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ABSTRACT
We present sinking-point, a floating-point-like number system that
tracks precision dynamically though computations. With existing
floating-point number systems, such as the venerable IEEE 754
standard, numerical results do not inherently contain any infor-
mation about their precision or accuracy; to determine if a result
is numerically accurate, a separate analysis must be performed.
By contrast, sinking-point records the precision of each interme-
diate value and result computed, so highly imprecise results can
be identified immediately. Compared to IEEE 754 floating-point,
sinking-point’s representation requires only a few additional bits of
storage, and computations require only a few additional bitwise op-
erations. Sinking-point is fully generalizable, and can be extended
to provide dynamic error tracking for nearly any digital number
system, including posits.
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Computing methodologies→ Representation of exact numbers.
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1 INTRODUCTION
Floating-point error is particularly insidious because it can easily go
unnoticed. Consider the following interaction with Python 3, which
uses 64-bit IEEE 754 doubles to represent non-integer numbers:

>>> import math
>>> math.pi + 1e16 - 1e16
4.0

Clearly, something has gone wrong here. With pen and paper
arithmetic, we would expect the large terms of 1016 to cancel out,
leaving π as the result. Instead, we get 4. What happened?

If we look more closely at the computation, we can see that
the first addition must have rounded off the low bits of π . This is
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entirely understandable: 1016 is a big number, so out of the 53 bits
of precision available to an IEEE 754 double, there are only two bits
left to hold the value of π . Subtracting 1016 back off again simply
exposes this rounding error.

4 is the correct result: given the available precision, IEEE 754
floating-point has done the best it can. However, the way the result
is presented is problematic. IEEE 754 floating-point only has one
way to represent 4. Like all other IEEE 754 doubles (besides the sub-
normals), that representation has exactly 53 bits of precision. All the
bits which were rounded off have been filled in with zeros; it would
be more precise to write down the result as 4.0000000000000000,
though Python avoids printing the additional zeros.

While it is unfortunate to round π so imprecisely that the result
is equal to 4, it is not just imprecise but also inaccurate to round π
to 4.0000000000000000 with 53 bits of precision. And the IEEE 754
standard provides no indication when this happens. In our simple
example, it is easy enough to work through the rounding behavior
manually, but for more complex computations, low-precision re-
sults can easily cause things ‘go off the rails’ and transform into
catastrophic error without any indication that something is wrong.

To address this problem, we introduce sinking-point. Sinking-
point can represent the same set of numerical values as IEEE 754
floating-point, but it allows numbers with different precisions to
coexist. If we perform the computation from our example with our
prototype sinking-point implementation, we will see the following:

>>> Sink(math.pi) + Sink(1e16) - Sink(1e16)
[3.5-5.0]

To illustrate the uncertainty of inexact numbers, our implementa-
tion prints them as ranges of decimal numbers that are indistin-
guishable at the represented precision; that is, they would all round
to the same number. Here, that represented number is still 4, the
same as the IEEE 754 result, but with only two bits of precision,
sinking-point makes it clear that we would not be able to distin-
guish it from any other number between about three and a half and
five.

Interestingly, the expected correct result of π is not within the
range. This serves to highlight two important properties of sinking-
point. First, sinking-point is an approximation, not a sound analysis
technique like interval arithmetic. Second, it aims to provide a
lower bound on the uncertainty: in this case, we know that we
can’t distinguish results between 3.5 and 5, but the true range of
uncertainty might be larger.

If instead we perform a computation that should actually result
in 4, such as

>>> Sink(4.0) + Sink(math.pi) - Sink(math.pi)
[3.9999999999999998-4.0000000000000004]

then we can see that while adding and subtracting π has caused
some rounding and made the result inexact, the interval is much
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smaller, capturing most of the zeros from the precise IEEE 754
representation.

By tracking precision dynamically though a computation, sinking-
point ensures that if a result with some precision is produced, that
precision is meaningful; it contains bits that were actually com-
puted rather than filled in with zeros to fit a particular IEEE 754
format.

