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Abstract. Portable low-level C programs must often support multiple
equivalent in-memory layouts of data, due to the byte or bit order of
the compiler, architecture, or external data formats. Code that makes
assumptions about data layout often consists of multiple highly similar
pieces of code, each designed to handle a different layout. Writing and
maintaining this code is difficult and bug-prone: Because the differences
among data layouts are subtle, implicit, and inherently low-level, it is
difficult to understand or change the highly similar pieces of code con-
sistently.

We have developed a small extension for C that lets programmers
write concise declarative descriptions of how different layouts of the same
data relate to each other. Programmers then write code assuming only
one layout and rely on our translation to generate code for the others.
In this work, we describe our declarative language for specifying data
layouts, how we perform the automatic translation of C code to equiv-
alent code assuming a different layout, and our success in applying our
approach to simplify the code base of some widely available software.

1 Introduction

C is sometimes referred to as a “portable assembly language” because it is im-
plemented for almost every platform and allows direct bit-level access to raw
memory. It remains the de facto standard for writing low-level code such as de-
buggers and run-time systems that manipulate low-level data representations or
process external file formats. It is therefore quite ironic that C is not well-suited
to writing portable bit-level code.

In practice, for such code to be portable it must support multiple equiva-
lent data formats. A ubiquitous example is big-endian and little-endian byte
order. The order of bit-fields in a struct can also vary with compilers. Additional
idiosyncratic examples arise with each unusual file format, compiler, or architec-
ture. Though such code is occasionally performance-critical (e.g., network-packet
processing), it usually is not (e.g., file-header processing).

Writing portable code is time-consuming and error-prone. Simple web searches
reveal hundreds of (known) endianness bugs. Even for bug-free code, data-
layout portability often leads to large amounts of code duplication; using Google
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Code Search we found approximately one thousand open-source packages with
near-identical code segments based on byte- or bit-order. Such code segments are
often poorly documented and are difficult to maintain consistently, particularly
because the code is inherently low-level.

1.1 Conventional Approaches

We believe the most common approach to supporting multiple equivalent data
layouts is, indeed, code duplication and conditionals (typically with the prepro-
cessor) to choose the correct variant. In our experience, a common approach to
such duplication is that one version of the code is developed first (e.g., for a
big-endian machine), then — perhaps much later when portability issues arise
— the code is copied, one copy is edited, and an #ifdef chooses between copies.
This process is error-prone and leads to maintenance problems as the copies
must remain consistent.

A natural alternative is to abstract all data-layout assumptions into helper
functions, confining code duplication to the smallest amount of code possible. We
believe dismissing any code that does not follow this approach as “poorly writ-
ten” is naive. First, if a nonportable code segment is already written, changing
it to abstract out such assumptions could introduce bugs on mature platforms.
Second, the resulting code can be much harder to read and understand: C is
good at expressing bit-level operations directly so the code is often reasonably
clear when specialized to a given data layout.

1.2 Our Approach

We have developed a tool that takes annotated C code and lets programmers
(1) write one version of their code assuming one particular data layout and (2)
declaratively specify multiple equivalent data layouts. We then perform a source-
to-source transformation that automatically generates versions of the code for
each data layout. In this way, we retain the coding effort and clarity of writing
nonportable code while supporting portability. We simply use compiler technol-
ogy to do what it does well: transform code to equivalent versions. Moreover, the
declarative specifications are concise documentation of data-layout assumptions.

Our approach should fit well with typical software development. Programmers
can still write nonportable code first and then add data-layout specifications and
“port statements” (described later) to indicate where to perform our source-
to-source transformation. Our tool can be used incrementally since only code
executed in the lexical scope of a port statement needs transforming. By pro-
ducing regular C code, the output of our tool can be distributed as open-source
software, processed by conventional tools, or edited manually.

