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Abstract
Modern field-programmable gate arrays (FPGAs) have re-
cently powered high-profile efficiency gains in systems from
datacenters to embedded devices by offering ensembles of
heterogeneous, reconfigurable hardware units. Programming
stacks for FPGAs, however, are stuck in the past—they are
based on traditional hardware languages, which were appro-
priate when FPGAs were simple, homogeneous fabrics of
basic programmable primitives. We describe Reticle, a new
low-level abstraction for FPGA programming that, unlike
existing languages, explicitly represents the special-purpose
units available on a particular FPGA device. Reticle has two
levels: a portable intermediate language and a target-specific
assembly language. We show how to use a standard instruc-
tion selection approach to lower intermediate programs to
assembly programs, which can be both faster and more ef-
fective than the complex metaheuristics that existing FPGA
toolchains use. We use Reticle to implement linear algebra
operators and coroutines and find that Reticle compilation
runs up to 100 times faster than current approaches while
producing comparable or better run-time and utilization.

CCS Concepts: • Software and its engineering → Soft-
ware notations and tools; Compilers;
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1 Introduction
Field-programmable gate arrays (FPGAs) have emerged as
a relief to stagnating performance on CPUs and GPUs [16,
17, 38]. Their key advantage is their ASIC-like ability to cus-
tomize data paths, control logic, and memory hierarchies for
specific applications. Unlike an ASIC, however, deploying an
FPGA-based accelerator merely requires buying off-the-shelf
parts—and not the astronomical investment that manufac-
turing custom silicon entails.
Early FPGAs were simple, homogeneous fabrics mostly

based on lookup tables (LUTs), and their toolchains could
treat them as fluidly reconfigurable circuits. Modern FPGAs,
however, no longer resemble those simple, homogeneous
architectures. Because real, specialized hardware remains far
more efficient than reconfigurable emulated circuits, mod-
ern FPGAs incorporate an array of heterogeneous, special-
purpose “hardened” units that implement commonplace func-
tionality: memories, arithmetic units, and complex intercon-
nects [21, 48]. To make these modern FPGAs perform well,
it is critical to exploit this fixed-function logic as much as
possible—programs that underutilize it can consume signifi-
cantly more area and power [40].
The mainstream approach to program FPGA today is by

using behavioral hardware description languages (HDLs), ei-
ther written by hand or emitted by higher-level languages [4,
12, 22, 34, 35, 49] as shown in Figure 1. These languages, how-
ever, rely on behavioral HDLs as an ad hoc IRs, because pro-
grams can be ported to multiple targets without the burden
of directly programming low-level and target-specific primi-
tives. Instead, the complex task of compiling traditional hard-
ware languages to these primitives is normally performed
by proprietary vendor toolchains.

https://doi.org/10.1145/3453483.3454075
https://doi.org/10.1145/3453483.3454075


PLDI ’21, June 20–25, 2021, Virtual, Canada Luis Vega, Joseph McMahan, Adrian Sampson, Dan Grossman, and Luis Ceze

DSP

a

b

c

co

y

ci

DSP

a

b

c

co

y

ci

DSP

a

b

c

co

y

ci

DSP

a

b

c

co

y

ci

a

b

c

in

d

t0

t1t1

t0

c

d

a

b

in

instruction 
selection

instruction 
placement

assembly 
(c)

layout 
optimizations

IR 
(a)

assembly 
(e)

IR

build 
dataflow graph

tree 
partitioning

target 
description 

(b)

selection

assembly

code 
generation

device 
layout 
(d)

structural 
verilog

target-independent family-specific device-specific

routing and 
bitgen bitstream

Reticle Traditional tools

target 
description

High-level 
Languages

Behavioral 
HDLs

DSL 
compiler

FPGA 
compiler

FPGA 
bitstream

target-independent (FPGA or ASIC) device-specific (FPGA)

compilation  
time (seconds or minutes) (hours or days)

High-level 
Languages

Behavioral 
HDLs Synthesis

High-level 
compilers

IR Instruction 
selection

Bitstream

This work

Traditional approach

Place Route

PlaceASM

Figure 1. Overview of the traditional compilation pipeline
compared to Reticle’s. Independent of the source language,
FPGA programs today are funneled down to the same ab-
straction (hardware description languages). This abstraction
is not expressive enough to capture high-performance oper-
ations available in DSPs, such as SIMD.

Moreover, behavioral HDLs like Verilog and VHDL do not
have a way to represent modern FPGA’s primitives. Alterna-
tively, vendor toolchains use heuristics that attempt to guess
when a program’s logic can efficiently map to a device’s
available hardened units. For example, a Verilog expression
a + b would need to compile to an adder circuit when gener-
ating a custom ASIC; in an FPGA toolchain, it might instead
map onto a specific configuration of an FPGA’s digital signal
processing slice (DSP) that includes a range of built-in integer
arithmetic units.

Relying on heuristics for performing this mapping results
in unpredictable and poor performance. As authors from
Xilinx, a major FPGA vendor, observed [31]:

The necessity of breadth coverage by commer-
cial tools often leads to implementations that do
not take full advantage of the underlying hard-
ware. For example, UltraScale+ devices employ
DSP blocks that are rated at 891MHz for the
fastest speed grade. Nonetheless, large designs
implemented on FPGAs typically achieve system
frequencies lower than 400MHz.

We corroborate this finding in Section 7, which demonstrates
that HDL-based FPGA programming leads to extremely slow
compilation and unpredictable, suboptimal performance re-
sults. In practice, programmers must resort to using vendor-
specific Verilog annotations to extract the best performance
from modern FPGAs, or even building ad hoc Verilog post-
processing scripts to insert directives for efficiency [3]. Al-
though it is fragile and not portable, this approach has no
viable alternative: vendors keep lower-level representations
secret and the accompanying toolchains are closed source.
This paper’s thesis is that we need a new low-level pro-

gramming abstraction for modern FPGAs. Innovation in
high-level FPGA programming models is accelerating [15,
18, 28, 34], and these new compilers need a better target than
Verilog. Where traditional HDLs hide the complexity of mod-
ern FPGA resources, a better abstraction would explicitly
represent the model-specific capabilities that make modern

FPGAs fast. The representation should offer both a high-
level abstraction for portability and a low-level abstraction
to directly address model-specific hardware resources—and
come with an infrastructure that provides analyses and opti-
mizations to target specific devices.
We describe Reticle, a low-level language for efficiently

programming modern FPGAs. The goal is to provide an inter-
mediate language and a compilation target that can replace
the use of traditional behavioral HDLs for targeting FPGAs,
as shown in Figure 1. Reticle is a compilation target for
higher-level languages that are substantially different from
traditional HDLs.
Reticle has two layers: a portable intermediate language

that abstracts over specific hardware units while providing
high-level control over resource binding and placement, and
a parameterized assembly language that explicitly addresses
a device’s hardware resources.

The contributions in this paper are:
• We identify and measure the challenges of using be-
havioral HDLs for programming modern FPGAs in
terms of result quality and compiler speed.
• We design Reticle, an intermediate language that can
describe the binding of high-performance hardware
primitives in modern FPGAs (i.e., DSPs) as well as
classic reconfigurable logic (i.e., LUTs).
• We implement a compiler for Reticle that optimizes
and lowers hardware programs and then emits struc-
tural, device-specific Verilog to bypass the majority of
traditional vendor FPGA toolchains.
• We demonstrate that the Reticle compiler runs up to
100× faster than an existing vendor FPGA toolchain
while producing comparable or better run-time and
utilization results on linear algebra benchmarks.

