
Software Transactions Meet First-Class Continuations

Aaron Kimball Dan Grossman
University of Washington

{ak,djg}@cs.washington.edu

Abstract
Software transactions are a promising technology that makewrit-
ing correct and efficient shared-memory multithreaded programs
easier, but adding transactions to programming languages re-
quires defining and implementing how they interact with exist-
ing language features. In this work, we consider how transac-
tions interact with first-class continuations. We demonstrate that
different idiomatic uses of continuations require different trans-
actional semantics, so a language supporting transactionsand
call-with-current-continuation should provide pro-
grammers with a way to control these semantics. We present a
design meeting this need, addressing both escaping from andreen-
tering the dynamic extent of a transaction.

We have implemented our design by modifying Scheme48. We
present the most interesting details of the implementationand its
performance on some small benchmarks.

Categories and Subject DescriptorsD.3.3 [Language Constructs
and Features]: Concurrent programming structures

General Terms Design, Languages

Keywords Atomicity, Transactions, Continuations, Scheme

1. Introduction
Software transactions provide programmers of shared-memory
multithreaded systems with a straightforward synchronization
mechanism that is easier to use than locks and condition variables.
The key idea behind a programming-language transaction is that it
completes a computationas thoughthere are no interleaved threads
while the underlying implementation still ensures fair scheduling.
For example, usingatomic as a new primitive that takes a thunk
and evaluates it as a transaction, the following procedure swaps
the contents of acons cell without another thread being able to
observe any intermediate state:

(define (thread-safe-swap! pr)
(atomic (lambda ()

(let ((x (car pr)))
(set-car! pr (cdr pr))
(set-cdr! pr x)))))

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Scheme and Functional Programming Workshop ’07Sept. 30th, 2007, Freiburg,
Germany
Copyright c© 2007 ACM To be supplied.... . . $5.00.

This code is correct without appealing to any locking protocol or
placing restrictions on the rest of the program.

More interesting examples may use diverse features from the
underlying language. It is important to allow as many features as
possible during evaluation of an atomic expression so that we can
reuse libraries, maintain procedural abstraction, etc. With help from
the language implementation, mutation, function calls, and mem-
ory allocation can all be supported in transactions.1 However, for
transactions to fulfill their promise as a next-generation synchro-
nization mechanism, there must exist a well-defined interaction be-
tween transaction primitives and a language’s control operators.

Previous work on transactions in functional and object-oriented
languages has focused on one question in this space: What does it
mean if an exception thrown from within a transaction is caught
outside a transaction? This paper investigates a more general ques-
tion: What should it mean if the invocation of a first-class continu-
ation crosses the boundary of a transaction’s dynamic extent?

Rather than provide a single definitive answer, we conclude that
the best semantics depends on how the continuation is being used.
For example, the natural behavior for a coroutine call is notthe
best choice for an exceptional escape and vice-versa. Therefore, we
have designed transactional support for Scheme that allowspro-
grammers to specify the behavior they wish. To do so, we have
provided a prototype that permits many reasonable behaviors so
that we and the community can experiment with the interplay be-
tween transactions and continuations. Though programmersmust
specify a behavior (or inherit predefined defaults), this istypically
done when entering a transaction or creating a continuation. In this
way, we preserve the Scheme design decision that invocations of
continuations appear as ordinary function applications.

To validate the feasibility and convenience of our design, we
modified Scheme48 [18] to support software transactions. Asa
pleasant by-product independent of continuations, we believe this
work provides the first full-fledged implementation of transactions
in Scheme, albeit one supporting only a uniprocessor ratherthan
true parallelism. While the basic approach is much like the second
author’s previous work on extending Objective Caml [24], the sup-
port for continuations is entirely new and modifying an R5RS [1]
interpreter has its own unique challenges. As we discuss, all the ex-
amples in this paper run correctly and efficiently on our prototype,
which is publicly available.2

In short, our contributions are:

• A taxonomy of the ways first-class continuations can interact
with transactions and the programming idioms that lead to the
different interactions

• A language design that gives programmers control over the
interaction between continuations and transactions

1 External actions (I/O) can generally not be, as discussed inSection 2, and
this is not our present focus.
2 http://www.cs.washington.edu/homes/ak/atomscheme/

• An extension to an R5RS implementation supporting software
transactions

• A preliminary evaluation showing our design is efficiently im-
plementable

The rest of this paper proceeds as follows. Section 2 discusses
related work, focusing on the interaction between transactions and
exceptions as well as recent work on concurrency in Scheme. Sec-
tion 3 provides context by discussing the high-level aspects of
the design and implementation of our transaction system that are
not directly related to continuations. Section 4 describesdifferent
idiomatic uses of continuations and how they best interact with
transactions. Section 5 presents our language design encompass-
ing these possibilities and describes the primitives’ semantics. Sec-
tion 6 presents the most interesting pieces of our Scheme48-based
implementation, including its current status and performance char-
acteristics. Section 7 discusses future work and concludes.

2. Related Work
Given the vast amount of research on transactional memory and
language support for concurrency in recent years (see, e.g., the re-
cent overview by Larus and Rajwar [19]), we focus on only the
most relevant work. This includes full language designs andimple-
mentations (Section 2.1), work considering the interaction with ex-
ceptions (Section 2.2), and recent work on concurrency in Scheme
(Section 2.3). The most notable omissions are hardware transac-
tional memory and library-based approaches. The latter requires
no changes to the compiler but programmers must use library func-
tions to access memory within transactions.

2.1 Language Implementations with Transactional Memory

Harris and Fraser [12] were the first to provide anatomicprimitive
for a modern language (Java) and an implementation that scaled on
multiprocessors. Unlike older work, this primitive does not require
programmers to acquire locks [10] nor identify what data might
be accessed within a transaction [20]. Implementation-wise, Har-
ris and Fraser maintain a private version of accessed memoryfor a
transaction and reflect updates back to shared memory via a highly
nontrivial commit protocol that facilitates parallel commits. Later
work [14, 2, 26] improves performance for Java and C# by (1) per-
forming updates on main memory directly, using exclusive own-
ership to prevent race conditions and undoing the updates ifthe
transaction conflicts with a parallel operation, and (2) using com-
piler optimizations or novel hardware [5] to reduce the overhead of
conflict detection.

Work on adding transactions to Objective Caml [24] and to
Real-Time Java [21] established that the overhead for transactional
memory is negligible if one assumes that at most one thread runs
at a time, an assumption that holds on uniprocessors and is al-
ready made by many language implementations. As reviewed in
Section 3, this assumption lets one incur no overhead for anyoper-
ation except an imperative update inside a transaction.

Transactional memory has also been added to Haskell [13],
where a monad cleanly encapsulates mutable memory accessible
within transactions and anorelsecombinator lets programmers try
an alternative transaction if another one aborts. Transactions are
also included in several next-generation high-performance comput-
ing languages [3, 6, 7], though implementations are still influx.

2.2 Transactions and Exceptions

Several projects have considered the question of what should hap-
pen if an exception causes control to transfer from within a transac-
tion to a handler outside the transaction. In prior work [24,15], such
exceptions are considered to commit the transaction, afterwhich

control is transferred to the correct exception handler. This is con-
sistent with Harris and Fraser’s original work [12] and implements
the semantics of exceptions as non-local jumps carrying values.

Others have argued that having such exceptions abort the trans-
action avoids the need for cumbersome code that compensatesfor
an error-condition. Instead, the memory-rollback inherent to trans-
actions naturally reverts state to the pre-transaction version. The
work in Haskell [13] therefore interprets an exception within a
transaction as aretry, i.e., abort the transaction and transfer con-
trol back to its beginning.

