Where we are ► Done: OCaml tutorial, "IMP" syntax, structural induction ▶ Now: Operational semantics for our little "IMP" language CS-XXX: Graduate Programming Languages Most of what you need for Homework 1 Lecture 3 — Operational Semantics (But Problem 4 requires proofs over semantics) Dan Grossman 2012 Outline Semantics for expressions IMP's abstract syntax is defined inductively: 1. Informal idea; the need for heaps s ::= skip | x := e | s; s | if e s s | while e se ::= c | x | e + e | e * e2. Definition of heaps $(c \in \{\dots, -2, -1, 0, 1, 2, \dots\})$ 3. The evaluation *judgment* (a relation form) $\in \{x_1, x_2, \dots, y_1, y_2, \dots, z_1, z_2, \dots, \})$ 4. The evaluation inference rules (the relation definition) We haven't yet said what programs *mean*! (Syntax is boring) 5. Using inference rules

Encode our "social understanding" about variables and control flow

CS-XXX 2012. Lecture 3

- Derivation trees as interpreters
- Or as proofs about expressions
- 6. Metatheory: Proofs about the semantics
- Then semantics for statements

► ...

Informal idea

Dan Gro

Dan Grossman

(x)

Review

Given e, what c does e evaluate to?

1 + 2

```
x + 2
```

It depends on the values of variables (of course)

Use a heap H for a total function from variables to constants

• Could use partial functions, but then \exists H and e for which there is no $m{c}$

We'll define a *relation* over triples of H, e, and c

- \blacktriangleright Will turn out to be *function* if we view H and e as inputs and c as output
- With our metalanguage, easier to define a relation and then prove it is a function (if, in fact, it is)

CS-XXX 2012. Lecture 3

Heaps

 $H ::= \cdot \mid H, x \mapsto c$

A lookup-function for heaps:

$$H(x) = \left\{ egin{array}{ccc} c & ext{if} & H = H', x \mapsto c \ H'(x) & ext{if} & H = H', y \mapsto c' ext{ and } y
eq x \ 0 & ext{if} & H = \cdot \end{array}
ight.$$

CS-XXX 2012. Lecture 3

Last case avoids "errors" (makes function total)

"What heap to use" will arise in the semantics of statements

CS-XXX 2012. Lecture 3

▶ For expression evaluation, "we are given an H"

Dan Grossmar

The judgment

We will write:

 $H; e \Downarrow c$

to mean, "e evaluates to c under heap H"

It is just a relation on triples of the form (H, e, c)

We just made up metasyntax H ; $e \Downarrow c$ to follow PL convention and to distinguish it from other relations

We can write: ., $x\mapsto 3$; $x+y\Downarrow 3$, which will turn out to be true

(this triple will be in the relation we define)

Or: $., x \mapsto 3$; $x + y \Downarrow 6$, which will turn out to be *false* (this triple will not be in the relation we define)

CS-XXX 2012. Lect

Instantiating rules

Example instantiation:

 $\frac{\cdot, \mathtt{y} \mapsto 4 \text{ ; } 3 + \mathtt{y} \Downarrow 7 \quad \cdot, \mathtt{y} \mapsto 4 \text{ ; } 5 \Downarrow 5}{\cdot, \mathtt{y} \mapsto 4 \text{ ; } (3 + \mathtt{y}) + 5 \Downarrow 12}$

Instantiates:

 $rac{H : e_1 \Downarrow c_1 \qquad H : e_2 \Downarrow c_2}{H : e_1 + e_2 \Downarrow c_1 + c_2}$

CS-XXX 2012 Lecture 3

with $H = \cdot, y \mapsto 4$ $e_1 = (3 + y)$ $c_1 = 7$ $e_2 = 5$ $c_2 = 5$

Back to relations

Dan Grossma

So what relation do our inference rules define?

