
Œuf: Minimizing the Coq Extraction TCB
Eric Mullen

University of Washington, USA
USA

Stuart Pernsteiner
University of Washington, USA

USA

James R. Wilcox
University of Washington, USA

USA

Zachary Tatlock
University of Washington, USA

USA

Dan Grossman
University of Washington, USA

USA

Abstract
Verifying systems by implementing them in the program-
ming language of a proof assistant (e.g., Gallina for Coq) lets
us directly leverage the full power of the proof assistant for
verifying the system. But, to execute such an implementation
requires extraction, a large complicated process that is in the
trusted computing base (TCB).

This paper presents Œuf, a verified compiler from a subset
of Gallina to assembly. Œuf’s correctness theorem ensures
that compilation preserves the semantics of the source Gal-
lina program. We describe how Œuf’s specification can be
used as a foreign function interface to reason about the inter-
action between compiled Gallina programs and surrounding
shim code. Additionally, Œuf maintains a small TCB for its
front-end by reflecting Gallina programs to Œuf source and
automatically ensuring equivalence using computational de-
notation. This design enabled us to implement some early
compiler passes (e.g., lambda lifting) in the untrusted reflec-
tion and ensure their correctness via translation validation.
To evaluate Œuf, we compile Appel’s SHA256 specification
from Gallina to x86 and write a shim for the generated code,
yielding a verified sha256sum implementation with a small
TCB.

CCS Concepts • Theory of computation → Logic and
verification; Denotational semantics; Program verifi-
cation; Interactive proof systems; • Software and its engi-
neering→ Software verification; Formal software ver-
ification; Formal language definitions; Compilers;

Keywords Coq, Compilers, Formal Verification, Verified
Systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CPP’18, January 8–9, 2018, Los Angeles, CA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5586-5/18/01. . . $15.00
https://doi.org/10.1145/3167089

ACM Reference Format:
Eric Mullen, Stuart Pernsteiner, James R. Wilcox, Zachary Tatlock,
and Dan Grossman. 2018. Œuf: Minimizing the Coq Extraction TCB.
In Proceedings of 7th ACM SIGPLAN International Conference on
Certified Programs and Proofs (CPP’18). ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3167089

1 Introduction
In the past decade, a wide range of verified systems have
been implemented in Gallina, Coq’s functional programming
language [8, 19, 20, 25, 26, 44, 45]. This approach eases veri-
fication because Coq provides extensive built-in support for
reasoning about Gallina programs. Unfortunately, building
a system directly in Gallina typically incurs a substantial
trusted computing base (TCB) to actually extract, compile,
and run the system and connect it to the effectful real world
via untrusted shim code.

This paper presents Œuf, a methodology for verified com-
piler design which allows extraction of code written in Gal-
lina to executable x86 code with minimal TCB. More pre-
cisely,

1. Œuf’s compilation process uses computational denotation
to automatically prove that the internal representation of
the program is equivalent to the original Gallina;

2. Œuf guarantees that the generated assembly program is
equivalent to the source program, thus the user can reason
about the machine-level code in terms of the source;

3. Œuf-compiled executables depend on a much smaller un-
verified runtime and come with an interface theorem that
enables reasoning about their interactions with C pro-
grams.

While our prototype compiler itself is currently limited, we
believe the design ideas that enable these features could
easily integrate into other tools.

Œuf assumes a smaller TCB than typical verified compilers
using two key techniques. First, in the front end, Œuf avoids
relying on an unverified parser or grammar definition by us-
ing translation validation [37, 38]: the Œuf compiler reflects
Gallina programs into a deeply embedded expression lan-
guage, then generates a proof that the computational denota-
tion of the reflected expression is equivalent to the original
function. This validation theorem, like that of CakeML [33],

1

https://doi.org/10.1145/3167089
https://doi.org/10.1145/3167089

CPP’18, January 8–9, 2018, Los Angeles, CA, USA Mullen, Pernsteiner, Wilcox, Tatlock, and Grossman

guarantees that the program Œuf compiles really is the pro-
gram provided by the user. Second, at the back end, Œuf
provides a formal specification of its application binary in-
terface (ABI) for invoking Œuf-compiled Gallina functions
from supporting C code. Having a formal ABI definition
allows reasoning about the behavior of the “shim” that con-
nects the pure extracted Gallina code with the effectful real
world, whereas current extraction techniques require the
shim to be trusted.
The combination of translation-validated reflection, the

ABI specification, and the Œuf compiler’s main correctness
theorem allows users to prove correctness of an overall sys-
tem built with both Gallina and C-language components.
Œuf is designed for use with shims written in C, and these
shims themselves can be verified against the CompCert C
semantics (e.g., using VST [4]) and then compiled with Comp-
Cert, a verified compiler. When reasoning about calls from
the C shim into a component compiled from Gallina, the
user can simply invoke Œuf’s high-level guarantee that the
machine code is a correct refinement of the source Gallina
program, which is composed from the reflection, compiler
correctness, and ABI specification components. Specifically,
Œuf defines a relation between high- and low-level represen-
tations of values, and provides a proof that applying related
functions to related arguments produces related results. The
developer can then reason about the machine code in terms of
the source Gallina program using all the usual conveniences
of Coq.
In summary, Œuf contributes a methodology for verified

compilation for systems code implemented in Coq, enabled
by:

1. A technique to automatically validate the reflection of
Gallina a posteriori using computational denotation, and
related design decisions to simplify early compiler passes
(e.g., lambda lifting) by extending this validation to also
automatically establish correctness (Section 3);

2. A correctness theoremwhich supports reasoning about in-
teractions between compiled Gallina code and the outside
world (Section 5); and,

3. The prototype Œuf verified compiler which translates a
small yet useful subset of Gallina to assembly via Comp-
Cert (Section 4), along with a case study applying Œuf to
representative systems code (Section 7).

2 Overview
Figure 1 shows an overview of the Œuf compilation pro-
cess. The user provides a Gallina function, such as the max
function in Figure 2, which computes the maximum of two
natural numbers. The user also writes C code as a “shim”
to connect their pure Gallina functions with the effectful
real world by performing I/O and other operations not pos-
sible in Gallina. Figure 3 shows C code for a program that
reads two unsigned integers and computes their maximum

prog
.v

Gallina
functions

Œuf
AST

tmp
.oeuf

Œuf
AST

Shim
Clight

Œuf
Cminor

Shim
Cminor

Linked
Cminor

ASM
program

shim
.c

a.out

reflect

validate

serialize

deserialize

compile link

CompCert
frontend

link CompCert
backend

Figure 1. The Œuf compilation workflow. Arrows in bold indicate
formally-verified operations. The output is a.out, indicated with gray.

Fixpoint max_orig (n m : nat) : nat :=

match n with

| 0 => m

| S n' => match m with

| 0 => n

| S m' => S (max n' m')

Definition max (n m : nat) : nat :=

nat_rect (fun _ => nat -> nat)

(fun m => m)

(fun n' rec m =>

nat_rect (fun _ => nat)

(S n')

(fun m' _ => S (rec m'))

m)

n m

Figure 2. A Gallina function for computing the maximum of two natural
numbers and its equivalent written in terms of nat_rect.

by calling max. Given these two inputs, Œuf compiles both
to a common representation, links them, and invokes the
CompCert backend to produce an executable.
To begin the compilation process, the user must ensure

that their function is written in a form that Œuf can reflect.
The design of Œuf requires that the input function be written
in an “ML-like” subset of Gallina, free of dependent types.
This is required for compatibility with the computational
denotation described in Section 3.3. Our prototype imple-
mentation further requires that all recursion and pattern
matching be expressed using recursion schemes (also called
eliminators). For a complete description of Œuf’s input lan-
guage and the rationale for its restrictions, see Section 3.

The function max in Figure 2 is already in the required for-
mat for reflection. Amore idiomatic version of max, which an
actual user would likely write first, is also given as max_orig
in that figure. Since our prototype implementation does not

2

Œuf CPP’18, January 8–9, 2018, Los Angeles, CA, USA

oeuf_function max;

int main() {

unsigned int n, m, result;

coq_nat *n_, *m_, *result_;

scanf("%u %u", &n, &m);

n_ = nat_of_uint(n);

m_ = nat_of_uint(m);

result_ = OEUF_CALL(max , n_, m_);

result = uint_of_nat(result_);

printf("%u\n", result);

return 0;

}

Figure 3. A C program that calls the max function defined in Figure 2.

