

 Last word on concrete syntax Converting a string into a tree is parsing Creating concrete syntax such that parsing is unambiguous is one challenge of grammar design Always trivial if you require enough parentheses or keywords Extreme case: LISP, 1960s; Scheme, 1970s Extreme case: XML, 1990s Very well studied in 1970s and 1980s, now typically the least interesting part of a compilers course For the rest of this course, we start with abstract syntax Using strings only as a convenient shorthand and asking if it's ever unclear what tree we mean 	Inductive definition s ::= skip x := e s; s if e s s while e s e ::= c x e + e e * e This grammar is a finite description of an infinite set of trees The apparent self-reference is not a problem, provided the definition uses well-founded induction • Just like an always-terminating recursive function uses self-reference but is not a circular definition! Can give precise meaning to our metanotation & avoid circularity: • Let $E_0 = \emptyset$ • For $i > 0$, let E_i be E_{i-1} union "expressions of the form c , $x, e_1 + e_2$, or $e_1 * e_2$ where $e_1, e_2 \in E_{i-1}$ "
	\blacktriangleright Let $E = igcup_{i \geq 0} E_i$
	The set $oldsymbol{E}$ is what we mean by our compact metanotation
Dan Grossman CS-XXX 2012, Lecture 2 7	Dan Grossman CS-XXX 2012, Lecture 2 8
Inductive definition $s ::= skip x := e s; s if e s s while e s$ $e ::= c x e + e e * e$ $ Let E_0 = \emptyset.$ $ For i > 0, let E_i be E_{i-1} union "expressions of the form c, x, e_1 + e_2, or e_1 * e_2 where e_1, e_2 \in E_{i-1}".$ $ Let E = \bigcup_{i \ge 0} E_i.$ The set E is what we mean by our compact metanotation To get it: What set is E_1 ? E_2 ? Could explain statements the same way: What is S_1 ? S_2 ? S?	 Proving Obvious Stuff All we have is syntax (sets of abstract-syntax trees), but let's get the idea of proving things carefully Theorem 1: There exist expressions with three constants.
Data GrossmanCS-XXX 2012, Lecture 29Our First TheoremThere exist expressions with three constants.Pedantic Proof: Consider $e = 1 + (2 + 3)$. Showing $e \in E_3$ suffices because $E_3 \subseteq E$. Showing $2 + 3 \in E_2$ and $1 \in E_2$ sufficesPL-style proof: Consider $e = 1 + (2 + 3)$ and definition of E .Theorem 2: All expressions have at least one constant or variable.	Dam GrossmanCS-XXX 2012. Lecture 210Our Second TheoremAll expressions have at least one constant or variable.Pedantic proof: By induction on i , for all $e \in E_i$, e has ≥ 1 constant or variable.Base: $i = 0$ implies $E_i = \emptyset$ Inductive: $i > 0$. Consider arbitrary $e \in E_i$ by cases: $e \in E_{i-1} \dots$ $e = c \dots$ $e = c \dots$ $e = e_1 + e_2$ where $e_1, e_2 \in E_{i-1} \dots$ $e = e_1 * e_2$ where $e_1, e_2 \in E_{i-1} \dots$
Dan Grossman CS-XXX 2012, Lecture 2 11	Dan Grossman CS-XXX 2012, Lecture 2 12

A "Better" Proof

All expressions have at least one constant or variable.

PL-style proof: By structural induction on (rules for forming an expression) e. Cases:

- ► c . . .
- ► x ...

Dan Grossman

- $\blacktriangleright e_1 + e_2 \dots$
- $\blacktriangleright e_1 * e_2 \dots$

Structural induction invokes the induction hypothesis on ${\it smaller}$ terms. It is equivalent to the pedantic proof, and more convenient in PL

CS-XXX 2012, Lecture 2

13