CS-XXX: Graduate Programming Languages Lecture 6 — Little Trusted Languages; Equivalence

> Dan Grossman 2012

Looking back, looking forward

This is the last lecture using IMP (hooray!). Done:

- Abstract syntax
- Operational semantics (large-step and small-step)
- Semantic properties of (sets of) programs
- "Pseudo-denotational" semantics

Now:

- Packet-filter languages and other examples
- Equivalence of programs in a semantics
- Equivalence of different semantics

Next lecture: Local variables, lambda-calculus

Packet Filters

A very simple view of packet filters:

- Some bits come in off the wire
- Some application(s) want the "packet" and some do not (e.g., port number)
- ► For safety, only the O/S can access the wire
- ► For extensibility, the applications accept/reject packets

Conventional solution goes to user-space for every packet and app that wants (any) packets

Faster solution: Run app-written filters in kernel-space

What we need

Now the O/S writer is defining the packet-filter language!

Properties we wish of (untrusted) filters:

- 1. Do not corrupt kernel data structures
- 2. Terminate (within a time bound)
- 3. Run fast (the whole point)

Should we download some C/assembly code? (Get 1 of 3)

Should we make up a language and "hope" it has these properties?

Language-based approaches

1. Interpret a language

+ clean operational semantics, + portable, - may be slow (+ filter-specific optimizations), - unusual interface

2. Translate a language into C/assembly

+ clean denotational semantics, + employ existing optimizers, - upfront cost, - unusual interface

3. Require a conservative subset of C/assembly

+ normal interface, - too conservative w/o help

IMP has taught us about (1) and (2) — we'll get to (3)

A General Pattern

Packet filters move the code to the data rather than data to the code

General reasons: performance, security, other?

Other examples:

- Query languages
- Active networks
- Client-side web scripts (Javascript)

Equivalence motivation

- Program equivalence (we change the program):
 - code optimizer
 - code maintainer
- Semantics equivalence (we change the language):
 - interpreter optimizer
 - language designer
 - (prove properties for equivalent semantics with easier proof)

Note: Proofs may seem easy with the right semantics and lemmas

(almost never start off with right semantics and lemmas)

Note: Small-step operational semantics often has harder proofs, but models more intesting things

Equivalence depends on what is observable!

Partial I/O equivalence (if terminates, same ans)

- Partial I/O equivalence (if terminates, same ans)
 - while 1 skip equivalent to everything

- Partial I/O equivalence (if terminates, same ans)
 - while 1 skip equivalent to everything
 - not transitive

- Partial I/O equivalence (if terminates, same ans)
 - while 1 skip equivalent to everything
 - not transitive
- Total I/O equivalence (same termination behavior, same ans)

- Partial I/O equivalence (if terminates, same ans)
 - while 1 skip equivalent to everything
 - not transitive
- Total I/O equivalence (same termination behavior, same ans)
- Total heap equivalence (same termination behavior, same heaps)
 - All (almost all?) variables have the same value

- Partial I/O equivalence (if terminates, same ans)
 - while 1 skip equivalent to everything
 - not transitive
- Total I/O equivalence (same termination behavior, same ans)
- Total heap equivalence (same termination behavior, same heaps)
 - All (almost all?) variables have the same value
- Equivalence plus complexity bounds
 - Is $O(2^{n^n})$ really equivalent to O(n)?
 - Is "runs within 10ms of each other" important?

- Partial I/O equivalence (if terminates, same ans)
 - while 1 skip equivalent to everything
 - not transitive
- Total I/O equivalence (same termination behavior, same ans)
- Total heap equivalence (same termination behavior, same heaps)
 - All (almost all?) variables have the same value
- Equivalence plus complexity bounds
 - Is $O(2^{n^n})$ really equivalent to O(n)?
 - Is "runs within 10ms of each other" important?
- Syntactic equivalence (perhaps with renaming)
 - Too strict to be interesting?