This paper describes a language design aiming to efficiently
program modern FPGAs, but it leaves important avenues for
future work to build on. Currently, the intermediate language
focuses on programming DSP and LUT slices; it does not sup-
port memory primitives, such as BRAMs. Additionally, the
paper focuses on designing and implementing an assembly
language capable of capturing layout semantics that enable
layout optimizations such as instruction cascading. The com-
piler, however, uses only a simple solver-based approach for
placement, limiting the search of optimal layouts for any
given program. There is plenty of exploration needed in the
layout space i.e., incorporating timing information that is
beyond the scope of this work. Lastly, the Reticle compiler,
as of today, relies on routing and bitstream generation from
traditional toolchains as shown in Figure 1.

2 Background
The first major program transformation that FPGA compilers
perform today is hardware synthesis. This transformation
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1 module bit_and(input a, input b, output y);
2 assign y = a & b;
3 endmodule

(a) Behavioral Verilog.

1 module bit_and(input a, input b, output y);
2 LUT2 # (.INIT(4'h8))
3 i0 (.I0(a), .I1(b), .O(y));
4 endmodule

(b) Structural Verilog.

1 module bit_and(input a, input b, output y);
2 (* LOC = "SLICE_X0Y0", BEL = "A6LUT" *)
3 LUT2 # (.INIT(4'h8))
4 i0 (.I0(a), .I1(b), .O(y));
5 endmodule

(c) Structural Verilog with layout annotations.

Figure 2. Three Verilog representations of and program.

rewrites a hardware program described behaviorally into an
equivalent structural representation.

Hardware languages use behavioral expressions to define
what operations compute, whereas structural expressions
defines concretely how they are implemented from primitive
components.
For example, consider the behavioral Verilog program

in Figure 2a. This program uses a binary expression that
performs the and operation. One valid transformation of this
program is shown in Figure 2b, where the and operation is
lowered to a LUT, the traditional programmable logic unit
of FPGAs. The behavioral program is the standard, portable
way to program FPGAs today; the structural implementation
addresses the specific LUT resources on a specific family
of FPGA devices. Additionally, structural implementations
can capture layout semantics via Verilog attributes as shown
in Figure 2c, including the location LOC of a slice and the
basic element of logic BEL for a primitive. In this case, the
LOC value represents a specific slice located at the Cartesian
coordinate (0, 0) and the BEL value denotes an unique LUT
(𝐴6𝐿𝑈𝑇 ) within this slice. A LUT slice can host multiple
LUTs i.e., UltraScale+ devices support eight LUTs per slice.

Although LUTs are the building block that classically dom-
inated FPGAs, they are not the only programmable resource
available on modern FPGAs capable of computing and op-
erations. Over the years, FPGAs have added other kinds of
primitives: most prominently, digital signal processing slices
(DSPs) that can execute this and other complex operations.
Although LUTs can implement arbitrary Boolean logic for-
mulas, DSPs can implement specific operations faster and far
more efficiently [31]. For example, an 8-bit and operation can
typically be implemented using a single DSP or 8 LUTs. In
modern FPGAs, DSPs are a source of heterogeneity because

1 (* use_dsp = "yes" *)
2 module dsp_add (...);
3 genvar i;
4 for (i=0; i<N; i++) begin
5 assign y[i] = a[i] + b[i];
6 end
7 endmodule

Figure 3. Behavioral Verilog program for adding two arrays
of 𝑁 elements in parallel using DSP annotations. Figure 4
shows how, even with the compiler hint, a hand-optimized
structural program is better able to use FPGA resources.

they support a wide variety of complex operations, such as
scalar, vector, and fused integer operations and, in recent
products, even floating-point arithmetic [11].
Modern FPGA hardware synthesizers heuristically map

behavioral HDLs onto LUTs and DSPs based on a cost model
and resource availability. The cost model is normally based
on the type of the operation and integer type of the operands.
For example, a synthesizer might prefer to map integer mul-
tiplications to DSPs because of the poor size and speed trade-
off of a LUT-based multiplier, but a small-integer additions
might map to LUTs because the speed difference is small and
FPGAs typically have more LUTs than DSPs. In addition to
cost models, synthesizers also support hint annotations in
HDLs to suggest the use of DSPs over LUTs.
Even with cost models and hints, however, behavioral

HDLs are insufficient to fully exploit resources like DSPs
available in modern FPGAs. Consider the program in Fig-
ure 3, which consists of a loop that performs the summation
of two arrays of 𝑁 elements in parallel. We performed hard-
ware synthesis on this program for different values of 𝑁
targeting an FPGA that contains 360 DSPs. Figure 4 shows
the number of resources consumed by this program when us-
ing the behavioral HDL description versus a hand-optimized
structural implementation. The syntax of the optimized pro-
gram is not shown due to space constraints: it requires config-
uring up to 96 different DSP parameters for each operation.
This experiment demonstrates three challenges of cur-

rent hardware synthesizers and languages when targeting
FPGAs. First, using the behavioral representation together
with compiler hints to force the use of DSPs over LUTs only
covers one of the many configurations available in the DSP,
resulting in the underutilization of resources. For example,
Figure 4a shows that the total number of DSPs in this par-
ticular device is already reached for size 𝑁 = 512, although
the maximum number of parallel addition allowed in this
device is 1440 because of DSP vectorization (360 DSPs each
performing 4 parallel additions). Nevertheless, the synthe-
sizer starts rewriting add expression to LUTs for 𝑁 ≥ 512 as
shown in Figure 4b.
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Figure 4. Resource utilization for multiple loop bounds (𝑁 )
of the behavioral program described in Figure 3 versus a
hand-optimized and structural version of the same program.
Even though a compiler hint in the behavioral program re-
quests the use of DSPs, a more optimal DSP configuration
exists, leading to under-utilization of the resource potential
(the behavioral program runs out of DSP resources and must
resort to LUTs).

A second challenge is that, in HDLs, hints are merely
suggestions—not constraints. Behavioral-to-structural syn-
thesis heuristics make it difficult to deterministically respect
constraints, so toolchains silently ignore hints that they are
unable to fulfill. The consequence is that programming with
hints is unpredictable in both area and performance.
The third challenge is that directly programming at the

structural level, while necessary for peak efficiency, is im-
practical. It requires understanding the complex, device-
specific semantics of DSP configuration parameters. Struc-
turally programming the DSP in Xilinx UltraScale+ FPGAs,
for example, can entail setting up to 96 parameters. This
representation is verbose, brittle, and vendor-specific—no
structural representation is portable across FPGA families.

3 Overview
Reticle is an intermediate representation (IR) and compiler
for FPGAs that addresses these challenges. Reticle aims to
directly represent and optimize for the heterogeneous pro-
grammable resources available in modern FPGAs: specifi-
cally, LUTs and DSPs. Its goal is to target the efficiency of
structural FPGA implementations while adding abstraction
and portability. Reticle is an instruction-based IR that decou-
ples the low-level details of the underlying hardware from a
higher-level instruction set that can generate code for differ-
ent hardware targets. More importantly, Reticle presents an
alternative approach for programming FPGAs and is not a
drop-in replacement for any stage in the traditional compi-
lation flow (i.e., the goal is not to support traditional HDLs
like Verilog). Alternatively, higher-level languages can use
Reticle as a compiler target.
Reticle addresses the challenges from Section 2 by using

a more expressive type system that supports vector types,
which enable programs to promote particular hardware re-
sources over others when they are available. Additionally,
the intermediate language makes primitive constraints part
of the language semantics, so the Reticle compiler can reject
programs with unsatisfiable constraints instead of silently
ignoring them as in HDL hints. Therefore, programs are
more predictable in terms of resource usage and performance.
We show how to use instruction selection to map a portable
representation onto a device-specific representation, while
achieving the same optimization results as target-specific
structural implementations.