Oeuf Reflect max As max_ast.

Check max_ast : compilation_unit.

Lemma max_ast_validate : denote max_ast = max.

Proof. reflexivity. Qed.

Oeuf Eval lazy Then Write To File "max.oeuf"

(compilation_unit.print max_ast).

Figure 4. The Coq Vernacular commands to reflect, denote, verify the
roundtrip, and write the reflection to a file of the max function.

automatically convert programs to use eliminators, the user
must manually perform the translation and prove that the
converted function is equivalent to the original; as both are
ordinary Gallina functions, this proof can be carried out in
the standard fashion.

Given a Gallina function in the proper form, the first step
in the Œuf compilation process is to reflect the function into
an abstract syntax tree (AST) suitable for processing by the
Œuf compiler. Œuf’s reflection procedure is implemented as
a Coq plugin. Invoking the reflection procedure, as shown in
Figure 4, generates a value of type compilation_unit that
contains a set of functions ready for processing by the rest
of the Œuf compiler.

The Œuf reflection procedure need not be trusted: it is ver-
ified using translation validation [37, 38]. After constructing
the Œuf compilation unit, the user invokes a script to gen-
erate a proof of equivalence between the denotation of the
reflected function and the original function the user intended
to compile. For simple functions, such as max, the proof is
trivial, as shown in Figure 4; more complex functions require
a more complex proof structure to work around performance
problems in the Coq proof checker. The denotation function
also appears in Œuf’s correctness theorem, so the valida-
tion theorem helps connect the input Gallina function to the
compiled code.

Up to this point, all steps of the Œuf workflow have taken
place within an interactive Coq session. However, because
the Œuf compiler integrates with CompCert, which relies

on unverified OCaml code, the Œuf compiler must be exe-
cuted as a separate binary, produced using Coq’s existing
extraction process. Using extraction also provides better per-
formance than running inside the Coq interpreter for the
Œuf compiler’s translation passes.

To transfer the Œuf compilation unit from the interactive
session to the Œuf compiler, the user invokes a serialization
procedure to convert the compilation unit to a string, then
writes the string to a temporary file (labeled tmp.oeuf in
Figure 1). The code for this step is shown in Figure 4.
Once the compilation unit has been written to disk, the

user can invoke the Œuf compiler binary to complete the
compilation process. The compiler takes the compilation unit
and shim source as input. It then deserializes the compilation
unit. The deserializer is verified to be the inverse of the se-
rializer: ∀x , deserialize(serialize(x)) = x . Next, the compiler
translates the compilation unit to Cminor, a simplified C-like
intermediate language used in CompCert, using the process
described in Section 4. It similarly compiles the shim from
its C source code to Cminor and links the two build prod-
ucts. The resulting complete Cminor program is translated
to object code with the existing CompCert backend.

2.1 Guarantee
Œuf’s correctness theorem guarantees that valid calls to Œuf-
compiled functions will behave in a manner equivalent to
the user’s original Gallina implementation. A valid call is one
that follows the Œuf application binary interface, which de-
fines a relation ∼ between Gallina values and assembly-level
memory representations of those values. Roughly stated,
Œuf guarantees that “applying related functions to related
arguments produces related results.” That is, for any Gallina
function f and argument x , and any assembly-level function
f ′ and argument x ′, if f ∼ f ′ and x ∼ x ′, then f (x) ∼ f ′(x ′).
This theorem is established in several steps.

1. First, when Œuf reflects the original Gallina functions to
produce the input AST, it also generates a proof equating
the denotation of the AST to the original function, as
discussed above.

2. Second, Œuf comes with a proof that the denotational and
operational semantics of its source language are compati-
ble. If the operational semantics permit a step from state
s to state s ′ (written s → s ′), then the denotations of the
two states are equivalent (⟦s⟧ = ⟦s ′⟧).

3. Third, Œuf uses a verified serializer and deserializer when
writing the input AST to the temporary file and reading it
back. This ensures that the same AST that was reflected
interactively is processed by the Œuf backend.

4. Fourth, the Œuf compiler comes with a proof of simula-
tion between an operational semantics for the Œuf input
language and the operational semantics of Cminor.

3

CPP’18, January 8–9, 2018, Los Angeles, CA, USA Mullen, Pernsteiner, Wilcox, Tatlock, and Grossman

5. Finally, Œuf relies on CompCert’s own simulation proof
to connect the behavior of the Cminor program to that of
the final assembly program.

The complete details of Œuf’s correctness proof are covered
in Section 5.

3 Front End
We begin with a discussion of the design constraints on
Œuf’s source language, emphasizing the requirement that
the language have a computational denotational semantics
in Coq. Then, we present the syntax of the source language,
which is a lambda-lifted simply typed lambda calculus over
a set of predetermined base types. Finally, we describe how
to denote and reflect the source language, and emphasize
how our design simplified early compiler passes by enabling
us to implement them in the untrusted reflection and au-
tomatically ensure their correctness a posteriori using the
computational denotation.

3.1 Design Constraints
Œuf’s source language must satisfy several constraints, some
of which are in tension.
Reflection. It must be possible to reflect Gallina terms into
corresponding ASTs. Reflection is the first step of the com-
piler pipeline. However, we need not trust reflection directly,
as we can check its result later using denotation.
Denotation. The language must support a computational
denotation, i.e., a function defined in Coq that converts the
syntax of an expression into the corresponding Coq term.
This is essential in order to formally connect verified Gal-
lina programs with their representation as an AST. The
denotation need not be trusted, since it is verified against
the operational semantics of the input language.
Expressiveness. We would like to maximize the subset of
Gallina programs we can compile. This is in direct tension
with the requirement for a computational denotational se-
mantics. While there exist many different possible tradeoffs,
we believe the input language for Œuf is reasonably expres-
sive.
Tractable Compilation. Lastly, it should be possible to
write and verify (in Coq) a compiler from the source lan-
guage to a low-level language.
Since our Œuf prototype compiler is a mainly intended

as a proof-of-concept to explore validated reflection and
ABI reasoning, its source language satisfies these constraints
somewhat conservatively, sacrificing expressiveness for sim-
plicity. For example, the choice to restrict base types to a
predefined set means that the language definition and deno-
tation need not handle user-defined types, simplifying the
design and implementation at the cost of restricting user
programs.

The process of translating a Gallina program into the sup-
ported language subset is a largely mechanical process, but

e ∈ expr (Expressions)
e ::= x (variable)
| e e (function application)
| C e∗ (data constructor)
| E e∗ e (data eliminator)
| f e∗ (closure creator)

C ∈ constr (Constructors)
C ::= true | cons

| . . .

τ ∈ type (Types)
τ ::= b | τ → τ

f ∈ func (Function name)

b ∈ base (Base types)
b ::= bool
| list b
| . . .

E ∈ elim (Eliminators)
E ::= bool_elim

| list_elim
| . . .

д ∈ f → e (Global environment)

Figure 5. Syntax of the Œuf prototype compiler’s source language.

it has not been automated in the current implementation
of Œuf. In practice, these restrictions do not limit expres-
siveness for systems implemented in Gallina since users
can easily prove the idiomatic version of their Gallina code
equivalent to the corresponding eliminator-based version.

3.2 Syntax
Figure 5 presents the syntax of the Œuf prototype com-
piler’s source language, which is a lambda-lifted simply
typed lambda calculus over a particular set of base types.
Variables and function application are standard.

The next two expression forms are for manipulating data
of base type. Base types consist of a pre-defined set of types,
including common types in the Coq standard library, such as
booleans, lists, natural numbers, and so on. The Œuf source
language supports parameterized types, such as lists, by
making the definition of base types recursive; however, since
the recursion is not mutual with the definition of types, thus
function types as arguments to type constructors are not
supported. We believe this limitation could be lifted with a
little engineering effort, but it simplifies the implementation.

