢ e : τ Γ; 2 ⊢ e0 : τ not-active(e0) correct-atomic(a, e) ΓΓ′ ⊢ Hoc : ΓΓ′

Γ; ε ⊢ inatomic(e, Hoc, e0) : τ

7.4 Other Typing Rules

Since we have added new syntax for stacks of heaps, we must define how to typecheck S. There are no
other changes to this section.

Γ ⊢ S : Γ′

Γ ⊢ H : Γ′

Γ ⊢ ·::H : Γ′

Γ ⊢ H : Γ′ Γ ⊢ S : Γ′

Γ ⊢ S::H : Γ′

56

7.5 Activeness

7.5.1 Not-Active(e)

Like in the StrongBasic language, we remove the not-active(e) rules for deleted syntax (spawn0, spawn1,
and spawn2). We add a rule for the added syntax (spawn):

not-active(e)

not-active(e)

not-active(spawn e)

7.5.2 Active(e)

We update the active(e) rule for inatomic and add a rule for incommit.

active(e)

active(incommit(Hoc, v)) active(inatomic(e, Hoc, e0))

7.5.3 Correct Atomic State of T

No Changes.

7.6 Type Safety

Future Work.

7.7 Equivalence

Future Work.

57

8 Languages at a Glance

8.1 Syntax and Expressions

The syntax and semantics differences between members of the AtomsFamily are summarized in Fig. 2.

8.2 Typing

The differences in type-checking e and the activeness of e for different members of the AtomsFamily are
summarized in Fig. 3.

8.3 Unchanged Judgment Forms

The following are the same for every language in the AtomsFamily:

Judgment Section

a; H ; T → a′; H ′; T ′* 2.2

ε ≤ ε′ 2.4

Γ; ε ⊢ T 2.4

Γ ⊢ H : Γ 2.4

⊢ a;H ; T 2.4

Initial Configuration 2.4

Terminal State 2.4

not-active(T), active(T), correct-atomic(a, T) 2.5.3

*Note: Although the program rule is different,
the form of the judgment never changes.

8.4 Type Safety Lemmas with no Significant Changes

Beyond deleting cases from the proofs in Section 2.6 for typing rules that no longer apply (e.g. t-spawn-

2), the following lemmas have no significant changes:
Top Level Progress
Top Level Preservation
Weakening Lemma (and Context Extension Definition)
Canonical Forms
Values Effectless (note that a label may occur anywhere even with

a partition, only reading or writing its contents is restricted)
Variables Not in Γ′

Values Inactive
Effects Lemma (part 2 becomes trivial or is removed for most languages)

58

Language Syntax ∆ from Section 2 Expression Evaluation Rules and Section Qty.

StrongNestedParallel

from Sec. 2
This language is the basis for all
members of the AtomsFamily

a; H ; e → a′; H ′; e′; T0; T1; T2 seq-1, seq-v, set-1, set-2, strong-set,
ref-1, alloc, get-1, strong-get, app-1,
app-2, beta, spawn 0, spawn 1, spawn

2, enter atomic, inatomic, inatomic

helper, exit atomic. All rules are from Sec-
tion 2.2

19

Weak from Sec. 3 None a; H ; e → a′; H ′; e′; T0; T1; T2 seq-1, seq-v, set-1, set-2, ref-1, allows,
get-1, app-1, app-2, beta, spawn 0, spawn

1, spawn 2, enter atomic, inatomic,
inatomic helper, exit atomic from Section
2.2. weak-set and weak-get from Section
3.2.

19

StrongBasic from
Sec. 4 e ::= . . . | spawn e

| inatomic(e)

Note: Also remove the syntax for

inatomic, spawn0, spawn1, and spawn2

from StrongNestedParallel

a; H ; e → a′; H ′; e′; T seq-1, seq-v, set-1, set-2, strong-set,
ref-1, alloc, get-1, strong-get, app-1,
app-2, and beta from Section 2.2, with mod-
ifications appropriate for a single T . spawn,
enter atomic, exit atomic and inatomic

from Section 4.2.

16

StrongUndo from
Sec. 5

e ::= . . . | spawn e

| inatomic(a, e, Hlog, e0)
| inrollback(Hlog, e0)

Note: Also remove the syntax for

inatomic, spawn0, spawn1, and spawn2

from StrongNestedParallel

a; H ; e → a′; H ′; e′; T ; Hlog seq-1, seq-v, set-1, set-2, ref-1, al-

loc, get-1, app-1, app-2, beta, spawn,
set-eager, get-eager, enter atomic,
inatomic, enter rollback, do rollback,
complete rollback, and commit from Sec-
tion 5.2.