The rest of the paper describes the Reticle language design
and compiler implementation. Section 4 describes the two
forms of Reticle: a portable, high-level intermediate language
and a low-level, device-specific assembly language that can
be parameterized for a specific FPGA device. Section 5 de-
scribes how the Reticle compiler lowers from the intermedi-
ate language to an assembly language. We show how to use
standard instruction selection to efficiently and deterministi-
cally lower intermediate programs to assembly programs—a
sharp departure from traditional FPGA toolchains, which
must resort to expensive, often randomized metaheuristics
to perform similar lowering [33]. Sections 6 and 7 show how
our compiler implementation emits structural hardware de-
scriptions for a specific FPGA target and results comparable
to or better than a traditional HDL toolchain while running
many times faster. Finally, Section 8 discusses the responsibil-
ities and optimization opportunities for front-end languages
when compiling to Reticle.

4 The Language
This section describes the Reticle language. Reticle has two
variants: the high-level intermediate language, where opera-
tions are abstract and portable across FPGA devices, and a



Reticle: A Virtual Machine for Programming Modern FPGAs PLDI ’21, June 20–25, 2021, Virtual, Canada

𝑓 𝑢𝑛 ∈ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 F 𝑛(a : 𝜏)∗ → (a : 𝜏)+{𝑖𝑛𝑠+}
𝑖𝑛𝑠 ∈ 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 F 𝑤𝑖𝑟𝑒 | 𝑐𝑜𝑚𝑝

𝑤𝑖𝑟𝑒 ∈𝑊𝑖𝑟𝑒 F a : 𝜏 = ⊗[𝑖∗] (a∗)
𝑐𝑜𝑚𝑝 ∈ 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 F a : 𝜏 = ⊞[𝑖∗] (a+)@ 𝑟𝑒𝑠

(a) The Intermediate Language

𝑓 𝑢𝑛 ∈ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 F 𝑛(a : 𝜏)∗ → (a : 𝜏)+{𝑖𝑛𝑠+}
𝑖𝑛𝑠 ∈ 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 F 𝑤𝑖𝑟𝑒 | 𝑎𝑠𝑚

𝑤𝑖𝑟𝑒 ∈𝑊𝑖𝑟𝑒 F a : 𝜏 = ⊗[𝑖∗] (a∗)
𝑎𝑠𝑚 ∈ 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦 F a : 𝜏 = ⊠[𝑖∗] (a+)@ 𝑙𝑜𝑐

(b) The Assembly Language

𝑟𝑒𝑠 ∈ 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 F ?? | 𝜌
𝑙𝑜𝑐 ∈ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 F 𝜌 (\, \ )
\ ∈ 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 F ?? | 𝑒
𝜌 ∈ 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 F lut | dsp

𝑒 ∈ 𝐶𝑜𝑜𝑟𝑑𝐸𝑥𝑝𝑟 F 𝑖 | a | 𝑒 + 𝑒

⊗ ∈𝑊𝑖𝑟𝑒𝑂𝑝 ⊞ ∈ 𝐶𝑜𝑚𝑝𝑂𝑝 ⊠ ∈ 𝐴𝑠𝑚𝑂𝑝

?? ∈𝑊𝑖𝑙𝑑𝑐𝑎𝑟𝑑 𝑛 ∈ 𝑁𝑎𝑚𝑒 a ∈ 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒

𝜏 ∈ 𝑏𝑜𝑜𝑙, 𝑖𝑛𝑡,−→𝑖𝑛𝑡 𝑖 ∈ Z

Figure 5. The Intermediate and Assembly Languages.

low-level assembly language, where operations correspond
to physical primitives available on a specific device.

Figure 5 lists the syntax for the two languages, which share
a common structure and differ in the kinds of operations that
are available. We first describe the intermediate language
and then show how the assembly language differs.

4.1 The Intermediate Language
Figure 5a lists the Reticle intermediate language. A program
is a function with a name n, a number of inputs and outputs
(a : 𝜏), and a sequence of instructions ins. Function bodies
are in A-normal form (ANF) [41]: they consist of a flat list of
instructions whose arguments are always variables a .

Wire & compute instructions. There are two types of
instructions in the language: wire and compute instructions.
While both share a common format, compute instructions are
the ones that consume device resources and therefore con-
sume area; wire instructions are area-free and only involve
wiring. Both kinds of instructions support static integer at-
tributes 𝑖 , argument variables a , and always produce a single
output value (a : 𝜏).

Wire instructions consist of operations ⊗, while compute
instructions are based on an operation ⊞ that are performed

t0: i8 = const [5];
t1: i8 = sll [1](t0);
t2: i8 = add(t0, t1) @??;

Figure 6. Reticle instructions to compute the expression
5 × 2 + 5. The constant 5 and shift-left-logical operation
consume no compute resources (wire operations), while the
add instruction does (compute operation).

Table 1. The intermediate instruction set.

Instruction Type Operation

Compute

Arithmetic add, sub, mul
Bitwise not, and, or, xor,

Comparison eq, neq, lt, gt, le, ge
Control mux
Memory reg

Wire Shift sll, srl, sra
Misc slice, cat, id, const

by a primitive 𝜌 . Therefore, compute instructions are candi-
date for optimizations. Figure 6 shows an example of wire
and compute instructions.

Compute instructions also have an annotation @ 𝑟𝑒𝑠 that
can optionally control which kind of resource to use on
the target device: either LUTs or DSPs. The 𝑟𝑒𝑠 annotation
may be the wildcard ??, in which case the compiler has the
freedom to choose which resource to use for the instruction.
Interestingly, other operations besides simple bit extrac-

tion and slicing can be implemented as wire instructions i.e.,
static shift instructions. Consider the implementation of the
logical left shift instruction sll described in Figure 6, which
consist of taking the lower 7-bit wires of t0 and appending a
1-bit wire assigned to the value zero in order to produce t1.
Curiously, single-bit constant values such as zero and one
can be created with electrical ground and voltage available
throughout the device without consuming any LUT or DSP.
Therefore, we leverage this knowledge to define these and
other operations i.e., constants as wire instructions.

Instruction set. Table 1 lists the full set of compute and
wire instructions in the intermediate language. Most instruc-
tions are pure, i.e., they have no side effects. The only excep-
tion is the register instruction, reg. In the absence of register
instructions, programs can leverage referential transparency.
An add instruction, for example, takes two arguments and
writes to an output of a given type, such as:
c:i8 = add(a,b) @??;

A reg instruction looks similar to add, but it is stateful in
its operation. Furthermore, the add instruction will write a
new value to c each cycle (based on inputs a and b), whereas
the reg instruction will hold its value until overwritten. For
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example, the following register instruction will produce a 0
as long as b is False. Similarly, once b is True, then the value
of a will be bound to c every cycle.

c:i8 = reg [0](a,b) @??;

The stateful reg instruction is essential for allowing cycles
in programs. Registers “break up” combinational cycles by
stopping them from looping back within the same cycle. As
we discuss in Section 6.1, a program with a cycle and without
register is considered ill-formed and will be rejected.