1.3 Outline

This paper describes our tool, how our transformation works, and our prelim-
inary experience rewriting portions of the Gnu Debugger and Gnu Binary File
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1 enum endian { BIG, LITTLE };
2 struct reloc { char idx[3]; char type; };
3 int idx, extern, pcrel, neg, length;
4 struct reloc *reloc;

...
5 if (bfd_header_endian(abfd) == BIG) {
6 reloc->idx[0] = idx >> 16;
7 reloc->idx[1] = idx >> 8;
8 reloc->idx[2] = idx;
9 reloc->type = ((extern ? 0x10 : 0) | (pcrel ? 0x80 : 0)

10 | (neg ? 0x08 : 0) | (length << 5));
11 } else {
12 reloc->idx[2] = idx >> 16;
13 reloc->idx[1] = idx >> 8;
14 reloc->idx[0] = idx;
15 reloc->type = ((extern ? 0x08 : 0) | (pcrel ? 0x01 : 0)
16 | (neg ? 0x10 : 0) | (length << 1));
17 }

Fig. 1. Example BFD code

Descriptor Library with our approach. Section 2 informally presents a real ex-
ample to give a programmer’s view of our extension. Section 3 then describes
our language extensions completely. Section 4 describes our implementation, i.e.,
how we perform the source-to-source transformation. Section 5 describes some
preliminary experience. Section 6 describes related work, and Section 7 concludes
with several directions for future work.

2 Example

To give a flavor for how our tool works, we demonstrate its use on a code snippet
from the Gnu Binary File Descriptor Library (BFD) [17], a library that facilitates
working with binary formats such as a.out or ELF. Sections within some of these
formats may be stored in either little- or big-endian order. Code that reads or
writes these formats comes in two halves, each half handling one data layout.

Example 1 shows a snippet of such BFD code, rewritten slightly for con-
ciseness. reloc->idx stores the three low-order bytes in idx either left-to-right
(lines 6-8) or right-to-left (lines 12-14), depending on the byte order of the header
section in the binary format being handled. The field reloc->type is an 8-bit
piece of data holding six bit-flags and one 2-bit piece of data. Depending on
the endianness of the header, the bit data is stored in either left-to-right (lines
9-10) or right-to-left (lines 15-16) order. Notice that the two representations of
reloc->type are not related by the bitwise reverse function. The order of the
two bits within length remains unchanged.

Changes to this code must be done simultaneously to both halves, taking
into account the low-level details about how the representations differ. The bit
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enum endian { BIG, LITTLE };
struct reloc {
char idx[3] @ match endian,byte with BIG -> 0:1:2

| LITTLE -> 2:1:0;
char type @ match endian,bit with BIG -> 0:1:2:3:4:5:6:7

| LITTLE -> 7:5:6:4:3:2:1:0;
};
int idx, extern, pcrel, neg, length;
struct reloc *reloc;
...
port (bfd_header_endian(abfd), BIG) {
reloc->idx[0] = idx >> 16;
reloc->idx[1] = idx >> 8;
reloc->idx[2] = idx;
reloc->type = ((extern ? 0x10 : 0) | (pcrel ? 0x80 : 0)

| (neg ? 0x08 : 0) | (length << 5));
}

Fig. 2. Figure 1, rewritten for use with our tool

constants 0x10, 0x08, and 0x80 correspond to bitwise reverse analogues in the
opposite half: 0x08, 0x10, and 0x01. The left-shift and bitwise-or on line 9 place
the two bits in length in reloc->type’s bits 6 and 7. Since the representation
is reversed on the other endianness, these bits will occupy positions 2 and 3, so
a left-shift by 5 on big-endian formats must be accompanied by a left-shift by
1 on little-endian formats. The programmer must understand all these details
when writing and changing this code, and ensure that changes to one half are
propagated into the other half in a way that respects these low-level implicit
relationships between data layouts.

Figure 2 shows the code in Figure 1, rewritten for use with our tool. Two points
are worth emphasizing. First, we write only half the code, assuming one data
representation. Second, the relationships between the two data representations
for each reloc->idx and reloc->type are made explicit in the field declarations
within struct reloc.

The extra declaration sections (to the right of @) on the two fields define
how equivalent data layouts of the same data relate to each other. match, byte,
bit, and with are built-in keywords, endian is a C enumeration type defined
by the programmer and inhabited by the constants BIG and LITTLE, and the
colon-delimited sequences specify how positions of the bytes or bits within data
change from one data layout to another. The specifications case over the type
endian and provide a data layout for each of its constants. The keywords bit
and byte define the granularity of the specification — whether the numbers in
the colon-delimited sequence denote bits or bytes.