More complicated variants undo memory updates but still prop-
agate control to the outer exception handler. As Section 4 explains
in more detail, this induces awkward semantics because the ac-
tual exception value might reference memory locations whose con-
tents were rolled back. The Fortress language [3] does not roll back
memory allocated since the transaction was entered, notingthat this
decision affects only the exception value. Fortress also has a vari-
ant ofatomicin which the user can undo the memory updates and
abort to the control point just after the transaction. Slightly differ-
ent is Harris et al.’s approach of making a deep copy (via Java/C#
serialization) of the exception value before undoing memory up-
dates [11, 25]. They also note that such semantics is useful even
in single-threaded code. We have implemented yet a third subtle
variation for Scheme in which imperative updates are reverted so
objects allocated in the transaction will have their initial values.

To our knowledge, no prior work has considered a control trans-
fer into a transaction’s dynamic scope, which cannot occur with
exceptions. Our design for Scheme encompasses most of the above
variations while also supporting such resumptive continuations.

2.3 Concurrency in Scheme

The most closely related work in Scheme is theproposalsstruc-
ture for optimistic concurrency in Scheme48 [17]. Transaction-
specific primitives are used to read and writecons cells, vectors,
etc., and a log is used to record all such provisional reads and
writes in private memory until attempting to commit. In contrast,
our approach writes to shared memory eagerly and undoes the up-
date if the transaction fails or is preempted. The proposalswork
has several limitations we avoid. First, that work requiresseparate
primitives for memory access within transactions, which prevents
reusing libraries inside and outside transactions. Using anonpro-
visional primitive inside a transaction could lead to subtle errors.
Second, the proposals library has no provisionalset!. Third, the
commit protocol is explicitly subject to “A-B-A” concurrency er-
rors: it checks only that locations read during the transaction have
the same value at the commit-point, but it is well-known thatthis
is insufficient to prevent data races. Fourth, there is no support for
interaction with continuations; it is up to the programmer to deter-
mine which continuation-invocations cross a transaction boundary
and use low-level primitives to change relevant state as to whether
a transaction is running, should be committed, etc.

Gasbichler and Sperber’s work on integrating threads with
UNIX-style processes in scsh [9] is related in that it considers
the interaction between mutable bindings and continuations. How-
ever, the semantics of UNIX fork is exactly the opposite of shared-
memory: resources are copied. Difficult semantic questionsarise,
such as what should happen to a continuation’s bindings whenit is
invoked in a different process than its creator. The solutions do not
appear directly relevant to the transactional-memory setting.

Katz and Weise first considered interactions betweenfutures
andcall-with-current-continuation [16]. Futures let
a computation be forked in a separate thread and let consumers
of the computation receive its value later. A key issue is what it
means to resume a continuation inside a future, which is reminis-
cent of issues we address with resuming continuations inside trans-

actions. However, one typically uses futures for pure computations
(though later work considered how to roll back side effects inside
futures [27, 22]), making idioms for transactions quite different.

Transactional memory is fundamentally a synchronization
mechanism for shared-memory concurrency, but that is not todis-
miss message-passing as an alternative. Indeed, the kill-safe syn-
chronization abstractions [8] in DrScheme build on top of Concur-
rent ML [23] to support robust programming patterns. Conversely,
they are little help in preventing shared-memory errors or providing
robust synchronization when shared memory is more convenient.

3. Basic Approach
In this section we present a short overview of the operation of
atomic transactions, and explain the basic behavior of our system.
While at a high level little in this section is novel (in particular,
much is shared with AtomCaml [24]), it describes the underlying
design and implementation on which we can provide support for
continuations and integrate with the Scheme48 interpreter.

3.1 Design

Atomic transactions are introduced via the first-class procedure
atomic, which takes a thunk, executes it and all its callees atom-
ically, and returns its result. All other threads in the system are pre-
vented from detecting any changes made to global memory by the
code protected by theatomiccall (and vice-versa) until the call re-
turns, at which point the changes arecommittedto the global state.

Without considering the effects ofcall-with-current-
continuation (hereafter:call/cc) or retry (discussed be-
low), atomiccould be implemented as a procedure like this:

(define (atomic f)
(start-atomic-mode)
(let ((v (f)))
(commit-atomic-changes)
v))

start-atomic-mode and commit-atomic-changes
are lower-level transaction-management procedures. If atomic calls
are nested, then successive calls tostart-atomic-mode in the
same transaction increment a counter tracking the nesting depth;
this counter is decremented bycommit-atomic-changes un-
til it reaches zero, at which point the entire nested set of atomic
calls are committed.

While transactions intend to commit their effects to the global
state eventually, it is possible within a transaction to detect a con-
dition suggesting that it should wait until a different global state is
present before conducting its computation. Aretry operation dis-
cards any state modifications made thus far in the atomic transac-
tion, and suspends the current thread to wait for other threads to
modify shared memory. When the thread in the atomic transaction
is resumed, the transaction is restarted from the beginning. The fol-
lowing example naturally involves retrying an atomic operation:

(define (atomic-dequeue! q)
(atomic (lambda ()
(if (is-empty? q)

(retry) ; wait for enqueue first
(dequeue-next! q)))))

Implementingretry requires more involved control in theatomic
function than suggested above, but these changes are subsumed by
the actual implementation of the full system.

The situation for I/O operations is more complicated than ma-
nipulation of heap memory; in general, buffered I/O operations are
delayed until commit time, while unbuffered I/O and synchronous

message-passing operations are treated as dynamic errors.(Our ac-
tual implementation currently does not yet provide this behavior,
though it would be a straightforward addition.)

The design of an atomic transaction system must also pre-
serve two additional properties. First, simultaneous execution of
two transactions that are not in contention for the same memory
locations should not impose a serialization order on the threads.
The uniprocessor model described in Section 3.2 obviates this con-
cern in our implementation. Second, an atomic transaction system
must provide a notion of fairness, ensuring that a long-running or
possibly divergent transaction does not prevent progress by other
threads. Our scheduler, described below, ensures this property.

3.2 Implementation

Since Scheme48 multiplexes all user-defined threads on top of a
single kernel thread, true simultaneous multiprocessing is impossi-
ble. We exploit this behavior by writing atomic changes directly to
the affected memory addresses and logging their old values on the
side. If a transaction completes before the thread is preempted, the
log is discarded. Otherwise, the system is paused to replay the log
of old values, restoring the previous program state before running
the next thread. The log contains the prior value of all addresses to
which a non-initialization write is performed in a transaction. Ini-
tialization writes need not be logged as the garbage collector will
discard any memory cells allocated in a transaction after references
to these new locations are discarded by rollback. A key advantage
of the uniprocessor model is that we need not log any read oper-
ations or any operations whatsoever outside of transactions. This
keeps the overhead in mostly-functional code low. A disadvantage
of this technique is that we do not record the set of locationsread
during a transaction, preventing a demand-driven retry policy. We
retry transactions without regard for the particular shared memory
addresses modified by other threads in the interim.

A challenge for transactional memory implementations is al-
lowing procedure calls within an atomic scope and determining
when writes should be logged without incurring a performance
overhead with every operation. Our implementation modifiesthe
runtime system to allow thestart-atomic-mode primitive
to direct the interpreter to use a second opcode dispatch table,
which overrides the behavior of heap update operations withlog-
ging equivalents. It also installs a fresh rollback log at this time. The
commit-atomic-changes primitive simply discards this log
and restores the original opcode dispatch table. This contrasts with
the compilation strategy of compiling each procedure twice—once
with code for logging all updates and once with no logging—and
changing closures to have two code pointers.

As stated earlier, preemption of an atomic transaction causes it
to undo its memory changes before yielding to another thread. If
an atomic transaction is not complete after using an entire times-
lice, it may need a longer uninterrupted span in which to perform
its operations. The next time the transaction is scheduled to run,
its quantum is extended to give it more time to complete the entire
transaction, which is re-executed from the beginning. While indi-
vidual timeslices for a transaction increase in length, thefrequency
with which the transaction is scheduled decreases proportionally.
This ensures that our scheduler treats all threads fairly.

