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CSE505, Fall 2012, Midterm Examination
October 30, 2012

Rules:
e The exam is closed-book, closed-notes, except for one side of one 8.5x11in piece of paper.
e Please stop promptly at Noon.
e You can rip apart the pages if you like.

e There are 100 points total, distributed unevenly among 5 questions (most of which have multiple
parts).

Advice:
e Read questions carefully. Understand a question before you start writing.

e Write down thoughts and intermediate steps so you can get partial credit.

The questions are not necessarily in order of difficulty. Skip around. In particular, make sure you
get to all the problems.

If you have questions, ask.

Relax. You are here to learn.
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e Preservation: If -+e: 7 and e — €/, then - e’ : 7.
e Progress: If - - e : 7, then e is a value or there exists an ¢’ such that e — ¢’.

e Substitution: If I',z:7’' Fe:7and '€’ : 7/, then I' - efe/x] : 7.
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1. (26 points) This problem considers a language that is like the language for IMP expressions (not
statements), but where we have pizels instead of integers. A pixel value contains three numbers between
0 and 255 (the first for red, the second for green, the third for blue, but that is not relevant much).
Here is the syntax and an English description of the semantics:

e == pla]|e+e|lighten e|darken e

p == {0

H == -|Huzxzw—p

(¢ € {0,1,...,255})

(a: S {Xl,Xg,...,y17Y2,...,Zl,ZQ,...,...})

e Heaps and variables work as usual, with values being pixels.
e As indicated in the syntax, all parts of pixel values must always be between 0 and 255 inclusive.

e Addition adds each component of its pixel arguments separately to produce a new pixel, with
sums greater than 255 “rounded down” to 255.

e A “lighten” expression produces a pixel with each component being one more than it was in the
argument, again with a max of 255 (i.e., 255 stays 255).

e A “darken” expression produces a pixel with each component being one less than it was in the
argument, with a min of 0 (i.e., 0 stays 0).

(Notice higher values are lighter.)

(a) Give a large-step operational semantics for this language, with a judgment of the form H ; e | p.

e Use 5 rules. This is a good hint: there are other approaches that need many more rules.

e Use from mathematics (“blue math” in terms of lecture) min(z,y) and max(z,y) for com-
puting the minimum and maximum of two numbers. Also use addition and subtraction.

(b) Using your answer to part (a), prove this: H ; lighten e | pif and only if H ; e+ (1,1,1) | p.

(c¢) Define inference rules for a predicate noblack(e) that holds if none of the pixel constants in e are
the constant (0,0,0) and e contains no “darken” expressions.

(d) Disprove this: If H ; e | p and noblack(e), then p # (0,0, 0).
Solution:
(a)

H;plop H;z | H(x)

Hi el | {c1,e0,c3) Hjea I (eq,05,0)
H; e;+ey | (min(255,¢1 + ¢4), min(255, c2 + ¢5), min(255, ¢3 + ¢¢))

H;el (c,c2,03)
H ; lighten e | (min(255,¢; + 1), min(255,ce + 1), min(255, ¢c3 + 1))

H;el (c,c,0c3)
H ; darken e | (max(0,c; — 1), max(0,ce — 1), max(0,c3 — 1))
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(More room for answering problem 1)

Solution:

(b) Prove the two directions separately. First assume H ; lighten e | p. Inversion (only the lighten
rule applies) ensures there is some ¢y, ¢, and ¢z such that p is (min(255, ¢; + 1), min(255, ca 4+ 1), min(255, ¢3 + 1))
and H ; e || {(c1,c2,¢3). Sowecanuse H ; e || (c1,c2,c3) and the addition rule to derive:

Ha € ‘U <017627C3> Ha <]-713]-> U’ <17171>
H;e+(1,1,1) 4 p

Now assume H ; e+ (1,1,1) | p. Then inversion (only the addition rule applies) ensures
there is some ¢y, ca, and ¢z such that p is (min(255,¢; + 1), min(255, co + 1), min(255, c3 + 1))
and H ; e | (c1,¢9,c3) (because another inversion ensures (1,1,1) can evaluate only to itself).
So we can use H ; e | {c1,c2,c3) and the lighten rule to derive:

