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Abstract

Software transactions are a promising technology that make
ing correct and efficient shared-memory multithreaded rog

easier, but adding transactions to programming languages r

quires defining and implementing how they interact with exis

ing language features. In this work, we consider how transac

tions interact with first-class continuations. We dematstrthat
different idiomatic uses of continuations require diff@rérans-
actional semantics, so a language supporting transactons
call-with-current-continuation should provide pro-

grammers with a way to control these semantics. We present a

design meeting this need, addressing both escaping fromeand
tering the dynamic extent of a transaction.

We have implemented our design by modifying Scheme48. We

present the most interesting details of the implementadiad its
performance on some small benchmarks.

Categories and Subject DescriptorsD.3.3 [Language Constructs
and Featurep Concurrent programming structures

General Terms Design, Languages

Keywords Atomicity, Transactions, Continuations, Scheme

1. Introduction

Software transactions provide programmers of shared-mgemo
multithreaded systems with a straightforward synchraivra
mechanism that is easier to use than locks and conditioahlas.
The key idea behind a programming-language transactidratstt
completes a computatias thougtthere are no interleaved threads
while the underlying implementation still ensures fair eghling.
For example, usingtomicas a new primitive that takes a thunk
and evaluates it as a transaction, the following procedwaps
the contents of @ons cell without another thread being able to
observe any intermediate state:

(define (thread-safe-swap!
(atomc (lanbda ()
(let ((x (car pr)))
(set-car! pr (cdr pr))
(set-cdr! pr x)))))

pr)
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This code is correct without appealing to any locking protaar
placing restrictions on the rest of the program.

More interesting examples may use diverse features from the
underlying language. It is important to allow as many feasuas
possible during evaluation of an atomic expression so tieatan
reuse libraries, maintain procedural abstraction, et¢hWelp from
the language implementation, mutation, function callsl arem-
ory allocation can all be supported in transactibridowever, for
transactions to fulfill their promise as a next-generatignchro-
nization mechanism, there must exist a well-defined intemadbe-
tween transaction primitives and a language’s control aijoes.

Previous work on transactions in functional and objeceméd
languages has focused on one question in this space: Whattdoe
mean if an exception thrown from within a transaction is ddug
outside a transaction? This paper investigates a more geqners-
tion: What should it mean if the invocation of a first-class continu
ation crosses the boundary of a transaction’s dynamic é¢Rten

Rather than provide a single definitive answer, we conclbde t
the best semantics depends on how the continuation is beed u
For example, the natural behavior for a coroutine call is thet
best choice for an exceptional escape and vice-versa. fbnerave
have designed transactional support for Scheme that alwors
grammers to specify the behavior they wish. To do so, we have
provided a prototype that permits many reasonable belggor
that we and the community can experiment with the interplay b
tween transactions and continuations. Though programmenst
specify a behavior (or inherit predefined defaults), thig/fscally
done when entering a transaction or creating a continualtictiis
way, we preserve the Scheme design decision that invosatibn
continuations appear as ordinary function applications.

To validate the feasibility and convenience of our desige, w
modified Scheme48 [18] to support software transactionsaAs
pleasant by-product independent of continuations, wesbelthis
work provides the first full-fledged implementation of trangons
in Scheme, albeit one supporting only a uniprocessor ratiear
true parallelism. While the basic approach is much like #eosd
author’s previous work on extending Objective Caml [24¢ Hup-
port for continuations is entirely new and modifying affgS [1]
interpreter has its own unique challenges. As we disculshieabx-
amples in this paper run correctly and efficiently on our ptgpe,
which is publicly availablé.

In short, our contributions are:

o A taxonomy of the ways first-class continuations can interac
with transactions and the programming idioms that lead ¢o th
different interactions

e A language design that gives programmers control over the
interaction between continuations and transactions

1External actions (I/0) can generally not be, as discuss&kation 2, and
this is not our present focus.

2 http://www.cs.washington.edu/homes/ak/atomscheme/



e An extension to an FRS implementation supporting software
transactions

¢ A preliminary evaluation showing our design is efficienthy-i
plementable

The rest of this paper proceeds as follows. Section 2 dissuss
related work, focusing on the interaction between transastand
exceptions as well as recent work on concurrency in Schese. S
tion 3 provides context by discussing the high-level aspedt
the design and implementation of our transaction systermattea
not directly related to continuations. Section 4 descrithéferent
idiomatic uses of continuations and how they best interatt w
transactions. Section 5 presents our language design @assm
ing these possibilities and describes the primitives’ seting. Sec-
tion 6 presents the most interesting pieces of our Scherhad8d
implementation, including its current status and perfarogachar-
acteristics. Section 7 discusses future work and concludes

2. Related Work

Given the vast amount of research on transactional mematy an
language support for concurrency in recent years (see,teayre-
cent overview by Larus and Rajwar [19]), we focus on only the
most relevant work. This includes full language designsienple-
mentations (Section 2.1), work considering the interarctiith ex-
ceptions (Section 2.2), and recent work on concurrency heSe
(Section 2.3). The most notable omissions are hardwaredcan
tional memory and library-based approaches. The lattenires)

no changes to the compiler but programmers must use libosgf
tions to access memory within transactions.

2.1 Language Implementations with Transactional Memory

Harris and Fraser [12] were the first to provideanmicprimitive
for a modern language (Java) and an implementation thacoal
multiprocessors. Unlike older work, this primitive doed nequire
programmers to acquire locks [10] nor identify what data mhig
be accessed within a transaction [20]. Implementatiorewitar-
ris and Fraser maintain a private version of accessed mefopey
transaction and reflect updates back to shared memory vighéyhi
nontrivial commit protocol that facilitates parallel coriisn Later
work [14, 2, 26] improves performance for Java and C# by (1) pe
forming updates on main memory directly, using exclusivenow
ership to prevent race conditions and undoing the updatdweif
transaction conflicts with a parallel operation, and (2ngsiom-
piler optimizations or novel hardware [5] to reduce the tne=d of
conflict detection.

Work on adding transactions to Objective Caml [24] and to
Real-Time Java [21] established that the overhead for acimal
memory is negligible if one assumes that at most one threasl ru
at a time, an assumption that holds on uniprocessors and is al
ready made by many language implementations. As reviewed in
Section 3, this assumption lets one incur no overhead fooaey-
ation except an imperative update inside a transaction.

Transactional memory has also been added to Haskell [13],
where a monad cleanly encapsulates mutable memory adeessib
within transactions and asrelsecombinator lets programmers try
an alternative transaction if another one aborts. Traimatare
also included in several next-generation high-perforneazamput-
ing languages [3, 6, 7], though implementations are stfllur.

2.2 Transactions and Exceptions

Several projects have considered the question of what dhmyp-
pen if an exception causes control to transfer from withiraagac-
tion to a handler outside the transaction. In prior work [P4], such
exceptions are considered to commit the transaction, aftéch

control is transferred to the correct exception handleis Thcon-
sistent with Harris and Fraser's original work [12] and implents
the semantics of exceptions as non-local jumps carryingegal

Others have argued that having such exceptions abort the-tra
action avoids the need for cumbersome code that comperfsates
an error-condition. Instead, the memory-rollback inhéterirans-
actions naturally reverts state to the pre-transactiosioer The
work in Haskell [13] therefore interprets an exception \wwitta
transaction as eetry, i.e., abort the transaction and transfer con-
trol back to its beginning.