The specification on field idx says that idx is laid out in two ways, each
corresponding to an endian constant. The two layouts are the reverse of the
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enum endian { BIG, LITTLE };
struct reloc { char idx[3]; char type; };
int idx, extern, pcrel, neg, length;
struct reloc *reloc;
...
int tmp = bfd_header_endian(abfd);
switch (tmp) {
case LITTLE: flip0(reloc->idx);

flip1(& reloc->type);
break;

case BIG: break;
}
reloc->idx[0] = idx >> 16;
reloc->idx[1] = idx >> 8;
reloc->idx[2] = idx;
reloc->type = ((extern ? 0x10 : 0) | (pcrel ? 0x80 : 0)

| (neg ? 0x08 : 0) | (length << 5));
switch (tmp) {
case LITTLE: unflip0(reloc->idx);

unflip1(& reloc->type);
break;

case BIG: break;
}

Fig. 3. Our translation applied to the code in Figure 2

other (0:1:2 vs 2:1:0), at a byte-level granularity. The declaration on field type
is at the granularity of bits, but the two representations are not quite the reverse
of each other. Bits 5 and 6, which represent the two length bits, remain in the
same order.

The constants BIG and LITTLE associated with the layout declarations are used
in the translation of the port statement. The port statement is written under
the assumption that bfd_header_endian(abfd) evaluates to BIG. If it evaluates
to LITTLE, our translation assumes that the bytes within reloc->idx should be
represented in order 2:1:0, i.e., the reverse of how they would be laid out when
bfd_header_endian(abfd) evaluates to BIG. Therefore, when it evaluates to
LITTLE, the bytes within reloc->idx are reversed prior to entering the body of
the port. Likewise, the bits within reloc->type are shuffled according to the
7:5:6:4:3:2:1:0 specification. When bfd_header_endian(abfd) evaluates to
BIG, the body is simply executed. The end result is that the code in Figure 2
executes exactly as the code in Figure 1, but is shorter, better-documented, and
easier to write and maintain.

Figure 3 shows the code generated by our translation for the program in
Figure 2. When bfd_header_endian(abfd) evaluates to LITTLE, the layouts of
reloc->idx and reloc->type are flipped by functions flip0 and flip1 in accord
with the specifications attached to the corresponding field declarations. When
control enters what used to be the body of the port block, the two fields are laid
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out as they would be when bfd_header_endian(abfd) evaluates to BIG, which
matches the code’s assumptions. When control exits this code, the layouts of
the two fields are flipped back into their original forms by functions unflip0 and
unflip1. The flip and unflip functions are automatically generated by our transla-
tion from the specifications on the two fields. The bodies of flip1 and unflip1 are
shown in Figure 5 on page 94; the code for flip0 and unflip0 is straightforward. An
analysis determines the data whose layouts should be flipped/unflipped, by in-
specting all variable and field accesses and checking if their declarations contain
a layout specification that cases over the type endian.

3 Description of the Extension

Having described our tool via an example, we now give a complete description of
our annotations, their meaning, and how we perform our automatic translation
to support multiple data layouts.

At the syntax level, our extension has two components. First, we extend C’s
declaration language to allow specifying multiple equivalent data layouts for
variables and fields. Second, we introduce a new statement form port(e,c){e′}
that allows programmers to write code assuming only one data representation.
A translation takes code written with our extension and outputs code suitable
for passing to a C compiler.

3.1 The Specification Language

A layout specification is written as

match τ, g with c1 -> s1 | c2 -> s2 | . . . | cn -> sn

Symbols ci are C enumeration constants belonging to enumeration type τ and
si are colon-delimited sequences containing either natural numbers (starting at
0) or the symbol ’_’. g denotes the granularity of the specification. Our system
supports granularities bit, byte, and nibble. Others are easily added. Layout
specifications can appear on local and global variables and struct fields of integral
type (char, int, etc.) and arrays thereof.