- Start with empty relation (no triples) R_0
- Let R_i be R_{i-1} union all H; $e \Downarrow c$ such that we can instantiate some inference rule to have conclusion H; $e \Downarrow c$ and all hypotheses in R_{i-1}
 - $\blacktriangleright\,$ So R_i is all triples at the bottom of height- j complete derivations for $j\leq i$
- R_∞ is the relation we defined
 - All triples at the bottom of complete derivations

For the math folks: R_∞ is the smallest relation closed under the inference rules

CS-XXX 2012. Lecture 3

Inference rules

 $\overline{H;x\Downarrow H(x)}$

VAR

 $\frac{\overset{\text{ADD}}{\overset{\text{}}}}{\underset{H;e_1+e_2\Downarrow c_1+c_2}{\overset{\text{}}}} - \frac{\overset{\text{}}{\overset{\text{}}}\overset{\text{}}}{\underset{H;e_1+e_2\Downarrow c_1+c_2}{\overset{\text{}}}} - \frac{\overset{\text{}}{\overset{\text{}}}\overset{\text{}}\overset{\text{}}}\underset{H;e_1\Downarrow c_1}{\overset{\text{}}} + \underset{e_2\Downarrow c_1\ast c_2}{\overset{\text{}}}}{\underset{H;e_1\ast e_2\Downarrow c_1\ast c_2}{\overset{\text{}}}}$

Top: *hypotheses* Bottom: *conclusion* (read first)

CONST

 $\overline{H; c \Downarrow c}$

By definition, if all hypotheses hold, then the conclusion holds

Each rule is a schema you "instantiate consistently"

- ▶ So rules "work" "for all" H, c, e_1 , etc.
- But "each" e_1 has to be the "same" expression

Derivations

A (complete) derivation is a tree of instantiations with axioms at the leaves

CS-XXX 2012. Lecture 3

Example:

$$\begin{array}{c} \overbrace{, y \mapsto 4 ; 3 \Downarrow 3}, y \mapsto 4 ; y \downarrow 4 \\ \hline \\ \hline \\, y \mapsto 4 ; 3 + y \Downarrow 7 \\ \hline \\, y \mapsto 4 ; (3 + y) + 5 \Downarrow 12 \end{array}$$

By definition, H ; $e \Downarrow c$ if there exists a derivation with H ; $e \Downarrow c$ at the root

What are these things?

We can view the inference rules as defining an *interpreter*

 Complete derivation shows recursive calls to the "evaluate expression" function

CS-XXX 2012. Lecture 3

- Recursive calls from conclusion to hypotheses
- Syntax-directed means the interpreter need not "search"
- ▶ See OCaml code in Homework 1

Or we can view the inference rules as defining a proof system

- Complete derivation proves facts from other facts starting with axioms
 - Facts established from hypotheses to conclusions