Equivalence depends on what is observable!

- Partial I/O equivalence (if terminates, same ans)
 - while 1 skip equivalent to everything
 - not transitive
- Total I/O equivalence (same termination behavior, same ans)
- Total heap equivalence (same termination behavior, same heaps)
 - All (almost all?) variables have the same value
- Equivalence plus complexity bounds
 - Is $O(2^{n^n})$ really equivalent to O(n)?
 - Is "runs within 10ms of each other" important?
- Syntactic equivalence (perhaps with renaming)
 - Too strict to be interesting?

In PL, equivalence most often means total ${\rm I/O}$ equivalence

Motivation: Strength reduction

A common compiler optimization due to architecture issues

Theorem: $H ; e * 2 \Downarrow c$ if and only if $H ; e + e \Downarrow c$

Proof sketch:

Motivation: Strength reduction

A common compiler optimization due to architecture issues

Theorem: $H ; e * 2 \Downarrow c$ if and only if $H ; e + e \Downarrow c$

Proof sketch:

Prove separately for each direction

Motivation: Strength reduction

A common compiler optimization due to architecture issues

Theorem: $H ; e * 2 \Downarrow c$ if and only if $H ; e + e \Downarrow c$

Proof sketch:

- Prove separately for each direction
- Invert the assumed derivation, use hypotheses plus a little math to derive what we need

Motivation: Strength reduction

A common compiler optimization due to architecture issues

```
Theorem: H ; e * 2 \Downarrow c if and only if H ; e + e \Downarrow c
```

Proof sketch:

- Prove separately for each direction
- Invert the assumed derivation, use hypotheses plus a little math to derive what we need
- Hmm, doesn't use induction. That's because this theorem isn't very useful...

Theorem: If e' has a subexpression of the form e * 2, then $H ; e' \Downarrow c'$ if and only if $H ; e'' \Downarrow c'$ where e'' is e' with e * 2 replaced with e + e

Theorem: If e' has a subexpression of the form e * 2, then $H ; e' \Downarrow c'$ if and only if $H ; e'' \Downarrow c'$ where e'' is e' with e * 2 replaced with e + e

First some useful metanotation:

$$C ::= [\cdot] \mid C + e \mid e + C \mid C * e \mid e * C$$

C[e] is "C with e in the hole" (inductive definition of "stapling") Crisper statement of theorem: $H ; C[e * 2] \Downarrow c'$ if and only if $H ; C[e + e] \Downarrow c'$

Theorem: If e' has a subexpression of the form e * 2, then $H ; e' \Downarrow c'$ if and only if $H ; e'' \Downarrow c'$ where e'' is e' with e * 2 replaced with e + e

First some useful metanotation:

$$C ::= [\cdot] \mid C + e \mid e + C \mid C * e \mid e * C$$

C[e] is "C with e in the hole" (inductive definition of "stapling") Crisper statement of theorem: $H ; C[e * 2] \Downarrow c'$ if and only if $H ; C[e + e] \Downarrow c'$

Proof sketch: By induction on structure ("syntax height") of C

- The base case $(C = [\cdot])$ follows from our previous proof
- The rest is a long, tedious, (and instructive!) induction

Proof reuse

As we cannot emphasize enough, proving is just like programming

The proof of nested strength reduction had nothing to do with e * 2 and e + e except in the base case where we used our previous theorem

A much more useful theorem would parameterize over the base case so that we could get the "nested X" theorem for any appropriate X:

If $(H; e_1 \Downarrow c$ if and only if $H; e_2 \Downarrow c$), then $(H; C[e_1] \Downarrow c'$ if and only if $H; C[e_2] \Downarrow c'$)

The proof is identical except the base case is "by assumption"

Small-step program equivalence

These sort of proofs also work with small-step semantics (e.g., our IMP statements), but tend to be more cumbersome, even to state.