4. Patterns for Escaping Transactions
The primary question addressed by this work is what to do when
the invocation of a continuation causes control flow to crossthe
boundary of an atomic call’s dynamic extent. While previouswork
only considered exceptions (i.e., escape continuations),the generic
nature ofcall/cc in Scheme requires a more flexible palette of
escape behaviors be made available to programmers. For example,
call/cc can be used to implement exceptions, value consumers,

� �

� �

� �

� �

� �

� �

� �

� ��� 	

� �� ��� ��� 	

� ���

��� 	�� ��� 	

������

 �

 �

 �

� �

� �

� �

� �

� �

� �

� �

� �

Figure 1. A tree of call stacks used to describe escape behaviors throughout Section 4

and coroutines. Because it is impossible to determinea priori
which of these patterns a programmer is employing in a given
situation, we must provide efficient support for the programmer to
choose the appropriate behavior on a case-by-case basis.

In this section, we describe several ways in which transactions
and continuations can interact with one another. Each subsection
provides a motivating example from Scheme, defines and names
the appropriate escape behavior, and gives its intuition both visually
and with Scheme code that relies on the low-level atomic primitives
first used in Section 3.1.

We demonstrate each meaning using the function call sequence
illustrated in Figure 1. Each box in the image represents a proce-
dure call. Arrows point upward from a callee to its caller. Proce-
dure calls on the left precede calls on the right; e.g., procedureb1

was called and returned beforeb3. Depth-wise, procedures return
in LIFO order (e.g.,b1 begins beforeb2, andb2 returns beforeb1).
Naturally, continuations saved withcall/cc can be used to move
freely among available past call-stack states in any order.

If a continuation is both reified withcall/cc and invoked
inside a single call toatomic (e.g.,c3 to c1 or vice-versa), con-
trol flows as expected: the transaction continues at the continua-
tion target. Similarly, if a first-class continuation containing a call
to atomic(b5 to a3) is invoked, the subsequent atomic call is per-
formed as described earlier: a separate transaction is usedfor each
invocation of the atomic call.

4.1 Escape as Normal Return

A procedure may use an escape continuation to return values or
cede control before its lexical end. In this case, the continuation is
being used as a return method, which should act like the lexical end
of the atomic call–committing the effects of the atomic computa-
tion. For example, consider the following atomic transaction whose
body is a loop:

(call/cc (lambda (k)
(atomic (lambda ()
(let loop ((i 0))

(start-iteration i)
(check-for-completion k i)
(finish-iteration i)
(loop (+ i 1)))))))

Here, the continuation is used as a “break” construct, letting the
programmer return a value fromcheck-for-completion
in the middle of the loop body without executing thefinish-
iteration procedure. Presumably, the programmer returning a
value throughk wishes to retain the results of the loop computation
even though the lexical end of theatomicis never reached.

Another example makes the necessity of this behavior more
explicit:

(lambda (return x)
(atomic (lambda ()

(calculate-and-update-list! x)
(if (good-enough? x)

(return x))
(compute-another-list! x)
(return x))))

The return continuation delivers the resultx to a calling
method. While this example usesreturn directly, more realistic
code might dynamically nest the call toreturn inside one or
more procedure calls. Because the change tox must be permanent
in the code above, we must commit the atomic call, even though
execution does not reach its lexical end. Therefore, the desired
behavior on escape is to commit computation effects and transfer
control to the continuation target. We call this behavior “commit-
on-escape.”

Visual intuition: In Figure 1, a commit-on-escape action would
occur if a continuation were saved in any procedureai, and a proce-
dure called in the atomic context (anyci) invoked the continuation
to return to a shallower call stack. Because we do not differentiate
between escape continuations and continuations used for any other
purpose, the transaction is also committed if a continuation into any
bi were invoked within the dynamic extent ofatomic.

High-level implementation: atomicwith commit-on-escape can
be conveniently implemented using Scheme’sdynamic-wind
procedure as follows:

(define (atomic f)
(dynamic-wind

(lambda () #f)

(lambda ()
(start-atomic-mode)
(f))

(lambda () (commit-atomic-changes))))

4.2 Escape due to Unexpected Memory State

Continuations are often used by programmers to transfer control to
an error handler if the memory state prevents a certain operation.

Consider a non-atomic dequeue operation:

(define (get-from-queue! q)
(if (is-empty? q)

(queue-empty-failure #f)
(dequeue! q)))

In this case,queue-empty-failure is a continuation
for an exception handler. If the user implemented a function
get-from-queue-atomically!:

(define (get-from-queue-atomically! q)
(atomic (get-from-queue! q)))

then invocation of the exception handler would exit the dynamic
extent of the atomic transaction. Since this is a recoverable error
condition—allowing the dequeue merely requires us to wait for
another thread to repopulate the queue—it may be correct behavior
to wait and retry the operation. Therefore, the invocation of the
continuation is merely a signal that a retry operation should occur.
A behavior called “rollback-and-retry-on-escape” provides exactly
this: the data changes of the atomic transaction are rolled back. The
continuation target is replaced by a continuation to the beginning of
the atomic call, allowing the call to re-execute from the beginning
after memory state changes are made by another thread.

Visual intuition: To visualize this behavior, we refer to Figure 1.
Much like with commit-on-escape, the escape behavior occurs if
any ci invokes a continuation into anyai or bi. Whereas commit-
on-escape first commits the memory changes and then follows the
continuation to its target, rollback-and-retry-on-escape undoes any
memory changes made in theci’s and then replaces the continu-
ation’s destination with a new target: the beginning of the call to
atomic. Of course, this will cause an infinite loop unless another
thread modifies global state in the meantime, allowing the atomic
call to follow a different control path.

High-level implementation: This behavior can be implemented
in Scheme as follows:3

(define (atomic f)
(let ((retry (call/cc (lambda (k) k)))

(should-commit #f))
(dynamic-wind

(lambda () #f)
(lambda ()

(start-atomic-mode)
(let ((v (f)))
(set! should-commit #t)
v))

(lambda ()
(if should-commit

(commit-atomic-changes)
(begin

(rollback-changes)
(retry retry)))))))

3 R5RS declares that invoking a continuation in anafter thunk of a
dynamic-wind call is an undefined operation. Nonetheless, this code
compactly expresses the notion we are trying to express withrollback-and-
retry-on-escape; the after thunk “redirects” the control transfer.

4.3 Escape as Unrecoverable Panic

The previous subsection addressed exceptional conditionsbased
on shared state, but exceptional control transfers also accompany
assertion failures that would not resolve themselves simply by
delaying execution of a transaction. Handling these conditions may
involve rolling back the data state of the atomic call when its
dynamic extent is breached, but following through with the control
transfer to the error handler identified by the invoked continuation.

Consider the following example:

(define (divide-lists! numer denom)
(let ((n (car numer))

(d (car denom)))
(if (= 0 d)

(div-zero-failure #f)) ; escape
(set-car! numer (/ n d))
(if (not (null? (cdr numer)))

(divide-lists! (cdr numer)
(cdr denom)))))

(define (divide-atomically! numer denom)
(atomic (lambda ()

(divide-lists! numer denom))))

In divide-lists!, the lists are divided element-wise and im-
peratively updated. If an element of the denominator list iszero,
an exception handler is invoked via a continuation that escapes the
transaction. At this point several memory cells may have already
been updated; for the program to continue in a consistent manner, it
may need to undo the changes that occurred. But if the denominator
list is thread-local, then there is no chance that another thread will
update the problematic element, meaning the rollback-and-retry-
on-escape behavior would cause an infinite loop.

What is necessary is an escape behavior that undoes memory
changes made in the transaction, but does not immediately retry the
atomiccall. This provides a straightforward way of cleaning up the
side-effects of a failed computation without requiring programmers
to implement case-specific “undo” behavior, eliminating another
place for bugs to be introduced.4 We call this behavior “rollback-
and-abort-on-escape.” It is similar to a mechanism suggested in
Shinnar et al. [25], which provides a control-transferringdata-
rollback error-recovery mechanism.