A sequence s assigns names to the underlying layout units in the data, ac-
cording to the granularity g. For example, if the specification on a 4-byte piece of
data has granularity byte, a sequence 0:1:2:3 assigns names 0 through 3 to the
bytes within the data. In addition to numbers, sequences s may contain ’_’ sym-
bols, meaning that the corresponding layout units do not contain useful data and
need not be named, e.g., pad bytes. For example, a sequence 0:1:_:_ represents
a 4-byte sequence containing two named data bytes and two pad bytes.

A sequence s is not useful in isolation. Two or more, however, can precisely
describe how multiple equivalent layouts of the same data relate to each other.
For example, the sequences 0:1:2 and 2:1:0 represent two layouts that are
related by the reverse function. We say that they are equivalent because all the
layout units (bits, bytes, nibbles) in one are present in the other.
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Each sequence s is associated with a constant c. The set of constants in a
specification is used by the port block (described in the next section) to specify
its assumptions about the layouts of variables and fields used in its body.

Given two layout specification sequences s1 and s2, we can generate a flip
function that takes a piece of data assumed to be laid out as described by s1
and shuffles it such that the result is laid out according to s2. In our tool, we
must also generate an unflip function that undoes this effect, flipping data that
is laid out according to s2 back into its original layout, s1. Functionally, flip is
an isomorphism and unflip is its inverse. It would be unexpected, from the point
of view of the programmer, for either function to “forget” bits or bytes within
the data, with the exception of “don’t care” (_) layout units.

In order to ensure that flip and unflip functions respect this behavior and to
facilitate C code generation, we restrict the set of layout specifications that can
be written to those that are well-formed. A specification (match τ,g with c1
-> s1 | ... | cn -> sn) is well-formed if:

1. Constants do not overlap: ci �= cj when i �= j.
2. All constants inhabiting type τ must be included in the specification.
3. All si’s are equal in length. The lengths are multiples of 8 bits.
4. For all si, no number within si appears more than once.
5. Any number that occurs in an si must occur in all others.

The first two requirements ensure that specifications are complete and deter-
ministic. Given a constant c, there is exactly one layout per variable or field
associated with it. The rest of the requirements ensure that well-formed speci-
fications do not contain any layout sequences that forget or add data. We also
assume that the sequence lengths are multiples of 8 bits, as C types have sizes
that are multiples of bytes. The assumption aids our code generation, which
breaks layouts into bytes.

3.2 The port Statement

In addition to layout specifications on declarations, our extension provides a
new port statement. The statement is provided as a means for programmers
to delimit code that probes the in-memory layout of data with multiple possi-
ble layouts. Programmers write the body of port assuming one layout and the
compiler generates code that will work as intended for the other layouts.

A port block is written as

port(e, c) { e′ }

where c is a constant with enumeration type τ . The enumeration type and asso-
ciated constants ci in the layout specification language provide the connection
between specifications and the port statement. For each piece of data used in e′

whose declarations carry associated layout specifications at type τ (meaning the
specifications case over τ), the constants inhabiting τ represent different ways to
lay out the bytes, bits, and nibbles in that data. (Recall that each sequence sk in
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a layout specification corresponds to a constant ck.) The programmer writes the
body of the port block, e′, under the assumption that variables and fields used
in e′ are laid out according to c. This is assumed to be the case when e evaluates
to c. If e evaluates to a constant c′ �= c, the programmer’s assumptions no longer
hold. The compiler will then ensure that before e′ is executed, the layouts of the
variables and fields within e′ are laid out according to c, and when control exits
e′, they are laid out as they were before control reached the port block.

Consider the following code, which prints the high-order byte within the layout
of a 32-bit integer:

int x @ match endian,byte with BIG -> 0:1:2:3
| LITTLE -> 3:2:1:0;

...
port(endianness(), BIG) { printf("%x", ((char*)&x)[0]); }

Here, the programmer assumes that endianness() evaluates to BIG and writes
code that is correct for big-endian machines. If endianness() evaluates to
LITTLE, the body of the port block is obviously incorrect — it does not print
the high-order byte. In this case, the compiler uses the specification attached to
x to ensure that its bytes are laid out according to the block’s assumptions. In
this case, the bytes within x are reversed.