More complicated variants undo memory updates but stilbpro
agate control to the outer exception handler. As Sectiorpfams
in more detail, this induces awkward semantics because ¢he a
tual exception value might reference memory locations \&tous-
tents were rolled back. The Fortress language [3] does Hditaok
memory allocated since the transaction was entered, nibtaidghis
decision affects only the exception value. Fortress alsoaheari-
ant ofatomicin which the user can undo the memory updates and
abort to the control point just after the transaction. Sligiiffer-
ent is Harris et al.’s approach of making a deep copy (via/G#va
serialization) of the exception value before undoing mgmgs-
dates [11, 25]. They also note that such semantics is usedual e
in single-threaded code. We have implemented yet a thirtlesub
variation for Scheme in which imperative updates are rextgo
objects allocated in the transaction will have their initiaues.

To our knowledge, no prior work has considered a controldran
fer into a transaction’s dynamic scope, which cannot occiiin w
exceptions. Our design for Scheme encompasses most ofdtie ab
variations while also supporting such resumptive contiions.

2.3 Concurrency in Scheme

The most closely related work in Scheme is fireposalsstruc-
ture for optimistic concurrency in Scheme48 [17]. Trangact
specific primitives are used to read and witens cells, vectors,
etc., and a log is used to record all such provisional reads an
writes in private memory until attempting to commit. In caast,
our approach writes to shared memory eagerly and undoesthe u
date if the transaction fails or is preempted. The proposalsk
has several limitations we avoid. First, that work requseparate
primitives for memory access within transactions, whichvents
reusing libraries inside and outside transactions. Usimgrgpro-
visional primitive inside a transaction could lead to sel#trors.
Second, the proposals library has no provisicd ! . Third, the
commit protocol is explicitly subject to “A-B-A" concurrey er-
rors: it checks only that locations read during the trarisadtave
the same value at the commit-point, but it is well-known ttiég

is insufficient to prevent data races. Fourth, there is n@stgdor
interaction with continuations; it is up to the programmedeter-
mine which continuation-invocations cross a transactionrary
and use low-level primitives to change relevant state asttetier

a transaction is running, should be committed, etc.

Gasbichler and Sperber’s work on integrating threads with
UNIX-style processes in scsh [9] is related in that it comsid
the interaction between mutable bindings and continuatiblow-
ever, the semantics of UNIX fork is exactly the opposite afrslal-
memory: resources are copied. Difficult semantic questaise,
such as what should happen to a continuation’s bindings \tl&n
invoked in a different process than its creator. The sohgtido not
appear directly relevant to the transactional-memonyrsgtt

Katz and Weise first considered interactions betwkeores
andcal | -wi t h-current-continuati on [16]. Futures let
a computation be forked in a separate thread and let consumer
of the computation receive its value later. A key issue istwha
means to resume a continuation inside a future, which ismismi
cent of issues we address with resuming continuationserisihs-



actions. However, one typically uses futures for pure caamns
(though later work considered how to roll back side effentde
futures [27, 22]), making idioms for transactions quitdetiént.
Transactional memory is fundamentally a synchronization

mechanism for shared-memory concurrency, but that is ndisto
miss message-passing as an alternative. Indeed, theatdllsyn-
chronization abstractions [8] in DrScheme build on top ohQa-
rent ML [23] to support robust programming patterns. Cosesy,
they are little help in preventing shared-memory errorsrovjaling
robust synchronization when shared memory is more conaéenie

3. Basic Approach

In this section we present a short overview of the operatibn o
atomic transactions, and explain the basic behavior of pstes.
While at a high level little in this section is novel (in padiar,
much is shared with AtomCaml [24]), it describes the undedy
design and implementation on which we can provide suppaort fo
continuations and integrate with the Scheme48 interpreter

3.1 Design

Atomic transactions are introduced via the first-class pdoce
atomic which takes a thunk, executes it and all its callees atom-
ically, and returns its result. All other threads in the systare pre-
vented from detecting any changes made to global memoryey th
code protected by thatomiccall (and vice-versa) until the call re-
turns, at which point the changes a@mmittedo the global state.

Without considering the effects afal | -wi t h- current -
conti nuati on (hereafter.cal | / cc) or retry (discussed be-
low), atomiccould be implemented as a procedure like this:

(define (atomic f)
(start-atonic-nopde)
(et ((v (f)))
(conmi t - at om c- changes)

v))

start-atoni c-nmpde and conmi t - at omi ¢c- changes
are lower-level transaction-management proceduresoitfi@tcalls
are nested, then successive callst@r t - at om c¢- nbde in the
same transaction increment a counter tracking the nesepghd
this counter is decremented bypnmi t - at omi ¢- changes un-
til it reaches zero, at which point the entire nested set ofnat
calls are committed.

While transactions intend to commit their effects to thebglo
state eventually, it is possible within a transaction teedet con-
dition suggesting that it should wait until a different ghdlstate is
present before conducting its computationreiry operation dis-
cards any state modifications made thus far in the atomisaan
tion, and suspends the current thread to wait for other twrea
modify shared memory. When the thread in the atomic traimact
is resumed, the transaction is restarted from the beginiing fol-
lowing example naturally involves retrying an atomic opiena

(define (atomn c-dequeue!
(atomc (lanbda ()
(if (is-enmpty? Q)
(retry) ; wait for enqueue first
(dequeue-next! q)))))

Implementingetry requires more involved control in tlomic
function than suggested above, but these changes are sedhéiym
the actual implementation of the full system.

The situation for 1/0 operations is more complicated than ma
nipulation of heap memory; in general, buffered I/O operadiare
delayed until commit time, while unbuffered I/O and synatoos

a)

message-passing operations are treated as dynamic ¢@arsac-
tual implementation currently does not yet provide thisdwbr,
though it would be a straightforward addition.)

The design of an atomic transaction system must also pre-
serve two additional properties. First, simultaneous efien of
two transactions that are not in contention for the same mgmo
locations should not impose a serialization order on theatis.
The uniprocessor model described in Section 3.2 obviatesdm-
cern in our implementation. Second, an atomic transactistem
must provide a notion of fairness, ensuring that a long-ingor
possibly divergent transaction does not prevent progrgsstier
threads. Our scheduler, described below, ensures thiggyop

3.2 Implementation

Since Scheme48 multiplexes all user-defined threads onftep o
single kernel thread, true simultaneous multiprocessnmpossi-
ble. We exploit this behavior by writing atomic changes dileto
the affected memory addresses and logging their old valnekeo
side. If a transaction completes before the thread is presanthe
log is discarded. Otherwise, the system is paused to repiaiog

of old values, restoring the previous program state befonging
the next thread. The log contains the prior value of all asisie to
which a non-initialization write is performed in a transaat Ini-
tialization writes need not be logged as the garbage collewil
discard any memory cells allocated in a transaction affereaces
to these new locations are discarded by rollback. A key adepmn
of the uniprocessor model is that we need not log any read oper
ations or any operations whatsoever outside of transatidhis
keeps the overhead in mostly-functional code low. A disathge
of this technique is that we do not record the set of locatieasl
during a transaction, preventing a demand-driven retrjicpoWWe
retry transactions without regard for the particular sdamemory
addresses modified by other threads in the interim.