In the expression grammar, a constructor C is a data con-
structor for one of the base types, e.g., true for bool. A con-
structor has some number of argument subexpressions, writ-
ten e∗ in the figure.
An eliminator E represents a structural recursion princi-

ple for each base type. An eliminator for a particular base
type takes a list of expressions representing “cases”, one

4

Œuf CPP’18, January 8–9, 2018, Los Angeles, CA, USA

for each constructor of the base type, and then takes one
last expression, which is the “target” of the elimination. The
Œuf prototype’s source language encodes all recursive func-
tions explicitly in terms of eliminators instead of a fixpoint
construct. Eliminators were chosen instead of recursive func-
tions due to their ease of denotation.
The last expression form is closure creation. A closure

creation expression consists of a function name f and list
of subexpressions, whose values will serve as the closure’s
environment. At run time, a closure creation expression eval-
uates each of its subexpressions and produces a closure value
that contains the function name and the resulting values.
Since the Œuf prototype’s source language has explicit

closures, a top-level program is not simply an expression;
instead, it is a global environment containing a mapping
from function names to function definitions. Each function
definition consists of a single expression that makes up the
function’s body. The body expression is not closed: it has one
free variable corresponding to the function’s sole argument,
plus zero or more free variables provided by the closure
environment.

3.3 Denotational Semantics
The key property of the source language is the ability to
write a computational denotation function. The denotation
function is a normal Coq function which takes the syntax
of an expression and returns the corresponding Coq term.
We use the standard technique of typed dependent de Bruijn
indices to represent the syntax of binding (see, for example,
Chlipala’s CPDT [11]). In this style, the syntax of expressions
carries the relevant typing information, which ensures that
only well-typed expressions can be created. The syntax of
types follows Figure 5 directly.
Expressions are represented as an inductive type family

indexed on the types of free variables and the return type.
Our representation of variables and application is standard
and follows CPDT. We make modest extensions to standard
techniques to support constructors, eliminators, and closures.
We represent constructor names and eliminator names as
elements of a type family indexed by their arguments and
return types. Constructor and eliminator expressions use
dependent types to enforce correct argument types.

A closure is represented with a reference to the body, and
a list of expressions whose values will make up the closure’s
environment. An invariant of closure expressions is that the
types of values in the environment match those of the free
variables in the body of the closure.

These extensions to standard typed de Bruijn techniques
pose no fundamental difficulties in the computational denota-
tion function. First, each type is denoted to a corresponding
Coq type; for example, if the syntax for the boolean type
was ty_bool, the type denotation function would map this
to Coq’s bool type. Similarly, ASTs which represent function
types denote to native Coq function types. Expressions are

denoted by a function mapping expression syntax into the
corresponding Coq term. The expression denotation function
has a return type which uses the type denotation function,
which captures the idea that an expression in the object lan-
guage should correspond to a Coq termwith a corresponding
type. Expression denotation takes additional arguments to
represent the environment in which to denote, including the
available top-level functions and the values for free variables.
The denotations of variables and application are standard.
The cases for constructors and eliminators branch on the
particular constructor or eliminator used and return the cor-
responding Coq constructor or eliminator.

The denotation of closures requires some care, since Gal-
lina has no explicit notion of closures. We handle this by
giving each denoted function an additional initial argument
which packages up its free variables. Then, when construct-
ing a closure, we partially apply the denoted function to a
structure containing the denotation of the closure’s environ-
ment expressions. To access a free variable, the body of a
closure indexes into this structure with the corresponding
variable name.

3.4 Operational Semantics
In addition to the denotational semantics, we also give an
operational semantics for the source language. These and
additional operational semantics for each intermediate lan-
guage are used to verify semantics preservation later for
each pass of the compiler. In order to connect the compiler
guarantees to the original Coq term, we prove a theorem
relating the denotational and operational semantics, namely
that each step of the operational semantics (→) preserves
the denotation (⟦·⟧): ∀ s s ′, s → s ′ ⇒ ⟦s⟧ = ⟦s ′⟧. To-
gether with the CompCert compiler’s correctness theorem,
this guarantees that values computed at the machine level
correspond to the original Coq terms.
Our semantics handles local variables using an explicit

local environment, which we chose because it simplifies
later reasoning. This decision also makes the handling of
closures fairly straightforward: calling a closure amounts to
replacing the expression being evaluated with the body of
the function and replacing the current local environment
with a combination of the argument value and the closure’s
environment values. The only wrinkle is that retrieving a
function body produces an expression that is valid in a re-
stricted global environment, containing only the functions
defined prior to the function of interest, whereas evaluation
occurs only in the full environment. We handle this using a
computational version of the standard weakening lemma, a
function of type expr G L ty -> expr (G' ++ G) L ty that
converts an expression into an equivalent one that is valid
in an extended global static environment.

5

CPP’18, January 8–9, 2018, Los Angeles, CA, USA Mullen, Pernsteiner, Wilcox, Tatlock, and Grossman

3.5 Reflection
Another important aspect of the source language is that it is
possible to reflect a Coq term into the corresponding syntax.
Of course, reflection will only succeed for Coq terms in the
image of the denotation function; Coq terms that use features
not supported by the source language (e.g., dependent types)
will simply fail to reflect. We implemented the reflection
procedure for the source language as a custom OCaml plugin
to Coq. The reflection procedure is relatively straightforward
and uses standard techniques.
The most important aspect of the reflection procedure

is that we need not trust it. After reflection, the generated
syntax can be checked by denoting it and ensuring that it is
definitionally equal to the original Coq term. This is essen-
tially a form of translation validation. This design decision
significantly eases the proof burden for the early passes of the
compiler. Performing lambda lifting during reflection allows
us to avoid implementing a complex verified lambda-lifting
pass in Coq. We are also able to extend the reflection with
support for monomorphizing invocations of polymorphic
functions, allowing our Œuf prototype compiler to support
most instances of ML-style polymorphism with no modifica-
tion to the source language and minimal verification effort.
The fact that reflection is not trusted is a key difference

between our approach and related work, but it comes at the
cost of supporting a restricted subset of Gallina. Even aside
from the decisions we imposed to simplify the development
of our prototype, the design of Œuf requires that the source
language support computational denotation into Gallina im-
poses significant restrictions—in particular, it remains an
open research question whether it is possible to denote a
general Gallina AST into a Gallina term, all within Gallina.

However, we believe that with some engineering effort, it
will be possible to extend the source language to include user
defined datatypes, pattern matching, and recursion, which
will capture typical verified systems implementations.

4 Compiler Internals
The bulk of our effort developing theŒuf prototype compiler
was implementing and verifying 45 translation passes from
our front end down to CompCert Cminor. To ease verification
effort, we followed the standard practice of building many
passes between closely related languages to simplify the
refinement proof between each stage [25, 41].

4.1 From Gallina to Register Machine
Type Erasure Œuf first erases type information. The input
language uses a dependently-typed program representation
that admits only well-typed terms, which is necessary to
write the denotation function used for validating the reflec-
tion procedure Section 3. Because the Œuf compiler includes
simulation proofs for every translation pass, the untyped

intermediate programs are guaranteed to behave identically
to the well-typed input program.

Eliminators Next the Œuf compiler contains 6 passes to
translate inductive datatype eliminators to recursive func-
tions. These passes collectively replace each eliminator ex-
pression with a call to a new top-level function that performs
a switch on the argument’s constructor tag and executes
the appropriate arm. If a constructor contains further val-
ues of the same argument type, the eliminator function will
generate recursive calls to itself, executing the same pattern-
matching code on the structurally smaller values.

Stack Machine The Œuf compiler then converts nested
expressions to flat sequences of stack machine operations.
We use this stack machine language as an intermediate step,
allowing us to separate flattening of the program from as-
signing of names to temporary values. There is generally one
stack machine operation for each expression type, whose
behavior is to pop values corresponding to any subexpres-
sions, perform the same operation as the original expression,
and push the result back onto the stack. Execution of this
stack machine representation directly mirrors the order of
evaluation of the original expression, but makes explicit the
creation and use of intermediate values.

Register Machine Once manipulation of intermediate val-
ues has been made explicit, the Œuf compiler converts the
program to a high-level register machine program that gives
an explicit name to each value. The set of operations for the
register machine is nearly identical to that of the stack ma-
chine, except that each operation now explicitly reads and
writes named registers instead of manipulating an implicit
stack. The pattern of register accesses corresponds closely to
C-level local variable accesses, except that programs still ma-
nipulate abstract “closure” and “constructed” values rather
than machine-level integers and pointers.

4.2 Lowering towards Cminor
At this point the program is in a language which computes
using closures and constructors. However, to meet with any
language from the CompCert pipeline, the program must
use integers and pointers, i.e. C level values.