More precisely, the semantics of port(e,c){e′} is as follows:

– If e evaluates to c, no further action is required and the body e′ is executed.
– If e evaluates to c′ �= c, the layout of every variable and field used within e′

with a specification at the type of c will be “flipped” to match the assumption
that they are laid out according to c. The layouts are “unflipped” to their
original states after e′ is executed.

We allow nesting of port blocks as long as their associated constants c are
of different types, to avoid re-flipping data that was already flipped by an outer
port block. While we could allow arbitrary nesting and use a simple analysis to
avoid re-flipping, in practice it makes little sense to nest blocks in this manner.
(E.g., it is akin to nesting a block guarded by #ifdef LITTLE within one guarded
by #ifdef BIG.)

3.3 Translation

Given a program written using our extensions, a translation produces plain C
code that respects the semantics outlined in the previous section. The translation
transforms the code in the following ways:

– It erases the data-representation specifications from variable and field dec-
larations.

– If a variable or field with multiple layouts is accessed within a port block,
the translation generates a flip function and an unflip function. The first
flips the layout of the data to accord with the block’s assumptions and the
latter flips its layout back into its original form.
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int tmp = e;
switch(tmp) {
case c1: flip11(& x1); ... flip1m(& xm); break; /* from c1 to c */
...
case c: break; /* already in c */
...
case cn: flipn1(& x1); ... flipnm(& xm); break; /* from cn to c */

}
e′;
switch(tmp) {
case c1: unflip11(& x1); ... unflip1m(& xm); break; /* from c to c1 */
...
case c: break; /* already in c */
...
case cn: unflipn1(& x1); ... unflipnm(& xm); break; /* from c to cn */

}

Fig. 4. Translation of port(e,c){e′}

– It rewrites port(e,c){e′} statements to plain C code that calls flip functions
prior to entering e′, executes e′, and calls unflip functions upon exiting e′.

Given a statement port(e,c){e′} where c has enumeration type τ , the trans-
lation proceeds as follows. First, we gather all the variables and field accesses
x1, x2, . . . , xm that are used in e′ and have associated layout specifications at
type τ . Let the set of constants inhabiting τ be c1, c2, . . . , cn. Each of the vari-
ables and field accesses xi will have an associated layout specification that assigns
a layout to each constant ci.

The translation scheme is shown in Figure 4. First, we generate code that
evaluates e and saves the result in a fresh temporary tmp. Then we generate
code that, depending on the result of e, flips the layouts of x1, . . . , xm so that
they match the assumptions in e′ — that the xi are laid out according to the
specifications corresponding to constant c. We then generate e′ unchanged. After
e′, we generate code that flips the layouts of xi back to their original forms. For
each constant ci, each variable and field access xj will have ci -> si and c ->
s included in its associated specification. The function flipij changes the layout
of xi from si into s and and unflipij changes it back from s into si.

The translation calls flip/unflip functions for exactly the variables that (1)
have multiple data layouts and (2) are accessed in the lexical scope of the port
block. Notice any references to such variables passed to functions called in the
port block will refer to flipped data, i.e., the flipping happens in place.1 In
theory, if two items that need flipping might alias, we need to check for aliasing
dynamically to avoid double-flipping (and unflipping). In practice, we have not

1 Conversely, we do not flip any data that is accessed in a callee but not mentioned
directly in the port block. This can be an issue only with global variables or extremely
convoluted code and this has not been a problem in practice.
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void flip1(void * input) { void unflip1(void * input) {
char* t0 = (char*)input; char* t0 = (char*)input;
char t1 = t0[0]; char t1 = t0[0];
t0[0] = 0; t0[0] = 0;
t0[0] |= ((t1 << 7) & 0x80); t0[0] |= ((t1 << 7) & 0x80);
t0[0] |= ((t1 << 4) & 0x40); t0[0] |= ((t1 << 5) & 0x40);
t0[0] |= ((t1 << 4) & 0x20); t0[0] |= ((t1 << 3) & 0x20);
t0[0] |= ((t1 << 1) & 0x10); t0[0] |= ((t1 << 1) & 0x10);
t0[0] |= ((t1 >> 1) & 0x08); t0[0] |= ((t1 >> 1) & 0x08);
t0[0] |= ((t1 >> 3) & 0x04); t0[0] |= ((t1 >> 4) & 0x04);
t0[0] |= ((t1 >> 5) & 0x02); t0[0] |= ((t1 >> 4) & 0x02);
t0[0] |= ((t1 >> 7) & 0x01); t0[0] |= ((t1 >> 7) & 0x01);