Semantics. The primary goal behind the intermediate
language is to capture the semantics of operations available
in modern FPGA, while removing details of the primitives
used to implement such instructions. This is accomplished by
using dataflow and synchronous semantics [7]. The dataflow
semantics are used to describe the behavior of pure combi-
national instructions [45], whereas the synchronous model
abstracts away the details about how register instructions
are updated. For example, a synchronous design is defined as
a hardware program in which all stateful elements (registers),
can only be updated on a single event trigger, i.e., a positive
clock edge. Therefore, the syntax for describing such timing
details is not required for programming FPGAs, resulting in
a more compact representation.

4.2 The Assembly Language
The Reticle assembly language resembles the intermediate
language, but it replaces high-level, abstract operators like
add with target-specific primitives available on a particular
FPGA device. Figure 5b lists the syntax for the assembly
language, in which compute instructions 𝑐𝑜𝑚𝑝 are replaced
with assembly instructions 𝑎𝑠𝑚. (Reticle assembly retains
the same wire instructions as the intermediate language.) As
we lower to hardware targets, special-purpose hardware be-
comes available that can handle specialized operations, such

as multiply-add, with known implementation costs (area
and latency.) Although 𝑎𝑠𝑚 instructions are considered spe-
cialized instructions, they are still portable within an FPGA
family. Devices within a family share the same primitives,
varying only the total number of primitives available in them.

To capture the semantics of these varied operations, each
is defined in terms of a sequence of intermediate language
operations, which are then automatically composed in the
compilation process. (This means that assembly operations
⊠ can be composed of one or more intermediate operations
in a single instruction.) Therefore, the number of 𝑎𝑠𝑚 in-
structions is far greater than 𝑐𝑜𝑚𝑝 instructions, allowing
different FPGA architectures to be targeted with a simpler
intermediate language. For example, two intermediate oper-
ations consisting of a multiplication followed by an addition
can be fused into a muladd (if it supported by the hardware
target) and it can be expressed in assembly as:

y:i8 = muladd(a,b,c) @dsp(??, ??);

Assembly instructions also differ from compute instructions
because they support location semantics 𝑙𝑜𝑐 . A location in-
cludes not only a primitive kind (LUTs or DSPs), but also
a Cartesian 𝑥,𝑦 coordinate describing the physical place-
ment of the operation. Each coordinate can be either a con-
crete expression 𝑒 or a wildcard ??, indicating that the com-
piler is responsible for determining the placement. While the
wildcard gives the compiler the greatest flexibility, placing
explicit constraints on coordinates with expressions gives
front-end tools greater control over programs (and its ul-
timate performance). An expression can refer to variables
defined in other coordinate expressions to place constraints
between the placement of the two instructions. For exam-
ple, an instruction location could be specified using uncon-
strained variables like (x0_loc ,y0_loc), while another in-
struction is constrained to always be adjacent (right after)
within the same column: (x0_loc ,y0_loc +1). Because we
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t0:i8 = mul(a,b) @??;
t1:i8 = add(t0,c) @??;

(a) Intermediate program

t0:i8 = mul(a,b) @dsp(??,??);
t1:i8 = add(t0,c) @dsp(??,??);

(b) Assembly program, cost=2

t0:i8 = muladd(a,b,c) @dsp(??,??);

(c) Assembly program, cost=1

Figure 8. Example of an intermediate program (a) and two
equivalent assembly programs (b,c) with different costs.

used the same variables, the two instructions have a place-
ment relationship: they have the same x_loc (column), and
the second instruction is right after the first. Anecdotally,
we were inspired by the Lava hardware language [5], on the
benefits of incorporating layout semantics to perform layout
optimizations (discussed further in related work, Section 9).

5 Compilation
Our hardware compiler performs a series of transformations
to convert and optimize a source intermediate program into
a target structural representation. The transformations in
the compiler are described in Figure 7, including instruc-
tion selection, layout optimizations, instruction placement,
and code generation. Each of these program transformations
progressively increases the level of detail of the compiler tar-
get such as: target-independent, family-specific, and device-
specific transformations.

5.1 Instruction Lowering
The Reticle compiler is responsible for lowering the abstract
intermediate language to the concrete assembly language.
The core problem is instruction selection, i.e., choosing a high-
quality sequence of assembly instructions that have the same
semantics as the original intermediate instructions. A key
consequence of Reticle’s design is that the problem is similar
to instruction selection in a traditional software compiler [2]
but applied to the hardware domain. This is not the first
time instruction selection has been proposed for hardware
compilation [9, 26, 27]. Whereas today’s RTL toolchains rely
on slow, unpredictable metaheuristics to do a similar logical-
to-physical mapping [33], the Reticle compiler can leverage
the large body of work on efficient, deterministic instruction
selection algorithms to achieve the same effect.
Figure 8a shows an example of instruction selection in

Reticle. The intermediate-language program in Figure 8a is
semantically equivalent to both assembly programs in Fig-
ures 8b and 8c, assuming a target architecture that supports
mul, add, and muladd assembly instructions. The choice of

𝑑𝑒𝑠 ∈ 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 F 𝑎𝑠𝑚+

𝑎𝑠𝑚 ∈ 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦 F 𝑛[𝜌, 𝑖, 𝑖] (a : 𝜏)∗ → (a : 𝜏){𝑖𝑛𝑠+}
𝑖𝑛𝑠 ∈ 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 F a : 𝜏 = ⊞ | ⊗ [𝑖∗] (a+)

𝜌 ∈ 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 F lut | dsp

⊗ ∈𝑊𝑖𝑟𝑒𝑂𝑝 ⊞ ∈ 𝐶𝑜𝑚𝑝𝑂𝑝

𝑛 ∈ 𝑁𝑎𝑚𝑒 a ∈ 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝜏 ∈ 𝑇𝑦𝑝𝑒 𝑖 ∈ Z

Figure 9. The Target Description Language.

reg[lut ,1,2](a:i8,en:bool) -> (y:i8) {
y:i8 = reg [0](a,en);

}

add[lut ,1,2](a:i8,b:i8) -> (y:i8) {
y:i8 = add(a,b);

}

add_reg[lut ,1,2](a:i8,b:i8,en:bool) -> (y:i8) {
t0:i8 = add(a,b);
y:i8 = reg [0](t0,en);

}

Figure 10. Example of an FPGA target described using the
target description language (Figure 9). This hypothetical
target supports three assembly instructions (reg, add, and
add_reg), which are implemented using LUTs and have area
and latency cost of 1 and 2 respectively.

the best implementation depends on the target-specific costs
of these instructions.
Reticle’s instruction selector uses a target definition that

describes the instructions available for a specific FPGA fam-
ily. The target description gives the area and latency costs
for each assembly instruction along with its semantics in
terms of intermediate language instructions.

Target Description Language. Because the availability
of different low-level hardware operations (and their costs)
can vary across FPGA families, the Reticle compiler needs a
mechanism for describing a target platform. We designed a
target description language that allows succinct specification
of assembly instructions supported by a given FPGA target;
it is specified in Figure 9.