A challenge for transactional memory implementations is al
lowing procedure calls within an atomic scope and detemgjini
when writes should be logged without incurring a performeanc
overhead with every operation. Our implementation modifies
runtime system to allow thet art - at om c- node primitive
to direct the interpreter to use a second opcode dispatdk, tab
which overrides the behavior of heap update operations ih
ging equivalents. It also installs a fresh rollback log & thme. The
conmi t - at oni c- changes primitive simply discards this log
and restores the original opcode dispatch table. This astgtwith
the compilation strategy of compiling each procedure twiomce
with code for logging all updates and once with no logging-é-an
changing closures to have two code pointers.

As stated earlier, preemption of an atomic transactionesiis
to undo its memory changes before yielding to another thrdad
an atomic transaction is not complete after using an eritines-
lice, it may need a longer uninterrupted span in which to quenf
its operations. The next time the transaction is schedwdeui,
its quantum is extended to give it more time to complete thizeen
transaction, which is re-executed from the beginning. \&/mdi-
vidual timeslices for a transaction increase in lengthfteguency
with which the transaction is scheduled decreases prapaty.
This ensures that our scheduler treats all threads fairly.

4. Patterns for Escaping Transactions

The primary question addressed by this work is what to do when
the invocation of a continuation causes control flow to cribes
boundary of an atomic call’s dynamic extent. While previewsk

only considered exceptions (i.e., escape continuatitims)generic
nature ofcal | / cc in Scheme requires a more flexible palette of
escape behaviors be made available to programmers. Foipéxam
cal | / cc can be used to implement exceptions, value consumers,
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Figure 1. A tree of call stacks used to describe escape behaviorsghoott Section 4

and coroutines. Because it is impossible to detern@npriori
which of these patterns a programmer is employing in a given
situation, we must provide efficient support for the prognaen to
choose the appropriate behavior on a case-by-case basis.

In this section, we describe several ways in which traneasti
and continuations can interact with one another. Each stibge

provides a motivating example from Scheme, defines and names

the appropriate escape behavior, and gives its intuitioh tisually
and with Scheme code that relies on the low-level atomicitikies
first used in Section 3.1.

We demonstrate each meaning using the function call sequenc
illustrated in Figure 1. Each box in the image representsoagr
dure call. Arrows point upward from a callee to its callero&e-
dure calls on the left precede calls on the right; e.g., ptooeb,
was called and returned befobg. Depth-wise, procedures return
in LIFO order (e.g.p: begins beforé., andb, returns beforé, ).
Naturally, continuations saved wittal | / cc can be used to move
freely among available past call-stack states in any order.

If a continuation is both reified witltal | / cc and invoked
inside a single call tatomic (e.g.,cs to ¢ or vice-versa), con-
trol flows as expected: the transaction continues at theiragat
tion target. Similarly, if a first-class continuation coinag a call
to atomic(bs to a3) is invoked, the subsequent atomic call is per-
formed as described earlier: a separate transaction isfasedch
invocation of the atomic call.

4.1 Escape as Normal Return

A procedure may use an escape continuation to return values o
cede control before its lexical end. In this case, the coatilon is
being used as a return method, which should act like thedégind

of the atomic call-committing the effects of the atomic caonap
tion. For example, consider the following atomic transactivhose
body is a loop:

(call/cc (lanmbda (k)
(atomc (lanbda ()

(let loop ((i 0))
(start-iteration i)
(check-for-conpletion k i)
(finish-iteration i)

(loop (+1i 1)))))))

Here, the continuation is used as a “break” construct,nigtthe
programmer return a value fromheck- f or - conpl eti on
in the middle of the loop body without executing theni sh-
i teration procedure. Presumably, the programmer returning a
value throught wishes to retain the results of the loop computation
even though the lexical end of tladomicis never reached.

Another example makes the necessity of this behavior more
explicit:

(lanbda (return x)
(atom c (lanbda ()
(cal cul at e-and-update-1list!
(i f (good-enough? x)
(return x))
(conput e- anot her -1 i st!
(return x))))

X)

X)

The r et ur n continuation delivers the result to a calling
method. While this example usegt ur n directly, more realistic
code might dynamically nest the call teet ur n inside one or
more procedure calls. Because the change itaust be permanent
in the code above, we must commit the atomic call, even though
execution does not reach its lexical end. Therefore, théretes
behavior on escape is to commit computation effects andfiean
control to the continuation target. We call this behavioortonit-
on-escape.”

Visual intuition:  In Figure 1, a commit-on-escape action would
occur if a continuation were saved in any procedureand a proce-
dure called in the atomic context (any) invoked the continuation
to return to a shallower call stack. Because we do not difiiéaiee
between escape continuations and continuations usedyather
purpose, the transaction is also committed if a continudtito any

b; were invoked within the dynamic extent afomic

High-level implementation: atomicwith commit-on-escape can
be conveniently implemented using Schemasanami c-w nd
procedure as follows:

(define (atomc f)
(dynam c-wi nd
(lanbda () #f)



(I anbda ()
(start-atom c-node)
()
(lanbda () (commit-atonic-changes))))

4.2 Escape due to Unexpected Memory State

Continuations are often used by programmers to transferadn
an error handler if the memory state prevents a certain tipara
Consider a non-atomic dequeue operation:

(define (get-from queue! q)
(if (is-enmpty? Q)
(queue-enpty-failure #f)

(dequeue! q)))

In this case,queue-enpty-fail ure is a continuation
for an exception handler. If the user implemented a function
get-from queue-atomcal |l y!:

(define (get-from queue-atomcally!
(atomc (get-fromqueue! q)))

then invocation of the exception handler would exit the dyita
extent of the atomic transaction. Since this is a recoverahlor
condition—allowing the dequeue merely requires us to wait f
another thread to repopulate the queue—it may be correenimh
to wait and retry the operation. Therefore, the invocatidrihe
continuation is merely a signal that a retry operation stiaglcur.
A behavior called “rollback-and-retry-on-escape” prasdcexactly
this: the data changes of the atomic transaction are roied.lThe
continuation target is replaced by a continuation to therivegg of
the atomic call, allowing the call to re-execute from theibhamg
after memory state changes are made by another thread.

Q)

Visual intuition:  To visualize this behavior, we refer to Figure 1.
Much like with commit-on-escape, the escape behavior aciur
any ¢; invokes a continuation into any; or b;. Whereas commit-
on-escape first commits the memory changes and then follosvs t
continuation to its target, rollback-and-retry-on-essamdoes any
memory changes made in thgs and then replaces the continu-
ation’s destination with a new target: the beginning of thé ©
atomic Of course, this will cause an infinite loop unless another
thread modifies global state in the meantime, allowing tloenat
call to follow a different control path.

High-level implementation: This behavior can be implemented
in Scheme as follow3:

(define (atonmic f)
(let ((retry (call/cc (lanmbda (k) k)))
(shoul d-conmit #f))
(dynam c-wi nd
(lanbda () #f)
(lanbda ()
(start-atom c-node)
(et ((v (f)))

(set! shoul d-commit #t)

%
(I anbda ()
(if shoul d-commit
(commi t - at oni c- changes)
(begin
(rol | back-changes)
(retry retry)))))))

3R°RS declares that invoking a continuation in after thunk of a
dynami c-wi nd call is an undefined operation. Nonetheless, this code
compactly expresses the notion we are trying to expressraiitiack-and-
retry-on-escape; the after thunk “redirects” the contrahsfer.