} }

Fig. 5. Flip and unflip functions for reloc->type in Figure 2

encountered any code where such aliasing occurred, suggesting it may instead
be reasonable and in the spirit of C to make such aliasing an unchecked error.

3.4 Generation of Flip Functions

Our tool generates flip and unflip functions that mutate the layouts of their input
data in-place. The prototype of every flip function has the form void flip(void*).
Variables and fields whose layouts must be flipped are passed to their correspond-
ing flip functions by address.

The body of a flip function breaks its input into bytes, via a cast to char*, and
saves them in temporary variables. If the specified granularity is byte, flipping
is a matter of assigning the temporaries into their new locations in the input.
For smaller granularities, we generate bit-shifting and masking code to fetch the
bits or nibbles from within the temporaries holding bytes and code to assign
them to their new locations.

Figure 5 shows the flip and unflip functions generated by our translation from
the specification on field type in Figure 2. For each bit in the input layout, we
generate code that shifts it to the position specified by the output sequence and
masks out the rest of the bits. The result is added to the output sequence by
a bitwise-or. Code generation at nibble granularity is similar, except the only
possible masks are 0xf0 and 0x0f, and we shift by either 4 or 0 bits.

4 Implementation

Our prototype is implemented as a modification of the CIL frontend for C [14].
CIL inputs a C program, performs a series of transformations to simplify the
code into a uniform subset of C, and outputs equivalent, human-readable C
code. In addition, one can provide custom transformations that are applied to
the intermediate representations before the output phase.
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We modified CIL’s parser, lexer, and abstract syntax to allow port statements
and layout specifications in the input language. We then implemented a custom
transformation that erases layout specifications and rewrites port blocks accord-
ing to the translation scheme in Figure 4. In addition, flip and unflip functions
are generated and inserted into the output program. We have also experimented
with generating preprocessor macros instead of functions.

The tool outputs clean C code suitable for passing to a C compiler. As dis-
cussed more thoroughly in Section 5, a standard optimizing compiler is capable
of entirely optimizing away byte-level flips when flips are generated as macros,
and the overhead induced by bit- and nibble-level flips is manageable.

In our implementation, the annotation language is a syntactic extension to
the C language. However, should it be desired, it is easy to encode annotations
in stylized comments or empty preprocessor macros, such that an annotated
program is still legal (but nonportable) C.

5 Experience

To assess the usefulness of the tool, we applied it to subsets of two pieces of soft-
ware: the Gnu Debugger (GDB) [16] and the BFD library, which ship together
as part of the GDB distribution. Preliminary experience suggests that our tool
is a valuable addition to the developer’s toolset. It improves readability, shrinks
the code base, and aids in minimizing development and maintenance issues as-
sociated with code that is duplicated for the purpose of handling multiple data
layouts. In the rest of this section, we describe how we simplified part of the
GDB/BFD code base, present some quantitative results, discuss the limitations
of our tool, and share our experiences modifying GDB/BFD code.

Simplifying the Code Base: To estimate the extent of the code-duplication prob-
lem in GDB/BFD, we manually examined 120 files in a source base of roughly
1700 C files and 1 million lines of code. In these files, we recorded 407 occur-
rences of snippets where multiple versions of the same code were specialized to
particular data layouts. We counted roughly 3600 lines of duplicated code: code
that could be potentially eliminated with our tool. While we focused on the part
of the source base that we believe contains a lot of code doing low-level data
processing, there is surely more such code in the part of the enormous source
base that we have not inspected.

