$ \begin{array}{l} \text{CS-XXX: Graduate Programming Languages} \\ \text{Lecture 17} &$
$\begin{array}{c} 2012 \\ \hline \\ 2012 \\ \hline \\ 2012 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
We could add list types $(list(\tau))$ and primitives $([], ::, match)$, but we want user-defined recursive types Intuition: type intlist = Empty Cons int * intlist Which is roughly: type intlist = unit + (int * intlist) Seems like a named type is unavoidable But that's what we thought with let rec and we used fix We could add list types $(list(\tau))$ and primitives $([], ::, match)$, but $ln \tau$, type variable α stands for $\mu\alpha.\tau$, bound by μ Examples (of many possible encodings): int list (finite or infinite): $\mu\alpha.unit + (int * \alpha)$ int list (infinite "stream"): $\mu\alpha.unit + \alpha$ Need laziness (thunking) or mutation to build such a thing Under CBV, can build values of type $\mu\alpha.unit \rightarrow (int * \alpha)$ int list list: $\mu\alpha.unit + ((\mu\beta.unit + (int * \beta)) * \alpha)$ Examples where type variables appear multiple times: int tree (data at nodes): $\mu\alpha.unit + (int * \alpha * \alpha)$
 Analogously to fix λx. e, we'll introduce μα.τ Each α "stands for" entire μα.τ
Dan Grossman CS-XXX 2012, Lecture 17 3 Dan Grossman CS-XXX 2012, Lecture 17 4
Using μ types How do we build and use int lists ($\mu\alpha$.unit + (int * α))? We would like: • empty list = A(()) Has type: $\mu\alpha$.unit + (int * α) • cons = λx :int. λy :($\mu\alpha$.unit + (int * α)). B((x , y)) Has type: int \rightarrow ($\mu\alpha$.unit + (int * α)) \rightarrow ($\mu\alpha$.unit + (int * α)) • head = λx :($\mu\alpha$.unit + (int * α)). match x with A A(()) By. B(y .1) Has type: ($\mu\alpha$.unit + (int * α)). match x with A A(()) By. B(y .2) Has type: ($\mu\alpha$.unit + (int * α)). \rightarrow (unit + $\mu\alpha$.unit + (int * α)) • tail = λx :($\mu\alpha$.unit + (int * α)). match x with A A(()) By. B(y .2) Has type: ($\mu\alpha$.unit + (int * α)). \rightarrow (unit + $\mu\alpha$.unit + (int * α)) • tail = λx :($\mu\alpha$.unit + (int * α)). match x with A A(()) By. B(y .2) Has type: ($\mu\alpha$.unit + (int * α)). \rightarrow (unit + $\mu\alpha$.unit + (int * α)) • tail = λx :($\mu\alpha$.unit + (int * α)). match x with A A(()) By. B(y .2) Has type: ($\mu\alpha$.unit + (int * α)). \rightarrow (unit + $\mu\alpha$.unit + (int * α)) • to the definition of x with A A(()) By. B(y .2) Has type: ($\mu\alpha$.unit + (int * α)). \rightarrow (unit + $\mu\alpha$.unit + (int * α)) • the key: Subsumption — recursive types are equal to their "unrolling"
But our typing rules allow none of this (yet) Dan Grossman CS-XXX 2012, Lecture 17 5 Dan Grossman CS-XXX 2012, Lecture 17 6

Return of subtyping Metatheory Can use subsumption and these subtyping rules: Despite additions being minimal, must reconsider how recursive types change STLC and System F: ROLL UNROLL $\overline{\tau[(\mu\alpha. au)/lpha] < \mulpha. au}$ $\overline{\mu\alpha.\tau < \tau[(\mu\alpha.\tau)/\alpha]}$ ▶ Erasure (no run-time effect): unchanged Termination: changed! Subtyping can "roll" or "unroll" a recursive type $(\lambda x: \mu \alpha. \alpha \to \alpha. x x) (\lambda x: \mu \alpha. \alpha \to \alpha. x x)$ In fact, we're now Turing-complete without fix Can now give empty-list, cons, and head the types we want: (actually, can type-check every closed λ term) Constructors use roll, destructors use unroll Safety: still safe, but Canonical Forms harder Notice how little we did: One new form of type ($\mu\alpha.\tau$) and two new subtyping rules • Inference: Shockingly efficient for "STLC plus μ " (A great contribution of PL theory with applications in OO (Skipping: Depth subtyping on recursive types is very interesting) and XML-processing languages) Syntax-directed, continued Syntax-directed μ types Recursive types via subsumption "seems magical" Type-checking is syntax-directed / No subtyping necessary Instead, we can make programmers tell the type-checker where/how to roll and unroll Canonical Forms, Preservation, and Progress are simpler "Iso-recursive" types: remove subtyping and add expressions: This is an example of a key trade-off in language design: $\tau ::= \ldots \mid \mu \alpha . \tau$ Implicit typing can be impossible, difficult, or confusing $e ::= \ldots | \operatorname{roll}_{\mu\alpha.\tau} e | \operatorname{unroll} e$ Explicit coercions can be annoying and clutter language with $v ::= \ldots | \operatorname{roll}_{\mu\alpha.\tau} v$ no-ops $e \to e'$ e ightarrow e' $\frac{e \to e}{\operatorname{roll}_{\mu\alpha.\tau} e \to \operatorname{roll}_{\mu\alpha.\tau} e'}$ Most languages do some of each unroll $e \rightarrow$ unroll e'Anything is decidable if you make the code producer give the unroll $(\operatorname{roll}_{\mu\alpha.\tau} v) \to v$ implementation enough "hints" about the "proof" $\Delta; \Gamma \vdash e : \tau[(\mu \alpha. \tau)/\alpha]$ $\Delta;\Gamma \vdash e:\mulpha. au$ $\Delta; \Gamma \vdash \mathsf{roll}_{\mu\alpha.\tau} \ e : \mu\alpha.\tau$ $\Delta; \Gamma \vdash \mathsf{unroll} \ e : \tau[(\mu \alpha. \tau)/\alpha]$ CS-XXX 2012 Lectu ML datatypes revealed

How is $\mu \alpha . \tau$ related to type t = Foo of int | Bar of int * t

Constructor use is a "sum-injection" followed by an implicit roll

- So Foo e is really roll_t Foo(e)
- ▶ That is, Foo *e* has type t (the rolled type)

A pattern-match has an *implicit unroll*

Dan Grossman

 \blacktriangleright So match e with... is really match ${\it unroll}~e$ with...

This "trick" works because different recursive types use different tags – so the type-checker knows *which* type to roll to

CS-XXX 2012. Lecture 17