4.3 Escape as Unrecoverable Panic

The previous subsection addressed exceptional condibased
on shared state, but exceptional control transfers alsonagany
assertion failures that would not resolve themselves sinigyl
delaying execution of a transaction. Handling these carditmay
involve rolling back the data state of the atomic call when it
dynamic extent is breached, but following through with tbateol
transfer to the error handler identified by the invoked amumdition.
Consider the following example:

(define (divide-listsl!
(let ((n (car numer))

(d (car denom))

(=0 d)

(div-zero-failure #f)) ;

(set-car! numer (/ n d))

(if (not (null? (cdr nuner)))

(divide-lists! (cdr nuner)

(cdr denom))))

(define (divide-atomnically!
(atom c (lanbda ()
(divide-lists! numer denom)))

nunmer denom

(i f
escape

nunmer denom

Indi vi de-11i sts!, the lists are divided element-wise and im-
peratively updated. If an element of the denominator listemo,
an exception handler is invoked via a continuation thatgssahe
transaction. At this point several memory cells may haveaaly
been updated; for the program to continue in a consistenherait
may need to undo the changes that occurred. But if the derbomin
list is thread-local, then there is no chance that anothreathwill
update the problematic element, meaning the rollbackratg-
on-escape behavior would cause an infinite loop.

What is necessary is an escape behavior that undoes memory
changes made in the transaction, but does not immediateptie
atomiccall. This provides a straightforward way of cleaning up the
side-effects of a failed computation without requiringgrammers
to implement case-specific “undo” behavior, eliminatingttuer
place for bugs to be introducédwe call this behavior “rollback-
and-abort-on-escape.” It is similar to a mechanism suggest
Shinnar et al. [25], which provides a control-transferridgta-
rollback error-recovery mechanism.

This behavior raises two semantic questions. First, whyema
trol transfer made from a procedure execution that semelitic
“never happened?” Second, what memory state should betesflec
in the thrown value? A programmer may reconcile the first tjaas
as she would an interrupt handler: while the trace that chapeex-
ceptional condition to occur is unknown, it is bound to a jgattr
thread, which can be restarted at a known-good reentry pdiet
the exception is handled. With respect to the second, deygtians
are possible. Shinnar et al. make a deep copy of the throwreval
object from the abort-time heap state into the globallyblsheap,
protecting the object’s changes from rollback. Fortresssdwt roll
back changes to memory allocated within the transactiois firlo-
tects the thrown exception object from rollback, thougterehces
from this object to objects allocated pre-transaction kefllect their
original memory states. We suggest a third alternative:iopte-
mentation rolls back all non-initialization writes to memanade
during the transaction. What escapes is the pre-transaeztioe of
the thrown object, or its original value if it was construtte the
transaction. Notice code that throws an immediate valué sisc
#f ,asdi vi de- | i st s! does, is not affected by this dilemma.

4More powerfully, it means undo routines need not be writteram un-
intuitive LIFO style to consider how far along in the processnultistep
mutation has progressed; the transaction log inherenfituees this notion.



Visual intuition: Referring to Figure 1, rollback-and-abort-on-
escape looks much like commit-on-escape; it occurs whercany
invokes a continuation into any; or b;, and allows control to be
transferred to the continuation’s target. But whereas cdrom
escape triggers a commit action upon leaving the dynamienéxt
of atomig rollback and abort will play the undo log at this time,
canceling the transaction’s effects on memory.

High-level implementation: This escape behavior could be en-
coded in Scheme like this:

(define (atonmic f)
(let ((shoul d-commt
(dynami c-wi nd
(lambda () #f)
(lambda ()
(start-atom c-node)
(et ((v (f)))

(set! shoul d-conmmit #t)

#))

v
(lambda ()
(if shoul d-comit
(conmi t - at omi ¢c- changes)
(rol Il back-changes))))))

4.4 Escape and Resumption of aatomics Extent

cal I / cc can be used to implement more complicated control

mechanisms than simple escape targets. One practical éx@np
the use of coroutines for iteration.

(define threshol d-reached #f)

(define (iterate-unti
(atomic (lanmbda ()

threshold iter)

(set! threshol d-reached threshol d)
(let loop ((elt-and-next-fn (iter)))
(set! threshol d-reached

(- threshol d-reached
(car elt-and-next-fn)))
(if (<= threshol d-reached 0)
(set! threshol d-reached #t)
(if (cdr elt-and-next-fn)
(loop ((cdr elt-and-next-fn)))
(set! threshol d-reached #f)))))))
(define (get-next-elt |st)
(call/cc (lanbda (ret)
(let loop ((ret ret)
(I'st Ist))
(loop (call/cc (lanmbda (k)
(if (eq? (cdr Ist) "())
(ret (cons (car Ist) #f))
(ret (cons (car Ist)
(lanmbda () (call/cc
(lanbda (ret) (k ret)))))))))

(cdr Ist))))))

; returns an iterator over |st or #f
(define (list-iterator |st)
(if (null? Ist)
#f
(lambda () (get-next-elt

if enpty.

I'st))))

exanpl e execution, skipping first el enment

Figure 2 shows a program that includes a coroutine iterator (iterate-until some-threshol d

over lists. A call tol i st-iterator will initialize an iterator
procedure over its argument. Calls to that procedure wilimea
pair containing the next element of the list, and anotheaite over
the remainder of the list—a#f if the end of the listis reached. The

iterate-until procedure in this figure uses such an iterator to

atomically evaluate whether the elements of a collection tma
value greater than a certain threshold, and sets a flag ifshise
case. Note that the example invocatiori tfer at e- unti | uses
the iterator to skip the first element of the list.

In this example, we expose an “overly-complicated” listater
that uses continuations to yield values and resume exegutar-
mally this acrobatic use afal | / cc would be hidden behind a li-
brary, but it is exposed for the sake of example. A more cotimgel

(cdr ((list-iterator sone-Ist))))

Figure 2. A list iterator implemented as a coroutine and called
inside an atomic block requires extend-on-escape sersantic

Here, the atomic call’'s behavior, which is referred to agéexl-
on-escape,” permits control transfers across the boundhiys
dynamic extent without changing the transaction’s state.

Visual intuition:  In terms of Figure 1, the example code in Fig-
ure 2 does the following: The call thi st-iterator corre-
sponds to procedurk . This returns a procedure that iterates the
first element, which is immediately calleés]. The result of this

use ofcal | / cc is when iterating over trees or other structures call is a pair containing the first element of the list, and tiest

that require backtracking to reach all elements. We preséirary
tree iterator and a list iterator built withoal | / cc in Figure 6
in the Appendix to demonstrate other procedures that obeiteh
ator interface used in Figure Rf er at e- unt i | should perform
identically regardless of which of these it is passed.

Toiterate-until,the iterator continuation looks like any
other procedure. But because the iterator may be the rekurt o
voking another iterator earlier (as in the example), cdmtray flow
outside the dynamic extent of the atomic call when perfogniin
eration. Becauset er at e- unt i | intends for the entire compu-
tation over the iterated collection to be performed atothicéhe
execution inside the body of the iterator must also be enessgd
by the atomic transaction, even though it is not within thendt
call's dynamic extent.