In FPGA terms, a target is defined as a set of devices that
support the same kinds of primitives, and it is often referred
as an FPGA family or series. Devices within a family can be
programmed with the same set of assembly instructions, and
only differ on the number of instructions that are capable to
accommodate spatially. Moreover, devices only differ on the
number of DSPs and LUTs supported (columns and rows)
and how their columns are arranged i.e., six columns of LUTs
followed by one column of DSPs.
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Concretely, a target description is defined as a list of as-
sembly definitions 𝑎𝑠𝑚 that represents all the assembly in-
structions supported by a specific family. Each definition
has an operation name 𝑛, a hardware resource 𝜌 that the
operation occupies, and area and latency costs as integers
𝑖 , and the (typed) inputs and outputs to the operation. The
definition also has a body that defines its semantics in terms
of intermediate instructions. The body consists of a sequence
of instructions that resemble an intermediate language pro-
gram, without cycles (DAG) or 𝑝𝑙𝑎𝑐𝑒 information. The in-
struction selection algorithm uses the body and costs to
determine when a fragment of an intermediate language
program can be replaced with an equivalent target-specific
assembly instruction.

Figure 10 lists an example target in this specification lan-
guage. This hypothetical target supports three assembly in-
structions: reg, add, and add_reg .

Instruction Selection. The steps for performing instruc-
tion selection include: data-flow graph (DFG) generation,
tree-partitioning and selection. Initially, the intermediate
program is converted to a DFG, where nodes represent in-
structions and inputs, and edges correspond to how data
flow through the program.

Once the DFG is created, the graph is partitioned into trees
of intermediate instructions. The reason behind this parti-
tioning is the fact that the DFG might contains cycles, which
are not supported by tree-covering algorithms. Because the
Reticle definition of well-formed programs excludes combi-
national cycles (see Section 6.1), we know that simply cutting
on register operations is sufficient to make valid trees. The
procedure for partitioning the DFG into trees consists on
finding the nodes in the graph that are root candidates to
make a cut. There are two conditions required to be a root
node, (1) the node must be a compute instruction, and (2) its
outgoing edges must be greater than one or none; compute
nodes without outgoing edges represent outputs, meanwhile
compute nodes with more than one outgoing edge can con-
tain cycles and therefore they are considered as root nodes.
After tree-partitioning, the next step is selection, whose

goal is to transform and optimize these trees of compute
instructions into assembly instructions using the target de-
scription specification. Instruction selection is performed
using a linear-time tree-covering algorithm originally devel-
oped for code generation in compilers [2]. The procedure is
based on dynamic programming, using previous solutions
to create better solutions at every node while traversing the
tree in a postorder fashion. Then, the solutions (assembly
instructions) from every tree are composed to produce a
final assembly program. The assembly instructions in this
program have unknown locations (coordinate holes) that
are further optimized spatially (if necessary), and later re-
solved by the instruction placement stage in the compiler
for a specific device.

t0:i8 = muladd(a,b,in) @dsp(??,??);
t1:i8 = muladd(c,d,t0) @dsp(??,??);
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(a) Without cascading, regular routing

t0:i8 = muladd_co(a,b,in) @dsp(x,y);
t1:i8 = muladd_ci(c,d,t0) @dsp(x,y+1);
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(b) With cascading, high-speed routing

Figure 11. Example of optimizing the layout of an assembly
program (a) using instruction cascading. In (b), the unknown
location specifiers (“??”) have become parametric layout ex-
pressions over 𝑥 and𝑦 coordinates. They imply the adjacency
constraint in 𝑦, while still being place-able almost anywhere.
These constraints can be solved later, during the instruction
placement step, for a given device.

5.2 Layout Optimizations
After instruction selection, the Reticle compiler can further
optimize assembly programs by placing them into high-
performance spatial layouts. Layout optimizations can be
expressed as constraints in the assembly language, using
coordinate expressions. The relative placement of target-
specific operations can have a large impact on the efficiency
of a program. For example, by placing DSP-mapped opera-
tions within the same column, programs can take advantage
of DSP cascading: leveraging high-speed routing resources
available within DSP columns [42]. Hardware support for
DSP cascading is widely available in most architectures to-
day, including FPGAs designed by Intel [23], Xilinx [47],
Lattice [30], and Achronix [1].

Figure 11a shows an example containing a pair of muladd

instructions without any layout constraints. There are mul-
tiple valid layout candidates for this program; however, the
version in Figure 11b, which places the operations vertically
adjacent in the same DSP column, is far faster than one that
scatters the operations across different columns or more
distant within the same column.
A Reticle assembly program can express this layout op-

timization as a layout constraint using expressions for the
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placement coordinates on each instruction. By using x as
the column for both operations and y and y+1 as the row
expression, the assembly program describes a placement of
neighboring DSPs. Moreover, the semantic of the muladd_co

assembly instruction means that not only the DSP is con-
figured to perform the muladd operation but must use the
cascade port (co) instead of the default port (y) for the result.
Similarly, the muladd_ci instruction uses the cascade input
port (ci) instead of the default port (c) for the partial sum.
Notably, this and other parameterizable layout optimiza-

tions can be ported within an FPGA family using our assem-
bly language, and later solved in the compilation pipeline
i.e., instruction placement, for maximum portability.

5.3 Instruction Placement
After instruction selection and layout optimizations have
taken place, all assembly instructions must be placed in a
valid position on the target device. Therefore, the placement
procedure consists of converting a family-specific program
(unresolved locations) into an equivalent device-specific pro-
gram (resolved locations) as described in Figure 7; finding
a unique value for each coordinate variable used, as well as
filling in all wildcards (??).

Deciding a physical layout consists of mapping all assem-
bly instructions to specific FPGA resources, for a specific
target FPGA. Each instruction will already have undergone
selection, so the task is reduced to finding a mapping for
each LUT instruction to an available LUT slice and each DSP
instruction to an available DSP slice. All modern FPGAs are
constructed as columns of resources; the layout engine takes
as input the layout of the target FPGA — specifically, which
columns are DSPs and LUTs, and how many entries or slices
those columns have.

Notably, LUT column slices are different from DSP slices,
due to the fact that LUT slices host more than one pro-
grammable resource. We formulate the placement problem
in terms of these slices.

To solve and optimize layout, we use the Z3 SAT solver [13].
The layout problem is expressed as a series of constraints for
each instruction, which are fed to the solver. Z3 quickly finds
a valid coordinate assignment for each instruction, subject
to the following constraints:

• The 𝑦-coordinate must match a column of the appro-
priate resource (DSP vs LUT);
• The 𝑥-coordinate must be between 0 and themaximum
number of resources for that type of column;
• If there is a relative constraint placed (as described
in Section 5.2) such that this instruction must follow
another at 𝑦1, then the 𝑦-coordinate must be at 𝑦1 + 1;
• All instruction resources are unique (this instruction’s
coordinates cannot match any other instruction’s co-
ordinates).

If Z3 cannot find a valid placement for every instruction,
placement fails.
Once a valid placement is found for each instruction,

the layout engine optionally performs a series of shrink-
ing passes as an optimization. It computes the highest 𝑥- and
𝑦-coordinate for each resource type, takes this as a maximum
area, then uses a binary search to successively re-run place-
ment with an artificially reduced area. If it succeeds, the next
iteration shrinks again; if it fails, binary search is repeated in
the new interval. The end result is a more compact physical
layout on the FPGA.