Switch Statements To transform a program from a high
level functional language to a lower level procedural lan-
guage, the Œuf compiler generates C-style switch state-
ments, with explicit breaks and implicit fall through. In ear-
lier phases, a single step takes a switch statement into the
corresponding correct case; in this phase the transition may
take multiple steps in order to “step over” all non-chosen
cases. While this is conceptually straightforward, the proof
was quite subtle, due to the arbitrary number of steps the
target program may take, as well as the relatively strong
invariants which must be true about the current program
continuation during all of these steps.

6

Œuf CPP’18, January 8–9, 2018, Los Angeles, CA, USA

Heap Introduction The Œuf compiler next transforms
programs to use heap-allocated memory, which requires
introducing memory into the program state. In this phase,
explicit allocations and stores are inserted to construct well
formed closure and constructor values. The simulation rela-
tion for this phase maps higher level values to their lower
level memory representation: where the higher level pro-
gram would produce a value, the lower level program pro-
duces a pointer whose contents correspond to the high level
value.

Stack Introduction The next major step is stack introduc-
tion, where allocations and frees of runtime stack blocks
are introduced. While the compilation strategy is straight-
forward (since stack blocks are never read nor written), the
correctness proof is subtle and long due to the relatively
complex relation of the unified, high-level heap memory to
the split, lower-level heap and stack memories.

Backend Once the heap and stack are introduced, only
minor changes are necessary to compile the program to a
subset of Cminor. Afterward, the Œuf compiler relies on ex-
isting CompCert passes to compile the program from Cminor
down to any of CompCert’s assembly backends.

5 Shim
Œuf provides verified compilation of pure Gallina functions
to assembly code. But real-world applications are not com-
pletely pure: they read inputs from disk, communicate over
the network, or print results to the terminal. For any extrac-
tion or compilation mechanism, includingŒuf’s, to be useful,
it must allow integrating the resulting code with a shim that
connects the pure functions with impure side effects. For
instance, one might verify and compile a pure function for
computing the maximum of two numbers, then link that
with a shim that reads two numbers from the terminal, in-
vokes the compiled function, and outputs the result. When
using Coq’s built-in extraction mechanism, the shim is an
OCaml or Haskell program; with Œuf, it is written in C.

Most verification projects do not bother verifying the shim
code. Indeed, there is limited value in verifying a program
whose main purpose is to call into code generated by unver-
ified extraction and which itself will be compiled with an
unverified compiler. With Œuf, however, stronger guaran-
tees are possible. Œuf’s compilation process is verified, and
thus it is possible to establish strong correctness properties
about the compiled code. Furthermore, Œuf is designed for
use with shims written in C, which can be verified against
the CompCert C semantics (e.g., using VST [4]) and then
compiled with CompCert.
The remainder of this section describes aspects of Œuf’s

design that enable verification of complete programs, con-
sisting of compiled code together with a C shim. Section 5.1

describes Œuf’s primary correctness theorem, which is de-
signed for reasoning about calls spanning the boundary be-
tween the shim and the compiled code Section 5.2 gives the
complete definition of the Œuf application binary interface
(ABI), including the definitions of several relations that are
mentioned in the correctness theorem. Finally, Section 5.3 de-
scribes the assumptions currently relied on by Œuf’s proofs.

5.1 Correctness Theorem
Œuf’s correctness theorem is the primary interface for users
who are verifying a shim program. Like most compiler cor-
rectness theorems, it relates the behavior of the high-level
input source program (in this case Gallina) to the low-level
output target program. However, we have been careful to
state the theorem in terms that will be meaningful and rele-
vant to the shim verifier. In particular, we state the theorem
using Cminor as the low-level language, rather than any
of CompCert’s assembly languages, as we expect users will
prefer verifying their shims at this higher level. If needed,
one could directly compose Œuf’s correctness theorem with
the CompCert backend correctness theorem to obtain the
equivalent theorem for CompCert assembly.

The correctness theorem relies on three Œuf-specific rela-
tions, called value-matching, callstate, and returnstate. The
details of these relations define the ABI by which shims may
interact with Œuf-compiled code. We describe each relation
briefly, leaving their full definitions to the next subsection.
The value-matching relation v ∼ v ′ relates a high-level

Gallina value v to its low-level memory representation v ′.
This is unlike the design of CompCert, which uses the same
value representation at all levels and thus can use simple
equality or "more-defined-than" to relate values in the input
and output programs. Here, the high-level values are built
from inductive data type constructors, such as the natural
number S (S (S O)) (representing 3), while low-level values
are concrete integers and pointers in a particular machine-
level memory layout.

The callstate and returnstate relations describe a particular
subset of program states that stand in relation to values. We
say that a program state is a callstate for closure f and ar-
gument a if it represents the point in execution “during the
function call” of f applied to a, when control has transferred
to the callee’s code, but none of that code has executed yet.
A program state is a returnstate carrying value r if it rep-
resents the point in execution “during the function return”,
with r as the value being returned. The precise details of
these definitions depend on the language in question, and
in fact, each intermediate language in the Œuf compiler has
its own definition of callstates and returnstates. This is nec-
essary because the structure of functions, calls, and returns
changes as the program is transformed from an expression
tree down to low-level sequential code. The correctness the-
orem refers to callstates and returnstates at the Cminor level,

7

CPP’18, January 8–9, 2018, Los Angeles, CA, USA Mullen, Pernsteiner, Wilcox, Tatlock, and Grossman

f , a f ′, a′

s
(1)

s′

∼ f , a f ′, a′

s s′

t
(2)

r

∼ f , a f ′, a′

s s′

t t ′
(3)

r

∼ f , a f ′, a′

s s′

t t ′

r r ′
(4)

∼

∼

Figure 6. The structure of the Œuf compiler correctness proof. Given
Gallina values f , a matching Cminor values f ′, a′ and Cminor callstate s′
for f ′ and a′, we prove that (1) there exists a Gallina callstate s for f and a
that matches s′; (2) s steps to some Gallina state t that is a returnstate for
r = f (a); (3) s′ steps to a unique Cminor state t ′ such that t ′ matches t ;
and (4) t ′ is a returnstate for some r ′ that matches r .

where these relations describe the calling convention of Œuf-
compiled code. The statement of Œuf’s correctness theorem
is as follows:

Theorem 5.1. Let s ′ be a Cminor callstate, representing an
application of the Cminor closure value f ′ to the Cminor value
a′. Suppose there exist Gallina values f and a such that f ∼ f ′

and a ∼ a′ and the application f (a) is well-typed in Gallina.
Then there exists a unique Cminor returnstate t ′ carrying a
value r ′ such that f (a) ∼ r ′ and the Cminor state s ′ will
always reach t ′.

This theorem establishes total correctness ofŒuf-compiled
functions. Once the program begins performing the call to a
compiled function, it is guaranteed that the callee will even-
tually return, barring exceptional conditions such as memory
exhaustion. This is possible because all Gallina functions are
terminating, and compiled functions behave identically to
their original Gallina counterparts.
The proof of Œuf’s correctness theorem is structured in

five parts, illustrated in Figure 6. First, callstate matching:
since s ′ is a Cminor callstate for closure f ′ and argument
a′, f ∼ f ′, and a ∼ a′, there must exist a Gallina callstate
s for f and a, which matches s ′ using a state-matching (or
simulation) relation of the type commonly used in compiler
correctness proofs. Second, termination: since all Gallina
functions are terminating, there must exist a result value
r = f (a) and a Gallina returnstate t carrying r , where s
takes zero or more steps to reach t . Third, forward simula-
tion: since s is related to s ′ and s steps to t , there must exist
a Cminor state t ′ matching t , where s ′ takes zero or more
steps to reach t ′. Fourth, returnstate matching: since t is a
Gallina returnstate carrying r and t ′ is a Cminor state match-
ing t , t ′ must be a Cminor returnstate carrying a value r ′,
where r ∼ r ′. Fifth, backwards simulation via determinacy:
since Cminor is deterministic, backwards simulation follows
from forwards simulation. We have proved the first, third,
and fourth parts in Coq; see Section 5.3 for details on our
assumptions in the second and fifth parts.

Aside from termination, which is relevant only at the
Gallina level, we prove the necessary lemmas by composition.
Each transformation pass in the compiler includes proofs
of callstate matching, forward simulation, and returnstate
matching between its input and output languages. These
separate proofs are composed to establish the end-to-end
properties relating Gallina to Cminor.
The theorems above ensure that an Œuf-generated Cmi-

nor function f ′ can always simulate the behavior of the
corresponding input Gallina function f , and furthermore,
all such behaviors will satisfy any theorems proved about f .
To ensure that f ′ never exhibits any “extra” behaviors not
possible for f , we adopt the approach used in CompCert and
prove our target language, in this case Cminor, is determin-
istic. Note that (like CompCert), we assume that no program
will exhaust memory. For a more in depth exploration of this
assumption, we suggest prior work [32].