2 SINKING-POINT BY EXAMPLE
Sinking-point is based upon the following observation: when a
floating-point operation causes a loss of precision, that loss of preci-
sion is observable. Rather than viewing an operation as something
that takes in only values, and produces another value with some
fixed, format-dependent precision as a result, sinking-point oper-
ations take as input both values and precisions, and output both
values and precisions to which those values have been computed.
The key is that, for arithmetic operations and square root, the basic
building blocks of floating-point computation, it is always possible
to determine the output precision given the precisions and values
of the inputs. To give a high-level explanation of how this works,
we will examine examples of a few simple computations, paying
particular attention to the way the results are rounded.

2.1 Design philosophy
There are several approaches we could follow to determine the
output precision of a floating-point computation. One is to pro-
vide a sound underapproximation of the true output precision: for
each result, assign it some precision which is always known to be
less than the true precision of the result. Such an approach would
have similar capabilities to interval arithmetic, though it would be
restricted to intervals centered around a particular representable
digital number. Like interval arithmetic, it would be hindered by a
rapid increase in the interval size over the course of long computa-
tions.

Instead, sinking-point uses an unsound approximation, not un-
like the approximations inherent to IEEE 754 floating-point. Rather
than guaranteeing that the actual precision of the result is greater
than the assigned precision, sinking-point seeks to ensure that
precision is only reduced for good reason: that is to say, if some
bit in the representation is cut off due to reduced precision, then
there must not have been enough precision available to precisely
compute the value of that bit, and similarly if there is definitely
not enough information to compute the value of some bit, then the
precision must be reduced enough to cut it off.

As it is unsound, this approximation carries certain risks. In
particular, it will not be able to detect or protect against gradual
error due to accumulated roundoff in the lowest bits; however,
unlike interval arithmetic, it does not suffer from rapidly exploding
intervals. In most cases, sinking-point is effective at detecting the
catastrophic, floating-point-specific precision problems that make
the behavior of the IEEE 754 standard puzzling to users used to
working with real numbers. By providing an upper bound on the
precision, sinking-point can prevent programmers from mistakenly
thinking that the guaranteed 53 bits of precision in an IEEE 754
double is the true precision of a computed result.

1 0 1 . 0 1 ? ? ? ?
+ 1 0 0 . 0 0 0 0 0 1

1 0 0 1 . 0 1 0 0 0 1
1 0 0 1 . 0 1

Figure 1: Binary visualization of 5.25 + 4.015625 computed
with sinking-point. Unknown bit are represented as ?s. Four
trailing bits (shown in orange) are rounded off due to
sinking-point’s dynamic reduction of precision.

2.2 Addition and subtraction
Consider the addition of 5.25 + 4.015625. For simplicity, assume
that both numbers are not known exactly: 5.25 has the binary rep-
resentation 0b101.01, with the values of the less significant bits
all unknown, and 4.015625, or 4 1

64 , has the binary representation
0b100.000001. Assume that we are not limited by a particular rep-
resentation: we can compute with arbitrary precision, and produce
arbitrary precision results, limited only by the precision to which
we know the inputs. What is the most precise answer we can give?

Figure 1 shows a visualization of the computation. The inputs
are written out in binary, with unknown bits represented as ques-
tion marks. If we pretend the unknown bits are all zeros, then the
arbitrary precision result should have a binary representation of
0b1001.010001, or 9.265625. However, in reality the unknown bits
might not be zero: since we don’t know the value of 5.25 precisely,
we don’t know what they are. An unknown value plus a known
value is not equal to the known value; it would be safer to say that
the result is also unknown. The most precise answer we can give
for certain is 0b1001.01, or 9.25; this requires rounding off the bits
shown in orange in the figure. We want sinking-point to determine
that the precision is not high enough to provide these bits, and
round them off automatically.

The picture is similar for subtraction. Figure 2 shows a visual-
ization of the same computation, but with the sign of the second
operand reversed. The rounding behavior is exactly the same as
before, with the orange bits from the figure rounded off due to
insufficient precision. Regardless of the sign, adding or subtracting
an unknown bit can never produce a precisely known bit as a result.
It is interesting to note that the result of the subtraction, 0b1.01 in
binary or 1.25, has significantly less precision than either operand,
at only 3 bits. Although the same number of bits after the binary
point are known, some of the higher bits have canceled out. While
IEEE 754 would immediately fill in more low bits with zeros to
maintain constant precision, we want sinking-point to recognize
that there is no point in doing so because the values of the low
bits are not actually zero. Although we don’t know what the bits
are, we do know that we don’t know what they are, and we can
communicate this by lowering the precision.