19

WeakUndo from
Sec. 6

e ::= . . . | spawn e

| inatomic(a, e, Hlog, e0)
| inrollback(Hlog, e0)

Note: Also remove the syntax for

inatomic, spawn0, spawn1, and spawn2

from StrongNestedParallel

a; H ; e → a′; H ′; e′; T ; Hlog seq-1, seq-v, set-1, set-2, ref-1, al-

loc, get-1, app-1, app-2, and beta from
Section 2.2, with modifications appropriate
for a single T and an empty or inductive
Hlog. spawn, weak-set-eager, weak-get-

eager, enter atomic, inatomic, enter

rollback, do rollback, complete roll-

back and commit from Section 6.2

19

WeakOnCommit

from Sec. 7
e ::= . . . | spawn e

| inatomic(a, e, Hoc, e0)
| incommit(Hoc, v)

S ::= · | S::H

Note: Also remove the syntax for

inatomic, spawn0, spawn1, and spawn2

from StrongNestedParallel

a; S; e → a′; S′; e′; T seq-1, seq-v, set-1, set-2, ref-1, get-1,
app-1, app-2, and beta from Section 2.2,
with modifications appropriate for a single T

and using S instead of H . spawn, weak-

set-lazy, weak-get-lazy, weak-alloc-

lazy, enter atomic, inatomic, enter

commit, do commit, complete commit,
and rollback from Section 7.2. We defined
lookup(S, l) in Section 7.2.

19

Figure 2: Expression Syntax and Evalutation

5
9

Language Typing Rules: Γ; ε ⊢ e : τ Qty. Activeness ∆

StrongNestedParallel

from Sec. 2
t-const, t-var, t-label, t-seq, t-set, t-ref, t-

get, t-lambda, t-app, t-spawn-0, t-spawn-1, t-

spawn-2, t-atomic, t-inatomic from Section 2.3

14 n/a

Weak from Sec. 3 t-const, t-var, t-seq, t-lambda, t-app, t-

spawn-0, t-atomic, t-inatomic from Section
2.3. t-set-partition, t-get-partition, t-ref-

partition, t-label-partition from Section 3.3.

12 n/a

StrongBasic from
Sec. 4

t-const, t-var, t-label, t-seq, t-set, t-get, t-

ref, t-lambda, t-app and t-atomic from Section
2.3. t-inatomic and t-spawn from Section 4.3.

12 Removed not-active(spawn0), not-active(spawn1), and
not-active(spawn2). Added not-active(spawn). Updated
active(inatomic).

StrongUndo from
Sec. 5

t-const, t-var, t-seq, t-lambda, t-app,
from Section 2.3. t-atomic, t-inatomic and
t-inrollback from Section 5.3 t-set-partition,
t-get-partition, t-ref-partition, t-label-

partition and t-spawn from Section 6.3.

13 Removed not-active(spawn0), not-active(spawn1), and
not-active(spawn2). Added not-active(spawn) and
active(inrollback). Updated active(inatomic).

WeakUndo from
Sec. 6

t-const, t-var, t-seq, t-lambda, t-app, and t-

atomic from Section 2.3. t-set-partition, t-get-

partition, t-ref-partition, t-label-partition

t-spawn, t-inatomic and t-inrollback from Sec-
tion 6.3. Added all2(Γ) in Section 6.4.

13 Removed not-active(spawn0), not-active(spawn1), and
not-active(spawn2). Added not-active(spawn) and
active(inrollback). Updated active(inatomic).

WeakOnCommit

from Sec. 7
t-const, t-var, t-seq, t-lambda, t-app, and t-

atomic from Section 2.3. t-set-partition, t-get-

partition, t-ref-partition, t-label-partition

t-spawn, t-inatomic and t-incommit from Sec-
tion 7.3. Added Γ ⊢ S : Γ in Section 7.4.

13 Removed not-active(spawn0), not-active(spawn1), and
not-active(spawn2). Added not-active(spawn) and
active(incommit). Updated active(inatomic).

Figure 3: Activeness and Typing Rules

6
0

