
CS-XXX: Graduate Programming Languages

Lecture 25 — Multiple Inheritance and Interfaces

Dan Grossman
2012

Multiple Inheritance

Why not allow class C extends C1,C2,...{...}

(and C≤C1 and C≤C2)?

What everyone agrees: C++ has it and Java doesn’t

All we’ll do: Understand some basic problems it introduces and
how interfaces get most of the benefits and some of the problems

Problem sources:

� Class hierarchy is a dag, not a tree (not true with interfaces)

� Subtype hierarchy is a dag, not a tree (true with interfaces)

Dan Grossman CS-XXX 2012, Lecture 25 2

Diamond Issues

If C extends C1 and C2 and C1,C2 have a common superclass
D (perhaps transitively), our class hierarchy has a diamond

� If D has a field f , should C have one field f or two?

� If D has a method m, C1 and C2 will have a clash

� If subsumption is coercive (changing method-lookup), how we
subsume from C to D affects run-time behavior (incoherent)

Diamonds are common, largely because of types like Object with
methods like equals

Dan Grossman CS-XXX 2012, Lecture 25 3

Multiple Inheritance, Method-Name Clash

If C extends C1 and C2, which both define a method m, what
does C mean?

Possibilities:

1. Reject declaration of C (Too restrictive with diamonds)

2. Require C to override m (Possibly with directed resends)

3. “Left-side” (C1) wins (Must decide if upcast to “right-side”
(C2) coerces to use C2’s m or not)

4. C gets both methods (Now upcasts definitely coercive and
with diamonds we lose coherence)

5. Other?

Dan Grossman CS-XXX 2012, Lecture 25 4

Implementation Issues

This isn’t an implementation course, but many semantic issues
regarding multiple inheritance have been heavily influenced by
clever implementations

� In particular, accessing members of self via compile-time
offsets...

� ... which won’t work with multiple inheritance unless upcasts
“adjust” the self pointer

That’s one reason C++ has different kinds of casts

Better to think semantically first (how should subsumption affect
the behavior of method-lookup) and implementation-wise second
(what can I optimize based on the class/type hierarchy)

Dan Grossman CS-XXX 2012, Lecture 25 5

Digression: Casts

A “cast” can mean many things (cf. C++).

At the language level:

� upcast: no run-time effect until we get to static overloading

� downcast: run-time failure or no-effect

� conversion: key question is round-tripping

� “reinterpret bits”: not well-defined

At the implementation level:

� upcast: usually no run-time effect but see last slide

� downcast: usually only run-time effect is failure, but...

� conversion: same as at language level

� “reinterpret bits”: no effect (by definition)

Dan Grossman CS-XXX 2012, Lecture 25 6



Least Supertypes

Consider if e1 then e2 else e3 (or in C++/Java, e1 ? e2 : e3)

� We know e2 and e3 must have the same type

With subtyping, they just need a common supertype

� Should pick the least (most-specific) type

� Single inheritance: the closest common ancestor in the
class-hierarchy tree

� Multiple inheritance: there may be no least common supertype

Example: C1 extends D1, D2 and C2 extends D1, D2

Solutions: Reject (i.e., programmer must insert explicit casts to
pick a common supertype)

Dan Grossman CS-XXX 2012, Lecture 25 7

Multiple Inheritance Summary

� Method clashes (what does inheriting m mean)

� Diamond issues (coherence issues, shared (?) fields)

� Implementation issues (slower method-lookup)

� Least supertypes (may be ambiguous)

Complicated constructs lead to difficult language design

� Doesn’t necessarily mean they are bad ideas

Now discuss interfaces and see how (and how not) multiple
interfaces are simpler than multiple inheritance...

Dan Grossman CS-XXX 2012, Lecture 25 8

Interfaces

An interface is just a (named) (object) type. Example:

interface I { Int get_x(); Bool compare(I); }

A class can implement an interface. Example:

class C implements I {

Int x;

Int get_x() {x}

Bool compare(I i) {...} // note argument type

}

If C implements I, then C ≤ I

Requiring explicit “implements” hinders extensibility, but simplifies
type-checking (a little)

Basically, C implements I if C could extend a class with all
abstract methods from I

Dan Grossman CS-XXX 2012, Lecture 25 9

Interfaces, continued

Subinterfaces (interface J extends I { ...}) work exactly as
subtyping suggests they should

An unnecessary addition to a language with abstract classes and
multiple inheritance, but what about single inheritance and
multiple interfaces:

class C extends D implements I1,I2,...,In

� Method clashes (no problem, inherit from D)

� Diamond issues (no problem, no implementation diamond)

� Implementation issues (still a “problem”, different object of
type I will have different layouts)

� Least supertypes (still a problem, this is a typing issue)

Dan Grossman CS-XXX 2012, Lecture 25 10

Using Interfaces

Although it requires more keystrokes and makes efficient
implementation harder, it may make sense (be more extensible) to:

� Use interface types for all fields and variables

� Don’t use constructors directly: For class C implementing I,
write:

I makeI(...) { new C(...) }

This is related to “factory patterns”; constructors are behind a
level of indirection

It is using named object-types instead of class-based types

Dan Grossman CS-XXX 2012, Lecture 25 11