We applied our tool to 10 of these files, chosen in no particular fashion. Across
the 10 files, we found 31 occurrences of highly similar code-pairs with each half
specialized to a particular endianness. We used the port statement to eliminate
half the code in each of these occurrences, totaling 188 lines (2,465 lexical tokens)
of code. To ensure that the new code behaved the same as the old handwritten
code, 11 data-layout annotations were required, each specifying two possible data
layouts.

Two of the annotations (the ones shown in Figure 2) sufficed for 21 of the 31
port statements and contributed to eliminating 124 lines (1,894 lexical tokens)
of code. The struct type with which they are associated is used by many files
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in the BFD code base. Many of the other annotations were localized, on local
variables within functions in which the port blocks were placed, and affected
one or two occurrences of port. In one case, 3 annotations affected 2 blocks.

In addition to code being eliminated directly by port blocks, some related
“scaffolding code” became superfluous. Developers tuck hard-to-understand bit-
masks and flags into pairs of macro definitions, such as:

#define RELOC_STD_BITS_LENGTH_BIG 0x60
#define RELOC_STD_BITS_LENGTH_LITTLE 0x06
#define RELOC_STD_BITS_LENGTH_SH_BIG 5
#define RELOC_STD_BITS_LENGTH_SH_LITTLE 1

The former two are bit-masks used to identify the two length bits from Figure 1
in a byte. The latter two are amounts by which to shift left to place the length
bits in a byte. In each case, big- and little-endian versions of the constants are
provided. After applying our tool, half these constants were no longer needed.

Performance: None of our changes had an observable performance impact on
GDB. First, none of the code blocks we found and changed were in inner loops
or other performance-critical sections. Second, the overhead of our translation
is small, as the underlying compiler optimizes our code efficiently.

To gain a preliminary understanding of the performance impact of the gen-
erated flip code currently generated by our system, we picked port statements
from the ported BFD source and compared the quality of the generated code
to the previous handwritten code. Since our generated code consists of flipping
some layouts, executing handwritten code, then unflipping the layouts, the per-
formance overhead consists entirely of executing flip and unflip functions. Of the
31 blocks we ported, the average number of required flips/unflips was 1.5 and
the maximum was 3.

We noticed that if we generate preprocessor macros instead of functions, byte-
level flips are entirely optimized away by gcc -O3. For example, gcc produces the
same assembly code for flip(x); y=x[0]; unflip(x); as it does for y=x[3];.
This is hardly surprising, as all that is needed for this optimization is copy
propagation and dead-code elimination. In their current form, bit- and nibble-
level flips are not optimized as efficiently and can add 50%–100% overhead in
number of executed instructions. This is expected, as most of the time, the code
executed between flips and unflips is roughly the size of a flip body.

Limitations: There were two low-level code-pairs that we could not port to our
tool. Take, for example, the following snippet:

char valbuf[4];
...
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
memcpy (valbuf + (4 - len), val, len);

else
memcpy (valbuf, (char *) val, len);
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The code copies val into valbuf such that the bytes in val are right-justified
on big-endian targets and left-justified on little-endian ones. Assuming the bytes
within val are not already reversed on big-endian machines, we cannot write a
static specification that handles this pattern, since len is a dynamic value. This
makes clear the main limitation of our approach: it does not apply when the two
equivalent data layouts cannot be specified statically.

Discussion: The process of determining relationships between equivalent data
layouts by reading the code was difficult. First, bit-masks and shift constants are
hidden under macros that are scattered across header files far away from the code
that uses them. Second, code-pairs that touch the layout of data usually only
inspect a subset of the underlying bits and bytes, so one must inspect several
code-pairs before gaining a thorough understanding of the layout relationships.
Third, identifying the code-pairs themselves is a problem, as there are many ways
to express conditionals that run code depending on a particular layout. One may
use #ifdefs or if statements, and in each case the predicate may be different
(e.g., bfd_header_endian() vs. TARGET_BYTE_ORDER == BFD_ENDIAN_BIG).

We believe our rewritten code is much easier to understand than the original:
Bit-level code is clearly delimited by port statements and the relationships be-
tween equivalent layouts are explicit. We do not necessarily advocate rewriting
mature subtle bit-level code unless it is already being maintained or modified for
other reasons; we did so to evaluate our research on real code used in practice
that we did not write. We definitely do advocate using our approach for new
code or when making code portable for the first time.

