
Dan Grossman; Graduate Programming Languages; Lecture 6 Supplement

In class we sketched several proofs, but proof sketches invariably skip steps and have small errors. Here are
the proofs more carefully laid out, as one might do on a homework assignment.

Theorem: H ; e ∗ 2 ⇓ c if and only if H ; e + e ⇓ c.

Proof: (Does not use induction)

• First assume H ; e ∗ 2 ⇓ c and show H ; e + e ⇓ c. Any derivation of H ; e ∗ 2 ⇓ c must end with the
mult rule, which means there must exist derivations of H ; e ⇓ c′ and H ; 2 ⇓ 2, and c must be 2c′.
That is, there must be a derivation that looks like this:

...

H ; e ⇓ c′ H ; 2 ⇓ 2

H ; e ∗ 2 ⇓ 2c′

So given that there exists a derivation of H ; e ⇓ c′, we can use add to derive:

H ; e ⇓ c′ H ; e ⇓ c′

H ; e + e ⇓ c′+c′

Math provides c′+c′ = 2c′, so the conclusion of this derivation is what we need.

• Now assume H ; e + e ⇓ c and show H ; e ∗ 2 ⇓ c. Any derivation of H ; e + e ⇓ c must end with the
add rule, which means there exists a derivation that looks like this (where c = c1+c2):

...

H ; e ⇓ c1

...

H ; e ⇓ c2

H ; e + e ⇓ c1+c2

In fact, we earlier proved determinacy (there is at most one c such that H ; e ⇓ c), so the derivation
must have this form (where c = c1+c1):

...

H ; e ⇓ c1

...

H ; e ⇓ c1

H ; e + e ⇓ c1+c1

So given that there exists a derivation of H ; e ⇓ c1, we can use mult to derive:

H ; e ⇓ c1
H ; 2 ⇓ 2

H ; e ∗ 2 ⇓ 2c1

Math provides c1+c1 = 2c1, so the conclusion of this derivation is what we need.
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C ::= [·] | C + e | e + C | C ∗ e | e ∗ C

Formal definition of “filling the hole”:

([·])[e] = e
(C + e1)[e] = C[e] + e1
(e1 + C)[e] = e1 + C[e]
(C ∗ e1)[e] = C[e] ∗ e1
(e1 ∗ C)[e] = e1 ∗ C[e]

Theorem: H ; C[e ∗ 2] ⇓ c if and only if H ; C[e + e] ⇓ c.

Proof: By induction on (the height of) the structure of C:

• If the height is 0, then C is [·], so C[e ∗ 2] = e ∗ 2 and C[e + e] = e + e. So the previous theorem is
exactly what we need.

• If the height is greater than 0, then C has one of four forms:

– If C is C ′+ e′ for some C ′ and e′, then C[e ∗ 2] is C ′[e ∗ 2] + e′ and C[e+ e] is C ′[e+ e] + e′. Since
C ′ is shorter than C, induction ensures that for any constant c′, H ; C ′[e ∗ 2] ⇓ c′ if and only if
H ; C ′[e + e] ⇓ c′.

Assume H ; C ′[e ∗ 2] + e′ ⇓ c and show H ; C ′[e + e] + e′ ⇓ c: Any derivation of H ; C ′[e ∗ 2] + e′ ⇓ c
must end with add, i.e., it looks like this (where c = c′+c′′):

...

H ; C ′[e ∗ 2] ⇓ c′

...

H ; e′ ⇓ c′′

H ; C ′[e ∗ 2] + e′ ⇓ c

As argued above, the existence of a derivation of H ; C ′[e ∗ 2] ⇓ c′ ensures the existence of a
derivation of H ; C ′[e + e] ⇓ c′. So using add and the existence of a derivation of H ; e′ ⇓ c′′, we
can derive:

H ; C ′[e + e] ⇓ c′ H ; e′ ⇓ c′′

H ; C ′[e + e] + e′ ⇓ c

Now assume H ; C ′[e + e] + e′ ⇓ c and show H ; C ′[e ∗ 2] + e′ ⇓ c: Any derivation of H ; C ′[e + e] + e′ ⇓ c
must end with add, i.e., it looks like this (where c = c′+c′′):

...

H ; C ′[e + e] ⇓ c′

...