Based on these two examples, we can begin to formulate a rule
to determine the output precision that sinking-point should assign
for an addition or subtraction. The output precision is not limited
purely by the amount of precision the inputs have, but also bywhere
that precision is in the representation. Specifically, the precision
will be limited by whichever number has an unknown bit in a more
significant place. Visually, this is whichever number has a question
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1 0 1 . 0 1 ? ? ? ?
- 1 0 0 . 0 0 0 0 0 1

1 . 0 0 1 1 1 1
1 . 0 1

Figure 2: Binary visualization of 5.25 − 4.015625 computed
with sinking-point.

mark further to the left in its binary representation: at or to the
right of the position of this question mark, we can’t possibly know
any bits of the output precisely.

2.3 Multiplication
Multiplication requires a different precision-tracking scheme from
addition or subtraction, but using a shift and add multiplier, or the
“grade school” multiplication algorithm, we can relate it back to the
rule we observed previously. Figure 3 visualizes the multiplication
5.25 × 5, again assuming both values are inexact. We sum from
the largest values (which have been shifted farthest left) to the
smallest. Note that when the shift becomes small enough, we will
effectively be multiplying by an unknown bit: to model this, we add
a completely unknown value, shifted by the appropriate amount.
We can think of this number as a zero with some specific precision:
we don’t known exactly what value it is, but we have an upper
bound on its magnitude. Above a certain significance all the bits in
its representation are known to be zero, but below that we have no
idea what the bits are.

Like any other addition, we are limited by the most significant
unknown bit. Here, that unknown bit comes from the zero, and it
restricts the output precision to only three bits. In contrast to addi-
tion and subtraction, the location of the bits we know has moved
around significantly in the binary representation; in the inputs, we
had known bits down to the 2−2s or 20s place, but in the output,
the least significant known bit is in the 22s place. Conveniently,
however, we can see that the output precision is equal to the lesser
of the two input precisions.

This is not a coincidence. Assume that the second operand in the
multiplication has less precision, as in the example; that is to say,
we are shifting and masking by the less precise input. Eventually,
we will run out of bits and add an imprecise zero. Relative to this
zero, the largest term in the addition can have been shifted left
by at most the precision of the second operand. There isn’t room
for more than that precision’s worth of bits. Alternatively, if we
assume that the first operand has less precision, then we can see
that the largest term in the addition (which has the same precision
as the first operand) would limit the output precision in the same
way.

As we have seen, the precision of a floating-point operation can
be limited in two different ways: by the most significant unknown
bit in an addition or subtraction, or by the lesser precision of an
input to a multiplication. For sinking-point to work, we need to
formalize these rules in a way that lets us compute the output
precision efficiently, and store the necessary information for that
computation compactly.

1 0 1 . 0 1
* 1 0 0 . ? ?

1 0 1 0 1 . ? ? ?
0 0 0 0 . 0 ? ?

1 0 1 . 0 1 ?
+ ? ? . ? ? ?

1 0 0 1 0 . 0 1
1 1 1 ? ? .

Figure 3: Binary visualization of 5.25 × 5 computed with
sinking-point. The shift and add algorithm is used to com-
pute the multiplication as addition.

3 IMPLEMENTATION
To evaluate the capabilities of sinking-point, we built a prototype
implementation using Titanic, a multi-precision, multi-format nu-
merical laboratory that makes it easy to experiment with new,
floating-point-like digital number systems. Our prototype extends
Titanic’s built-in support for IEEE 754 floating-point, and for com-
putations with exactly known inputs, it produces exactly the same
output values. In order to support dynamic precision tracking, we
need to make two changes: first, we need to change the represen-
tation of floating-point numbers to store additional information
about their precision, and second, we need to change the arithmetic
operations to use that information to compute the output precision
as well as the output value.