This behavior raises two semantic questions. First, why is acon-
trol transfer made from a procedure execution that semantically
“never happened?” Second, what memory state should be reflected
in the thrown value? A programmer may reconcile the first question
as she would an interrupt handler: while the trace that caused an ex-
ceptional condition to occur is unknown, it is bound to a particular
thread, which can be restarted at a known-good reentry pointafter
the exception is handled. With respect to the second, several options
are possible. Shinnar et al. make a deep copy of the thrown value
object from the abort-time heap state into the globally visible heap,
protecting the object’s changes from rollback. Fortress does not roll
back changes to memory allocated within the transaction. This pro-
tects the thrown exception object from rollback, though references
from this object to objects allocated pre-transaction willreflect their
original memory states. We suggest a third alternative: ourimple-
mentation rolls back all non-initialization writes to memory made
during the transaction. What escapes is the pre-transaction value of
the thrown object, or its original value if it was constructed in the
transaction. Notice code that throws an immediate value such as
#f, asdivide-lists! does, is not affected by this dilemma.

4 More powerfully, it means undo routines need not be written in an un-
intuitive LIFO style to consider how far along in the processa multistep
mutation has progressed; the transaction log inherently captures this notion.

Visual intuition: Referring to Figure 1, rollback-and-abort-on-
escape looks much like commit-on-escape; it occurs when anyci

invokes a continuation into anyai or bi, and allows control to be
transferred to the continuation’s target. But whereas commit-on-
escape triggers a commit action upon leaving the dynamic extent
of atomic, rollback and abort will play the undo log at this time,
canceling the transaction’s effects on memory.

High-level implementation: This escape behavior could be en-
coded in Scheme like this:

(define (atomic f)
(let ((should-commit #f))
(dynamic-wind

(lambda () #f)
(lambda ()

(start-atomic-mode)
(let ((v (f)))
(set! should-commit #t)
v))

(lambda ()
(if should-commit

(commit-atomic-changes)
(rollback-changes))))))

4.4 Escape and Resumption of anatomic’s Extent

call/cc can be used to implement more complicated control
mechanisms than simple escape targets. One practical example is
the use of coroutines for iteration.

Figure 2 shows a program that includes a coroutine iterator
over lists. A call tolist-iterator will initialize an iterator
procedure over its argument. Calls to that procedure will return a
pair containing the next element of the list, and another iterator over
the remainder of the list—or#f if the end of the list is reached. The
iterate-until procedure in this figure uses such an iterator to
atomically evaluate whether the elements of a collection sum to a
value greater than a certain threshold, and sets a flag if thisis the
case. Note that the example invocation ofiterate-until uses
the iterator to skip the first element of the list.

In this example, we expose an “overly-complicated” list iterator
that uses continuations to yield values and resume execution; nor-
mally this acrobatic use ofcall/cc would be hidden behind a li-
brary, but it is exposed for the sake of example. A more compelling
use ofcall/cc is when iterating over trees or other structures
that require backtracking to reach all elements. We presenta binary
tree iterator and a list iterator built withoutcall/cc in Figure 6
in the Appendix to demonstrate other procedures that obey the iter-
ator interface used in Figure 2;iterate-until should perform
identically regardless of which of these it is passed.

To iterate-until, the iterator continuation looks like any
other procedure. But because the iterator may be the result of in-
voking another iterator earlier (as in the example), control may flow
outside the dynamic extent of the atomic call when performing it-
eration. Becauseiterate-until intends for the entire compu-
tation over the iterated collection to be performed atomically, the
execution inside the body of the iterator must also be encompassed
by the atomic transaction, even though it is not within the atomic
call’s dynamic extent.

To facilitate this, the call(atomic f)should switch the Scheme
interpreter into a transaction, which remains live until control
reaches the end of the call tof , at which point the transaction
completes. Escapes from the dynamic extent off into other dy-
namic extents are thus the programmer’s responsibility to pair with
a re-entry into the dynamic extent off to complete the atomic call.

(define threshold-reached #f)

(define (iterate-until threshold iter)
(atomic (lambda ()

(set! threshold-reached threshold)
(let loop ((elt-and-next-fn (iter)))

(set! threshold-reached
(- threshold-reached
(car elt-and-next-fn)))

(if (<= threshold-reached 0)
(set! threshold-reached #t)
(if (cdr elt-and-next-fn)

(loop ((cdr elt-and-next-fn)))
(set! threshold-reached #f)))))))

(define (get-next-elt lst)
(call/cc (lambda (ret)

(let loop ((ret ret)
(lst lst))

(loop (call/cc (lambda (k)
(if (eq? (cdr lst) ’())

(ret (cons (car lst) #f))
(ret (cons (car lst)

(lambda () (call/cc
(lambda (ret) (k ret)))))))))

(cdr lst))))))

; returns an iterator over lst or #f if empty.
(define (list-iterator lst)
(if (null? lst)

#f
(lambda () (get-next-elt lst))))

; example execution, skipping first element
(iterate-until some-threshold

(cdr ((list-iterator some-lst))))

Figure 2. A list iterator implemented as a coroutine and called
inside an atomic block requires extend-on-escape semantics

Here, the atomic call’s behavior, which is referred to as “extend-
on-escape,” permits control transfers across the boundaryof its
dynamic extent without changing the transaction’s state.

Visual intuition: In terms of Figure 1, the example code in Fig-
ure 2 does the following: The call tolist-iterator corre-
sponds to procedureb1. This returns a procedure that iterates the
first element, which is immediately called (b3). The result of this
call is a pair containing the first element of the list, and thenext
iterator. The call toiterate-until starts the atomic column of
ci’s, but each time the next iterator is invoked (by callingiter
or (cdr elt-and-next-fn)), control leaves columnc for a
continuation in the dynamic extent ofb3, while remaining in the
transaction. This continuation then returns the next(value . iter)
pair to a continuation in the dynamic extent ofiterate-until
(i.e., aci), where the iteration loop continues. The transaction does
not end until the call toatomicinsideiterate-until returns.

High-level implementation: The implementation ofatomic that
naturally facilitates this behavior is the simple one initially sug-
gested in Section 3.1:

(define (atomic f)
(start-atomic-mode)
(let ((v (f)))

(commit-atomic-changes)
v))

This code may misleadingly suggest that it is acceptable to commit
a transaction by usingcall/cc to return to the end of a different

(define k #f)

(define (increment-pair-atomically! p)
(atomic (lambda ()
(set-car! p (+ 1 (car p)))
(call/cc

(lambda (cont) (set! k cont)))
(set-cdr! p (+ 1 (cdr p))))))

(define (weird-behavior)
(let ((my-pair (cons 10 20))

(done #f))
(increment-pair-atomically!

my-pair) ; (10 . 20) -> (11 . 21)
(if (not done)

(begin
(set! done #t)
(k #f))) ; (11 . 21) -> (11 . 22)

; (causes dynamic error)
my-pair))

Figure 3. Resumption of a completed atomic call breaks the
atomic abstraction. It is a dynamic error in our implementation to
reach the end of the atomic call a second time.

call to atomicthan the one used to begin the transaction, which is
not the case. A full discussion of nested atomic transactions and
the interaction between atomic transactions opened by coroutines
is given in Section 5.2.

4.5 Resumption of a Completed Transaction

If a transaction is committed or aborted, it is said to becompleted;
the control state associated with the transaction itself nolonger
exists. If a programmer has saved a continuation somewhere in the
dynamic extent of this transaction, then he may wish toresumethe
completed transaction.

This is problematic from a semantic point of view, because it
allows a “fraction” of an atomic transaction to be re-executed—
suggesting that transactions are not as atomic as intended.(See
Figure 3.) While a first reaction to this problem may be to disallow
resumption of completed transactions, this causes many desirable
programs to terminate with errors. For example, iterators such as
the one in Figure 2 may reside in the dynamic extent of an atomic
call. With respect to Figure 2, this would be the case if we replaced
the last two lines with:

(iterate-until some-threshold
(list-iterator some-list))

If only a portion of the collection was iterated over, then a later
transaction may resume iteration of the remaining elementsby us-
ing a saved iterator. But this requires reentry into the first(com-
pleted) transaction’s dynamic extent, which would cause anerror,
even though we intend to use only functional code. On the other
hand, reaching the commit action at the lexical end of a completed
transaction is problematic because the commit action is no longer
paired with the start of a transaction.