Dan Grossma

 Some theorems Progress: For all H and e, there exists a c such that H; e ↓ c Determinacy: For all H and e, there is at most one c such that H; e ↓ c We rigged it that way what would division, undefined-variables, or gettime() do? Proofs are by induction on the the structure (i.e., height) of the expression e 	On to statements A statement does not produce a constant It produces a new, possibly-different heap. • If it terminates We could define H_1 ; $s \downarrow H_2$ • Would be a partial function from H_1 and s to H_2 • Works fine; could be a homework problem Instead we'll define a "small-step" semantics and then "iterate" to "run the program" H_1 ; $s_1 \rightarrow H_2$; s_2
Dan Grossman CS-XXX 2012, Lecture 3 13	Dan Grossman CS-XXX 2012, Lecture 3 14
$\begin{split} \textbf{Statement semantics} \\ \hline H_1 \ ; \ s_1 \to H_2 \ ; \ s_2 \\ & \qquad \qquad$	Statement semantics cont'd What about while $e \ s$ (do s and loop if $e > 0$)? WHILE \overline{H} ; while $e \ s \to H$; if $e \ (s;$ while $e \ s$) skip Many other equivalent definitions possible
Dan Grossman CS-XXX 2012, Lecture 3 15	Dan Grossman CS-XXX 2012, Lecture 3 16
Program semantics Defined H ; $s \rightarrow H'$; s' , but what does " s " mean/do? Our machine iterates: $H_1; s_1 \rightarrow H_2; s_2 \rightarrow H_3; s_3 \dots$, with each step justified by a complete derivation using our single-step statement semantics Let H_1 ; $s_1 \rightarrow^n H_2$; s_2 mean "becomes after n steps" Let H_1 ; $s_1 \rightarrow^* H_2$; s_2 mean "becomes after 0 or more steps" Pick a special "answer" variable ans The program s produces c if \cdot ; $s \rightarrow^* H$; skip and $H(ans) = c$ Does every s produce a c ?	Example program execution x := 3; (y := 1; while x (y := y * x; x := x-1)) Let's write some of the state sequence. You can justify each step with a full derivation. Let $s = (y := y * x; x := x-1)$. $\cdot; x := 3; y := 1; \text{ while } x s$ $\rightarrow \cdot, x \mapsto 3; \text{ skip}; y := 1; \text{ while } x s$ $\rightarrow \cdot, x \mapsto 3; y := 1; \text{ while } x s$ $\rightarrow \cdot, x \mapsto 3; y \mapsto 1; \text{ while } x s$ $\rightarrow \cdot, x \mapsto 3, y \mapsto 1; \text{ if } x (s; \text{ while } x s) \text{ skip}$ $\rightarrow \cdot, x \mapsto 3, y \mapsto 1; y := y * x; x := x - 1; \text{ while } x s$
C37XXX 2012, LECLIFE 3 1/	Dan Glossman

Continued	Where we are
$ ightarrow^2$ $\cdot, \mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1, \mathrm{y} \mapsto 3; \mathrm{x} := \mathrm{x} - 1;$ while $\mathrm{x} \ s$	Defined $H \ ; e \Downarrow c$ and $H \ ; s ightarrow H' \ ; s'$ and extended the latter to give s a meaning
$ ightarrow^2 \ \ \cdot, { t x} \mapsto { extsf{3}}, { t y} \mapsto { extsf{1}}, { t y} \mapsto { extsf{3}}, { t x} \mapsto { extsf{2}};$ while ${ t x} \ s$	 The way we did expressions is "large-step operational semantics"
$ ightarrow \ \ldots, ext{y} \mapsto 3, ext{x} \mapsto 2; ext{ if } ext{x} \ (s; ext{while } ext{x} \ s) ext{ skip}$	 The way we did statements is "small-step operational semantics"
	So now you have seen both
$ ightarrow \ \ldots, \mathrm{y} \mapsto \mathrm{6}, \mathrm{x} \mapsto \mathrm{0};$ skip	Definition by interpretation: program means what an interpreter (written in a metalanguage) says it means Interpreter represents a (very) abstract machine that runs code
	Large-step does not distinguish errors and divergence
	 But we defined IMP to have no errors
	And expressions never diverge
Dan Grossman CS-XXX 2012, Lecture 3 19	Dan Grossman CS-XXX 2012, Lecture 3 20
Establishing Properties	More General Proofs
We can prove a property of a terminating program by "running" it	We can prove properties of executing all programs (satisfying another property)
Example: Our last program terminates with ${f x}$ holding ${f 0}$	
We can prove a program diverges, i.e., for all H and n ,	Example: If H and s have no negative constants and H ; $s \rightarrow^* H'$; s' , then H' and s' have no negative constants.
$\cdot ; s \rightarrow^n H ;$ skip cannot be derived	$n; s \rightarrow n; s$, then n and s have no negative constants.
	Example: If for all H , we know s_1 and s_2 terminate, then for all
Example: while 1 skip	H , we know $H;(s_1;s_2)$ terminates.
By induction on $m{n}$, but requires a stronger induction hypothesis	
Dan Grossman CS-XXX 2012, Lecture 3 21	Dan Grossman CS-XXX 2012, Lecture 3 22