

Another try

 $\frac{H \ ; \ e_1 \Downarrow \text{fun } x \twoheadrightarrow s \quad H \ ; \ e_2 \Downarrow v \quad y \ \text{``fresh''}}{H \ ; \ e_1(e_2) \to H \ ; \ y := x; x := v; s; x := y}$

- "fresh" is not very IMP-like but okay (think malloc)
- not a good match to how functions are implemented
- yuck: the way we want to think about something as fundamental as a call?
- NO: wrong model for most functional and OO languages
 (Even wrong for C if s calls another function that accesses the global variable x)

The wrong model

$$\begin{array}{l} H : e_1 \Downarrow \text{fun } x \rightarrow s \quad H : e_2 \Downarrow v \quad y \text{ "fresh"} \\ \hline H : e_1(e_2) \rightarrow H : y := x; x := v; s; x := y \\ \texttt{f}_1 := (\texttt{fun } \texttt{x} \rightarrow \texttt{f}_2 := (\texttt{fun } \texttt{z} \rightarrow \texttt{ans} := \texttt{x} + \texttt{z})); \\ \texttt{f}_1(2); \\ \texttt{x} := 3; \\ \texttt{f}_2(4) \end{array}$$

"Should" set ans to 6:

▶ f₁(2) should assign to f₂ a function that adds 2 to its argument and stores result in ans

"Actually" sets ans to 7:

f₂(2) assigns to f₂ a function that adds the current value of x to its argument

Punch line

Cannot properly model local scope via a global heap of integers.

Functions are not syntactic sugar for assignments to globals

So let's build a new model that focuses on this essential concept

► (can add back IMP features later)

Or just borrow a model from Alonzo Church

And drop mutation, conditionals, integers (!), and loops (!)

The Lambda Calculus

The Lambda Calculus:

$$\begin{array}{rcl} e & ::= & \lambda x. \ e \mid x \mid e \ e \\ v & ::= & \lambda x. \ e \end{array}$$

You *apply* a function by *substituting* the argument for the *bound variable*

 (There is an equivalent *environment* definition not unlike heap-copying; see future homework)

Example Substitutions

Dan Grossman

$$e ::= \lambda x. e \mid x \mid e e$$

 $v ::= \lambda x. e$

CS-XXX 2012, Lecture 7

Substitution is the key operation we were missing:

$$(\lambda x. x)(\lambda y. y)
ightarrow (\lambda y. y)$$

 $(\lambda x. \lambda y. y x)(\lambda z. z)
ightarrow (\lambda y. y \lambda z. z)$
 $(\lambda x. x x)(\lambda x. x x)
ightarrow (\lambda x. x x)(\lambda x. x x)$

After substitution, the bound variable is gone, so its "name" was irrelevant. (Good!)

CS-XXX 2012. Lecture

A Programming Language

Given substitution $(e_1[e_2/x]=e_3)$, we can give a semantics:

CS-XXX 2012. Lecture 7

$$\begin{array}{c} \underline{e} \rightarrow \underline{e'} \\ \hline \\ \hline \\ \frac{e[v/x] = e'}{(\lambda x. \ e) \ v \rightarrow e'} & \overline{e_1 \rightarrow e_1'} \\ \hline \\ \hline \\ e_1 \ e_2 \rightarrow e_1' \ e_2 \\ \hline \\ \hline \\ e_2 \rightarrow v \ e_2' \\ \hline \\ \hline \\ e_2 \rightarrow v \ e_2' \\ \hline \end{array}$$

A small-step, call-by-value (CBV), left-to-right semantics

• Terminates when the "whole program" is some $\lambda x. e$

But (also) gets stuck when there's a free variable "at top-level"

➤ Won't "cheat" like we did with H(x) in IMP because scope is what we are interested in