H ; e′ ⇓ c′′

H ; C ′[e + e] + e′ ⇓ c

As argued above, the existence of a derivation of H ; C ′[e + e] ⇓ c′ ensures the existence of a
derivation of H ; C ′[e ∗ 2] ⇓ c′. So using add and the existence of a derivation of H ; e′ ⇓ c′′, we
can derive:

H ; C ′[e ∗ 2] ⇓ c′ H ; e′ ⇓ c′′

H ; C ′[e ∗ 2] + e′ ⇓ c

– The other 3 cases are similar. (Try them out.)
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Theorem: The two semantics below are equivalent, i.e., H ; e ⇓ c if and only if H; e →∗ c.

const

H ; c ⇓ c

var

H ; x ⇓ H(x)

add
H ; e1 ⇓ c1 H ; e2 ⇓ c2

H ; e1 + e2 ⇓ c1+c2

svar

H; x → H(x)

sadd

H; c1 + c2 → c1+c2

sleft
H; e1 → e′1

H; e1 + e2 → e′1 + e2

sright
H; e2 → e′2

H; e1 + e2 → e1 + e′2

Proof: We prove the two directions separately.

First assume H ; e ⇓ c; show ∃n. H; e →n c. By induction on the height h of derivation of H ; e ⇓ c:

• h = 1: Then the derivation must end with const or var. For const, e is c and trivially H; e →0 c.
For var, e is some x where H(x) = c, so using svar, H; e →1 c.

• h > 1: Then the derivation must end with add, so e is some e1 +e2 where H ; e1 ⇓ c1, H ; e2 ⇓ c2, and
c is c1+c2. By induction ∃n1, n2. H; e1 →n1 c1 and H; e2 →n2 c2. Therefore, using the lemma below,
H; e1 + e2 →n1 c1 + e2 and H; c1 + e2 →n2 c1 + c2, so add lets us derive H; e1 + e2 →n1+n2+1 c.

Lemma: If H; e →n e′, then H; e1 + e →n e1 + e′ and H; e + e2 →n e′ + e2.

Proof: By induction on n. If n = 0, the result is trivial because e = e′. If n > 0, then there exists some e′′ such
that H; e →n−1 e′′ and H; e′′ →1 e′. So by induction H; e1 + e →n−1 e1 + e′′ and H; e + e2 →n−1 e′′ + e2.
Using sright and sleft respectively, H; e′′ →1 e′ ensures H; e1 + e′′ →1 e1 + e′ and H; e′′ + e2 →1 e′ + e2.
So with the inductive hypotheses, H; e1 + e →n e1 + e′ and H; e + e2 →n e′ + e2.

Now assume ∃n. H; e →n c; show H ; e ⇓ c. By induction on n:

• n = 0: e is c and const lets us derive H ; c ⇓ c.

• n > 0: So ∃e′. H; e → e′ and H; e′ →n−1 c. By induction H ; e′ ⇓ c. So this lemma suffices: If
H; e → e′ and H ; e′ ⇓ c, then H ; e ⇓ c. Prove the lemma by induction on height h of derivation of
H; e → e′:

– h = 1: Then the derivation ends with svar or sadd. For svar, e is some x and e′ = H(x) = c.
So with var we can derive H ; x ⇓ H(x), i.e., H ; e ⇓ c. For sadd, e is some c1 + c2 and
e′ = c = c1+c2. So with add, we can derive H ; c1 + c2 ⇓ c1+c2, i.e., H ; e ⇓ c. (Note the h = 1
case may look a little weird because in fact in this case n = 1, i.e., e′ must be a constant.)

– h > 1: Then the derivation ends with sleft or sright. For sleft, the assumed derivations end
like this:

H; e1 → e′1
H; e1 + e2 → e′1 + e2

H ; e′1 ⇓ c1 H ; e2 ⇓ c2

H ; e′1 + e2 ⇓ c1+c2

Using H; e1 → e′1, H ; e′1 ⇓ c1, and the induction hypothesis, H ; e1 ⇓ c1. Using this fact,
H ; e2 ⇓ c2, and add, we can derive H ; e1 + e2 ⇓ c1+c2.

For sright, the assumed derivations end like this:

H; e2 → e′2
H; e1 + e2 → e1 + e′2

H ; e1 ⇓ c1 H ; e′2 ⇓ c2

H ; e1 + e′2 ⇓ c1+c2

Using H; e2 → e′2, H ; e′2 ⇓ c2, and the induction hypothesis, H ; e2 ⇓ c2. Using this fact,
H ; e1 ⇓ c1, and add, we can derive H ; e1 + e2 ⇓ c1+c2.
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