5.2 The Œuf ABI
The Œuf application binary interface (ABI) describes the
means by which shim code written in C can call into Œuf-
compiled functions and preserve any guarantees established
at the source Gallina level. The ABI consists of a Cminor-level
representation of Gallina values and a calling convention
for invoking Œuf closures. These aspects of the ABI are
captured in the definitions of the value-matching, callstate,
and returnstate relations used in the compiler’s primary
correctness theorem. The theorem itself provides guarantees
about the results of valid calls made according to the Œuf
ABI.

ValueRepresentation There are two kinds of values in the
subset of Gallina supported by the prototype compiler: values
of inductive data types, which we call “data”, and closures.
Our prototype uses a pointer to a sequence of machine words
as the low-level value representation in both cases, so all
Œuf values are one machine word in size when stored in
registers, on the stack, or within another data structure. For
data values, the first word of the allocation is an integer tag,
indicating which constructor was used to build the value,
and each remaining word is another Œuf value, comprising
the arguments to the constructor. For closure values, the
first word of the sequence is a function pointer, and the
remaining words make up the environment of the closure.
Figure 7 shows examples of the memory representations for
some simple values.

Given these definitions, shims for use with our prototype
are permitted two ways of constructing Œuf values. First,
the shim can create a data value from a constructor tag and
a sequence of argument values. It does so by allocating 1+n
words, where n is the number of arguments to the construc-
tor, and filling the allocated storage with the constructor tag
followed by the values. (Recall that all Œuf values are one
word in size.)

8

Œuf CPP’18, January 8–9, 2018, Los Angeles, CA, USA

pair

O

S

O

S

O

<code>

(O, S O) fun y => x + y
with environment x 7→ S O

Figure 7. Example Cminor-level memory representations of Gallina
values. The left shows the representation of the pair (0, 1) (represented in
unary). The right shows the representation for a closure whose environment
contains a single value (for the free variable x).

Second, the shim can create a closure value for a function
f . This is permitted only when f has no free variables—in
other words, it must be a top-level input to the compiler,
not a lifted lambda. Since the environment of the closure
is always empty, the shim allocates exactly one word and
writes the function pointer into the allocated memory. There
is nothing strictly preventing the shim from building closures
for lifted lambdas with nonempty environments, but the Œuf
prototype compiler preserves the names only of top-level
functions, so it is difficult to refer directly to a specific lifted
lambda.
The shim, being an arbitrary C program, could of course

perform other operations on Œuf values. Most notably, the
shim might construct a closure whose code pointer refers
to a C function defined by the shim itself. However, such
a closure would not be related to any Gallina value under
the value-matching relation, so the compiler’s correctness
theorem would provide no guarantees for operations that
use such a value. This property captures the fact that some
C functions, particularly those that use side effects, do not
admit any Gallina implementation. Similarly, if the shim
were to construct a cyclic data value at the Cminor level, it
would not relate to any Gallina value (as Gallina inductive
data must be finite), and the result of passing the illegal value
to any Œuf function would be unspecified. The burden of
reasoning about such unsupported manipulations of Œuf
values is left to the user.

Calling Convention The shim can invoke Gallina func-
tions compiled with the Œuf prototype compiler using a
straightforward calling convention: given a closure f and an
argument a, the shim should dereference f to obtain a func-
tion pointer p, then call p(f, a). Since C supports only bare
function pointers, not closures, the caller must provide f ex-
plicitly so the closure code can access the environment. The
result of applying the closure to the argument is returned
directly from the call to p.

There are two additional points to note regarding the prac-
tical use of this calling convention. First, this convention sup-
ports only a single argument for each function. This is in line
with the definition of the Œuf prototype compiler’s input
language, which currently supports only single-argument

lambdas. Multiple-argument functions can be implemented
using currying, and they can be invoked by performing mul-
tiple individual call steps following this convention. Second,
for uniformity, the prototype compiler only supports calls
made through a closure object. If the shim needs to call a
top-level function directly (as opposed to applying a closure
obtained from some previous call), it must construct a closure
object for the function as described above, then apply the clo-
sure as normal. We believe it would be straightforward to lift
these restrictions when developing a more feature-complete
compiler.

5.3 Verification Assumptions
To verify a complete program, including the interaction be-
tweenŒuf-compiled code and the surrounding Cminor shim
requires the following two additional facts.

1. Œuf-compiled functions will never modify any values in
previously allocated memory.

2. The source Gallina program passed to Œuf terminates.
3. Forward simulation plus determinacy implies backwards

simulation.

Fact (1) is necessary for carrying any properties across
calls into Œuf-compiled code; otherwise, verifiers would be
forced to assume that any properties established before the
call could become invalid after the call. We are confident
that this is true because Œuf-generated code only writes to
small constant offsets into freshly allocated memory blocks.
However, we have not yet formally proved this fact.

Fact (2) is true metatheoretically, but we need to manifest
it inside of Coq. This amounts to proving normalization of
our operational semantics for the compiler’s reflected source
language. More formally, given any initial source program
state s , we assume there exists a source program state t
such that s steps to t in zero or more steps and t is a final
state, meaning no further evaluation is possible. We use
this fact in our proof of Œuf’s primary correctness theorem
(Theorem 5.1). We have already proved a progress lemma
(every non-final state can take a step), so the only remaining
doubt is that we may have defined the semantics in a way
that admits infinite sequences of steps through non-final
states. We believe this is unlikely because our definition of
the semantics largely follows standard practice, but we have
not proved that no such infinite sequence exists. The proof
could likely be conducted using the standard technique of
logical relations [39].
Fact (3) is also true metatheoretically, and in fact Comp-

Cert proves it as a lemma for their semantic framework.
However, Œuf’s semantics cannot directly use this lemma
because they do not fit into CompCert’s semantic framework.

In the future, Œuf implementations may provide libraries
proving these facts; however, in our current prototype we
assume the shim implementer dispatches these obligations.

9

CPP’18, January 8–9, 2018, Los Angeles, CA, USA Mullen, Pernsteiner, Wilcox, Tatlock, and Grossman

6 Trust
This section takes a more thorough look at the TCB (trusted
computing base) of programs compiled with Œuf. In particu-
lar, we carefully consider how our reliance on the (unverified)
OCaml compiler and (unverified) runtime differs from the
conventional approach to executing Gallina programs.
At first blush, the situation is fairly straightforward: Be-

cause Œuf is itself verified in Coq (as is the CompCert com-
piler whose back-end we reuse), we have a machine-checked
guarantee that the x86 assembly Œuf generates is equivalent
to the Gallina source code that Œuf consumes, up to the
usual assumption that CompCert’s model of x86 assembly
is adequate. Given this equivalence, any Coq proofs about
the source program apply also to the binary, provided shim
code follows our specified ABI.

Remaining in the TCB are components that are typical in
the development of formally verified systems: (1) the con-
sistency of Coq’s logic and the correctness of Coq proof
checking; (2) the shim code and any libraries it uses (e.g., the
C standard library); (3) the underlying execution environ-
ment (e.g., the operating system and hardware).

The first of these is the most interesting because Coq itself
is implemented in OCaml and so the proof-checker’s creation
relied on the OCaml compiler and the proof-checker’s exe-
cution relies on the OCaml run-time system. Therefore, in
this sense, Œuf-compiled code still relies on OCaml’s imple-
mentation, but the situation compared to extraction-of-Coq-
to-OCaml is qualitatively different: A compiler or run-time
bug cannot be exploited on Œuf-compiled code unless it
causes the Œuf compiler itself to be incorrect in such a way
that compilation appears to succeed but in fact is incorrect.
That is, a security hole would require OCaml miscompiling
the Œuf-compiler source-code in such a way that Œuf then
miscompiled another Coq program in an exploitable way.