5.4 Code Generation
The goal of code generation is to expand assembly and wire
instructions into structural Verilog with layout annotations
(Figure 2c). Because of the work of our prior compiler passes,
this step is purely one of generation — we simply need to
create valid Verilog that reflects our accumulated decisions.
While this transformation is more complex than a conven-
tional assembly to a binary format, it conceptually serves
the same role — converting to a format that can be given to
program a hardware target.
Instructions have been selected, optimized, and placed;

now, based on the resources previously chosen for each in-
struction, they are expanded to a set of primitive LUTs or
DSPs. DSP-based instructions are converted into a DSP prim-
itive with a proper configuration in terms of ports and at-
tributes to execute the desired instruction. On the other hand,
LUT-based instructions require configuring a LUT for every
bit of computation. The reason for this is that these primi-
tives produce a single-bit output and not a full word. (For
example, one 8-bit integer operation requires 8 LUTs.) Addi-
tionally, there are instructions e.g., addition or subtraction
that require other primitives also present within a LUT slice
such as carry chains. In any case, each primitive is anno-
tated with the coordinate result obtained in the instruction
placement step.

Not every instruction will result in instantiating LUTs or
DSPs. As we expect, wire operations consume no area to
execute (they simply require different wiring). These instruc-
tions are generated as direct structural Verilog expressions
without location information.

6 Implementation
We implemented a Reticle compiler in 8662 LoC in Rust,
together with a Verilog AST library (2486 LoC). We used
this AST library for code generation. Additionally, a target
library describing the assembly instructions supported by
the Xilinx UltraScale FPGA is written in 444 lines, using our
target description language (TDL). The instruction placement
is implemented in 117 lines of Python, using the Z3 bindings.
The following two subsections explain details about the

well-formedness criterion and the interpretation of programs.
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t0:i8 = const [4];
t1:i8 = add(t1 ,t0) @??;

(a) Ill-formed

t0:bool = const [1];
t1:i8 = const [4];
t2:i8 = add(t3,t1) @??;
t3:i8 = reg [0](t2,t0) @??;

(b)Well-formed

Figure 12. Example of an ill and well formed program. A
well-formed program only allows cycles when stateful in-
structions such as reg are present in the path of the cycle.

6.1 Well-Formedness
In hardware design, programs typically need to avoid combi-
national loops: register-free cycles in the wiring graph that
would produce undefined behavior [39]. In Reticle, this con-
straint manifests as a well-formedness criterion. The depen-
dency graph for a well-formed program, in both the interme-
diate and assembly language variants, must be acyclic (a dag)
when register instructions (reg) are removed. This section
describes how we define and check this criterion.
Figure 12 shows examples of ill-formed and well-formed

Reticle intermediate language programs. Both programs at-
tempt to increment a stored value by a constant value 4. And
both programs contain dependence cycles: in general, cycles
are required for instructions to reuse their own outputs as ar-
guments later in time. However, Figure 12b’s cycle includes
a reg instruction while Figure 12a’s has a combinational
(register-free) loop.

The Reticle implementation checks well-formedness by
forming a dependence graph for a given function, where
the vertices are instructions and the edges are definition–
use relationships. It then sorts nodes in topological order,
excluding reg instructions. If the sort procedure succeeds,
the program is well-formed.
Reticle differs from many traditional hardware tools in

rejecting programs with combinational loops. Many inter-
preters (a.k.a. simulators) for hardware description languages
(HDLs) such as Verilog and VHDL silently produce undefined
or x-values instead of producing errors [46]. Hardware engi-
neers must therefore carefully avoid creating these cycles or
risk obscuring serious bugs. We instead opt to reject these
programs ahead of time to avoid the need to handle this
undesired behavior during compilation and interpretation.

6.2 Interpreter
To clearly define the meaning of a Reticle program, we de-
fine an interpreter in Algorithm 1 that evaluates a function
program by stepping through a sequence of values defined
in an input trace1 and producing an output trace T. This
1A “trace” is a general term for a map of values present in a hardware circuit.
Each variable (circuit element) in the trace has an associated value for every
clock cycle in the domain. An input trace gives a complete specification
for a circuit’s inputs, for every cycle, while an output trace does so for the
outputs.

Algorithm 1: Reticle interpreter.
1 function Interpreter(trace, program)
2 (𝑒𝑛𝑣, 𝑃, 𝑅) ←WellFormedCheck(𝑝𝑟𝑜𝑔𝑟𝑎𝑚);
3 (𝑖𝑛𝑝𝑢𝑡𝑠,outputs) ← GetPortNames(𝑝𝑟𝑜𝑔𝑟𝑎𝑚);
4 𝑇 ← Trace();
5 foreach step_in ∈ trace do
6 𝑒𝑛𝑣 ← Update(𝑒𝑛𝑣, 𝑠𝑡𝑒𝑝_𝑖𝑛, 𝑖𝑛𝑝𝑢𝑡𝑠);
7 𝑒𝑛𝑣 ← Eval(𝑒𝑛𝑣, 𝑃 );
8 𝑠𝑡𝑒𝑝_𝑜𝑢𝑡 ← Step(𝑒𝑛𝑣, 𝑜𝑢𝑡𝑝𝑢𝑡𝑠);
9 𝑇 ← Push(𝑇, 𝑠𝑡𝑒𝑝_𝑜𝑢𝑡 );

10 𝑒𝑛𝑣 ← Eval(𝑒𝑛𝑣, 𝑅);
11 end foreach
12 return T ;
13 end function

gives users a fast, convenient way to debug their programs
without having to actually program an FPGA.

The first step in the interpreter consists of checking that a
program is well-formed (line 2). This procedure topologically
sorts the instructions in the function (see Section 6.1) and
returns two sorted instruction queues and an environment
𝑒𝑛𝑣 containing the initial value of every register instruction.
The returned queues include one queue of pure instructions
𝑃 and another queue 𝑅 with register instructions.

For every step in the input trace, the interpreter updates all
𝑖𝑛𝑝𝑢𝑡𝑠 variables in the environment with new values 𝑠𝑡𝑒𝑝_𝑖𝑛
(line 6). Then, pure instructions 𝑃 are evaluated under the
current environment (line 7). Next, a new step value is cre-
ated for all 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 variables and pushed into the output
trace 𝑇 (lines 8 - 9). Finally, register instructions 𝑅 are evalu-
ated, updating the environment for the step in the 𝑡𝑟𝑎𝑐𝑒 .

7 Evaluation
We evaluated Reticle by generating programs for linear al-
gebra operators and control coroutines (Section 7.1), and
then compiled them to structural Verilog with layout anno-
tations (Figure 2c) using the compilation pipeline described
in Section 5. We also compiled these benchmarks to two
behavioral Verilog baselines for a standard vendor toolchain,
and compared their compilation time and the quality of the
resulting hardware.

Furthermore, the two behavioral Verilog baselines include:
(1) one using standard, portable Verilog, and (2) an advanced
version using vendor-specific synthesis hints. The latter rep-
resents the use of ad hoc and vendor-specific Verilog lan-
guage extensions that can tune the toolchain to do a better
job of mapping the program to the FPGA’s fixed-function
resources, and it represents significant implementation effort
beyond standard RTL design. We generate these baselines by
transforming Reticle programs using translation backends
that emit code resembling standard behavioral Verilog.
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(b) tensordot
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(c) fsm

Figure 13. Compiler, run-time, and utilization results of three benchmarks, tensoradd (a), tensordot (b), and fsm (c), when
using behavioral Verilog (base), behavioral Verilog with DSP hints (hint), and Reticle (reticle).