The semantics we implemented allow resumption of a com-
pleted transaction, but make committing an already-completed
transaction a dynamic error. More precisely, control may reenter
the dynamic extent of a completed transaction via a continuation,
but it must leave the dynamic extent via another continuation be-
fore the transaction’s lexical end. Reaching the lexical end of a
transaction causes the dynamic error. The programmer should also
take note that because the transaction has already been completed,
side effects in its dynamic extent are no longer performed atomi-

cally; i.e., it is not part of a transaction unless another transaction
is open at the time of resumption.

Visual intuition: In terms of Figure 1, resumption occurs in the
following circumstances. A continuation to someci is saved during
the execution of the transaction, which is then committed. Later
(e.g.,b5 or b6), this continuation is invoked, shifting control back
into the dynamic extent of theatomiccall, even though the code
is not being executed atomically. Allowingc1 to then return to
its enclosingatomic is a dynamic error, but if aci escapes the
transaction’s extent via another continuation (e.g., backinto b5)
then execution proceeds as expected.

High-level implementation: Supporting resumption while pre-
venting recommits of a completed atomic call can be accomplished
with the following implementation ofatomic:

(define (atomic f)
(let ((closed #t))

(start-atomic-mode)
(set! closed #f)
(lambda ()

(let ((v (f)))
(if closed

(error "Double commit"))
(set! closed #t)
(commit-atomic-changes)
v))))

5. Semantics For Transactions in Scheme
Where Section 4 described use cases where different escape be-
haviors are required, here we describe the particular procedures we
added to Scheme to provide atomic transactions supporting each of
these situations.

In the previous section, the escape behavior was defined by
changing the implementation of theatomic procedure. But there
are actually three points in time when it makes sense to specify the
intended behavior:

1. When reifying a continuation
2. When opening an atomic call
3. When invoking the continuation

What follows is a description of procedures targeting thesedifferent
places in the code, and an informal semantics explaining howthey
interact when used together. Table 1 lists all relevant procedures,
providing both long- and short-form names as well as their types.

5.1 Individual Behaviors

In the following paragraphs, we describe the behavior of each
category of procedures from Table 1 when used in isolation.

The call/cc-* family: The call/cc-* procedures in Table 1 oper-
ate like the canonicalcall/cc; they reify the current continua-
tion and pass it as an argument to the lambda passed tocall/cc.
The difference is that the continuation has an additional property
attached that specifies the behavior to use when invoking this con-
tinuation escapes an atomic call. The attached behavior is ignored
if invoking the continuation does not escape an atomic call.

A user can also redefine the escape behavior bound to a par-
ticular continuation withset-continuation-escape-behavior!, which
takes a continuation and a value indicating which behavior to use. A
companion procedure,continuation-escape-behavior, retrieves the
behavior associated with a continuation.5

5 Actually, Scheme48 continuations are returned wrapped in procedures,
preventing direct manipulation. We could achieve the described functional-

Reifying continuations:
call/cc-with-commit-on-use call/cc/commit ((α → void) → α) → α
call/cc-with-rollback/abort-on-use call/cc/rollback ((α → void) → α) → α
call/cc-with-rollback/retry-on-use call/cc/retry ((α → void) → α) → α
call/cc-extends-on-use call/cc/extend ((α → void) → α) → α
call/cc-defers-behavior call/cc/defer ((α → void) → α) → α

Managing continuation-bound behavior:
set-continuation-escape-behavior! (α → void) × behavior → unspecified
continuation-escape-behavior (α → void) → behavior

Defining atomic calls:
atomic-with-commit-on-escape atomic/commit, atomic (→ α) → α
atomic-with-rollback/abort-on-escapeatomic/rollback (→ α) → α
atomic-with-rollback/retry-on-escape atomic/retry (→ α) → α
atomic-extends-on-escape atomic/extend (→ α) → α

Continuation invocation point-bound behavior:
escape-and-commit (α → void) × α → void
escape-and-rollback/abort (α → void) × α → void
escape-and-extend (α → void) × α → void

Explicitly rolling back transactions:
rollback/abort → void
rollback/retry retry → void

Table 1. The procedures our library provides to facilitate atomic transactions

Atomic call definitions: The atomic call defines the boundaries
of a transaction and can specify the behavior to be used by a con-
tinuation when escaping its dynamic extent. Several variants of
the atomicprocedure are provided, each of which is semantically
equivalent to an implementation suggested in Section 4.atomicit-
self is a synonym foratomic-with-commit-on-escape. If a continu-
ation created withcall/cc or call/cc-defers-behavioris used to
escape the dynamic extent of such an atomic call, the atomic call
defines the escape behavior.

Call-site specific behavior: There may be occasions when pro-
grammers wish to override all other precedence rules and force
a particular behavior for a given continuation invocation.The
commandsescape-and-commit, escape-and-rollback/abort, and
escape-and-extendeach receive as arguments a continuation and
a value to pass to the continuation; the continuation is applied to
the value and the behavior specified by the procedure is used,re-
gardless of the behavior bound to the continuation or the enclosing
atomic call. An unfortunate property of these procedures isthat
they break the continuations-as-procedures abstraction otherwise
maintained in Scheme. Nonetheless, they are a straightforward
mechanism providing specific behavior in locations where itmight
be otherwise cumbersome to achieve.

Explicit rollback commands: Our library provides programmers
with two explicit rollback commands to abort the current transac-
tion: rollback/retryandrollback/abort. While both complete all live
atomic calls by undoing all memory operations since the firstlive
atomic call began, the post-rollback control flow differs between
these two commands.rollback/retry resets control to the begin-
ning of the first atomic call in the current transaction and begins
re-executing the transaction.rollback/abort treats the first atomic
call made as acall/cc that has just returned; control is sent to
the end of this initial atomic call.

ity via a lookup table with weak pointers to the continuations, but for expe-
diencecall/cc-* actually take as an argument a two-parameter procedure—
the continuationk and a handleh. This handle is then used to manipulate
the escape behavior for its companion continuation. The originalcall/cc
form remains unmodified, silently discarding its handle.

�� ����

�� ���	
� ��� ��

�� ���	
� �	�� ��
��� ��

Figure 4. Nested escape behaviors form a semilattice

5.2 Nested and Conflicting Behaviors

The problem with letting the programmer specify the behavior of
escaping continuations is that multiple specifications canconflict.
First, invoking a continuation can cause control to transfer across
the dynamic extent of multiple atomic calls and these calls may
have specified different behaviors. Second, an atomic call and a
call/cc-* call might specify different behaviors. In this section we
discuss how we resolve both kinds of conflicts.

Nested atomic calls: Calls to theatomic-* procedures can be
nested both statically and dynamically. Maintaining this capability
is important to preserve the opacity of library calls.

When all nested atomic calls have the same escape behavior, the
common escape behavior is used as a continuation escapes from the
entire set of atomic calls. (For example, if several atomic calls were
opened inside one another, each created byatomic-with-commit-
on-escape, escape from this set of atomic calls would commit them
all.) If these calls were instead made with differentatomicderiva-
tives, then this requires a more complicated rule. It is impossible,
for example, to satisfy both rollback/abort and commit operations
simultaneously. While our current implementation simply raises a
dynamic error, a more robust solution is to arrange the four escape
behaviors in the semilattice shown in Figure 4. When escaping from
a set of nested atomic calls, the escape behaviors associated with
these calls are collected and joined to find their least upperbound;
this behavior is then applied to all the atomic calls being escaped.

We chose the hierarchy described in Figure 4 because roll-
back/retry is in general always “safer” than commit or rollback/abort.
It will never lose a computation, nor will it inadvertently commit
undesired changes. Theextendbehavior sits at the top of the lattice
because programmers who expressly intend to leave and resume
the dynamic extent of a transaction must ensure that all nested
transactions are closed properly.