Would it help to compile the Œuf compiler with a verified
compiler too, perhaps Œuf itself (i.e., bootstrapping our com-
piler)? In a practical sense, yes, since each level of a verified
compiler compiling another verified compiler would make a
false claim about the eventual program compiled byŒuf that
much less likely. But on a theoretical level, such a sequence
of verified compilers is exactly the focus of Thompson’s fa-
mous lecture on, “Trusting Trust” [42]: In principle every
compiler in the sequence of compiler bootstrapping steps
back to the dawn of computing is in the TCB. In theory, Œuf
is not immune to this classic argument.
In contrast, most prior work on verified systems relied

directly on Coq’s built-in extraction, despite the extraction
procedure being complex, unverified, and known to contain
bugs, including some that can cause incorrect code genera-
tion. Our Œuf compiler does not directly suffer from these
problems unless a Coq-extraction or OCaml implementa-
tion bug causes the Œuf compiler itself to be miscompiled.
Any Coq/OCaml bugs that do not affect the compilation of

Program Component Size (LOC)

list_max

Original 5
Adapted 16
Proofs 10
Total 31

SHA256

Original 200
Adapt (N) 230
Proofs (N) 1400
Adapt (elim) 700
Proofs (elim) 650
Total 3180

Figure 8. Approximate line counts for the Gallina components of our
test programs. “Original” is the size of the original implementation, written
in idiomatic Gallina. “Adapt” is the size of the code after adaptation for
compatibility with the Œuf prototype compiler, and “proofs” is the size of
the proofs of equivalence between the original and adapted versions. We
adapted SHA256 code in two phases, first converting it to use the N natural
number type, and later converting it to use eliminators in place of explicit
recursion. Totals include both original and adapted implementations and
equivalence proofs because reasoning about calling code typically refers to
all components.

Œuf are irrelevant to Œuf’s correctness. As for program-
mers’ proofs about code that Œuf compiles, Coq’s extraction
mechanism is not relevant, but the implementation of Coq
proof-checking in OCaml remains trusted.

7 Case Study
To judge the initial feasibility of our approach, we used the
Œuf prototype to compile and run two example programs.
Our goal in doing so was to show that the techniques used
in Œuf are sufficient for compiling and running nontrivial
Gallina functions. Demonstrating good performance was an
explicit non-goal—we have thus far focused on the front-end
and shim interfaces, and put minimal effort into optimiza-
tion. As expected, Œuf-compiled functions use orders of
magnitude more time and space than manually-written C.

7.1 Test Cases
We implemented two programs and compiled them using the
Œuf prototype to test our approach. Each program consists
of a pure functional component written in Gallina and a shim
written in C. The shim reads from standard input, invokes
the Œuf-compiled version of the Gallina function, and writes
the result to standard output.

list_max. Our first test case is a simple program for find-
ing the largest number in a list. The Gallina component
is a function list_max : list nat -> nat, which we
implemented in idiomatic Coq style. We then adapted the
function and all of its dependencies to use eliminators, as
required by Œuf’s input language, and proved the adapted
version equivalent to the original. The size of each is shown
in Figure 8.
The shim for list_max reads integers from standard in-

put and builds an Œuf list containing the equivalent nats,
10

Œuf CPP’18, January 8–9, 2018, Los Angeles, CA, USA

Program Input Default Boehm Slab OCaml

list_max
100 items 0.03 s 0.04 s 0.01 s 0.00 s
1000 items (OOM) 34.63 s 11.31 s 0.02 s

SHA256
55 bytes 2.22 s 3.12 s 1.31 s 0.07 s
500 bytes (OOM) 24.44 s 10.75 s 0.58 s
5000 bytes (OOM) 246.94 s 107.06 s 5.85 s

Figure 9. Performance results for our test programs. The first three
timing columns show the time taken when running Œuf-compiled code
with the default shim and allocator, with the default shim and the Boehm
GC, and with the slab-based shim and allocator. The final column shows the
time taken by the same program run via unverified extraction to OCaml.
Trials marked “OOM” failed after exhausting the 4GB of address space.

using the data representation described in Section 5.2 It then
invokes the compiled list_max function, converts the re-
sulting nat to a C integer, and prints it.
SHA256. Our second test case is a SHA-256 hashing utility,

similar to sha256sum. The Gallina component is a complete
implementation of the SHA-256 hash function, originally
developed by Appel [5] for their verification of the OpenSSL
SHA-256 code. SHA256 is a nontrivial function, comprising
about 200 lines of code, not including the numerous list and
integer library functions that it relies upon.

We adapted SHA256 for compilation with Œuf in two steps.
First, we converted all uses of CompCert’s int type to equiv-
alent operations using Coq’s built-in N natural number type,
which (unlike nat) represents each number as a linked list of
bits. CompCert implements the int type as a dependent pair
of a mathematical integer x ∈ Z and a proof that 0 ≤ x < 232,
but our prototype compiler cannot handle types that include
proof terms. Removing uses of int was largely a straight-
forward replacement of int and operations with equivalent
functions over Ns. Second, we converted uses of fixpoints and
pattern matching to explicit invocations of eliminators, as
we did for list_max. In most cases this transformation was
completely mechanical, but two functions required more sig-
nificant adjustment due to more complex recursive calls. The
sizes of these variants (including adapted library functions)
and the proofs relating them is shown in Figure 8.
The SHA256 shim reads bytes from standard input until

EOF, building an Œuf list containing each byte represented
as an N. It passes the list to the compiled SHA256 function,
obtaining another list of bytes (again stored as Ns in the range
0–255) representing the hash. Finally, it prints each byte of
the hash in hexadecimal, as is standard for hashing utilities.

7.2 Performance
Performance results for the two example programs are shown
in Figure 9. All programs compile and run correctly, but as
expected, they are quite slow and use a large amount of
memory. As shown in the third column of Figure 9, running
Œuf-compiled code with the default memory allocator re-
sults in an out-of-memory condition on all but the smallest
inputs. This is caused by the naïve memory allocation strat-
egy used in the current implementation. Due to the difficulty

of correctly implementing and verifying automatic memory
management, the Œuf prototype compiler generates code
that never deallocates. Temporary objects are leaked once
they become unused, and the size of the heap quickly exceeds
the 4GB address space limit for 32-bit processes.
To get some idea of our test programs’ performance on

larger inputs, we ran them with two other memory alloca-
tion strategies. These options reduce the overall memory
footprint, but at the cost of increasing the TCB. The fourth
column of the table shows the results of running the test
programs with the Boehm garbage collector [7], which au-
tomatically frees memory that is no longer reachable. The
fifth column shows the results with a modified shim that
uses slab allocation. Slab allocation is an allocation strategy
where new memory is allocated from various slabs, and it is
possible to free an entire slab at a time. This is useful when
calling Œuf-compiled code, as the result of each call can be
copied out, and the slab used to make the call can be freed.
The slab-allocated variants are modified such that iteration
over the input sequence is handled in C instead of in Gallina.
The body of the loop is the same as in the original implemen-
tation: a call to a Gallina function that processes the next
chunk of data. Aside from this change, the shim also uses
a simple slab allocator (under 100 lines of code) that wraps
the system malloc. After each iteration, the shim reads out
the result, then invokes an allocator routine to discard all
other data that was allocated during the iteration. Though
verifying either a garbage collector or a slab allocator would
require significant additional work, doing so would improve
Œuf-compiled code performance along the lines of Figure 9.
We believe that another major factor in the performance

of our test programs is the representation of numbers used
in these programs. Like most Coq programs, both of our
examples use the numeric types from the standard library:
either the nat algebraic data type, a unary representation
that stores x as a chain of O (x) constructors, or the N and Z
types, which use a binary representation requiring O (logx)
constructors. As a result, all operations on numbers take
time linear or logarithmic in the values of their inputs. This
problem could be addressed by providing Œuf-compiled pro-
grams with access to a type that compiles down to machine
integers, along with operations that have the same wrapping
behavior as native arithmetic instructions, but we leave the
verified implementation of such to future work.

Finally, we compared Œuf-compiled code with code ex-
tracted using Coq’s built-in unverified extraction mechanism
and then compiled with the standard OCaml compiler. For
this comparison, we extracted the Œuf-adapted version of
each test program’s Gallina component, so the exact same
code and data structures were used for bothŒuf- and OCaml-
compiled variants. Even using the same sub-optimal numeric
representation, the OCaml-compiled version of SHA256 is
about 20 times faster than the version produced by the Œuf
prototype compiler. We believe this difference is most likely

11

CPP’18, January 8–9, 2018, Los Angeles, CA, USA Mullen, Pernsteiner, Wilcox, Tatlock, and Grossman

caused by the prototype compiler’s unoptimized handling of
closures. It currently allocates a closure object for every call,
including every partial application within a call to a curried
function, and makes no attempt to remove unused variables
from closure environments. Furthermore, the generated code
always calls using the closure’s code pointer, even when the
target is statically known, which prevents any inlining that
might normally be performed by CompCert. Improving the
prototype compiler’s code generation to address these issues
is left to future work.