To facilitate this, the cal{atomic f)should switch the Scheme
interpreter into a transaction, which remains live untilntol
reaches the end of the call 1§ at which point the transaction
completes. Escapes from the dynamic exten}f ahto other dy-
namic extents are thus the programmer’s responsibilityatoygith
a re-entry into the dynamic extent éfto complete the atomic call.

iterator. The callto t er at e- unt i | starts the atomic column of
¢;'s, but each time the next iterator is invoked (by callinger

or (cdr elt-and-next-fn)), control leaves columa for a
continuation in the dynamic extent 6§, while remaining in the
transaction. This continuation then returns the n@alue . iter)
pair to a continuation in the dynamic extentidfer at e- unti |

(i.e., ac;), where the iteration loop continues. The transaction does
not end until the call t@tomicinsidei t er at e- unti | returns.

High-level implementation: The implementation oatomicthat
naturally facilitates this behavior is the simple one allfi sug-
gested in Section 3.1:

(define (atomc f)
(start-atom c-node)
(et ((v (f)))
(conmi t - at om c- changes)

v))

This code may misleadingly suggest that it is acceptablenanait
a transaction by usingal | / cc to return to the end of a different



(define k #f)

(define (increment-pair-atomcally! p)
(atomic (lanbda ()
(set-car! p (+ 1 (car p)))
(call/cc
(lambda (cont) (set! k cont)))
(set-cdr! p (+ 1 (cdr p))))))
(define (weird-behavior)
(let ((my-pair (cons 10 20))
(done #))
(i ncrenent -pair-atomcally!
ny-pair) ; (10 . 20) -> (11 . 21)
(if (not done)
(begin
(set! done #t)
(k #f))) (11 . 21) -> (11 . 22)
; (causes dynamic error)
ny-pair))

Figure 3. Resumption of a completed atomic call breaks the
atomic abstraction. It is a dynamic error in our implemebotato
reach the end of the atomic call a second time.

call to atomicthan the one used to begin the transaction, which is
not the case. A full discussion of nested atomic transastamd
the interaction between atomic transactions opened byutioes

is given in Section 5.2.

4.5 Resumption of a Completed Transaction

If a transaction is committed or aborted, it is said tocoeenpleted
the control state associated with the transaction itselfamger
exists. If a programmer has saved a continuation somewhehei
dynamic extent of this transaction, then he may wistekumethe
completed transaction.

This is problematic from a semantic point of view, because it
allows a “fraction” of an atomic transaction to be re-execkt
suggesting that transactions are not as atomic as interiSee.
Figure 3.) While a first reaction to this problem may be to iisa
resumption of completed transactions, this causes mariyattes
programs to terminate with errors. For example, iteratoichsas
the one in Figure 2 may reside in the dynamic extent of an atomi
call. With respect to Figure 2, this would be the case if wdaegd
the last two lines with:

(iterate-until some-threshold
(list-iterator some-list))

If only a portion of the collection was iterated over, thenatel
transaction may resume iteration of the remaining elemepiss-

ing a saved iterator. But this requires reentry into the ficatm-
pleted) transaction’s dynamic extent, which would causeraor,
even though we intend to use only functional code. On therothe
hand, reaching the commit action at the lexical end of a cetegl
transaction is problematic because the commit action i©ongdr
paired with the start of a transaction.

The semantics we implemented allow resumption of a com-
pleted transaction, but make committing an already-cotadle
transaction a dynamic error. More precisely, control magnter
the dynamic extent of a completed transaction via a contiioia
but it must leave the dynamic extent via another continualtie-
fore the transaction’s lexical end. Reaching the lexical eha
transaction causes the dynamic error. The programmer dlzdst
take note that because the transaction has already beereted)p
side effects in its dynamic extent are no longer performednat

cally; i.e., it is not part of a transaction unless anothansaction
is open at the time of resumption.

Visual intuition: In terms of Figure 1, resumption occurs in the
following circumstances. A continuation to somes saved during
the execution of the transaction, which is then committeatet.
(e.g.,bs5 or bg), this continuation is invoked, shifting control back
into the dynamic extent of thatomiccall, even though the code
is not being executed atomically. Allowing, to then return to
its enclosingatomicis a dynamic error, but if a; escapes the
transaction’s extent via another continuation (e.g., bati bs)
then execution proceeds as expected.

High-level implementation: Supporting resumption while pre-
venting recommits of a completed atomic call can be accahed
with the following implementation citomic

(define (atomc f)
(let ((closed #t))
(start-atom c-node)

(set! closed #f)
(I anbda ()
(fet ((v (f)))

(if closed

(error "Double commit"))
(set! closed #t)
(commi t - at oni c- changes)

v))))

5. Semantics For Transactions in Scheme

Where Section 4 described use cases where different eseape b
haviors are required, here we describe the particular phoes we
added to Scheme to provide atomic transactions suppordiciy @f
these situations.

In the previous section, the escape behavior was defined by
changing the implementation of tteomic procedure. But there
are actually three points in time when it makes sense to f§ptha
intended behavior:

1. When reifying a continuation
2. When opening an atomic call
3. When invoking the continuation

What follows is a description of procedures targeting thiifferent
places in the code, and an informal semantics explainingthew
interact when used together. Table 1 lists all relevant gulaces,
providing both long- and short-form names as well as thgiesy
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In the following paragraphs, we describe the behavior otheac
category of procedures from Table 1 when used in isolation.

Individual Behaviors

The call/cc-* family: The call/cc-* procedures in Table 1 oper-
ate like the canonicatal | / cc; they reify the current continua-
tion and pass it as an argument to the lambda passealltb/ cc.
The difference is that the continuation has an additionaperty
attached that specifies the behavior to use when invokimsgctim-
tinuation escapes an atomic call. The attached behavignaéd
if invoking the continuation does not escape an atomic call.

A user can also redefine the escape behavior bound to a par-
ticular continuation wittset-continuation-escape-behavionthich
takes a continuation and a value indicating which behaviose. A
companion procedureontinuation-escape-behavijaetrieves the
behavior associated with a continuaton.

5Actually, Scheme48 continuations are returned wrappedratquiures,
preventing direct manipulation. We could achieve the dbesdrfunctional-



Reifying continuations:

call/cc/commit
call/cc/rollback
call/cc/retry
call/cc/extend
call/cc/defer

call/cc-with-commit-on-use
call/cc-with-rollback/abort-on-use
call/cc-with-rollback/retry-on-use
call/cc-extends-on-use
call/cc-defers-behavior

(a = void) — a) = «a
(@ = void) — a) —
(¢ = void) — a) = «a
(@ = void) — a) —
(@ — woid) — a) > «a

(
(
(
(
(

Managing continuation-bound behavior:

set-continuation-escape-behavior!
continuation-escape-behavior

(a — void) x behavior — unspecified
(a — woid) — behavior

Defining atomic calls

atomic-with-commit-on-escape
atomic-with-rollback/abort-on-escape atomic/rollback
atomic-with-rollback/retry-on-escape atomic/retry
atomic-extends-on-escape atomic/extend

atomic/commit, atomic

[EDED
(—a)>a
(—a)—a

(—a)—a

Continuation invocation point-bound behavior:

escape-and-commit
escape-and-rollback/abort
escape-and-extend

(a — void) X a — void
(a — void) X a — void
(a — woid) X a — void

Explicitly rolling back transactions:

rollback/abort
rollback/retry

retry

— void
— void

Table 1. The procedures our library provides to facilitate atomansactions

Atomic call definitions: The atomic call defines the boundaries
of a transaction and can specify the behavior to be used by-a co
tinuation when escaping its dynamic extent. Several vigiah
the atomic procedure are provided, each of which is semantically
equivalent to an implementation suggested in Secti@ighicit-

self is a synonym foatomic-with-commit-on-escapk a continu-
ation created witttal | / cc or call/cc-defers-behaviois used to
escape the dynamic extent of such an atomic call, the atoatlic ¢
defines the escape behavior.