Example: The statement-sequence operator is associative. That is,

- (a) For all n, if H; s_1 ; $(s_2; s_3) \rightarrow^n H'$; skip then there exist H'' and n' such that H; $(s_1; s_2); s_3 \rightarrow^{n'} H''$; skip and H''(ans) = H'(ans).
- (b) If for all *n* there exist H' and s' such that $H ; s_1; (s_2; s_3) \rightarrow^n H'; s'$, then for all *n* there exist H''and s'' such that $H ; (s_1; s_2); s_3 \rightarrow^n H''; s''$.

(Proof needs a much stronger induction hypothesis.)

One way to avoid it: Prove large-step and small-step *semantics* equivalent, then prove program equivalences in whichever is easier.

Language Equivalence Example

IMP w/o multiply large-step:

CONST	VAR
$\overline{H \ ; c \Downarrow c}$	$\overline{H \ ; x \Downarrow H(x)}$

 $\frac{H}{H}; e_1 \Downarrow c_1 \qquad H; e_2 \Downarrow c_2 \\ \frac{H}{H}; e_1 + e_2 \Downarrow c_1 + c_2$

IMP w/o multiply small-step:

SVARSADD $\overline{H}; x \to H(x)$ $\overline{H}; c_1 + c_2 \to c_1 + c_2$ SLEFT $\overline{H}; e_1 \to e'_1$ SRIGHT $\overline{H}; e_1 + e_2 \to e'_1 + e_2$ $\overline{H}; e_2 \to e'_2$ $\overline{H}; e_1 + e_2 \to e'_1 + e_2$ $\overline{H}; e_1 + e_2 \to e_1 + e'_2$

Theorem: Semantics are equivalent: $H ; e \Downarrow c$ if and only if $H; e \rightarrow^* c$

Proof: We prove the two directions separately...

First assume $H ; e \Downarrow c$ and show $\exists n. H; e \rightarrow^n c$

First assume $H ; e \Downarrow c$ and show $\exists n. H; e \rightarrow^n c$

Lemma (prove it!): If H; $e \rightarrow^n e'$, then H; $e_1 + e \rightarrow^n e_1 + e'$ and H; $e + e_2 \rightarrow^n e' + e_2$.

- Proof by induction on n
- Inductive case uses SLEFT and SRIGHT

First assume $H ; e \Downarrow c$ and show $\exists n. H; e \rightarrow^n c$

Lemma (prove it!): If H; $e \rightarrow^n e'$, then H; $e_1 + e \rightarrow^n e_1 + e'$ and H; $e + e_2 \rightarrow^n e' + e_2$.

- Proof by induction on n
- Inductive case uses SLEFT and SRIGHT

Given the lemma, prove by induction on derivation of H ; $e \Downarrow c$

First assume $H ; e \Downarrow c$ and show $\exists n. H; e \rightarrow^n c$

Lemma (prove it!): If H; $e \rightarrow^n e'$, then H; $e_1 + e \rightarrow^n e_1 + e'$ and H; $e + e_2 \rightarrow^n e' + e_2$.

- Proof by induction on n
- Inductive case uses SLEFT and SRIGHT

Given the lemma, prove by induction on derivation of H ; $e \Downarrow c$

► CONST: Derivation with CONST implies e = c, and we can derive H; c →⁰ c

First assume $H ; e \Downarrow c$ and show $\exists n. H; e \rightarrow^n c$

Lemma (prove it!): If H; $e \rightarrow^n e'$, then H; $e_1 + e \rightarrow^n e_1 + e'$ and H; $e + e_2 \rightarrow^n e' + e_2$.

- Proof by induction on n
- Inductive case uses SLEFT and SRIGHT

Given the lemma, prove by induction on derivation of H ; $e \Downarrow c$

- CONST: Derivation with CONST implies e = c, and we can derive H; c →⁰ c
- ▶ VAR: Derivation with VAR implies e = x for some x where H(x) = c, so derive H; $e \rightarrow^1 c$ with SVAR

First assume $H ; e \Downarrow c$ and show $\exists n. H; e \rightarrow^n c$

Lemma (prove it!): If H; $e \rightarrow^n e'$, then H; $e_1 + e \rightarrow^n e_1 + e'$ and H; $e + e_2 \rightarrow^n e' + e_2$.