Ha € ‘U <017027C3>
H ; lightene | p

(¢) (Note if you insist that = and # be used only on integers, then we need three rules for pixel
constants.)

p # (0,0,0) noblack(e;) noblack(ez) noblack(e)
noblack(x) noblack(p) noblack(e; + e3) noblack(lighten e)

(d) This is false because of variables. Consider any heap H where H(z) = (0,0,0). Then H ; = |
(0,0,0) but noblack(z).
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. (19 points) In this problem we implement the language from Problem 1 in OCaml and write another
related OCaml function. Take these type definitions as given:

type pixel = int * int * int
type exp = Pixel of pixel | Var of string | Add of exp * exp | Lighten of exp | Darken of exp
type heap = string -> pixel

(a) Write an OCaml function interp of type heap -> exp -> pixel that implements the semantics
defined in Problem 1. Note that in addition to + and -, OCaml has functions max and min of type
int -> int -> int.

(b) We call the first component of a pixel the red component. For example, in (4,7,9), the red
component is 4. Write an OCaml function no_red_component of type exp -> exp such that:

e For any heap h that contains only pixels with red components of zero, interp h (no_red_component e)
never has any value returned from a call to interp (including recursive calls) contain a red
component other than 0.

e Iff interp h ereturns (c1,c2,c3), then interp h (no_red_component e) returns (0,c2,c3)
(i.e., the other components are the same).

Hint: Your function does not call interp. Rather, it translates its argument into a similar
program that, when run, never produces a non-zero red component (assuming the heap has only
pixels with red components of 0).

Solution:

(a) let rec interp h e =
match e with
Pixel p > p
| Var s -=> h s
| Add(el,e2) -> let cl,c2,c3 = interp h el in
let c4,c5,c6 = interp h e2 in
(min 255 (cl+c4) ,min 255 (c2+c5),min 255 (c3+c6))
| Lighten(el) -> let c1,c2,c3 = interp h el in
(min 255 (c1+1),min 255 (c2+1),min 255 (c3+1))
| Darken(el) -> let cl,c2,c3 = interp h el in
(max 0 (c1-1),max 0 (c2-1),max 0 (c3-1))
(b) let rec no_red_component e =

match e with
Pixel(c1,c2,c3) -> Pixel(0,c2,c3)

| Var _ -> e

| Add(el,e2) -> Add(no_red_component el, no_red_component e2)
| Lighten el -> Add(no_red_component el, Pixel(0,1,1))

| Darken el -> Darken(no_red_component el)
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. (20 points) Take the IMP language we studied in class and remove if-statements and while-statements
and the corresponding small-step rules. (We remove these only to make this problem shorter; it would
still work with them.) Prove this theorem for the resulting language: If s does not contain the variable
xand H; s - H'; s, then Hxzr—c; s — H"”; s for some H” such that H”(y) = H'(y) for all

y # .

Assume this lemma is already proven, but clearly indicate where you use it: If e does not contain the
variable z and H ; e || ¢, then Hyx—c; e | .

We expect a formal proof, but you do not need to define formally, “does not contain the variable z.”

Hint: You need induction, but you do not need a stronger induction hypothesis.

Solution:
The proof is by induction on the derivation of H ; s — H’ ; s’, with cases for the rule instantiated
at the bottom of the derivation:

e Assign: In this case, there is some 2’, e, and ¢’ such that s is 2’ := e (where by assumption
2’ # x and e does not contain x), s’ is skip, H ; e | ¢, and H = H,2’ — ¢. By the
lemma and H ; e | ¢, we know Hyz+c; e | ¢, from which we can use Assign to derive
Hxw—c; 2 :=e - H,v+— c, 2’ — ¢ ; skip. This suffices because s’ is skip and H,z — ¢, 7’
¢ agrees with H,z' — ¢’ for any variable other than x.