Call-site specific behavior: There may be occasions when pro-
grammers wish to override all other precedence rules anckfor
a particular behavior for a given continuation invocatidrhe
commands escape-and-commitescape-and-rollback/abqgrtand
escape-and-extendach receive as arguments a continuation and
a value to pass to the continuation; the continuation isieggb
the value and the behavior specified by the procedure is used,
gardless of the behavior bound to the continuation or théosimng
atomic call. An unfortunate property of these procedurethi
they break the continuations-as-procedures abstractioensise
maintained in Scheme. Nonetheless, they are a straighafdrw
mechanism providing specific behavior in locations whereight
be otherwise cumbersome to achieve.

Explicit rollback commands: Our library provides programmers
with two explicit rollback commands to abort the currentnac-
tion: rollback/retryandrollback/abort While both complete all live
atomic calls by undoing all memory operations since the fivet
atomic call began, the post-rollback control flow differsveeen
these two commandsollback/retry resets control to the begin-
ning of the first atomic call in the current transaction andibe
re-executing the transactiorollback/abort treats the first atomic
call made as @al | / cc that has just returned; control is sent to
the end of this initial atomic call.

ity via a lookup table with weak pointers to the continuasiphut for expe-
diencecall/cc-* actually take as an argument a two-parameter procedure—
the continuationt and a handlé:. This handle is then used to manipulate
the escape behavior for its companion continuation. Thgraical | / cc

form remains unmodified, silently discarding its handle.

extend

rollback/retry

commit rollback/abort

Figure 4. Nested escape behaviors form a semilattice

5.2 Nested and Conflicting Behaviors

The problem with letting the programmer specify the behawio
escaping continuations is that multiple specifications @amflict.
First, invoking a continuation can cause control to tranafgoss
the dynamic extent of multiple atomic calls and these callsy m
have specified different behaviors. Second, an atomic calla
call/cc-* call might specify different behaviors. In this section we
discuss how we resolve both kinds of conflicts.

Nested atomic calls: Calls to theatomic-* procedures can be
nested both statically and dynamically. Maintaining trapability
is important to preserve the opacity of library calls.

When all nested atomic calls have the same escape behaeior, t
common escape behavior is used as a continuation escapethfro
entire set of atomic calls. (For example, if several atoraitsovere
opened inside one another, each createdmynic-with-commit-
on-escapgescape from this set of atomic calls would commit them
all.) If these calls were instead made with differatdmicderiva-
tives, then this requires a more complicated rule. It is isgiloe,
for example, to satisfy both rollback/abort and commit @piens
simultaneously. While our current implementation simmjses a
dynamic error, a more robust solution is to arrange the faoape
behaviors in the semilattice shown in Figure 4. When escgiipam
a set of nested atomic calls, the escape behaviors assbuidte
these calls are collected and joined to find their least uppand;
this behavior is then applied to all the atomic calls beinzcapsd.



We chose the hierarchy described in Figure 4 because roll-
back/retry is in general always “safer” than commit or raltk/abort.
It will never lose a computation, nor will it inadvertentlpmmit
undesired changes. Tleatendbehavior sits at the top of the lattice
because programmers who expressly intend to leave and eesum
the dynamic extent of a transaction must ensure that alledest
transactions are closed properly.

Atomic call behavior vs. call/cc behavior: The situation is further
complicated by adding continuation-bound escape belmtadhe
mix. A programmer can reify a continuation using one of the
procedures in the first section of Table 1, suchca#i/cc-with-
commit-on-useand then use it to escape a transaction opened
with (for instance)atomic-with-rollback/retry-on-escap®ur rule
is that the behavior associated with the continuation idesrthe
escape behavior associated with the atomic call itself bEtavior
lattice is ignored in this case, as it often makes sense twall
multiple distinct escape behaviors in the same transaction

We believe that this hierarchy makes the most sense whegr-brin
ing together multiple behavior specifications. Considerftillow-
ing example procedure:

(define (yield-from queue!
(atomc (lanbda ()
(return (get-from queue!

return q)

a)))))

This procedure invokes a continuation nanreet ur n to yield
values from the procedure body and should commit its enclos-
ing transaction. By contrast, thget - f r om queue! procedure
defined in Section 4.2 may invoke an empty-queue-handlimg co
tinuation which, in an atomic transaction, should be igdoi®
favor of retrying the transaction. Even though these bairavi
conflict with one another, this procedure can be implemebted
definingyi el d-fr om queue! to commit on escape (by using
atomic-with-commit-on-escapebut attaching the rollback-and-
retry-on-escape behavior to the error-handler contionativoked
in get - f rom queue! by reifying the continuation witleall/cc-
with-rollback/retry-on-use

There may be cases in which the ability to override the aall/c
driven behavior with the behavior specified by the atomid ixal
desirable, but we believe that the precedence we have inepitem
makes sense in the majority of cases. There is fundamersgally
“arms race” between clients of continuations and defingiarf
continuations to provide the definitive behavior. Our inmpénta-
tion allows the continuation to override the atomic call,ilwmot-
ing that instrumentation of the continuation call-sitetwine of
the escape-and-procedures provides the atomic call with a “last
chance” mechanism to mandate behavior.

Coroutine transactions: By using the extend-on-escape behav-
ior, it is possible to move between live atomic calls and elttem

in any order, implying that one is not properly nested witttie
other. This is possible in cases involving mutually-reagsorou-
tines containing atomic calls. Referring back to Figure:d can
create an atomic call (the column @fs), which then escapes back
into a3. Another atomic call (e.g., another column ®fs parallel

to the existing one, but not shown) represents the body ofldir a
tional coroutine, which may invoke continuations into thigimal

¢; column and vice-versa. The coroutines will be on differept d
namic extents, each containing a distinct atomic call. Beeahey
use the extend-on-escape behavior, these atomic callsrrdivea
even when leaving one dynamic extent for the dynamic extént o
the other coroutine via a continuation.

The result of this activity is atomic calls that are interled
rather than nested; there is no “inner” or “outer” atomicl.chi
Figure 5, the upper diagram represents atomic calls whieh ar
nested in dynamic extent. The “inner” atomic calls are cottedi

transaction start final commiit

Dynamically nested live-atomics

Dynamically interleaved live-atomics

time

Figure 5. A comparison of LIFO-structured transactions and
coroutine transactions. Boxes represent the atomic Lailgs on
the current dynamic extent at a point in time; different ssacep-
resent different calls tatomic

before the outermost atomic call commits; the last comntitadty
makes the memory changes available to other threads. lowher |
diagram, an atomic call is suspended with the extend-oapesc
behavior and another atomic call is begun. The “dormanttmito
call remains live, as denoted by the dashed arrows, and will b
resumed later by a continuation. These atomic calls coatiou
transfer control between one another until they are alliddially
committed, at which point memory changes are made visible to
other threads. Because LIFO order is not maintained inligrna
they need not be committed in LIFO order. Of course, intexdea
atomic calls may make additional LIFO-structured atomidscas
well, though this is not shown in Figure 5.