This is the "heart" of functional languages like OCaml

 But "real" implementations do not substitute; they do something equivalent

CS-XXX 2012, Lecture 7

Roadmap	Concrete-Syntax Notes
	We (and OCamI) resolve concrete-syntax ambiguities as follows:
Motivation for a new model (done)	1. $\lambda x. e_1 e_2$ is $(\lambda x. e_1 e_2)$, not $(\lambda x. e_1) e_2$
 CBV lambda calculus using substitution (done) 	 2. e₁ e₂ e₃ is (e₁ e₂) e₃, not e₁ (e₂ e₃) ▶ Convince yourself application is not associative
Notes on concrete syntax	More generally:
 Simple Lambda encodings (it is Turing complete!) 	1. Function bodies extend to an unmatched right parenthesis Example: $(\lambda x. \ y(\lambda z. \ z)w)q$
 Other reduction strategies 	2. Application associates to the left Example: $e_1 \ e_2 \ e_3 \ e_4$ is $(((e_1 \ e_2) \ e_3) \ e_4)$
 Defining substitution 	
	 Like in IMP, assume we really have ASTs (with non-leaves labeled λ or "application") Rules may seem strange at first, but it is the most convenient concrete syntax Based on 70 years experience
Dan Grossman CS-XXX 2012, Lecture 7 13	Dan Grossman CS-XXX 2012, Lecture 7 14
Lambda Encodings	Encoding booleans
Fairly crazy: we left out constants, conditionals, primitives, and	The "Boolean ADT"
data structures	 There are two booleans and one conditional expression.
In fact, we are <i>Turing complete</i> and can <i>encode</i> whatever we need (just like assembly language can)	 The conditional takes 3 arguments (e.g., via currying). If the first is one boolean it evaluates to the second. If it is the other boolean it evaluates to the third.
Motivation for encodings:	
Fun and mind-expanding	Any set of three expressions meeting this specification is a proper encoding of booleans
Shows we are not oversimplifying the model	
("numbers are syntactic sugar")	Here is one of an infinite number of encodings:
 Can show languages are too expressive (e.g., unlimited C++ template instantiation) 	"true" $\lambda x. \lambda y. x$
(e.g., unimited C++ template instantiation)	"false" $\lambda x. \lambda y. y$
Encodings are also just "(re)definition via translation"	"if" $\lambda b. \lambda t. \lambda f. b t f$
	Example: "if" "true" $v_1 \; v_2 ightarrow^* v_1$
Dan Grossman CS-XXX 2012, Lecture 7 15	Dan Grossman CS-XXX 2012, Lecture 7 16
Evaluation Order Matters	Encoding Pairs
Careful: With CBV we need to "thunk"	The "pair ADT":
	There is 1 constructor (taking 2 arguments) and 2 selectors
"if" "true" $(\lambda x. \ x) ((\lambda x. \ x \ x)(\lambda x. \ x \ x))$	1st selector returns the 1st arg passed to the constructor
an infinite loop	2nd selector returns the 2nd arg passed to the constructor
	"mkpair" $\lambda x. \lambda y. \lambda z. z x y$
diverges, but	$\begin{array}{ll} \text{``fst''} & \lambda p. \ p(\lambda x. \ \lambda y. \ x) \\ \text{``snd''} & \lambda p. \ p(\lambda x. \ \lambda y. \ y) \end{array}$
"if" "true" $(\lambda x.\ x)$ $\underbrace{(\lambda z.\ ((\lambda x.\ x\ x)(\lambda x.\ x\ x))\ z))}$	Example:
a value that when called diverges	
does not	"snd" ("fst" ("mkpair" ("mkpair" v_1 v_2) v_3)) $ ightarrow$ * v_2
Dan Grossman CS-XXX 2012, Lecture 7 17	Dan Grossman CS-XXX 2012, Lecture 7 18

Reusing Lambdas

Is it weird that the encodings of Booleans and pairs both used $\lambda x. \lambda y. x$ and $\lambda x. \lambda y. y$ for different purposes?

Is it weird that the same bit-pattern in binary code can represent an int, a float, an instruction, or a pointer?