We use a Xilinx xczu3eg-sbva484-1 FPGA, with 360 DSPs
and 71K LUTs, as a target device. For the baseline RTL
toolchain, we use Xilinx’s Vivado 2020.1.

7.1 Benchmark Description
We use three benchmarks, intended to represent three dis-
tinct facets of Reticle: a tensor addition kernel tensoradd
demonstrates vectorization, a dot product implementation
tensordot demonstrates fused operations and cascading,
and a finite state machine fsm demonstrates support for
control-oriented programs. Each benchmark is parameter-
ized with four sizes.
The tensoradd benchmark consists of an element-wise

summation over four different one-dimensional tensor sizes
(128, 256, 512, 1024). We pipelined the addition operation
with register instructions to get the best possible perfor-
mance available in DSP primitives.
Next, tensordot consists of five systolic arrays [29] per-

forming the dot operation over five pairs of one-dimensional
tensors of four different sizes (3, 9, 18, 36).
Finally, fsm is based on a coroutine, implemented as a

hardware finite state machine (FSM), that ranges over some

number of states (3, 5, 7, 9) based on input values. The moti-
vation is to show that Reticle programs can describe control-
oriented programs normally found in hardware processor
schedulers and protocols. More importantly, these programs
can only be implemented on LUTs, not DSPs: conditional
branching requires multiplexing (the mux instruction in Reti-
cle), which it is implemented using only LUT-based logic.

7.2 Results Comparison
Compiler speed. The leftmost plots in Figure 13 compare

the compilation time for Vivado (labeled base for standard
Verilog and hint for directive-laden Verilog) and our com-
piler (reticle), when compiling and placing (layout) pro-
grams for every benchmark described in Section 7.1. The
Reticle compiler is between 10 and 100 times faster than
Vivado. By starting with programs at a lower level of ab-
straction, the Reticle compiler is solving a simpler problem
than a traditional HDL toolchain like Vivado. The Reticle
compiler focuses exclusively on selecting and configuring
the FPGA’s coarse-grained heterogeneous resources; an RTL
toolchain also attempts to perform bit-level logic synthe-
sis [8] to transform behavioral descriptions into structural
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realizations, which is important for traditional circuit gen-
eration but does not directly affect the mapping to modern
units like DSPs.

The compilation performance gains in linear algebra bench-
marks (tensoradd, tensordot) monotonically decreases as
the sizes of the tensors grow, which translates into more
DSPs to be placed by Reticle’s SMT-based layout mechanism.
On the other hand, the speedup obtained when compiling
the fsm benchmark is somewhat average due to the fact the
number of used LUTs are relatively low.

Run-time performance. The second plots in Figure 13
show run-time speedup for Reticle over Vivado, which is the
ratio between the running times for the generated FPGA-
based programs from the different compilers. Here, a running
time is the critical path of the hardware circuit, which de-
termines the maximum clock frequency at which hardware
operates. For tensoradd, Reticle-generated programs are
faster than the standard Vivado baseline for all tensor sizes
because of the performance advantages of using the hard-
ened units in DSPs compared to LUT-based logic. Vivado’s
heuristics fail to exploit DSPs at all using a pure behavioral
description (base); Reticle, in contrast, maps the program to
DSP hardware deterministically.
Surprisingly, even though there is hardware support for

vectorization in every DSP of Xilinx FPGAs, Vivado fails to
use this feature when using behavioral representation even
in the presence of compiler hints. Vivado fails to exploit
vectorization even for this simple, dependency-free parallel
workload. Reticle successfully selects vectorized DSP config-
urations in every case. While vectorized configurations make
more area-efficient use of DSP resources, they are slightly
slower than scalar operations on DSPs. This phenomenon
explains why the hint-laden Verilog versions can be slightly
faster than Reticle for some sizes: when sufficient DSP re-
sources exist on a target, Vivado can heuristically select
scalar operations (at tensor sizes 64, 128, and 256). However,
Vivado’s heuristic approach fails when the program grows
larger, i.e., at a tensor size of 512: a scalar configuration ex-
hausts all the DSPs on the target, and the toolchain silently
falls back to using slower LUT-based implementations in-
stead. At this latter configuration, the Reticle-generated vec-
torized program is nearly 3× faster than the Verilog program,
both with and without hints. A differently annotated Reticle
program could express the scalar configuration as well; we
focus specifically on the vectorized version here to show the
differences with a traditional HDL toolchain.
Next, the tensordot benchmark shows the benefits of

cascading DSPs (Section 5.2). The latest version of Vivado
(2020.1) is capable of applying this type of cascade optimiza-
tion when using hints, similar to our compiler, at the expense
of compilation time (up to 100 times slower in the worst case).
The performance is the same for Reticle and Verilog with
hints, and both outperform plain Verilog.

Lastly, the fsm benchmark shows the performance of
control-oriented programs when mapped to LUTs. This kind
of control logic is a kind of pathological case for Reticle: there
is no way to use hardened logic resources like DSPs, which
are Reticle’s main target, and traditional HDL toolchains
use complex logic synthesis optimizations to minimize the
number of LUTs they require. Our aim with this benchmark
is to show that Reticle can nonetheless support this kind
of synthesis and that the performance is not much worse
from a heavily engineered behavioral HDL toolchain. In this
case, Reticle produces fsm programs that are slower than
Verilog’s results. While the Reticle compiler focuses on ex-
tracting peak performance from hardened logic units like
DSPs, it nonetheless supports LUT-based compilation with
much faster compilation and some performance penalty.

Utilization. The final two plots in the rows of Figure 13
compare the FPGA resources used by the generated pro-
grams. The aim here is to show how the difference in the
resource binding policies for Reticle versus Verilog. With
Verilog, Vivado’s job is to search for any implementation that
matches the behavioral description—any resource-binding
hints are “soft” and the compiler can ignore them. In contrast,
Reticle placement and resource annotations are “hard”: the
compiler predictably allocates exactly the kind of resource
that the programmer requested.
The benchmarks’ resource utilization reveals this unpre-

dictability in Vivado as the sizes vary. In Reticle, both linear
algebra benchmarks use vector instructions and chained
instructions (mul followed by an add) that the compiler de-
terministically maps to DSPs. Vivado performs a heuristic
mapping based on the availability of resources, resulting on
unpredictable behavior that, for example, silently replaces
DSPs with LUTs in the largest size of tensoradd.

8 Discussion
This section describes the requirements and optimization
opportunities for front-end tools when targeting Reticle.

8.1 Requirements
When compiling from a higher-level language or tool, the fol-
lowing compilation steps may be necessary depending on the
features and abstractions of the source tool. Reticle is built
around instructions and does not have higher-level features
for control-flow, dynamic scheduling of operations, or am-
biguous resource sharing; these features, if present, must be
compiled down to Reticle instructions. Notably, the absence
of these features in Reticle does not exclude any categories
of hardware design, but rather requires that higher-level fea-
tures are translated to explicit, “structural” implementations.
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t0:i8 = mul(a,b);
t1:i8 = add(t0,c);
t2:i8 = reg [0](t1,en); // cycle 0

(a) Scheduled in one cycle

t0:i8 = reg [0](a,en); // cycle 0
t1:i8 = reg [0](b,en); // cycle 0
t2:i8 = mul(t0,t1);
t3:i8 = reg [0](t2,en); // cycle 1
t4:i8 = add(t3,c);
t5:i8 = reg [0](t4,en); // cycle 2

(b) Scheduled in three cycles

Figure 14. Example of two different scheduling solutions for
a program that computes the expression 𝑎 ∗ 𝑏 + 𝑐 .