In cases where a continuation escapes one or more atonsc call
on the current dynamic extent, the key question is whethalsi
implicitly escapes the dormant live atomic calls on othenaiyic
extents. In our system, the answer is no; escape behavia-is d
termined by considering only what happens as a continuatssn
capes atomic calls on the current dynamic extent. To contmit t
total transaction, all atomic calls on all dynamic extentsstrbe
committed either by escaping properly from each of the aallsy
reaching their respective lexical endpoints. The order liictv the
atomic calls are completed is insignificant.

Contrary to the commit operation, rollback in the form ofryet
or abort affects the entire transaction containing all latemic
calls, even if individual nested or interleaved componéaige been
committed. Therefore, if a continuation is used to escapet@mic
call with the rollback-and-abort-on-escape behavior, ¢betinu-
ation must escape from all live atomic calls; if the contitiom
target is inside another live atomic call, it is a dynamimertt is
tempting to attempt to support partial abort or retry operat such
as described in [2], but this existing work presupposesadtmhic
calls are nested and commit in LIFO order. Because of thengiate
for atomic calls to become interleaved, it is not clear whicdm-
ory operations should be undone by a partial rollback ojmrair
where a transaction should be restarted from in the evenpaitéal
retry operation.

Implementing our semantics in the presence of any number of
nested and interleaved atomic calls is refreshingly stitéagward.



When a transaction is not running, invokirrgomic-* begins a
transaction. Subsequent invocationsatdmic-* cause the thread’s
live atomic call count to increase by one. The total trarieact
does not commit until every live atomic call is completedthé
live atomic call counter is greater than one, committing omec
call simply decrements the counter and marks the particathas
completed. The final commit operation sets the counter to aed
publishes the memory changes from the transaction to thHeablo
state.

6. Implementation

This section describes our implementation, which has twm-co
ponents. The first is a set of modifications to the run-timeesys
of Scheme48 to facilitate atomicity on top of its existingmuey
model. The second is a library of procedures called by the tase
denote blocks of code to be run in atomic transactions, ancettie
continuations with particular escape semantics.

Our implementation is relatively compact; we added roughly
1,000 lines of code to an 80,000 line code-base, and modifiedta
another 500 of the existing lines of code.

We chose the Scheme48 implementation of Scheme to modify

for three reasons: it is fully FRS compliant, it has been used
successfully in projects before, and it was designed to Isdyea
understood and modified [18].

In the rest of this section, we describe the modificationdéo t
run-time system in greater detail, and the ramificationshefse
modifications on the behavior afllback/abort This is followed by
a description of our additions to the user-accessiblefjbk&le then
evaluate our implementation in terms of asymptotic conipteand
performance on some microbenchmarks.

6.1 Run-time System Modifications
As mentioned in Section 3, we took advantage of the threading

Additional opcodes were added to switch the half of the array
the opcode dispatch routine uses, and to perform commitalixd r
back operations. The rollback opcode replays the rollbagkith
LIFO order, restoring the initial memory state. The comngitode
discards the rollback log.

6.2

Because of the particular logging policy we implementedpaa-
tion of a continuation with the rollback-and-abort-on-&se be-
havior can cause potentially surprising results if progreers do
not carefully consider the values passed to the continoatio-
mediate values4@, #t ,’ (), etc.) are always transmitted without
error. But any mutable data structures promoted out of theniat
transaction will have any memory mutations rolled back pites
their escaping status. Any data structures constructetkiatomic
transaction will still survive (th&ons operation itself is not un-
done, as superfluousons cells will be garbage collected later),
but their mutations are rolled back. Thus the expression:

Information Escape on Rollback

(atom c-with-rol | back/ abort-on-escape
(lanbda ()
(let ((foo (cons 1 2)))
(set-car! foo 100)
(set-cdr! foo (cons 3 4))
(k foo)))) ; k is sonme continuation

willreturn(1 . 2) tothe continuation reified ih. Programmers
are responsible for determining that only “good” data issgaisto
continuations with the rollback-and-abort-on-escapeakiim.

6.3 User Library

Most of Scheme48's functionality is in a large package lipra
containing procedures available to Scheme programs. \Wedealal
at oni ¢ package containing the procedures listed in Table 1.

We extended the structure Scheme48 uses for per-thread stat

model used in Scheme48 to simplify the demands of atomicity. to include data relevant to the thread’s transaction sTtis data
When atomic mode is enabled, a log retains information about jncludes the number of live atomic calls, the escape behawiase
the old value of a changed memory location in case a rollback for the current dynamic extent, and the continuations tokevon

event occurs. When the scheduler interrupts a thread inamiat
transaction, it is rolled back before another thread runsiekv
the atomic thread is resumed (starting again from the béginn
of the atomic transaction), the scheduler doubles the heaftts
timeslice, allowing it to make more progress toward coniplet
To prevent starving all other threads, as a thread’s tiresk
increased, its scheduling frequency is decreased propaity.
When the atomic transaction is committed, the timeslicetier
thread is restored to its original duration. Timeslice nfiodiion
occurs only if the entire previous timeslice was spent etiegu
a transaction, so that threads are not given a timesliceeaser
unnecessarily.

Scheme48 uses a bytecode compiler and virtual machine to ex-

ecute programs; Scheme text is compiled to bytecode opesati
that are then dispatched by an array of procedures thatrperfo
one high-level instruction each. Our implementation dealthe
length of this array and uses it in two logical halves. Prored
0...n — 1 represent the normal “non-atomic” operations. Proce-
duresn ... 2n—1 are their atomic-mode equivalents. Most opcodes
reuse the same procedure in both halves. Certain opcoddsasu
those that govern non-initialization memory updates, udéfar-

ent procedure in the atomic half of the array to insert anyento a

log containing the previous value of the memory address figai

in addition to performing the normal memory update operatigy
doubling the number of opcodes and maintaining in the \irtua
machine state which opcodes to use, we incur no per-ingtruct

rollback/abort or retry. As the existing thread structusealready
fairly heavyweight, this is in line with the Scheme48 impkm
tation. Some of this information changes based on the inogtrm
atomic call on the current dynamic extent. Thus the threaatsire
is updated through thunks installed widlynami c- wi nd. These
thunks also perform the user’s specified escape behaviopid
vent multiple commits, as Section 4 described.

Our implementation relies on a Scheme48-specific behavior:
while R°RS specifies that invocation of a continuation inside a
dynamic-windbefore or after thunk is undefined, Scheme48 fol-
lows the continuation to its target in the “usual mander.”

6.4

In this subsection we briefly discuss the asymptotic comifleft
various operations in our implementation. Most operatiomar
very little overhead.

Rollback is potentially the most time-consuming operation
every memory write performed in the atomic transaction, itsin
be undone. Rollback buffers af&n) in the number of writes per-
formed, not in the number of locations mutated. This makes lo
ging of mutationgD(1) as they simply prepend to the list. We be-
lieve this is important because commit is the most commoe faas

Implementation Complexity

SWhile we exploit this Scheme48 behavior for convenience, lvee
lieve it is unnecessary for building such an atomic systeoheBe48’s
dynami c- wi nd behavior is simply an efficient way to encode our nested

overhead and do not need to recompile any code before it can beescape behavior handling. Without this property, we woutehmade

used within a transaction.

changes lower down in the Scheme48 virtual machine.



short transactions [24]. This does not always yield the pedor-
mance; for long-running transactions that modify a few tmses
many times, a hashing-based log would prove more efficient.