3.1 Sinking-point representation
Since the IEEE 754 standard does not track precision dynamically,
we need to add a few extra bits to the representation to store it. A
sinking-point number can be thought of as a tuple

(v, inexact ,p,n)

v is a typical IEEE 754 floating-point value. We say that v is the
host value, which comes from some host IEEE 754 format that we
are extending with sinking-point. inexact is a single bit flag that
represents whether this number is inexact. We need to keep track
of this because exact values should be given special treatment, as
we know them to infinite precision.

p and n together represent the precision of the number. p is
just the number of bits of precision in the significand, which can
range from 0 to pmax , where pmax is defined as the maximum
precision that can be represented by the host IEEE 754 format; for
64-bit IEEE 754 doubles, pmax = 53. n represents the position of
the most significant unknown bit; going back to our visualizations
from section 1, it is the position of the leftmost question mark.
More formally, for a number with a typical IEEE 754 floating-point
exponent equal to e and precision p, we can define n = e − p

3.1.1 Representing p and n efficiently. For our prototype implemen-
tation, we do not concern ourselves with how the tuple would be
packed into a binary representation. However, we can provide a
rough upper bound on the maximum number of bits required. In a
packed representation, it would make sense not to represent both
p and n explicitly, since one could always be computed from the
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other given access to the exponent of the host value v . In most situ-
ations, it would be better to store p, which could be done in at most
log(pmax ) bits, since the value is an integer and ranges between 0
and pmax . Assuming one extra bit for the inexact flag, this means
the total number of bits required comes to log(pmax ) + 1 compared
to the size of the host IEEE 754 binary representation. For example,
using 64-bit IEEE 754 doubles as the host format, sinking-point
would require at most 7 additional bits, 6 for the precision and 1
for the inexact flag.

Of course, those 7 extra bits could also be used to increase the pre-
cision of the host format, but this would not have any of the benefits
of sinking-point’s dynamic tracking. The purpose of sinking-point
is to increase confidence in precision, not precision itself, and the
benefits are independent of the host precision.

3.1.2 Printing sinking-point values. Printing sinking-point num-
bers in a human readable format presents some unusual challenges.
Unlike IEEE 754 floating-point formats, which can only represent
a value with one particular precision, a sinking-point format can
represent the same value with many different precisions. To distin-
guish them, our prototype implementation prints inexact values as
ranges of decimal numbers. As we saw in section 1, 4 with two bits
of precision is displayed as [3.5-5.0], while with 53 bits of precision
it is [3.9999999999999998-4.0000000000000004].

The ends of each range are the largest and smallest decimal num-
bers that would round to the represented number when using IEEE
754 “round to nearest even” rounding semantics at the represented
precision. This gives humans a quick underapproximation of the
uncertainty in the represented value, while also encoding precision
information that can be read back later. By finding the greatest
precision such that both ends round to the same value, we can
recover both the value and the precision from a decimal range.

Our tool prints the shortest prefix of digits such that both the
value and precision can be recovered.

3.1.3 A note about zero. In terms of precision, zero is a special
case: by definition, its precision must be zero. For exactly known
zeros, the value truly is zero, and the behavior is the same as we
would expect from IEEE 754 floating-point. However, for inexact
zeros, the most significant unknown bit n for the zero, which is
the same as its exponent, becomes important. As discussed in the
multiplication example, an inexact zero provides only an upper
bound on the magnitude of some value.

Like other inexact sinking-point values, we can display zeros
as ranges of numbers that are considered indistinguishable after
rounding. Uniquely, zeros have ranges with ends of different signs,
essentially representing the negative and positive magnitude of
the most significant unknown bit. For example, a zero with a most
significand unknown bit of n = 0, or equivalently a least significant
known bit in the 21s place, would be printed out as [-1.-+1.], while
a more “precise” zero with n = −10 would be printed as [-.0009-
+.0009].