- Proof by induction on n
- Inductive case uses SLEFT and SRIGHT

Given the lemma, prove by induction on derivation of H ; $e \Downarrow c$

- ► CONST: Derivation with CONST implies e = c, and we can derive H; c →⁰ c
- ▶ VAR: Derivation with VAR implies e = x for some x where H(x) = c, so derive H; $e \rightarrow^1 c$ with SVAR
- ► ADD: ...

...

First assume $H ; e \Downarrow c$ and show $\exists n. H; e \rightarrow^n c$

Lemma (prove it!): If H; $e \rightarrow^n e'$, then H; $e_1 + e \rightarrow^n e_1 + e'$ and H; $e + e_2 \rightarrow^n e' + e_2$.

Given the lemma, prove by induction on derivation of $H \ ; e \Downarrow c$

ADD: Derivation with ADD implies $e = e_1 + e_2$, $c = c_1 + c_2$, H; $e_1 \Downarrow c_1$, and H; $e_2 \Downarrow c_2$ for some e_1, e_2, c_1, c_2 .

...

First assume $H ; e \Downarrow c$ and show $\exists n. H; e \rightarrow^n c$

Lemma (prove it!): If H; $e \rightarrow^n e'$, then H; $e_1 + e \rightarrow^n e_1 + e'$ and H; $e + e_2 \rightarrow^n e' + e_2$.

Given the lemma, prove by induction on derivation of $H \ ; e \Downarrow c$

ADD: Derivation with ADD implies $e = e_1 + e_2$, $c = c_1 + c_2$, H; $e_1 \Downarrow c_1$, and H; $e_2 \Downarrow c_2$ for some e_1, e_2, c_1, c_2 . By induction (twice), $\exists n_1, n_2$. H; $e_1 \rightarrow^{n_1} c_1$ and H; $e_2 \rightarrow^{n_2} c_2$.

First assume $H : e \Downarrow c$ and show $\exists n. H : e \rightarrow^n c$

Lemma (prove it!): If H; $e \rightarrow^n e'$, then H; $e_1 + e \rightarrow^n e_1 + e'$ and H; $e + e_2 \rightarrow^n e' + e_2$.

Given the lemma, prove by induction on derivation of H ; $e \Downarrow c$

► ...

ADD: Derivation with ADD implies $e = e_1 + e_2$, $c = c_1 + c_2$, $H ; e_1 \Downarrow c_1$, and $H ; e_2 \Downarrow c_2$ for some e_1, e_2, c_1, c_2 . By induction (twice), $\exists n_1, n_2$. $H; e_1 \rightarrow^{n_1} c_1$ and $H; e_2 \rightarrow^{n_2} c_2$. So by our lemma $H; e_1 + e_2 \rightarrow^{n_1} c_1 + e_2$ and $H; c_1 + e_2 \rightarrow^{n_2} c_1 + c_2$.

First assume $H : e \Downarrow c$ and show $\exists n. H : e \rightarrow^n c$

Lemma (prove it!): If H; $e \rightarrow^n e'$, then H; $e_1 + e \rightarrow^n e_1 + e'$ and H; $e + e_2 \rightarrow^n e' + e_2$.

Given the lemma, prove by induction on derivation of H ; $e \Downarrow c$

► ...

