
Name:

CSE505, Fall 2012, Final Examination
December 10, 2012

Rules:

• The exam is closed-book, closed-notes, except for one side of one 8.5x11in piece of paper.

• Please stop promptly at 12:20.

• You can rip apart the pages.

• There are 100 points total, distributed unevenly among 6 questions, most of which have multiple
parts.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit.

• The questions are not necessarily in order of difficulty. Skip around. In particular, make sure you
get to all the problems.

• If you have questions, ask.

• Relax. You are here to learn.

1

For your reference (page 1 of 2):

e ::= λx. e | x | e e | c | {l1 = e1, . . . , ln = en} | e.li | fix e
v ::= λx. e | c | {l1 = v1, . . . , ln = vn}
τ ::= int | τ → τ | {l1 : τ1, . . . , ln : τn}

e→ e′

(λx. e) v → e[v/x]

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

e→ e′

fix e→ fix e′ fix λx. e→ e[(fix λx. e)/x]

{l1 = v1, . . . , ln = vn}.li → vi

ei → e′i
{l1 = v1, . . . , li−1 = vi−1, li = ei, . . . , ln = en} → {l1 = v1, . . . , li−1 = vi−1, li = e′i, . . . , ln = en}

Γ ` e : τ

Γ ` c : int Γ ` x : Γ(x)

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

Γ ` e : τ → τ

Γ ` fix e : τ

Γ ` e1 : τ1 . . . Γ ` en : τn labels distinct

Γ ` {l1 = e1, . . . , ln = en} : {l1 : τ1, . . . , ln : τn}
Γ ` e : {l1 : τ1, . . . , ln : τn} 1 ≤ i ≤ n

Γ ` e.li : τi

Γ ` e : τ τ ≤ τ ′

Γ ` e : τ ′

τ1 ≤ τ2

{l1:τ1, . . . , li−1:τi−1, li:τi, . . . , ln:τn} ≤ {l1:τ1, . . . , li:τi, li−1:τi−1, . . . , ln:τn}

{l1:τ1, . . . , ln:τn, l:τ} ≤ {l1:τ1, . . . , ln:τn}
τi ≤ τ ′i

{l1:τ1, . . . , li:τi, . . . , ln:τn} ≤ {l1:τ1, . . . , li:τ
′
i , . . . , ln:τn}

τ3 ≤ τ1 τ2 ≤ τ4
τ1 → τ2 ≤ τ3 → τ4 τ ≤ τ

τ1 ≤ τ2 τ2 ≤ τ3
τ1 ≤ τ3

e ::= c | x | λx:τ . e | e e | Λα. e | e[τ]
τ ::= int | τ → τ | α | ∀α.τ
v ::= c | λx:τ . e | Λα. e

Γ ::= · | Γ, x:τ
∆ ::= · | ∆, α

e→ e′

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

e→ e′

e[τ]→ e′[τ] (λx:τ . e) v → e[v/x] (Λα. e)[τ]→ e[τ/α]

∆; Γ ` e : τ

∆; Γ ` x : Γ(x) ∆; Γ ` c : int

∆; Γ, x:τ1 ` e : τ2 ∆ ` τ1
∆; Γ ` λx:τ1. e : τ1 → τ2

∆, α; Γ ` e : τ1

∆; Γ ` Λα. e : ∀α.τ1

∆; Γ `e1 : τ2→τ1 ∆; Γ ` e2 : τ2

∆; Γ ` e1 e2 : τ1

∆; Γ `e : ∀α.τ1 ∆ ` τ2
∆; Γ ` e[τ2] : τ1[τ2/α]

2

For your reference (page 2 of 2):

e ::= . . . | A(e) | B(e) | (match e with Ax. e | Bx. e) | (e, e) | e.1 | e.2
τ ::= . . . | τ1 + τ2 | τ1 ∗ τ2
v ::= . . . | A(v) | B(v) | (v, v)

e→ e′

e→ e′

A(e)→ A(e′)

e→ e′

B(e)→ B(e′)

e→ e′

match e with Ax. e1 | By. e2 → match e′ with Ax. e1 | By. e2

match A(v) with Ax. e1 | By. e2 → e1[v/x] match B(v) with Ax. e1 | By. e2 → e2[v/y]

e1 → e′1
(e1, e2)→ (e′1, e2)

e2 → e′2
(v, e2)→ (v, e′2)

e→ e′

e.1→ e′.1

e→ e′

e.2→ e′.2 (v1, v2).1→ v1 (v1, v2).2→ v2

Γ ` e : τ

Γ ` e : τ1 + τ2 Γ, x:τ1 ` e1 : τ Γ, y:τ2 ` e2 : τ

Γ ` match e with Ax. e1 | By. e2 : τ

Γ ` e : τ1

Γ ` A(e) : τ1 + τ2

Γ ` e : τ2

Γ ` B(e) : τ1 + τ2

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 ∗ τ2
Γ ` e : τ1 ∗ τ2
Γ ` e.1 : τ1

Γ ` e : τ1 ∗ τ2
Γ ` e.2 : τ2

e ::= x | λx. e | e e | (e, e) | e.1 | e.2 | letcc x. e | throw e e | cont E
v ::= λx. e | (v, v) | cont E
E ::= [·] | E e | v E | (E, e) | (v,E) | E.1 | E.2 | throw E e | throw v E

e
p→ e′

E[e]→ E[e′] E[letcc x. e]→ E[(λx. e)(cont E)] E[throw (cont E′) v]→ E′[v]

