
CS-XXX: Graduate Programming Languages

Lecture 2 — Syntax

Dan Grossman
2012

Finally, some formal PL content

For our first formal language, let’s leave out functions, objects,
records, threads, exceptions, ...

What’s left: integers, mutable variables, control-flow

(Abstract) syntax using a common metalanguage:

“A program is a statement s, which is defined as follows”

s ::= skip | x := e | s; s | if e s s | while e s
e ::= c | x | e + e | e ∗ e
(c ∈ {. . . ,−2,−1, 0, 1, 2, . . . })
(x ∈ {x1, x2, . . . , y1, y2, . . . , z1, z2, . . . , . . . })

Dan Grossman CS-XXX 2012, Lecture 2 2

Syntax Definition

s ::= skip | x := e | s; s | if e s s | while e s
e ::= c | x | e + e | e ∗ e
(c ∈ {. . . ,−2,−1, 0, 1, 2, . . . })
(x ∈ {x1, x2, . . . , y1, y2, . . . , z1, z2, . . . , . . . })

� Blue is metanotation: ::= for “can be a” and | for “or”

� Metavariables represent “anything in the syntax class”

� By abstract syntax, we mean that this defines a set of trees
� Node has some label for “which alternative”
� Children are more abstract syntax (subtrees) from the

appropriate syntax class

Dan Grossman CS-XXX 2012, Lecture 2 3

Examples

s ::= skip | x := e | s; s | if e s s | while e s
e ::= c | x | e + e | e ∗ e

if

x skip ;

:=

y 42

:=

x y

;

if

x skip :=

y 42

:=

x y

Dan Grossman CS-XXX 2012, Lecture 2 4

Comparison to ML

if

x skip ;

:=

y 42

:=

x y

;

if

x skip :=

y 42

:=

x y

type exp = Const of int | Var of string

| Add of exp * exp | Mult of exp * exp

type stmt = Skip | Assign of string * exp | Seq of stmt * stmt

| If of exp * stmt * stmt | While of exp * stmt

If(Var("x"),Skip,Seq(Assign("y",Const 42),Assign("x",Var "y")))

Seq(If(Var("x"),Skip,Assign("y",Const 42)),Assign("x",Var "y"))

Very similar to trees built with ML datatypes
� ML needs “extra nodes” for, e.g., “e can be a c”

� Also pretending ML’s int is an integer

Dan Grossman CS-XXX 2012, Lecture 2 5

Comparison to strings

if

x skip ;

:=

y 42

:=

x y

;

if

x skip :=

y 42

:=

x y

We are used to writing programs in concrete syntax, i.e., strings

That can be ambiguous: if x skip y := 42 ; x := y

Since writing strings is such a convenient way to represent trees,
we allow ourselves parentheses (or defaults) for disambiguation

� Trees are our “truth” with strings as a “convenient notation”

if x skip (y := 42 ; x := y) versus (if x skip y := 42) ; x := y

Dan Grossman CS-XXX 2012, Lecture 2 6

Last word on concrete syntax

Converting a string into a tree is parsing

Creating concrete syntax such that parsing is unambiguous is one
challenge of grammar design

� Always trivial if you require enough parentheses or keywords
� Extreme case: LISP, 1960s; Scheme, 1970s
� Extreme case: XML, 1990s

� Very well studied in 1970s and 1980s, now typically the least
interesting part of a compilers course

For the rest of this course, we start with abstract syntax

� Using strings only as a convenient shorthand and asking if it’s
ever unclear what tree we mean

Dan Grossman CS-XXX 2012, Lecture 2 7

Inductive definition

s ::= skip | x := e | s; s | if e s s | while e s
e ::= c | x | e + e | e ∗ e

This grammar is a finite description of an infinite set of trees

The apparent self-reference is not a problem, provided the
definition uses well-founded induction

� Just like an always-terminating recursive function uses
self-reference but is not a circular definition!

Can give precise meaning to our metanotation & avoid circularity:

� Let E0 = ∅
� For i > 0, let Ei be Ei−1 union “expressions of the form c,

x, e1 + e2, or e1 ∗ e2 where e1, e2 ∈ Ei−1”

� Let E =
⋃

i≥0 Ei

The set E is what we mean by our compact metanotation
Dan Grossman CS-XXX 2012, Lecture 2 8

Inductive definition

s ::= skip | x := e | s; s | if e s s | while e s
e ::= c | x | e + e | e ∗ e

� Let E0 = ∅.
� For i > 0, let Ei be Ei−1 union “expressions of the form c,

x, e1 + e2, or e1 ∗ e2 where e1, e2 ∈ Ei−1”.

� Let E =
⋃

i≥0 Ei.

The set E is what we mean by our compact metanotation

To get it: What set is E1? E2?
Could explain statements the same way: What is S1? S2? S?

Dan Grossman CS-XXX 2012, Lecture 2 9

Proving Obvious Stuff

All we have is syntax (sets of abstract-syntax trees), but let’s get
the idea of proving things carefully...

Theorem 1: There exist expressions with three constants.

Dan Grossman CS-XXX 2012, Lecture 2 10

Our First Theorem

There exist expressions with three constants.

Pedantic Proof: Consider e = 1 + (2 + 3). Showing e ∈ E3

suffices because E3 ⊆ E. Showing 2 + 3 ∈ E2 and 1 ∈ E2

suffices...

PL-style proof: Consider e = 1 + (2 + 3) and definition of E.

Theorem 2: All expressions have at least one constant or variable.

Dan Grossman CS-XXX 2012, Lecture 2 11

Our Second Theorem

All expressions have at least one constant or variable.

Pedantic proof: By induction on i, for all e ∈ Ei, e has ≥ 1
constant or variable.

� Base: i = 0 implies Ei = ∅
� Inductive: i > 0. Consider arbitrary e ∈ Ei by cases:

� e ∈ Ei−1 . . .
� e = c . . .
� e = x . . .
� e = e1 + e2 where e1, e2 ∈ Ei−1 . . .
� e = e1 ∗ e2 where e1, e2 ∈ Ei−1 . . .

Dan Grossman CS-XXX 2012, Lecture 2 12

A “Better” Proof

All expressions have at least one constant or variable.

PL-style proof: By structural induction on (rules for forming an
expression) e. Cases:

� c . . .

� x . . .

� e1 + e2 . . .

� e1 ∗ e2 . . .

Structural induction invokes the induction hypothesis on smaller
terms. It is equivalent to the pedantic proof, and more convenient
in PL

Dan Grossman CS-XXX 2012, Lecture 2 13