ADD: Derivation with ADD implies $e = e_1 + e_2$, $c = c_1 + c_2$, $H ; e_1 \Downarrow c_1$, and $H ; e_2 \Downarrow c_2$ for some e_1, e_2, c_1, c_2 . By induction (twice), $\exists n_1, n_2$. $H; e_1 \rightarrow^{n_1} c_1$ and $H; e_2 \rightarrow^{n_2} c_2$. So by our lemma $H; e_1 + e_2 \rightarrow^{n_1} c_1 + e_2$ and $H; c_1 + e_2 \rightarrow^{n_2} c_1 + c_2$. By SADD $H; c_1 + c_2 \rightarrow c_1 + c_2$.

Part 1, continued

First assume $H : e \Downarrow c$ and show $\exists n. H : e \rightarrow^n c$

Lemma (prove it!): If H; $e \rightarrow^n e'$, then H; $e_1 + e \rightarrow^n e_1 + e'$ and H; $e + e_2 \rightarrow^n e' + e_2$.

Given the lemma, prove by induction on derivation of H ; $e \Downarrow c$

► ...

ADD: Derivation with ADD implies $e = e_1 + e_2$, $c = c_1 + c_2$, $H ; e_1 \Downarrow c_1$, and $H ; e_2 \Downarrow c_2$ for some e_1, e_2, c_1, c_2 . By induction (twice), $\exists n_1, n_2$. $H; e_1 \rightarrow^{n_1} c_1$ and $H; e_2 \rightarrow^{n_2} c_2$. So by our lemma $H; e_1 + e_2 \rightarrow^{n_1} c_1 + e_2$ and $H; c_1 + e_2 \rightarrow^{n_2} c_1 + c_2$. By SADD $H; c_1 + c_2 \rightarrow c_1 + c_2$. So $H; e_1 + e_2 \rightarrow^{n_1+n_2+1} c$.

Now assume $\exists n. H; e \rightarrow^n c$ and show $H; e \Downarrow c$.

Now assume $\exists n. H; e \rightarrow^n c$ and show $H; e \Downarrow c$.

Now assume $\exists n. H; e \rightarrow^n c$ and show $H; e \Downarrow c$.

Proof by induction on n:

• n = 0: e is c and CONST lets us derive H; $c \Downarrow c$

Now assume $\exists n. H; e \rightarrow^n c$ and show $H; e \Downarrow c$.

- n = 0: e is c and CONST lets us derive H; $c \Downarrow c$
- ▶ n > 0: (Clever: break into *first* step and remaining ones) $\exists e'. H; e \rightarrow e'$ and $H; e' \rightarrow n^{n-1} c$.

Now assume $\exists n. H; e \rightarrow^n c$ and show $H; e \Downarrow c$.

- n = 0: e is c and CONST lets us derive H; $c \Downarrow c$
- n > 0: (Clever: break into *first* step and remaining ones)
 ∃e'. H; e → e' and H; e' →ⁿ⁻¹ c.
 By induction H; e' ↓ c.

Now assume $\exists n. H; e \rightarrow^n c$ and show $H; e \Downarrow c$.

- n = 0: e is c and CONST lets us derive H; $c \Downarrow c$
- ▶ n > 0: (Clever: break into *first* step and remaining ones) $\exists e'. H; e \rightarrow e' \text{ and } H; e' \rightarrow ^{n-1} c.$ By induction $H; e' \Downarrow c.$ So this lemma suffices: If $H; e \rightarrow e'$ and $H; e' \Downarrow c$, then $H; e \Downarrow c.$

Now assume $\exists n. H; e \rightarrow^n c$ and show $H; e \Downarrow c$.

Proof by induction on n:

- n = 0: e is c and CONST lets us derive H ; $c \Downarrow c$
- n > 0: (Clever: break into first step and remaining ones)
 ∃e'. H; e → e' and H; e' → ⁿ⁻¹ c.
 By induction H; e' ↓ c.
 So this lemma suffices: If H; e → e' and H; e' ↓ c, then H; e ↓ c.

Prove the lemma by induction on derivation of H; e
ightarrow e':

- ▶ SVAR: ...
- ▶ SADD: ...
- ▶ SLEFT: ...
- ▶ SRIGHT: ...