Atomic call behavior vs. call/cc behavior: The situation is further
complicated by adding continuation-bound escape behaviors to the
mix. A programmer can reify a continuation using one of the
procedures in the first section of Table 1, such ascall/cc-with-
commit-on-use, and then use it to escape a transaction opened
with (for instance)atomic-with-rollback/retry-on-escape. Our rule
is that the behavior associated with the continuation overrides the
escape behavior associated with the atomic call itself. Thebehavior
lattice is ignored in this case, as it often makes sense to allow
multiple distinct escape behaviors in the same transaction.

We believe that this hierarchy makes the most sense when bring-
ing together multiple behavior specifications. Consider the follow-
ing example procedure:

(define (yield-from-queue! return q)
(atomic (lambda ()
(return (get-from-queue! q)))))

This procedure invokes a continuation namedreturn to yield
values from the procedure body and should commit its enclos-
ing transaction. By contrast, theget-from-queue! procedure
defined in Section 4.2 may invoke an empty-queue-handling con-
tinuation which, in an atomic transaction, should be ignored in
favor of retrying the transaction. Even though these behaviors
conflict with one another, this procedure can be implementedby
definingyield-from-queue! to commit on escape (by using
atomic-with-commit-on-escape), but attaching the rollback-and-
retry-on-escape behavior to the error-handler continuation invoked
in get-from-queue! by reifying the continuation withcall/cc-
with-rollback/retry-on-use.

There may be cases in which the ability to override the call/cc-
driven behavior with the behavior specified by the atomic call is
desirable, but we believe that the precedence we have implemented
makes sense in the majority of cases. There is fundamentallyan
“arms race” between clients of continuations and definitions of
continuations to provide the definitive behavior. Our implementa-
tion allows the continuation to override the atomic call, while not-
ing that instrumentation of the continuation call-site with one of
the escape-and-*procedures provides the atomic call with a “last
chance” mechanism to mandate behavior.

Coroutine transactions: By using the extend-on-escape behav-
ior, it is possible to move between live atomic calls and close them
in any order, implying that one is not properly nested withinthe
other. This is possible in cases involving mutually-recursive corou-
tines containing atomic calls. Referring back to Figure 1,a3 can
create an atomic call (the column ofci’s), which then escapes back
into a3. Another atomic call (e.g., another column ofci’s parallel
to the existing one, but not shown) represents the body of an addi-
tional coroutine, which may invoke continuations into the original
ci column and vice-versa. The coroutines will be on different dy-
namic extents, each containing a distinct atomic call. Because they
use the extend-on-escape behavior, these atomic calls remain live
even when leaving one dynamic extent for the dynamic extent of
the other coroutine via a continuation.

The result of this activity is atomic calls that are interleaved
rather than nested; there is no “inner” or “outer” atomic call. In
Figure 5, the upper diagram represents atomic calls which are
nested in dynamic extent. The “inner” atomic calls are committed

��� �

� ���� ��� 		� ��� ��� 	�� �� ��� ���

� ���� ��� 		� �� �� �	���� 	�� �� ��� ���

������� ���� � �� �� ���� 	 ���� ��

Figure 5. A comparison of LIFO-structured transactions and
coroutine transactions. Boxes represent the atomic call(s) live on
the current dynamic extent at a point in time; different shades rep-
resent different calls toatomic.

before the outermost atomic call commits; the last commit actually
makes the memory changes available to other threads. In the lower
diagram, an atomic call is suspended with the extend-on-escape
behavior and another atomic call is begun. The “dormant” atomic
call remains live, as denoted by the dashed arrows, and will be
resumed later by a continuation. These atomic calls continue to
transfer control between one another until they are all individually
committed, at which point memory changes are made visible to
other threads. Because LIFO order is not maintained internally,
they need not be committed in LIFO order. Of course, interleaved
atomic calls may make additional LIFO-structured atomic calls as
well, though this is not shown in Figure 5.

In cases where a continuation escapes one or more atomic calls
on the current dynamic extent, the key question is whether italso
implicitly escapes the dormant live atomic calls on other dynamic
extents. In our system, the answer is no; escape behavior is de-
termined by considering only what happens as a continuationes-
capes atomic calls on the current dynamic extent. To commit the
total transaction, all atomic calls on all dynamic extents must be
committed either by escaping properly from each of the callsor by
reaching their respective lexical endpoints. The order in which the
atomic calls are completed is insignificant.

Contrary to the commit operation, rollback in the form of retry
or abort affects the entire transaction containing all liveatomic
calls, even if individual nested or interleaved componentshave been
committed. Therefore, if a continuation is used to escape anatomic
call with the rollback-and-abort-on-escape behavior, thecontinu-
ation must escape from all live atomic calls; if the continuation
target is inside another live atomic call, it is a dynamic error. It is
tempting to attempt to support partial abort or retry operations such
as described in [2], but this existing work presupposes thatatomic
calls are nested and commit in LIFO order. Because of the potential
for atomic calls to become interleaved, it is not clear whichmem-
ory operations should be undone by a partial rollback operation or
where a transaction should be restarted from in the event of apartial
retry operation.

Implementing our semantics in the presence of any number of
nested and interleaved atomic calls is refreshingly straightforward.

When a transaction is not running, invokingatomic-* begins a
transaction. Subsequent invocations ofatomic-* cause the thread’s
live atomic call count to increase by one. The total transaction
does not commit until every live atomic call is completed. Ifthe
live atomic call counter is greater than one, committing an atomic
call simply decrements the counter and marks the particularcall as
completed. The final commit operation sets the counter to zero and
publishes the memory changes from the transaction to the global
state.

6. Implementation
This section describes our implementation, which has two com-
ponents. The first is a set of modifications to the run-time system
of Scheme48 to facilitate atomicity on top of its existing memory
model. The second is a library of procedures called by the user to
denote blocks of code to be run in atomic transactions, and tocreate
continuations with particular escape semantics.

Our implementation is relatively compact; we added roughly
1,000 lines of code to an 80,000 line code-base, and modified about
another 500 of the existing lines of code.

We chose the Scheme48 implementation of Scheme to modify
for three reasons: it is fully R5RS compliant, it has been used
successfully in projects before, and it was designed to be easily
understood and modified [18].

In the rest of this section, we describe the modifications to the
run-time system in greater detail, and the ramifications of these
modifications on the behavior ofrollback/abort. This is followed by
a description of our additions to the user-accessible library. We then
evaluate our implementation in terms of asymptotic complexity and
performance on some microbenchmarks.

6.1 Run-time System Modifications

As mentioned in Section 3, we took advantage of the threading
model used in Scheme48 to simplify the demands of atomicity.
When atomic mode is enabled, a log retains information about
the old value of a changed memory location in case a rollback
event occurs. When the scheduler interrupts a thread in an atomic
transaction, it is rolled back before another thread runs. When
the atomic thread is resumed (starting again from the beginning
of the atomic transaction), the scheduler doubles the length of its
timeslice, allowing it to make more progress toward completion.
To prevent starving all other threads, as a thread’s timeslice is
increased, its scheduling frequency is decreased proportionally.
When the atomic transaction is committed, the timeslice forthe
thread is restored to its original duration. Timeslice modification
occurs only if the entire previous timeslice was spent executing
a transaction, so that threads are not given a timeslice increase
unnecessarily.

Scheme48 uses a bytecode compiler and virtual machine to ex-
ecute programs; Scheme text is compiled to bytecode operations
that are then dispatched by an array of procedures that perform
one high-level instruction each. Our implementation doubles the
length of this array and uses it in two logical halves. Procedures
0 . . . n − 1 represent the normal “non-atomic” operations. Proce-
duresn . . . 2n−1 are their atomic-mode equivalents. Most opcodes
reuse the same procedure in both halves. Certain opcodes, such as
those that govern non-initialization memory updates, use adiffer-
ent procedure in the atomic half of the array to insert an entry into a
log containing the previous value of the memory address modified,
in addition to performing the normal memory update operation. By
doubling the number of opcodes and maintaining in the virtual-
machine state which opcodes to use, we incur no per-instruction
overhead and do not need to recompile any code before it can be
used within a transaction.