This property of zeros is not quite the same as having precision;
it would be more accurate to describe it as an exponent. In any
case, tracking n for inexact zeros provides important information
about the effective precision of computations that produce them as
results or intermediate values.

operation n p

+ max(n1, n2, nmin ) pmax

- max(n1, n2, nmin ) pmax

* nmin min(p1, p2, pmax )

/ nmin min(p1, p2, pmax )

sqrt nmin min(p1 + 1, pmax )
Table 1: Summary of rules for computing sinking-point out-
put precision

3.2 Sinking-point operations
Sinking-point operations are substantially similar to IEEE 754 floating-
point operations. There are two major differences: first, the output
precision must be computed, based on the values and precisions of
the inputs, and second, the computed output precision affects the
way the results are rounded.

For simplicity, we assume the ability to compute all arithmetic
operations and square roots to arbitrary precision. In our prototype
implementation using Titanic, arbitrary precision arithmetic opera-
tions are provided by GNU MPFR. We also assume the existence of
a rounding function with the following signature:

round (vin ,p,n) → (vout , inexactout ,pout ,nout )

vin is the input value to round, according to some target precision
p and least significant bit n. The result is both a rounded valuevout ,
and the corresponding exactness inexact , precision p, and most
significant unknown bitn. The rounding function assumes its inputs
are exact, so it is the case that (¬inexactout ) ⇐⇒ vin = vout .

It is useful to define some precision-related quantities relative to
sinking-point’s IEEE 754 host format. Specifically, we define pmax
to be the maximum precision supported by the host format, and
nmin to be one less than the least significant bit representable in any
number in the host format. For IEEE 754 doubles, pmax = 53, and
nmin = −1075, which in general can be computed as emin − pmax ,
where emin is the minimum exponent.

Table 1 gives an overview of the rules for computing sinking-
point output precisions. The following sections provide pseudocode
for each operation, as well as some additional details.

3.2.1 Addition and subtraction. Sinking-point addition and subtrac-
tion effectively share an implementation, described in Python-like
pseudocode as:
def add((v1, ie1, p1, n1), (v2, ie2, p2, n2)):

limiting_n = nmin
if ie1:

limiting_n = max(limiting_n, n1)
if ie2:

limiting_n = max(limiting_n, n2)
v_out, ie_out, p_out, n_out = \

round(v1 + v2, pmax, limiting_n)
return (v_out, ie_out or ie1 or ie2, p_out, n_out)

Subtraction is exactly the same, other than flipping the sign of
the second argument by passing v1 −v2 to the rounding function.
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Addition and subtraction are limited by n, not p; the limiting
value cannot be less thannmin , andmight be limited further if either
of the inputs is not exact. The limiting value of n is determined by
taking the maximum. Since n is the most significant unknown bit,
larger values of n indicate results that are less precise. Most of the
work is done by the addition itself, which our prototype computes
to arbitrary precision but in principle could be implemented in
much the same way as IEEE 754, and by the rounding function. The
final result is inexact either if it became inexact after rounding, or
if either of the inputs was inexact.

3.2.2 Multiplication and division. Like addition and subtraction,
multiplication and division share what is effectively the same im-
plementation, shown below:

def mul((v1, ie1, p1, n1), (v2, ie2, p2, n2)):
limiting_p = pmax
if ie1:

limiting_p = min(limiting_p, p1)
if ie2:
limiting_p = min(limiting_p, p2)

v_out, ie_out, p_out, n_out = \
round(v1 * v2, limiting_p, nmin)

return (v_out, ie_out or ie1 or ie2, p_out, n_out)

Again, division is the same, other than using arbitrary precision
division v1/v2 instead of multiplication. Here, the output precision
is limited by the precision p of the inputs. The final precision cannot
exceed pmax , and might be further limited by the precision of either
input if it is inexact. The limiting value is computed by taking
the minimum. Rounding is exactly the same as for addition and
subtraction, with the final result being inexact if either input or the
rounded value exhibits inexactness.

3.2.3 Square root. Taking the square root is similar to multiplica-
tion in that the output precision is limited by p. However, there are
some differences.

def sqrt((v1, ie1, p1, n1))
limiting_p = pmax
if ie1:

limiting_p = min(limiting_p, p1 + 1)
v_out, ie_out, p_out, n_out = \

round(real_sqrt(v1), limiting_p, nmin)
return (v_out, ie_out or ie1, p_out, n_out)

Since it only takes one argument, there is only one value to limit
the precision of a square root operation. The way of computing
the limiting precision is also slightly different. The square root is
relatively insensitive to errors in the last few bits: multiple nearby
floating-point numbers tend to share the same square root at a
given precision, even if the last bit is different. Because of this, we
can relax the limiting precision slightly by adding one to it, as long
as we are not also limited by pmax .