Lemma: If $H; e \rightarrow e'$ and $H; e' \Downarrow c$, then $H; e \Downarrow c$.

Prove the lemma by induction on derivation of H; e
ightarrow e':

Lemma: If $H; e \rightarrow e'$ and $H; e' \Downarrow c$, then $H; e \Downarrow c$.

Prove the lemma by induction on derivation of $H; e \rightarrow e'$:

SVAR: Derivation with SVAR implies e is some x and e' = H(x) = c, so derive, by VAR, H; $x \Downarrow H(x)$.

Lemma: If $H; e \rightarrow e'$ and $H; e' \Downarrow c$, then $H; e \Downarrow c$.

Prove the lemma by induction on derivation of $H; e \rightarrow e'$:

- SVAR: Derivation with SVAR implies e is some x and e' = H(x) = c, so derive, by VAR, $H : x \Downarrow H(x)$.
- ► SADD: Derivation with SADD implies e is some c₁ + c₂ and e' = c₁+c₂ = c, so derive, by ADD and two CONST, H; c₁ + c₂ ↓ c₁+c₂.

Lemma: If $H; e \rightarrow e'$ and $H; e' \Downarrow c$, then $H; e \Downarrow c$.

Prove the lemma by induction on derivation of $H; e \rightarrow e'$:

 \blacktriangleright SVAR: Derivation with SVAR implies e is some x and

e' = H(x) = c, so derive, by VAR, H ; $x \Downarrow H(x)$.

► SADD: Derivation with SADD implies e is some c₁ + c₂ and e' = c₁+c₂ = c, so derive, by ADD and two CONST,

$$H; c_1 + c_2 \Downarrow c_1 + c_2.$$

• SLEFT: Derivation with SLEFT implies $e = e_1 + e_2$ and $e' = e'_1 + e_2$ and $H; e_1 \rightarrow e'_1$ for some e_1, e_2, e'_1 .

Lemma: If $H; e \rightarrow e'$ and $H; e' \Downarrow c$, then $H; e \Downarrow c$.

Prove the lemma by induction on derivation of $H; e \rightarrow e'$:

 \blacktriangleright SVAR: Derivation with SVAR implies e is some x and

e' = H(x) = c, so derive, by VAR, H ; $x \Downarrow H(x)$.

SADD: Derivation with SADD implies e is some $c_1 + c_2$ and $e' = c_1 + c_2 = c$, so derive, by ADD and two CONST,

 $H; c_1 + c_2 \Downarrow c_1 + c_2.$

▶ SLEFT: Derivation with SLEFT implies $e = e_1 + e_2$ and $e' = e'_1 + e_2$ and H; $e_1 \rightarrow e'_1$ for some e_1, e_2, e'_1 . Since $e' = e'_1 + e_2$ inverting assumption H; $e' \Downarrow c$ gives H; $e'_1 \Downarrow c_1$, H; $e_2 \Downarrow c_2$ and $c = c_1 + c_2$.

Lemma: If $H; e \rightarrow e'$ and $H; e' \Downarrow c$, then $H; e \Downarrow c$.

Prove the lemma by induction on derivation of $H; e \rightarrow e'$:

 \blacktriangleright SVAR: Derivation with SVAR implies e is some x and

e' = H(x) = c, so derive, by VAR, H ; $x \Downarrow H(x)$.

 SADD: Derivation with SADD implies e is some c₁ + c₂ and e' = c₁+c₂ = c, so derive, by ADD and two CONST, H : c₁ + c₂ ↓ c₁+c₂.

▶ SLEFT: Derivation with SLEFT implies $e = e_1 + e_2$ and $e' = e'_1 + e_2$ and $H; e_1 \rightarrow e'_1$ for some e_1, e_2, e'_1 . Since $e' = e'_1 + e_2$ inverting assumption $H; e' \Downarrow c$ gives $H; e'_1 \Downarrow c_1, H; e_2 \Downarrow c_2$ and $c = c_1 + c_2$. Applying the induction hypothesis to $H; e_1 \rightarrow e'_1$ and $H; e'_1 \Downarrow c_1$ gives $H; e_1 \Downarrow c_1$.