Additional opcodes were added to switch the half of the array
the opcode dispatch routine uses, and to perform commit and roll-
back operations. The rollback opcode replays the rollback log in
LIFO order, restoring the initial memory state. The commit opcode
discards the rollback log.

6.2 Information Escape on Rollback

Because of the particular logging policy we implemented, invoca-
tion of a continuation with the rollback-and-abort-on-escape be-
havior can cause potentially surprising results if programmers do
not carefully consider the values passed to the continuation. Im-
mediate values (42, #t, ’(), etc.) are always transmitted without
error. But any mutable data structures promoted out of the atomic
transaction will have any memory mutations rolled back, despite
their escaping status. Any data structures constructed in the atomic
transaction will still survive (thecons operation itself is not un-
done, as superfluouscons cells will be garbage collected later),
but their mutations are rolled back. Thus the expression:

(atomic-with-rollback/abort-on-escape
(lambda ()

(let ((foo (cons 1 2)))
(set-car! foo 100)
(set-cdr! foo (cons 3 4))
(k foo)))) ; k is some continuation

will return(1 . 2) to the continuation reified ink. Programmers
are responsible for determining that only “good” data is passed to
continuations with the rollback-and-abort-on-escape behavior.

6.3 User Library

Most of Scheme48’s functionality is in a large package library
containing procedures available to Scheme programs. We added an
atomic package containing the procedures listed in Table 1.

We extended the structure Scheme48 uses for per-thread state
to include data relevant to the thread’s transaction state.This data
includes the number of live atomic calls, the escape behavior to use
for the current dynamic extent, and the continuations to invoke on
rollback/abort or retry. As the existing thread structure is already
fairly heavyweight, this is in line with the Scheme48 implemen-
tation. Some of this information changes based on the innermost
atomic call on the current dynamic extent. Thus the thread structure
is updated through thunks installed withdynamic-wind. These
thunks also perform the user’s specified escape behavior andpre-
vent multiple commits, as Section 4 described.

Our implementation relies on a Scheme48-specific behavior:
while R5RS specifies that invocation of a continuation inside a
dynamic-windbeforeor after thunk is undefined, Scheme48 fol-
lows the continuation to its target in the “usual manner.”6

6.4 Implementation Complexity

In this subsection we briefly discuss the asymptotic complexity of
various operations in our implementation. Most operationsincur
very little overhead.

Rollback is potentially the most time-consuming operation; for
every memory write performed in the atomic transaction, it must
be undone. Rollback buffers areO(n) in the number of writes per-
formed, not in the number of locations mutated. This makes log-
ging of mutationsO(1) as they simply prepend to the list. We be-
lieve this is important because commit is the most common case for

6 While we exploit this Scheme48 behavior for convenience, webe-
lieve it is unnecessary for building such an atomic system. Scheme48’s
dynamic-wind behavior is simply an efficient way to encode our nested
escape behavior handling. Without this property, we would have made
changes lower down in the Scheme48 virtual machine.

short transactions [24]. This does not always yield the bestperfor-
mance; for long-running transactions that modify a few locations
many times, a hashing-based log would prove more efficient.

Atomic commit is anO(1) operation, as it simply discards the
root of the rollback log, which is garbage collected later.

Escape from an atomic transaction isO(n + m) in the num-
ber of atomic calls open on the escaping dynamic extent (n) and
the target dynamic extent (m), because the thunks installed by
dynamic-wind for each atomic call must be executed. Begin-
ning a transaction is anO(n) operation in the height of the call
stack because it must save a continuation, which is anO(n) oper-
ation in Scheme48 (though in testing, we discovered that theother
constant-time operations involved in beginning a transaction dom-
inate this penalty for most reasonably-sized call stacks).Entering
subsequent atomic calls inside the same transaction areO(1) oper-
ations. Leaving a single nested atomic call is also anO(1) opera-
tion.

The total memory consumed by a transaction isO(n+m) where
n is the number of live atomic calls andm is the number of memory
mutations performed during the transaction. For most transactions,
m will dominaten.

6.5 Evaluation and Microbenchmarks

We tested our implementation against a suite of test programs
we wrote to exercise the various aspects of our feature set and
confirmed that they operate as expected. All example code provided
in this paper operates correctly on our implementation.

We evaluated our system’s performance on two microbench-
marks to demonstrate that the semantics we describe is feasible on
current hardware without suffering a major performance penalty.
The benchmarks are described below, and the results are shown
in Table 2. All benchmarks were run in “benchmark mode” in
Scheme48, which allows the bytecode compiler to inline proce-
dures for better performance. Tests were conducted on a dual-core
Pentium-D system operating at 3.2 GHz with 1 GB of RAM, run-
ning Red Hat Fedora Core 5.1 with Linux kernel version 2.6.16.
The Scheme48 version modified by our implementation is v1.4.7

In one benchmark, we generate a list ofn integers,0 . . . n − 1.
In an atomic transaction, we imperatively increment each list el-
ement, resulting in a list ranging over1 . . . n. We compare the
performance of this with an unsynchronized version; with one us-
ing Scheme48’s “proposals” mechanism which provides the most
straightforward comparison; and with one which obtains andre-
leases a lock when incrementing eachcons cell. A “real world”
lock-based system would have performance somewhere between
that of the completely unlocked case and the individually locked
case, with performance inversely proportional to the granularity
of locking. It is unclear why the proposal-based case performed
so much slower than the other tests. Results are reported in both
the number of list elements processed per second (in multiples of
100,000), and as a relative metric scaled such that ouratomicprim-
itive is 1.00. (Higher values represent better performance.)

We further explored the list processing benchmark space by
timing the iterator mechanism in Figures 2 and 6. Lists of inte-
gers manipulated throughcons cells were iterated over with both
coroutine and “straightforward” iterator procedures. Thecoroutine
iterator was timed in both an atomic context and in an “unsafe”
non-synchronized context. The procedural iterator (Figure 6) was
only run atomically. In both cases, coroutines were much slower
than the procedural iterator due to the overhead ofcall/cc; per-
forming iteration atomically added a modest overhead of 17%.

7 While the current version is 1.6, the most recent version available in
January 2007 when we began our work was 1.4. The differences between
1.4 and 1.6 are small enough that this should not be a major factor.

list matrix
105 elts/s scaled 103 elts/s scaled

atomic 24.32 1.00 5.05 1.00
proposal 0.024 0.001 1.42 0.28
unlocked 26.27 1.08 6.15 1.21
locked 1.66 0.07 5.97 1.18
atomic-coroutines 1.20 1.00
unsafe-coroutines 1.40 1.17
atomic-procedural 13.27 11.05

Table 2. Performance Microbenchmarks

In another benchmark, we multiply twon × n matrices of
integers to yield a thirdn×n matrix. This was performed using our
atomic transactions, with no locking, using Scheme48 proposals,
and with locks on each row or column of an input matrix. It
is interesting to note that since we used thearrays structure
defined in SRFI 47 to implement matrices, for the proposal-based
benchmark we had to modify thearrays package to provide
getter and setter functions that used the underlying data structure in
a proposal-safe manner, underscoring the lack of abstraction when
using explicit proposal-based memory access.

The benchmark results in Table 2 demonstrate that our imple-
mentation of atomic transactions provides computation throughput
at an acceptable performance rate. The existing Scheme48 propos-
als mechanism incurs a large performance penalty when used in
each benchmark. The atomic transactions have between an 8% and
21% overhead relative to the case with no synchronization. Adding
explicit locks to the code causes a sharp performance decrease pro-
portional to the degree of locking granularity.

Further testing demonstrated that our modifications to Scheme48
do not cause a significant performance difference in non-atomic
code when compared to the original Scheme48 system.