8 Related Work
Verified Compilation. Work on verified compilers stretches
almost as far as the invention of compilers themselves [29]
and continued throughout the second half of the twentieth
century [31]. (See Dave [14] for further references.) But the
breakthrough work of Leroy [25] fundamentally altered the
landscape by showing that it was possible to carry out the
full development in a proof assistant, showing that the as-
sembly output is guaranteed to be equivalent to the input C
program. Over the last decade, CompCert has been extended
in a variety of directions, e.g., to make guarantees about its
parser [21]. Even more importantly, a wide array of projects
use CompCert as a subcomponent [4, 13, 17, 18, 44]. Œuf
similarly builds on top of CompCert.

Œuf is most similar in purpose and design to CertiCoq, a
verified Gallina compiler developed by Anand et al. [3], Cer-
tiCoq uses the template-coq reflection mechanism to reflect
Gallina functions into input ASTs, compiles the program
down to CompCert’s Clight language using a series of veri-
fied transformation passes, and runs the CompCert backend
to produce executable code. Œuf can compile only a limited
subset of Gallina programs1, while CertiCoq can compile
any Gallina program, but Œuf provides stronger guarantees
about the programs in that limited subset. The key differ-
ence is that Œuf’s restriction of the input language allows
for translation validation of the reflection procedure, via a
verified denotation. The resulting proof of correspondence
between the original and reflected terms, together with the
compiler’s own correctness theorem, enables users of Œuf to
reason soundly about compiled code in terms of its original
high-level Gallina implementation. Œuf also exposes its cor-
rectness theorem to the shim, which allows reasoning about
code that calls Œuf-compiled functions.
Other work has also investigated verifying compilers for

functional programming languages more generally, includ-
ing features such as general recursion, side effects, and non-
determinism [6, 9, 10, 15, 36]. Perhaps most closely related is
the CakeML verified ML compiler [24, 41]. CakeML supports
a rich input language including mutually recursive func-
tions, pattern matching, ML modules, and mutable arrays.

1The CertiCoq implementation is not yet publicly available, so we have not
been able to make direct comparisons.

CakeML’s design was a major inspiration for the design of
Œuf’s internal passes: both compilers use many small trans-
formation passes between closely related languages. One
technical difference is that CakeML is able to bootstrap by
directly evaluating the compiler inside HOL4. This avoids
adding that “phase” of trust to the TCB, as discussed in Sec-
tion 6. When given shallowly embedded HOL functions, the
CakeML compiler uses a form of translation validation to
guarantee their input arrives at the frontend of the com-
piler unchanged [33]. While CakeML syntactically derives
a certificate that the input program evaluates to the correct
answer in the given big step semantics, Œuf uses denota-
tional semantics to denote the program back into Gallina.
Either approach results in similar levels of trust, however the
complexity of denotation has been a limitation preventing
Œuf from supporting more features, and thus the approach
from CakeML may improve the Œuf compiler.

TheŒuf correctness theorem is useful for reasoning about
programs in the target language that interact with Œuf-
compiled code. One special case of such reasoning is separate
compilation, which previous work has considered both in the
context of CompCert [22, 40] and elsewhere [34, 43]. Œuf
also does not assume that the entire program is in Gallina,
instead linking with a shim during compilation.
Another approach to reasoning about the interaction be-

tween the shim and the source program is to use a multi-
language semantics [1, 35]. Such a semantics gives a unified
account of the behavior of the shim, the source program, and
the compiled program, which allows clean reasoning.

Cogent [2] is a language for systems code whose compiler
produces not only C code, but also a high-level specification
in Isabelle/HOL and proof of refinement. Users can reason
about the code in terms of its high-level specification, similar
to how Œuf users can reason in terms of the Gallina code.

Œuf’s use of the computational denotation to translation
validate reflection and lambda lifting is broadly similar to
Govereau [16], which uses a denotational semantics to trans-
lation validate LLVM optimization passes. Œuf’s reflection
procedure is similar in spirit to Template Coq [28], which can
reflect all of Gallina into syntax represented by an inductive
datatype in Coq. On the other hand, Template Coq does not
support denoting all programs in this syntax back into Coq.

Verified Software Toolchain. Languages such as Gallina are
designed from the ground up for integration into a proof as-
sistant. In contrast, languages not designed with such goals
in mind require additional tooling to enable verification. One
such example is VST [4], a framework for reasoning about C
programs. It provides the ability for users to prove properties
of their programs, then appeal to a mechanically verified
theorem that those properties are preserved through com-
pilation. VST provides a deeply embedded separation logic
over a C-like language, while Œuf lets users prove properties
of their programs using Coq’s built-in support for reason-
ing about Gallina. While C programs tend to have orders

12

Œuf CPP’18, January 8–9, 2018, Los Angeles, CA, USA

of magnitude better performance than their Œuf-compiled
counterparts, we believe that the proof effort saved puts Œuf
at a useful point in the design space.
Other Verified Systems. The primary way to use Coq to

build systems today is to use extraction [27]. While con-
venient, extraction provides no formal guarantee that the
resulting program is semantically equivalent to the origi-
nal. Another way to build systems in Coq is to use Coq.io,
which provides monadic I/O primitives [12]. The user writes
a Gallina program using these primitives for side-effectful
operations, then reasons about it using theorems that de-
scribe the behavior of those monadic primitives. Executing
the code still requires extraction and compilation with the
unverified OCaml compiler. In principle, we could provide
similar I/O facilities by extending Œuf with monadic primi-
tives and implementing an interpreter in the C shim.
The seL4 operating system was one of the first major

successes in formal verification of large systems [23]. They
spent 20 person years on verification, which was largely
refinement proofs. By building verified compilers we can
mitigate some of this burden for future projects of this scale.

GCminor [30] is a language similar to the CompCert Cmi-
nor IR, except containing garbage collection primitives. From
this language, there is a verified translation to Cminor, along
with a Cminor specification and implementation of a garbage
collector. In the future, Œuf could benefit from a verified
garbage collector.

9 Conclusion
We presented Œuf, a verified compiler from Gallina to as-
sembly language. Along with standard compiler verification
techniques, Œuf uses computational denotation of its input
language to perform translation validation of its reflection
procedure and lambda-lifting pass, eliminating both from
the TCB. To enable verification of interactions between Œuf-
compiled functions and their C shims, we expressed Œuf’s
primary correctness theorem in terms of CompCert Cminor
values and program states. Finally, we compiled and ran Ap-
pel’s Gallina specification of SHA256 with Œuf to ensure
that Œuf can handle nontrivial input programs.
We are working towards a future where implementers

can consider Gallina a full-fledged systems programming
language that requires no special effort to run verified code.
This paper’s key contribution is a detailed exploration of the
trade-offs for designing the interfaces future implementers
may program against.

Acknowledgments
The authors acknowledgeAndrewAppel, Clément Pit–Claudel,
and Magnus O. Myreen for useful discussion, and the anony-
mous reviewers for their helpful feedback.
Zachary Tatlock’s research was supported in part by a

generous gift from Google. This material is based upon work
supported by the National Science Foundation under Grant

Nos. DGE-1256082 and 1219172. Any opinion, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

References
[1] Amal Ahmed. 2015. Verified Compilers for a Multi-Language World.

In 1st Summit on Advances in Programming Languages, SNAPL 2015,
May 3-6, 2015, Asilomar, California, USA. 15–31.

[2] Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter
Chubb, Liam O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim,
Thomas Sewell, and others. 2016. Cogent: Verifying high-assurance
file system implementations. In ACM SIGPLAN Notices, Vol. 51. ACM,
175–188.

[3] Abhishek Anand, Andrew Appel, Greg Morrisett, Zoe
Paraskevopoulou, Randy Pollack, Olivier Savary Belanger, Matthieu
Sozeau, and Matthew Weaver. 2017. CertiCoq: A verified compiler for
Coq. In CoqPL Workshop (CoqPL ’17).

[4] AndrewW. Appel. 2011. Verified Software Toolchain. In Proceedings of
the 20th European Conference on Programming Languages and Systems:
Part of the Joint European Conferences on Theory and Practice of Software
(ESOP’11/ETAPS’11). Springer-Verlag.