3.2.4 Special values. As noted, sinking-point tracks n for inexact
zeros. This does not require any modifications to the underlying
arithmetic or the host IEEE 754 representation; it will happen au-
tomatically as long as the rounding function produces the correct
value of n.

Subnormal numbers also do not require any special treatment.
They will be handled naturally by the rounding function, as the
limit on nmin will restrict the precision of values with extremely
small magnitudes, even if there seem to be sufficient bits inpmax . In
a sense, subnormals and sinking-point are closely related; both are
floating-point values with decreased precision, but while subnor-
mals occur due to a peculiarity of the format, sinking-point values
can only have reduced precision because of suspicious behavior
within a computation.

The other special floating-point values, namely infinities and
NaN, or not a number, are retained, and their behavior is exactly the
same as for the host IEEE 754 format. Any precision information
about them is disregarded. Once a computation has gone so off the
rails it no longer produces a real value, dynamic precision tracking
is not going to help.

4 CASE STUDIES
To illustrate the capabilities of sinking-point, we present two case
studies of interesting computations. The first is based on the qua-
dratic formula, and the second is based on a modified version of
John Gustafson’s “accuracy on a 32-bit budget” challenge.

4.1 The quadratic formula
Beloved of high-school algebra teachers and numerical analysts
alike, the quadratic formula gives the solution to the general qua-
dratic equation and computes the roots of a parabola.

Given the general quadratic equation

ax2 + bx + c = 0

the formula for the positive root is

x =
−b +

√
b2 − 4ac
2a

Though simple, the naive form of the computation can be very inac-
curate for some inputs when implemented with IEEE 754 floating-
point. We can catch these inaccuracies by performing the same
computation with sinking-point and checking the output precision.

For purposes of the case study, assume we have some parabola
defined with b = 2 and c = 3. Additionally, we know that a is
positive but very small; it is greater than zero, but the magnitude is
significantly less than that of b or c . a is the x2 term of our parabola;
near the origin, the smaller a is the more we expect the parabola to
look like a line. For the line bx + c , there is one zero at −c/b, which
in our case works out to − 3

2 . Therefore, the smaller a is, the closer
we expect the positive zero to be to − 3

2 .
We can plug in various values of a to see what the IEEE 754

standard gives us, and how much precision sinking-point thinks is
left. The results are show in table 2, compared to the true answer
to 16 decimal places.

At first, down to about a = 10−9, IEEE 754 confirms our mathe-
matical intuition. But for smaller values, floating-point inaccuracies
start to creep into the computation, making the result increasingly
inaccurate until finally collapsing to a catastrophically inaccurate
result of zero around a = 10−17.

Meanwhile, sinking-point reports ever decreasing precision;
while the first result with a = 0.1 retains 51 bits of precision,
reporting the values of bits down to the 2−50s place, the result at
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a b c x (IEEE 754 double) x (real value) x (sinking-point)
0.1 2 3 -1.6333997346592444 -1.6333997346592446 -1.633399734659244[0-8]
0.001 2 3 -1.5011266906707066 -1.5011266906707219 -1.501126690670[68-78]
1e-9 2 3 -1.5000000130882540 -1.5000000011250001 -1.[49999995-50000005]
1e-15 2 3 -1.5543122344752189 -1.5000000000000011 -1.[44-56]
1e-16 2 3 -2.2204460492503131 -1.5000000000000002 -[1.8-2.5]
1e-17 2 3 0 -1.5000000000000000 [-1.-+1.]