Lemma: If $H; e \rightarrow e'$ and $H; e' \Downarrow c$, then $H; e \Downarrow c$.

Prove the lemma by induction on derivation of $H; e \rightarrow e'$:

 \blacktriangleright SVAR: Derivation with SVAR implies e is some x and

e' = H(x) = c, so derive, by VAR, H ; $x \Downarrow H(x)$.

 SADD: Derivation with SADD implies e is some c₁ + c₂ and e' = c₁+c₂ = c, so derive, by ADD and two CONST, H : c₁ + c₂ ↓ c₁+c₂.

▶ SLEFT: Derivation with SLEFT implies $e = e_1 + e_2$ and $e' = e'_1 + e_2$ and $H; e_1 \rightarrow e'_1$ for some e_1, e_2, e'_1 . Since $e' = e'_1 + e_2$ inverting assumption $H; e' \Downarrow c$ gives $H; e'_1 \Downarrow c_1, H; e_2 \Downarrow c_2$ and $c = c_1 + c_2$. Applying the induction hypothesis to $H; e_1 \rightarrow e'_1$ and $H; e'_1 \Downarrow c_1$ gives $H; e_1 \Downarrow c_1$. So use ADD, $H; e_1 \Downarrow c_1$, and $H; e_2 \Downarrow c_2$ to derive $H; e_1 + e_2 \Downarrow c_1 + c_2$.

Lemma: If $H; e \rightarrow e'$ and $H; e' \Downarrow c$, then $H; e \Downarrow c$.

Prove the lemma by induction on derivation of $H; e \rightarrow e'$:

 \blacktriangleright SVAR: Derivation with SVAR implies e is some x and

e' = H(x) = c, so derive, by VAR, H ; $x \Downarrow H(x)$.

 SADD: Derivation with SADD implies e is some c₁ + c₂ and e' = c₁+c₂ = c, so derive, by ADD and two CONST, H : c₁ + c₂ ↓ c₁+c₂.

▶ SLEFT: Derivation with SLEFT implies $e = e_1 + e_2$ and $e' = e'_1 + e_2$ and $H; e_1 \rightarrow e'_1$ for some e_1, e_2, e'_1 . Since $e' = e'_1 + e_2$ inverting assumption $H; e' \Downarrow c$ gives $H; e'_1 \Downarrow c_1, H; e_2 \Downarrow c_2$ and $c = c_1 + c_2$. Applying the induction hypothesis to $H; e_1 \rightarrow e'_1$ and $H; e'_1 \Downarrow c_1$ gives $H; e_1 \Downarrow c_1$. So use ADD, $H; e_1 \Downarrow c_1$, and $H; e_2 \Downarrow c_2$ to derive $H; e_1 + e_2 \Downarrow c_1 + c_2$.

SRIGHT: Analogous to SLEFT

The cool part, redux

Step through the SLEFT case more visually:

By assumption, we must have derivations that look like this:

$$\frac{H; e_1 \to e'_1}{H; e_1 + e_2 \to e'_1 + e_2} \qquad \frac{H; e'_1 \Downarrow c_1 \quad H; e_2 \Downarrow c_2}{H; e'_1 + e_2 \Downarrow c_1 + c_2}$$

Grab the hypothesis from the left and the left hypothesis from the right and use induction to get H; $e_1 \Downarrow c_1$.