7. Future Work and Conclusions
The primary limitation of our current implementation is that per-
forming I/O within a transaction is undefined behavior. Buffering
output until the transaction commits would be straightforward, but
a more thorough solution would require adapting related work [11,
4, 3, 24] on this unsettled issue. Additional future work on the lan-
guage definition includes a more rigorous semantic definition and
considering the interaction between transactions and other control
effects (e.g., shift/reset). For the latter, the most relevant to Scheme
are the “error” and “exception” constructs described in SRFIs 23
and 34, respectively. (Since the reference implementationdescribed
in SRFI 34 is defined in terms ofcall/cc, there may be few new
concerns.)

Defining what it should mean when a continuation invocation
crosses a transaction boundary is a difficult decision that ultimately
depends on both the intended use of the continuation and the nature
of the transaction itself. Therefore, we defined a variety ofbehav-
iors and demonstrated how to implement them. Much of the diffi-
culty arises from continuations’ many uses; one way to view our
user-specified escape behaviors is as a way of “taming”call/cc
by requiring annotations. We know of no other way to provide first-
class continuations and software transactions in the same language.
Our implementation, utilizing a combination of high-levelScheme
techniques (e.g., uses ofdynamic-wind) and low-level inter-
preter techniques (e.g., duplicating the opcode table), has good per-
formance and will be a useful tool for investigating programming
with software transactions.

References
[1] N. I. Adams IV, D. H. Bartley, G. Brooks, R. K. Dybvig, D. P.

Friedman, R. Halstead, C. Hanson, C. T. Haynes, E. Kohlbecker,
D. Oxley, K. M. Pitman, G. J. Rozas, J. G. L. Steele, G. J. Sussman,
M. Wand, and H. Abelson. Revised5 report on the algorithmic
language Scheme.SIGPLAN Not., 33(9):26–76, 1998.

[2] A.-R. Adl-Tabatabai, B. Lewis, V. Menon, B. R. Murphy, B.Saha,
and T. Shpeisman. Compiler and runtime support for efficient
software transactional memory. InACM Conference on Programming
Language Design and Implementation, pages 26–37, June 2006.

[3] E. Allen, D. Chase, J. Hallet, V. Luchangco, J.-W. Maessen, S. Ryu,
G. L. Steele Jr., and S. Tobin-Hochstadt. The Fortress language speci-
fication, version 1.0β, Mar. 2007. http://research.sun.com/projects/plrg/

Publications/fortress1.0beta.pdf.
[4] C. Blundell, E. C. Lewis, and M. M. K. Martin. Unrestricted

transactional memory: Supporting I/O and system calls within
transactions. Technical Report TR-CIS-06-09, Departmentof
Computer and Information Science, Univ. Pennsylvania, May2006.

[5] B. D. Carlstrom, J. Chung, A. McDonald, H. Chafi, C. Kozyrakis, and
K. Olukotun. The Atomos transactional programming language.
In ACM Conference on Programming Language Design and
Implementation, pages 1–13, June 2006.

[6] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An object-
oriented approach to non-uniform cluster computing. InACM
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pages 519–538, 2005.

[7] Cray Inc. Chapel specification 0.4.
http://chapel.cs.washington.edu/specification.pdf.

[8] M. Flatt and R. B. Findler. Kill-safe synchronization abstractions.
In ACM Conference on Programming Language Design and
Implementation, pages 47–58, June 2004.

[9] M. Gasbichler and M. Sperber. Integrating user-level threads with
processes in Scsh.Higher-Order and Symbolic Computation, 18(3–
4):327–354, 2005.

[10] N. Haines, D. Kindred, J. G. Morrisett, S. M. Nettles, and J. M. Wing.
Composing first-class transactions.ACM Trans. Prog. Lang. Syst.,
16(6):1719–1736, 1994.

[11] T. Harris. Exceptions and side-effects in atomic blocks. Science of
Computer Programming, 58(3):325–343, Dec. 2005.

[12] T. Harris and K. Fraser. Language support for lightweight trans-
actions. InACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 388–402, Oct. 2003.

[13] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy. Composable
memory transactions. InACM Symposium on Principles and Practice
of Parallel Programming, pages 48–60, June 2005.

[14] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing memory
transactions. InACM Conference on Programming Language Design
and Implementation, pages 14–25, June 2006.

[15] B. Hindman and D. Grossman. Atomicity via source-to-source
translation. InACM SIGPLAN Workshop on Memory Systems
Performance & Correctness, Oct. 2006.

[16] M. Katz and D. Weise. Continuing into the future: On the interaction
of futures and first-class continuations. InACM Conference on LISP
and Functional Programming, pages 176–184, 1990.

[17] R. Kelsey, J. Rees, and M. Sperber. The incomplete Scheme
48 reference manual for release 1.6, section 7.4, Feb. 2007.
http://s48.org/1.6/manual/manual-Z-H-9.html#nodesec7.4.

[18] R. A. Kelsey and J. A. Rees. A tractable Scheme implementation.
Lisp Symb. Comput., 7(4):315–335, 1994.

[19] J. Larus and R. Rajwar.Transactional Memory. Morgan & Claypool
Publishers, 2006.

[20] B. Liskov and R. Scheifler. Guardians and actions: Linguistic support
for robust, distributed programs.ACM Trans. Prog. Lang. Syst.,
5(3):381–404, 1983.

[21] J. Manson, J. Baker, A. Cunei, S. Jagannathan, M. Prochazka, B. Xin,
and J. Vitek. Preemptible atomic regions for real-time Java. In 26th

;; Binary trees are represented as
;; (val . (left-tree . right-tree))
;; Empty trees are represented as ’()
(define (bt-next bt next ret)
(if (not (null? (cadr bt)))

(set! ret (call/cc (lambda (k)
(bt-next (cadr bt) k ret)))))

(if (not (null? (cddr bt)))
(let ((new-ret (call/cc (lambda (k)

(ret (cons (car bt) (lambda ()
(call/cc (lambda (in) (k in))))))))))

(bt-next (cddr bt) next new-ret))
(if next

(ret (cons (car bt)
(lambda () (call/cc (lambda (in)

(next in))))))
(ret (cons (car bt) #f)))))

(define (tree-iterator tree)
(if (null? tree)

#f
(lambda () (call/cc (lambda (ret)

(bt-next tree #f ret))))))

; Another list iterator, without continuations
(define (lst-next lst)
(if (null? (cdr lst))

(cons (car lst) #f)
(cons (car lst)

(lambda () (lst-next (cdr lst))))))

(define (list-iterator lst)
(if (null? lst)

#f
(lambda () (lst-next lst))))

Figure 6. Additional procedures that return iterators conforming
to the interface in Figure 2

IEEE Real-Time Systems Symposium, Dec. 2005.
[22] L. Moreau. The semantics of Scheme with future. In1st ACM

International Conference on Functional Programming, pages 146–
156, 1996.

[23] J. H. Reppy.Concurrent Programming in ML. Cambridge University
Press, 1999.

[24] M. F. Ringenburg and D. Grossman. AtomCaml: First-class atomicity
via rollback. In10th ACM International Conference on Functional
Programming, pages 92–104, Sept. 2005.

[25] A. Shinnar, D. Tarditi, M. Plesko, and B. Steensgaard. Integrating
support for undo with exception handling. Technical ReportMSR-
TR-2004-140, Microsoft Research, Dec. 2004.

[26] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer,
D. Grossman, R. Hudson, K. F. Moore, and B. Saha. Enforcing
isolation and ordering in STM. InACM Conference on Programming
Language Design and Implementation, June 2007.

[27] P. Tinker and M. Katz. Parallel execution of sequentialScheme with
ParaTran. InACM Conference on LISP and Functional Programming,
pages 28–39, 1988.

A. Iterator Examples
Figure 6 presents additional iteration functions conforming to the
interface in Figure 2. Bothlist-iteratorandtree-iterator
accept a data structure to iterate over and return a thunk that is an
iterator, or#f if there are no iterable elements. Calling the thunk
returns a pair containing the next value in the collection and another
thunk (or#f). Theiterate-until procedure in Figure 2 oper-
ates identically regardless of which iterator is used, and regardless
of whether the iterator is initially invoked inside a transaction.