Table 2: Results for naive quadratic formula with a close to zero.
Inaccurate digits in the IEEE 754 result are colored orange.
Sinking-point values are represented as a range of values
which are indistinguishable at the resulting precision.

a b c x (IEEE 754 double) x (real value) x (sinking-point)
0.1 2 3 -1.6333997346592446 -1.6333997346592446 -1.633399734659244[5-7]
0.001 2 3 -1.5011266906707219 -1.5011266906707219 -1.50112669067072[18-20]
1e-9 2 3 -1.5000000011250001 -1.5000000011250001 -1.500000001125000[0-2]
1e-15 2 3 -1.5000000000000013 -1.5000000000000011 -1.500000000000001[3-4]
1e-16 2 3 -1.5000000000000004 -1.5000000000000002 -1.500000000000000[4-5]
1e-17 2 3 -1.5000000000000000 -1.5000000000000000 -1.[4999999999999999-5000000000000001]

Table 3: Results for herbified quadratic formula with a close to zero.

a = 10−16 only has two bits of precision. We can also see the utility
of tracking the most significant unknown bit of zeros; though it also
returns zero for a = 10−17, the sinking-point zero has a least signif-
icant (known to be zero) bit in the 21s place, so it could conceivable
be any number between about −1 and 1.

As we can see, the naive form of the quadratic formula is not
an accurate way to look for zeros, given what we know about our
parabola. Instead, we should be using an alternative formulation,
such as the following expression produced by the Herbie tool [8]:

x =
1(√

b2 − 4ac + b
) (
−1
2c
)

Results for this computation are shown in table 3. By restructur-
ing the computation, Herbie has completely avoided the floating-
point inaccuracies that plagued the naive version of the formula,
producing results that are mostly accurate down to the last few bits.
Sinking-point confirms this. Since none of the operations result in
loss of precision, sinking-point produces the same values as stan-
dard IEEE 754 floating-point, though as they are not exact values,
they are shown as very tight decimal ranges.

4.2 Accuracy on a 32-bit budget, adapted
In [4], John Gustafson proposes the following expression for evalu-
ating the accuracy of number systems on a 32-bit budget for preci-
sion:

*
,

27
10 − e

π − (
√
2 +
√
3)
+
-

67/16

Since sinking-point does not have support for the power function,
we cannot use it to evaluate this expression directly. However, we

exponent bits result p bits of accuracy
3 NaN — —
4 7.7412[84-91] 20 17.6
5 7.7413[11-25] 19 20.9
6 7.7414[1-3] 18 15.6
7 7.7414[3-8] 17 15.2
8 7.741[64-76] 16 13.8
9 7.740[7-8] 15 13.1
10 7.740[5-9] 14 13.1
11 7.74[37-46] 13 10.9
12 7.74[4-5] 12 10.9
13 7.73[3-6] 11 9.6
14 7.69[2-9] 10 6.9
15 7.7[6-7] 9 7.8
16 7.8[0-2] 8 6.2
17 7.[79-84] 7 6.2
18 [7.94-8.12] 6 4.4
19 7.[13-37] 5 3.4
20 [7.8-8.5] 4 4.4
21 [4.5-5.5] 3 0.7
22 [2.8-3.2] 3 -0.5
23 NaN — —

Table 4: Sinking-point result, precision, and bits of accuracy
for adapted 32-bit accuracy challenge.

can perform a similar computation:

*
,

27
10 − e

π − (
√
2 +
√
3)
+
-

3/2
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Instead of taking the power directly, we compute the inner expres-
sion, multiply it by itself three times, and then take the square
root.

The idea of this 32-bit accuracy challenge is to get as close as
possible to the true answer while computing with some number
system that is only allowed to use 32 bits. For our modified version,
the true answer (to 10 decimal places) is 7.7413150952. In order to
come up with a “winning” IEEE 754 format, we might want to inves-
tigate different ways of partitioning the 32 available bits between
the exponent and the significand. To do this, we can sweep across
all of the different configurations using sinking-point augmented
versions of the corresponding IEEE 754 formats, and compare the
precision left in the results.

This might seem like cheating, since a sinking-point augmented
format will use more than 32 bits, but we aren’t really interested in
the accuracy of the sinking-point results. What we want to see is the
comparison between sinking-point’s assessment of the precision,
and the accuracy compared to the true result. We can obtain this
by computing the “bits of accuracy” for each of the sinking-point
answers. Bits of accuracy, defined for two numbers a and b as

− log2
(����log2

(a
b

) ����
)

is a measure inspired by John Gustafson’s similar “decimals of
accuracy.” [4] For finite a and b with the same sign, the bits of
accuracy tells us approximately how many bits in their binary
representations are the same. Ideally, we would want every sinking-
point result to have p bits of accuracy when compared to its ideal,
true value.