Now go grab the one hypothesis we haven't used yet and combine it with our inductive result to derive our answer:

$$\frac{H \ ; e_1 \Downarrow c_1 \quad H \ ; e_2 \Downarrow c_2}{H \ ; e_1 + e_2 \Downarrow c_1 + c_2}$$

A nice payoff

Theorem: The small-step semantics is deterministic: if $H; e \rightarrow^* c_1$ and $H; e \rightarrow^* c_2$, then $c_1 = c_2$

A nice payoff

Theorem: The small-step semantics is deterministic: if $H; e \rightarrow^* c_1$ and $H; e \rightarrow^* c_2$, then $c_1 = c_2$

Not obvious (see SLEFT and SRIGHT), nor do I know a direct proof

▶ Given (((1+2) + (3+4)) + (5+6)) + (7+8) there are many execution sequences, which all produce 36 but with different intermediate expressions

A nice payoff

Theorem: The small-step semantics is deterministic: if $H; e \rightarrow^* c_1$ and $H; e \rightarrow^* c_2$, then $c_1 = c_2$

Not obvious (see SLEFT and SRIGHT), nor do I know a direct proof

▶ Given (((1+2) + (3+4)) + (5+6)) + (7+8) there are many execution sequences, which all produce 36 but with different intermediate expressions

Proof:

- Large-step evaluation is deterministic (easy induction proof)
- Small-step and and large-step are equivalent (just proved that)
- So small-step is deterministic
- Convince yourself a deterministic and a nondeterministic semantics cannot be equivalent

- Equivalence is a subtle concept
- Proofs "seem obvious" only when the definitions are right

- Equivalence is a subtle concept
- Proofs "seem obvious" only when the definitions are right
- Some other language-equivalence claims:

Replace WHILE rule with

 $\frac{H \ ; \ e \ \Downarrow \ c \ c \le 0}{H \ ; \ \text{while} \ e \ s \to H \ ; \ \text{skip}} \qquad \frac{H \ ; \ e \ \Downarrow \ c \ c > 0}{H \ ; \ \text{while} \ e \ s \to H \ ; \ s; \ \text{while} \ e \ s}$

- Equivalence is a subtle concept
- Proofs "seem obvious" only when the definitions are right
- Some other language-equivalence claims:

Replace WHILE rule with

 $H; e \Downarrow c \qquad c < 0$

 $H; e \Downarrow c \qquad c > 0$

H; while $e \ s \to H$; skip H; while $e \ s \to H$; s; while $e \ s$

Equivalent to our original language

- Equivalence is a subtle concept
- Proofs "seem obvious" only when the definitions are right
- Some other language-equivalence claims:

Replace WHILE rule with

 $\begin{array}{c|c} H ; e \Downarrow c & c \leq 0 \\ \hline \end{array} \qquad \begin{array}{c} H ; e \Downarrow c & c > 0 \\ \hline \end{array}$

H; while $e \ s \to H$; skip H; while $e \ s \to H$; s; while $e \ s$

Equivalent to our original language

Change syntax of heap and replace $\ensuremath{\operatorname{ASSIGN}}$ and $\ensuremath{\operatorname{VAR}}$ rules with

 $\frac{H; H(x) \Downarrow c}{H; x \Downarrow c}$

 $H \ ; x := e o H, x \mapsto e \ ;$ skip

- Equivalence is a subtle concept
- Proofs "seem obvious" only when the definitions are right
- Some other language-equivalence claims:

Replace WHILE rule with

 $H \ ; e \Downarrow c \qquad c \leq 0$

 $H \; ; e \Downarrow c \qquad c > 0$

 $H \ ;$ while $e \ s
ightarrow H \ ;$ skip $H \ ;$ while $e \ s
ightarrow H \ ;$ s; while $e \ s$

Equivalent to our original language

Change syntax of heap and replace $\ensuremath{\operatorname{ASSIGN}}$ and $\ensuremath{\operatorname{VAR}}$ rules with

 $\overline{H ; x := e \rightarrow H, x \mapsto e ; \text{skip}}$

 $\frac{H \ ; H(x) \ \Downarrow \ c}{H \ ; x \ \Downarrow \ c}$

NOT equivalent to our original language