[5] Andrew W. Appel. 2015. Verification of a Cryptographic Primitive:
SHA-256. ACM Trans. Program. Lang. Syst. 37, 2 (April 2015).

[6] Nick Benton and Chung-Kil Hur. 2009. Biorthogonality, Step-indexing
and Compiler Correctness. In Proceedings of the 14th ACM SIGPLAN
International Conference on Functional Programming (ICFP ’09). 97–108.

[7] H Boehm and MWeiser. 1988. Garbage Collection in an Uncooperative
Environment. In Software Practice and Experience.

[8] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans
Kaashoek, and Nickolai Zeldovich. 2015. Using Crash Hoare Logic for
Certifying the FSCQ File System. In Proceedings of the 25th Symposium
on Operating Systems Principles (SOSP ’15). ACM.

[9] Adam Chlipala. 2007. A certified type-preserving compiler from
lambda calculus to assembly language. In Proceedings of the ACM
SIGPLAN 2007 Conference on Programming Language Design and Im-
plementation, San Diego, California, USA, June 10-13, 2007. 54–65.

[10] Adam Chlipala. 2010. A Verified Compiler for an Impure Functional
Language. SIGPLAN Not. 45, 1 (Jan. 2010), 93–106.

[11] Adam Chlipala. 2013. Certified Programming with Dependent Types.
MIT Press.

[12] Guillaume Claret. 2016. Coq.io. (2016). http://coq.io/
[13] David Costanzo, Zhong Shao, and Ronghui Gu. 2016. End-to-end Veri-

fication of Information-flow Security for C and Assembly Programs.
In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’16). 648–664.

[14] Maulik A. Dave. 2003. Compiler Verification: A Bibliography. SIGSOFT
Softw. Eng. Notes 28, 6 (2003), 2–2.

[15] Maxime Dénès and Xavier Leroy. 2015. Coqonut: A verified JIT com-
piler for Coq. http://www.maximedenes.fr/download/coqonut.pdf.
(January 2015).

[16] Paul Govereau. 2012. Denotational Translation Validation. Ph.D. Dis-
sertation. Harvard University.

[17] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao,
Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and Yu
Guo. 2015. Deep Specifications and Certified Abstraction Layers. In
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2015, Mumbai, India,
January 15-17, 2015. 595–608.

[18] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jie-
ung Kim, Vilhelm Sjöberg, and David Costanzo. 2016. CertiKOS: An
Extensible Architecture for Building Certified Concurrent OS Ker-
nels. In 12th USENIX Symposium on Operating Systems Design and

13

http://coq.io/
http://www.maximedenes.fr/download/coqonut.pdf

CPP’18, January 8–9, 2018, Los Angeles, CA, USA Mullen, Pernsteiner, Wilcox, Tatlock, and Grossman

Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016.
653–669.

[19] Arjun Guha, Mark Reitblatt, and Nate Foster. 2013. Machine-verified
Network Controllers. In Proceedings of the 34th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI ’13).
ACM.

[20] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. 2012. Establish-
ing Browser Security Guarantees Through Formal Shim Verification.
In 21st USENIX Conference on Security Symposium (SECURITY ’12).
USENIX Association.

[21] Jacques-Henri Jourdan, François Pottier, and Xavier Leroy. 2012. Vali-
dating LR (1) Parsers. In Proceedings of the 21st European Symposium on
Programming (ESOP 2012) (Lecture Notes in Computer Science), Vol. 7211.
Springer, 397–416.

[22] Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and Vik-
tor Vafeiadis. 2016. Lightweight Verification of Separate Compilation.
In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’16). 178–190.

[23] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. 2009. seL4: Formal Verification of an OS Kernel. In Pro-
ceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems
Principles (SOSP ’09). ACM.

[24] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens.
2014. CakeML: A Verified Implementation of ML. In Proceedings of the
41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’14). ACM.

[25] Xavier Leroy. 2006. Formal certification of a compiler back-end, or: pro-
gramming a compiler with a proof assistant. In Conference Record of the
33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’06). ACM.

[26] Mohsen Lesani, Christian J. Bell, and Adam Chlipala. 2016. Chapar:
Certified Causally Consistent Distributed Key-value Stores. In Pro-
ceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’16). ACM.

[27] Pierre Letouzey. 2008. Extraction in Coq: An Overview. In Logic and
Theory of Algorithms, Fourth Conference on Computability in Europe,
CiE 2008 (Lecture Notes in Computer Science), Vol. 5028. 359–369.

[28] Gregory Malecha. 2015. Template Coq Plugin. https://github.com/
gmalecha/template-coq. (2015).

[29] John McCarthy and James Painter. 1967. Correctness of a compiler
for arithmetic expressions. Mathematical aspects of computer science 1
(1967).

[30] Andrew McCreight, Tim Chevalier, and Andrew Tolmach. 2010. A
Certified Framework for Compiling and Executing Garbage-collected
Languages. In Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming (ICFP ’10). 273–284.

[31] J. Strother Moore. 1989. A Mechanically Verified Language Implemen-
tation. J. Autom. Reasoning 5, 4 (1989), 461–492.

[32] Eric Mullen, Daryl Zuniga, Zachary Tatlock, and Dan Grossman. 2016.
Verified Peephole Optimizations for CompCert (PLDI ’16).

[33] Magnus O. Myreen and Scott Owens. 2012. Proof-Producing Synthesis
of ML from Higher-Order Logic (ICFP ’12).

[34] Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin,
Derek Dreyer, and Viktor Vafeiadis. 2015. Pilsner: a compositionally
verified compiler for a higher-order imperative language. In Proceed-
ings of the 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2015, Vancouver, BC, Canada, September 1-3, 2015.
166–178.

[35] James T. Perconti and Amal Ahmed. 2014. Verifying an Open Com-
piler Using Multi-language Semantics. In Programming Languages and
Systems - 23rd European Symposium on Programming, ESOP 2014, Held
as Part of the European Joint Conferences on Theory and Practice of

Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings.
128–148.

[36] Clément Pit-Claudel. 2016. Compilation Using Correct-by-Construction
Program Synthesis. Master’s thesis. Massachusetts Institute of Tech-
nology. http://pit-claudel.fr/clement/MSc/

[37] Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Translation
Validation. In Proceedings of the 4th International Conference on Tools
and Algorithms for Construction and Analysis of Systems (TACAS ’98).
Springer-Verlag.

[38] Hanan Samet. 1978. Proving the Correctness of Heuristically Opti-
mized Code. Commun. ACM (1978).

[39] R. Statman. 1985. Logical relations and the typed lambda-calculus.
Information and Control 65, 2 (1985), 85 – 97.

[40] Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W.
Appel. 2015. Compositional CompCert. In Proceedings of the 42Nd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’15). 275–287.

[41] Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox,
Scott Owens, and Michael Norrish. 2016. A New Verified Compiler
Backend for CakeML (ICFP ’16).

[42] Ken Thompson. 1984. Reflections on Trusting Trust. Commun. ACM
27, 8 (Aug. 1984).

[43] Peng Wang, Santiago Cuellar, and Adam Chlipala. 2014. Compiler
verification meets cross-language linking via data abstraction. In Pro-
ceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2014, part of
SPLASH 2014, Portland, OR, USA, October 20-24, 2014. 675–690.

[44] XiWang, David Lazar, Nickolai Zeldovich, AdamChlipala, and Zachary
Tatlock. 2014. Jitk: A Trustworthy In-Kernel Interpreter Infrastruc-
ture. In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’14). USENIX Association.

[45] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi
Wang, Michael D. Ernst, and Thomas Anderson. 2015. Verdi: A Frame-
work for Implementing and Formally Verifying Distributed Systems.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’15). ACM.

14

https://github.com/gmalecha/template-coq
https://github.com/gmalecha/template-coq
http://pit-claudel.fr/clement/MSc/

	Abstract
	1 Introduction
	2 Overview
	2.1 Guarantee

	3 Front End
	3.1 Design Constraints
	3.2 Syntax
	3.3 Denotational Semantics
	3.4 Operational Semantics
	3.5 Reflection

	4 Compiler Internals
	4.1 From Gallina to Register Machine
	4.2 Lowering towards Cminor

	5 Shim
	5.1 Correctness Theorem
	5.2 The Œuf ABI
	5.3 Verification Assumptions

	6 Trust
	7 Case Study
	7.1 Test Cases
	7.2 Performance

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