The sinking-point results, their precisions, and the correspond-
ing true bits of accuracy for a range of exponent bits are shown
in table 4. Sinking-point has a very consistent view of the loss of
precision that occurs during the computation: for almost all of the
results, the output precision is 8 bits less than the maximum that
the format can represent. For the most part, these precisions agree
with the true bits of accuracy. However, we are starting to see the
limits of sinking-point’s capabilities. If we picked the result with
the largest sinking-point output precision, with 4 exponent bits
and 28 bits of precision, we would actually end up with a worse
answer than the winning format with 5 exponent bits and 27 bits of
precision. This is likely a fluke due to the peculiarities of rounding
for this specific computation, but we can also see that sinking-point
systematically overestimates the output precision by about 2-3 bits.
Sinking-point is not designed to provide a sound analysis: its goal
is to quickly and cheaply detect catastrophic floating-point issues
like we saw with the quadratic formula.

5 SINKING-POINT FOR OTHER NUMBER
SYSTEMS

Aswe have described it so far, sinking-point is an extension of a host
IEEE 754 format. However, this choice is not due to any particular
limitations of sinking-point itself. The precision quantities n and p
can be determined for almost any host number system that uses
a digital representation of numbers, so in principle, sinking-point
could be used to extend any such system. This includes not just IEEE
754 floating-point, but also other similar formats such as posits [5],

fixed-point representations, or other application-specific floating-
point designs [7]. Similarly, sinking-point is not restricted to host
number systems that use constant or finite amounts of precision;
our prototype is based on Titanic’s arbitrary precision arithmetic
libraries, so it can already provide a sinking-point implementation
for an IEEE 754 format with arbitrary precision, or mix inputs from
formats with different precision.

Sinking-point’s ability to track precision would be particularly
valuable for multi-precision, multi-format computations, since the
meaning of precision remains constant across different formats,
even if they use completely different representations under the
hood. In a multi-precision, multi-format computation, the precision
information sinking-point provides could be used both to search for
precision and format parameters that produce high output precision,
as we showed with the 32-bit accuracy challenge, or to dynamically
adapt when precision becomes too low, for example by redoing part
of a computation with a different format.

6 RELATEDWORK
Floating-point analysis is a rich area, spread somewhere between
Programming Languages and Formal Methods. Many tools have
been developed to analyze floating-point programs statically, such
as Fluctuat [3], Rosa [2], and FPTaylor [10]. These tools can provide
tight and sound worst-case error bounds for small computations,
but they usually do not scale well to larger programs. The Her-
bie [8] tool takes a slightly different approach, using a stochastic
static analysis to rewrite floating-point programs into forms that
suffer less from pathological floating-point error, but it does not
provide formal guarantees about its output. Other tools, such as
Herbgrind [9] and FPDebug [1] perform dynamic analyses simi-
lar to sinking-point’s precision tracking, though they depend on
storing higher-precision “shadow values” and thus are much more
computationally expensive. In contrast, sinking-point is a combina-
tion of a dynamic analysis and a floating-point standard, such as
IEEE 754 [6] or posits [5].

7 CONCLUSION
We have presented sinking-point, a floating-point arithmetic that
dynamically tracks precision through computations in order to
provide better transparency about the precision of results. While
typical IEEE 754 floating-point hides the fact that some results may
have been computed with less precision than others, sinking-point
allows numbers of many different precisions to coexist within the
same number system. Though it is an approximation like IEEE
754 floating-point and cannot provide sound worst-case guaran-
tees about precision like an interval analysis, sinking-point has a
compact representation, requiring at most logpmax + 1 extra bits
compared to a host IEEE 754 floating-point format, and its precision
analysis is inexpensive to compute. With the recent explosion of
interest in new number systems, sinking-point provides a way to
tie them all together with a shared precision analysis, encouraging
rapid exploration in spaces where traditional floating-point analysis
techniques have not been fully developed.
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