Atomic commit is anO(1) operation, as it simply discards the
root of the rollback log, which is garbage collected later.

Escape from an atomic transaction@§n + m) in the num-
ber of atomic calls open on the escaping dynamic extepaad
the target dynamic extentr(), because the thunks installed by
dynami c-wi nd for each atomic call must be executed. Begin-
ning a transaction is a®(n) operation in the height of the call
stack because it must save a continuation, which i® @mn) oper-
ation in Scheme48 (though in testing, we discovered thavther
constant-time operations involved in beginning a trarileaaiom-
inate this penalty for most reasonably-sized call stadksjering
subsequent atomic calls inside the same transactio@ @rgoper-
ations. Leaving a single nested atomic call is als@dh) opera-
tion.

The total memory consumed by a transactio@{s+m) where
n is the number of live atomic calls amd is the number of memory
mutations performed during the transaction. For most aetisns,
m will dominaten.

6.5 Evaluation and Microbenchmarks

We tested our implementation against a suite of test program
we wrote to exercise the various aspects of our feature st an
confirmed that they operate as expected. All example codaded

in this paper operates correctly on our implementation.

We evaluated our system’s performance on two microbench-
marks to demonstrate that the semantics we describe ibleasi
current hardware without suffering a major performancegttgn
The benchmarks are described below, and the results arenshow
in Table 2. All benchmarks were run in “benchmark mode” in
Scheme48, which allows the bytecode compiler to inline groc
dures for better performance. Tests were conducted on acdual
Pentium-D system operating at 3.2 GHz with 1 GB of RAM, run-
ning Red Hat Fedora Core 5.1 with Linux kernel version 2.6.16
The Scheme48 version modified by our implementation is ¥1.4.

In one benchmark, we generate a listoihtegers0...n — 1.

In an atomic transaction, we imperatively increment eashédl-
ement, resulting in a list ranging ovdr...n. We compare the
performance of this with an unsynchronized version; witle oS-
ing Scheme48'’s “proposals” mechanism which provides thetmo
straightforward comparison; and with one which obtains esd
leases a lock when incrementing eanbins cell. A “real world”
lock-based system would have performance somewhere betwee
that of the completely unlocked case and the individuallykéal
case, with performance inversely proportional to the glaiy

of locking. It is unclear why the proposal-based case peréar
so much slower than the other tests. Results are reportedtin b
the number of list elements processed per second (in mestipl
100,000), and as a relative metric scaled such thaatmmicprim-
itive is 1.00. (Higher values represent better performance

We further explored the list processing benchmark space by
timing the iterator mechanism in Figures 2 and 6. Lists oé-int
gers manipulated througtons cells were iterated over with both
coroutine and “straightforward” iterator procedures. Togoutine
iterator was timed in both an atomic context and in an “urisafe
non-synchronized context. The procedural iterator (Fégliy was
only run atomically. In both cases, coroutines were muckveio
than the procedural iterator due to the overheadalfl / cc; per-
forming iteration atomically added a modest overhead of 17%

7While the current version is 1.6, the most recent versiorilatie in
January 2007 when we began our work was 1.4. The differenetrgebn
1.4 and 1.6 are small enough that this should not be a majtrfac

list matrix

10° elts/s | scaled| 103 elts/s| scaled
atomic 24.32 1.00 5.05 1.00
proposal 0.024 | 0.001 1.42 0.28
unlocked 26.27 1.08 6.15 1.21
locked 1.66 0.07 5.97 1.18
atomic-coroutines 1.20 1.00
unsafe-coroutines 1.40 1.17
atomic-procedural 13.27 | 11.05

Table 2. Performance Microbenchmarks

In another benchmark, we multiply twa x n matrices of
integers to yield a thireh x n matrix. This was performed using our
atomic transactions, with no locking, using Scheme48 psal
and with locks on each row or column of an input matrix. It
is interesting to note that since we used #rer ays structure
defined in SRFI 47 to implement matrices, for the proposakta
benchmark we had to modify ther r ays package to provide
getter and setter functions that used the underlying datatste in
a proposal-safe manner, underscoring the lack of abstraethen
using explicit proposal-based memory access.

The benchmark results in Table 2 demonstrate that our imple-
mentation of atomic transactions provides computatioauphput
at an acceptable performance rate. The existing Schemepdgpr
als mechanism incurs a large performance penalty when used i
each benchmark. The atomic transactions have between an®% a
21% overhead relative to the case with no synchronizatiaidifg
explicit locks to the code causes a sharp performance decm@a-
portional to the degree of locking granularity.

Further testing demonstrated that our modifications to Be8
do not cause a significant performance difference in homigto
code when compared to the original Scheme48 system.

7. Future Work and Conclusions

The primary limitation of our current implementation is thzer-
forming 1/O within a transaction is undefined behavior. Ruifig
output until the transaction commits would be straightfarsy but
a more thorough solution would require adapting relateckvjibit,
4, 3, 24] on this unsettled issue. Additional future work ba tan-
guage definition includes a more rigorous semantic defimiéiod
considering the interaction between transactions and actharol
effects (e.g., shift/reset). For the latter, the most @h¥o Scheme
are the “error” and “exception” constructs described in 8RE
and 34, respectively. (Since the reference implementatésaribed
in SRFI1 34 is defined in terms afal | / cc, there may be few new
concerns.)

Defining what it should mean when a continuation invocation
crosses a transaction boundary is a difficult decision thimbately
depends on both the intended use of the continuation andatheen
of the transaction itself. Therefore, we defined a varietpetfiav-
iors and demonstrated how to implement them. Much of the-diffi
culty arises from continuations’ many uses; one way to view o
user-specified escape behaviors is as a way of “tantid’ / cc
by requiring annotations. We know of no other way to providgtfi
class continuations and software transactions in the sangrige.
Our implementation, utilizing a combination of high-le&theme
techniques (e.g., uses dfynami c- wi nd) and low-level inter-
preter techniques (e.g., duplicating the opcode tabls)gbad per-
formance and will be a useful tool for investigating prograimg
with software transactions.
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(bt-next (cadr bt) k ret)))))
(if (not (null? (cddr bt)))
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(call/cc (lanmbda (in) (k in))))))))))
(bt-next (cddr bt) next newret))
(i f next
(ret (cons (car bt)
(lanmbda () (call/cc (lanbda (in)

(next in))))))
(ret (cons (car bt) #f)))))

(define (tree-iterator tree)
(if (null? tree)
#f
(lambda () (call/cc (lanmbda (ret)
(bt-next tree #f ret))))))
; Another list iterator, w thout continuations
(define (Ist-next |st)
(if (null? (cdr Ist))
(cons (car Ist) #f)
(cons (car Ist)
(lambda () (lst-next (cdr Ist))))))
(define (list-iterator |st)
(if (null? Ist)
#f

(lambda () (lst-next Ist))))

Figure 6. Additional procedures that return iterators conforming
to the interface in Figure 2
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A. lIterator Examples

Figure 6 presents additional iteration functions confomgnio the
interface in Figure 2. Bothi st -iterat or andtree-iterator
accept a data structure to iterate over and return a thurikstzen
iterator, or#f if there are no iterable elements. Calling the thunk
returns a pair containing the next value in the collectiothamother
thunk (or#f ). Thei t er at e- unt i | procedure in Figure 2 oper-
ates identically regardless of which iterator is used, ayhrdless
of whether the iterator is initially invoked inside a trangan.