(λx. e) v
p→ e[v/x] (v1, v2).1

p→ v1 (v1, v2).2
p→ v2

Module Thread:

type t

val create : (’a -> ’b) -> ’a -> t

val join : t -> unit

Module Mutex:

type t

val create : unit -> t

val lock : t -> unit

val unlock : t -> unit

Futures:

type ’a promise

val future : (unit -> ’a) -> ’a promise

val force : ’a promise -> ’a

Module Event:

type ’a channel

type ’a event

val new_channel : unit -> ’a channel

val send : ’a channel -> ’a -> unit event

val receive : ’a channel -> ’a event

val choose : ’a event list -> ’a event

val wrap : ’a event -> (’a -> ’b) -> ’b event

val sync : ’a event -> ’a

3

Name:

1. (20 points) Consider the language with subtyping (with the typing judgments Γ ` e : τ and τ1 ≤ τ2)
on the first reference page.

(a) Prove this theorem: If · ` v : τ1 → τ2, then there is some x and e such that v is λx. e. Hint: You
need induction and a helper lemma about subtyping that you should state carefully and prove by
a second induction argument.

(b) Explain in 1–3 English sentences where in the proof of Type Safety we need the fact you proved
in part (a).

4

Name:

2. (15 points) Each part of this problem considers a type in System F. For this type:

• If no closed term has this type, explain briefly and informally why not.

• If all closed terms of this type are equivalent, do all the following:

– Give one such term.

– Explain briefly and informally why all terms are equivalent.

– Give a full typing derivation of the term you gave.

• If there are two or more closed terms of this type that are not equivalent, then give two non-
equivalent terms. (No explanation or typing derivations necessary.)

(a) ∀α.(α→ int)

(b) ∀α.(int→ α)

(c) ∀α.(int→ int)

(d) ∀α.(α→ α)

5

Name:

3. (15 points) Consider this OCaml code for appending two lists:

let rec append xs ys =

match xs with

[] -> ys

| x::xs’ -> x :: (append xs’ ys)

(a) What is the type of append above?

(b) For a given call to append above, approximately how deep would the call-stack grow in terms of
the function arguments?

(c) Use a helper function written in continuation-passing style to give a different version of append
that uses a small constant amount of stack space.

(d) What is the type of the helper function you used in part (c)? (Note the type of append itself
should still be the same as in part (a).)

(e) For one “bonus point” give yet another version of append that uses only a small constant amount
of stack space. This version will need a helper function but should not use any function closures
or higher-order functions.

6

Name:

4. (12 points) Consider shared-memory multithreading with locks. Give pseudocode for a program that:

• Is data-race free. That is, it has no data races on any execution.

• Does not follow consistent locking. That is, there are executions with at least one variable that
is accessed by multiple threads without there existing a lock that the threads always hold when
accessing the variable.

• Every shared variable is written to by at least one thread on at least some execution. (This avoids
the trivial solution of a program that does reads but not writes.)

Your pseudocode can look like the following wrong answer, where we have shared variables and locks
and threads that run in parallel:

Shared data: x=0, y=0, lock m

Thread 1: if(x==0) { sync(m) { y++; }}

Thread 2: sync(m) { x++; } y++;

7

Name:

5. (15 points)

(a) In this problem, you will complete this Concurrent ML program by filling in the body for
make_thingy so that it obeys the specification described below the code:

open Thread

open Event

let add (in1,in2) i = sync (send in1 i)

let halve (in1,in2) = sync (send in2 ())

type thingy = int channel * unit channel

let make_thingy k = (* your code here *)

• make_thingy should return a new “thingy” that has an initial internal “state” of zero.

• A call to add with a “thingy” adds i to the state of the “thingy”.

• A call to halve with a “thingy” divides the state of the “thingy” by two.

• However, a call to halve must block unless the current state of the “thingy” is greater than
or equal to k (the argument to make_thingy when the “thingy” was created).

• Every time the state changes, “thingy” prints the current state as Sum is x where x is the new
state. This includes when the state is initialized, so the first thing printed will be Sum is 0.

• For full credit, do not use ML’s references, but this is only worth about a point.

(b) Give an ML signature (an .mli file) for the program in part (a). Your signature should allow the
functions to be used as intended but not expose anything that allows the communication protocol
or specification to be violated.

8

Name:

6. (23 points) Consider a class-based OOP language with static types intended to prevent “no matching
method” errors. Assume “subclassing is subtyping.” For each of the following, indicate if it violates
type safety. If it does violate type safety, give a short example that gets stuck. (If not, no explanation
necessary.)

In your examples, assume B is a subtype of A with a method foo not in A. You can fill in this template:

class A { }

class B extends A { void foo() }

class C { /* put stuff here */ }

class D extends C { /* put stuff here */ }

main program: /* put stuff here */

(a) When overriding a method, we can change an argument type to be a supertype of what it was in
the superclass’ method.

(b) When overriding a method, we can change an argument type to be a subtype of what it was in
the superclass’ method.

(c) When overriding a method, we can change the result type to be a supertype of what it was in the
superclass’ method.

(d) When overriding a method, we can change the result type to be a subtype of what it was in the
superclass’ method.

(e) A subclass can change the type of a (mutable) field to be a subtype of what it was in the superclass.
(This is changing the type of a field, not adding a second field.)

(f) A subclass can change the type of a (mutable) field to be a supertype of what it was in the
superclass. (This is changing the type of a field, not adding a second field.)

9

Name:

Extra room for any problem where you might need it

10