Control flattening. This step involves flattening any con-
trol structures available in the high-level languages to Reti-
cle instructions. For example, if-then-else constructs or phi-
nodes can be lowered to mux instructions as:

t0:i8 = mux(cond ,a,b);

Scheduling. This task consists of choosing when abstract
operations run bymapping them onto clock cycles and insert-
ing registers. Scheduling decisions impact the performance,
including throughput and run-time, of programs. For exam-
ple, Figure 14 describes two schedules for a program that
computes the abstract expression 𝑎 × 𝑏 + 𝑐 . The Reticle pro-
gram in Figure 14a produces a result every clock cycle, while
the program in Figure 14b does so every three clock cycles.
Depending on the target primitives, certain schedules can be
more profitable than others, because the register distribution
within DSPs and LUTs slices varies considerably.

Resource sharing. This step includes assigning abstract
operations to Reticle instructions, which are eventually low-
ered to physical resources by the Reticle compiler. Resource
sharing strategies often involve space-time trade-offs and,
similar to scheduling, affect program performance. For exam-
ple, Figure 15 shows two different strategies for a program
that computes four additions. The program described in Fig-
ure 15a uses one add instruction sequentially to compute the
four additions, taking four units of time, while the program
in 15b uses four instructions for computing all additions
in one unit of time (in parallel). If the input tool does not
distinguish between these cases, or uses the ambiguity for
optimizations, the final space/time decision must be made
before outputting Reticle code.

t0:i8 = add(a,b);

(a) Sequential

t0:i8 = add(a,b);
t1:i8 = add(c,d);
t2:i8 = add(e,f);
t3:i8 = add(g,h);

(b) Parallel

Figure 15. Example of two different resource sharing strate-
gies for a program that computes four additions. (a) The
sequential implementation, using one instruction in four
units of time, and (b) the parallel implementation, using four
instructions in one unit of time.

t0:i8 = add(a,b);
t1:i8 = add(c,d);
t2:i8 = add(e,f);
t3:i8 = add(g,h);

(a) Scalar program

t0:i8<4> = add(a,b);

(b) Vector program

Figure 16. Example of two equivalent programs computing
four additions in parallel: a scalar program (unoptimized)
and a vector program (optimized).

8.2 Optimizations
The following compilation steps are not required to generate
a Reticle program; however, they provide important opportu-
nities for higher-level tools to take advantage of information
present in the source program and use it for optimization.

Vectorization. The goal of this optimization is to com-
bine independent scalar instructions, that are scheduled at
the same clock cycle, into vector instructions (Section 4.)
Front-end tools can promote the use of vector instructions
in Reticle by using vector types; alternatively, more complex
optimizations can attempt to automatically combine scalar
operations into vector expressions. The benefits of vectoriza-
tion are twofold: faster programs, due to high-performance
primitives (i.e, DSPs), and better resource utilization, because
more operations are mapped to the same primitive. For ex-
ample, the two programs shown in Figure 16 describe the
result of this optimization. Generating individual instruc-
tions for each arithmetic operation is valid, but vectorization
can provide large gains in performance and efficiency.

Resource binding. The purpose of this optimization is
to control how instructions are bound to primitives. The
Reticle IR supports such control via the resource annotations
dsp or lut, as described in Figure 17a and 17b respectively.
These annotations are not required; if omitted, the Reticle
compiler will assign resources according to internal metrics
as described in Section 5. Interestingly, these constraints can
be exploited by higher-level tools to optimize programs for
metrics the Reticle compiler does not, by default, accom-
modate. For example, rather than prioritizing performance,
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t0:i8 = add(a,b) @lut;

(a) LUT-based instruction

t0:i8 = add(a,b) @dsp;

(b) DSP-based instruction

Figure 17. Example of two different resource binding options
for the same instruction.

front-end tools can optimize the power-profile of a program
by changing these annotations.

9 Related Work
Reticle builds on a body of work on applying programming
languages techniques for hardware programming.

Instruction selection for hardware design. While it is
not mainstream, other compilers have used instruction se-
lection and similar techniques to optimize hardware de-
signs [26]. A compiler based on silicon instruction sets [27]
powered the design of six chips at IBM, for example, and a
similar approach has been applied to FPGAs [9]. However,
this work primarily targets synthesizing real silicon, and
even the FPGA-focused variants focus solely on program-
ming LUTs. It does not attempt to program DSP units. Reticle
is the first compiler work we are aware of to target modern
FPGAs and their fixed-function hardware resources.

Layout in spatial programming. Some work inspired
by functional geometry [19] designs combinators that ex-
press both the behavior and the layout of hardware cir-
cuits [44] and, in Lava [5], FPGAs. Lava differs from other
FPGA-based programming models by directly describing to
LUT-based implementations instead of behavioral models,
yieldingmore efficient FPGA implementations. Instead of lay-
out combinators, Reticle assembly uses layout constraints to
express and optimize placement information. Chlorophyll [37]
is a different system that also uses layout constraints—in its
case, to program a 2D array of simple CPUs.

High-level languages for hardware programming. A
range of recent languages have aimed to improve the pro-
grammability of custom hardware accelerators, including
parallel pattern-based programming in Spatial [28], novel
type systems for expressing hardware-level concerns [14,
15, 34], and compiler infrastructure for accelerator genera-
tors [35]. This category of work focuses on productive high-
level programming, while Reticle aims at the other end of
the abstraction hierarchy: providing an efficient, low-level
hardware abstraction. We see Reticle as a better compilation
target for these languages compared to traditional HDLs.

Improving hardware description languages. There is
a rich body of work on improving the programmability of
hardware description languages (HDLs), from Bluespec [36]
tomore recent embedded languages for register transfer level
(RTL) design [4, 12, 25]. Other work has focused on formal

verification, including new Bluespec-descended HDLs [6, 10],
verified interactions between software and hardware [32],
and fuzz testing that has revealed frequent bugs in FPGA
tools that arise because of the complexity of traditional be-
havioral HDLs [20]. All of these languages and tools, how-
ever, target behavioral descriptions of arbitrary circuits—
none of them address the problem of describing and mapping
to fixed-function FPGA resources.

There is, however, previous work on finding optimal DSP-
based implementations for FPGAs [40], using standalone
data flow graphs and covering only certain arithmetic ex-
pressions e.g, multiplication and addition instead of using a
general-purpose complete IR.

Hardware intermediate representations. Some inter-
mediate languages have emerged for RTL design toolchains,
such as FIRRTL [24] and LLHD [43]. Like Verilog and VHDL,
however, these IRs have behavioral semantics that require
traditional, heavyweight digital design toolchains to opti-
mize and lower to either silicon or FPGA targets. They gener-
ally do not have a way to capture the vendor-specific FPGA
resources that Reticle targets and therefore, unlike Reticle,
rely on vendor-supplied toolchains to heuristically infer map-
pings to modern FPGA hardware.

10 Conclusion
The observation that hardware design toolchains have much
to learn from mainstream compiler technology is at least
37 years old [26]. However, we believe the opportunity is
particularly ripe for modern FPGAs. If compiler advance-
ments can make FPGA programming feel more like software
programming, with deterministic results and compile times
in seconds instead of days, we may unlock the potential of
reconfigurable hardware specialization as part of everyday
software development.
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