6 Related Work

We are unaware of any prior work that automatically translates bit-level C code
to work for multiple data layouts. Our own recent prior work [15] was designed
to find type-casts that rely on platform-specific assumptions to be memory-safe.
That work, while useful for finding certain classes of bugs related to structure
padding and word size, does not address the issues associated with multiple data
layouts. More significantly, for bit-level differences such as endianness, our prior
work will never find bugs, since assuming the wrong endianness does not violate
memory safety — it just produces the wrong answer.

CCured [13], Deputy [3], SAFECode [4], and Cyclone [9] are projects that
aim to make C safer and more expressive, in some cases enriching it with new
programming abstractions, and compiling it in a way that prevents unchecked
errors. These systems are similar to ours in that they perform source-to-source
transformations and pass the output to a C compiler. However, they do not
facilitate working with multiple data layouts. Programmers must resort to spe-
cializing code to each endianness as they would in plain C.

Some analyses over C programs (e.g. [12,19]) assume one bit-level layout for
any piece of data, which is useful for precision, but not for writing portable code.

PADS [7], PacketTypes [10], and DataScript [1] are projects that facilitate
working with data formats. PacketTypes lets programmers specify the layout of
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network packets using a declarative language. Similarly, PADS uses a declarative
language to allow specifying arbitrary ad-hoc data formats, both textual and
binary, and automatically generates parsers that process the data. Like PADS,
DataScript takes declarative specifications for binary formats and generates code
that loads and processes binary files. It may be possible to modify software like
BFD to use PADS or DataScript for processing binary formats. However, these
projects do not handle discrepancies arising from how compilers/architectures
lay out data in memory and leave it up to the programmer to handle multiple
layouts of the same data.

Other work has focused on making it easier to work with bit-level data. Di-
atchki et al. [5] augment a Haskell-like language with bitdata: bit-level entities
that can be manipulated in various high-level ways in a type-safe manner. Erlang
bit patterns [8] allow pattern matching on binary data. Other projects (e.g. [6])
augment C and C++ with libraries that facilitate working with bit-level data.
These projects do not facilitate working with multiple bit-level layouts.

Our flip and unflip functions are similar to relational lenses [2]. A lens is a pair
of functions, get and putback. One extracts a representation (e.g., XML data)
of an element in a concrete domain (e.g., a database entry) and the other puts
the representation back into the concrete domain. Unlike flip and unflip, get and
putback are not exact inverses of each other. That is, get is allowed to forget part
of the data in the concrete domain.

Finally, some prior work has focused on making it easier to handle similar
blocks of code (e.g., Simultaneous Editing [11] and Linked Editing [18]). These
systems allow programmers to link together blocks of code that share a high-
degree of syntactic similarity, such that modifications to certain regions of one
block are automatically propagated to the others. However, they are unaware
of semantic relationships: e.g., one cannot cause an index of “0” in a big-endian
code block to be propagated as “3” to the corresponding little-endian block.

7 Conclusions and Future Work

We have designed, implemented, and evaluated a tool that provides direct sup-
port for writing code that is portable to multiple bit-level data representations.
The key novelty is an approach where programmers write their algorithm in C
with one representation in mind and declaratively specify what the equivalent
representations are. A source-to-source transformation then produces C code
with one version of the algorithm for each representation.

While we view our tool as successful, there are improvements that could make
it more widely applicable. First, its current requirement that all data layouts
be equivalent is too strong for scenarios where word size varies (e.g., 32-bit
versus 64-bit machines). Second, for short, performance-critical code segments,
our “flip on entry / unflip on exit” implementation strategy may be inferior to
a more sophisticated transformation that modified the code segments. However,
optimizing byte-endian code like flip(x); y=x[3]; unflip(x); into y=x[0];
is within the capabilities of an optimizing C compiler, as discussed in Section 5.
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We would also like to consider automating or semi-automating tasks we still
leave with the programmer, such as identifying where port statements are nec-
essary or editing legacy code to use our tool.
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