e Seql: In this case, s is skip;s’ and H' is H. Using Seql we can derive H,z — c ; skip;s’ —
H,z > c; s, which suffices because H and H,x +— c agree on all variables other than z.

e Seq2: In this case, there is some s1, s}, and sy such that s is s1; 82, 8" is 8]; 82, and H ; 51 —
H'; s} via a shorter derivation. Since s1; s does not contain x, neither does s1. So by induction
Haxw—c; sy — H”; s) and H and H"” agree on all variables other than z. We can then use
Seq2 to derive H,z — ¢ ; s1;82 — H" ; s};s2, which suffices.
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4. (15 points) (10 for (a) and 5 for (b)) For this problem, you will provide an encoding for ML-style
options (the type with constructors None and Some) in the call-by-value lambda-calculus.

(a)

(b)

Define these three lambda terms:

[139hi

e The “None” constructor “is” an option.

e The “Some” constructor takes one argument and returns an option “containing” the argu-
ment.

e The “use-it” constructor takes three (curried) arguments. If the first argument is “None”
then it returns the second argument. Else it returns the result of calling the third argument
with the value “contained in” the first argument.

Using your encoding and our left-to-right call-by-value small-step semantics, write out the se-
quence of lambda expressions by which “use-it” (“Some” v1) ve Az. x becomes vy.

Note: Part (b) is helpful for checking part (a), but it is worth only 5 points, so you may wish to
spend time on other problems instead.

Solution:
(There are an infinite number of correct solutions; here are two.)

(a)

(b)

(a)

(b)

e “None” A\f. \x. x
e “Some” A\y. A\f. \z. fy
e “use-it” Xo. Ax. Af.o fx

(No. Ax. Af.o fx) (Ay. Af. Az, fy)vy) vg Ax. x
(No. Ax. Af.o fx) (Af. Az, fu) v A o
()\x Afo(Afo Xz for) fa) ve de. o
Afo (Afo Az for) fo) A x
((/\f Az. f 1) (Ax. ) va)

(Az. (Az. 2) v1) v2)

(Az. ) v

U1

A R AN

e “None” Az. \y. x
e “Some” Az. \z. \y. y z
e “use-it” Aa. A\b. Ac. a b c

(Aa. Ab. Ac. abe) (Az. Ax. A\y. y z) v1) va Ax. ©
(Aa. Ab. Ac.a b ) (Ax. A\y. y v1) vy Ax. x
(Ab. Ae. (Ax. Ay yv1) be) ve Az x
(Ae. (Az. Ay. yv1) v2 ¢) Az. x
()\x AY. y v1) v Az.

(A\y. y v1) Az, x

(A\x. ) vy

(g

A
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5. (20 points)

(a)

(b)

We know the Preservation Theorem is true for the simply-typed lambda calculus. Is it still true
if we add the rule 5 to the operational semantics? If so, briefly explain why. If not, provide

e—
a counterexample.

We know the Progress Theorem is true for the simply-typed lambda calculus. Is it still true if we
add the rule to the operational semantics? If so, briefly explain why. If not, provide a

e —
counterexample.

Suppose there is a different type system for lambda calculus with constants for which the Preser-
vation Theorem is false. Will it still be false after adding the rule —~ to the operational
e

semantics? Briefly explain your answer.

Suppose there is a different type system for lambda calculus with constants for which the Progress
Theorem is false. Will it still be false after adding the rule 12 to the operational semantics?
e —

Briefly explain your answer.

Solution:

No. Consider, for example, Ax. © — 42. Before the step we cannot give the term the type int,
but after the step, this is the only type we can give.

Yes. Actually, Progress is now trivial because for any term we can step to 42. But we also can
use all the other rules to take a step for non-value just as before adding this rule.

Yes, it will still be false. Whatever example violated preservation before will still be present after
adding a rule to the operational semantics.

No, Progress is now true because for any e we can take a step to 42.