Von Neumann: Bits can represent (all) code and data

Church (?): Lambdas can represent (all) code and data

Beware the "Turing tarpit"

Encoding Lists

Rather than start from scratch, notice that booleans and pairs are enough to encode lists:

- Empty list is "mkpair" "false" "false"
- Non-empty list is $\lambda h. \lambda t.$ "mkpair" "true" ("mkpair" h t)
- Is-empty is ...
- Head is ...
- ► Tail is ...

Note:

Not too far from how lists are implemented

- ► Taking "tail" ("tail" "empty") will produce some lambda
 - Just like, without page-protection hardware, null->tail->tail would produce some bit-pattern

Encoding Recursion

Some programs diverge, but can we write useful loops? Yes!

- Write a function that takes an *f* and calls it in place of recursion
 - Example (in enriched language):

 $\lambda f. \lambda x.$ if (x = 0) then 1 else (x * f(x - 1))

- Then apply "fix" to it to get a recursive function:
 "fix" λf. λx. if (x = 0) then 1 else (x * f(x 1))
- "fix" $\lambda f. e$ reduces to something roughly equivalent to $e[(\text{"fix"} \lambda f. e)/f]$, which is "unrolling the recursion once" (and further unrollings will happen as necessary)
- The details, especially for CBV, are icky; the point is it is possible and you define "fix" only once

CS-XXX 2012 Lecture 7

Not on exam: "fix" $\lambda g. (\lambda x. g (\lambda y. x x y))(\lambda x. g (\lambda y. x x y))$

Church Numerals

Dan <u>Grossman</u>

- $\begin{array}{ll} "0" & \lambda s. \ \lambda z. \ z \\ "1" & \lambda s. \ \lambda z. \ s \ z \\ "2" & \lambda s. \ \lambda z. \ s \ (s \ z) \\ "3" & \lambda s. \ \lambda z. \ s \ (s \ (s \ z)) \end{array}$
- Numbers encoded with two-argument functions
- The "number i" composes the first argument i times, starting with the second argument
 - \blacktriangleright z stands for "zero" and s for "successor" (think unary)
- The trick is implementing arithmetic by cleverly passing the right arguments for s and z

CS-XXX 2012. Lecture

Encoding Arithmetic Over Natural Numbers

How about arithmetic?

► Focus on non-negative numbers, addition, is-zero, etc.

How I would do it based on what we have so far:

- Lists of booleans for binary numbers
 - Zero can be the empty list
 - Use fix to implement adders, etc.
 - Like in hardware except fixed-width avoids recursion
- Or just use list length for a unary encoding
 - Addition is list append

But instead everybody always teaches Church numerals. Why?

- Tradition? Some sense of professional obligation?
- Better reason: You do not need fix: Basic arithmetic is often encodable in languages where all programs terminate

CS-XXX 2012 Lecture 7

► In any case, we will show some basics "just for fun"

Church Numerals

"0"	$\lambda s. \ \lambda z. \ z$
"1"	$\lambda s. \ \lambda z. \ s \ z$
"2"	$\lambda s. \ \lambda z. \ s \ (s \ z)$
"3"	$\lambda s. \ \lambda z. \ s \ (s \ (s \ z))$

"successor" $\lambda n. \lambda s. \lambda z. s (n \ s \ z)$

successor: take "a number" and return "a number" that (when called) applies *s* one more time

CE XXX 2012 1 ----

Church Numerals

Dan Gross

"0"	$\lambda s. \ \lambda z. \ z$
"1"	$\lambda s. \ \lambda z. \ s \ z$
"2"	$\lambda s. \ \lambda z. \ s \ (s \ z)$
"3"	$\lambda s. \ \lambda z. \ s \ (s \ (s \ z))$
"successor"	$\lambda n. \ \lambda s. \ \lambda z. \ s \ (n \ s \ z)$
"plus"	$\lambda n. \ \lambda m. \ \lambda s. \ \lambda z. \ n \ s \ (m \ s \ z)$

plus: take two "numbers" and return a "number" that uses one number as the zero argument for the other

CS-XXX 2012, Lect

Church Numerals

"0" "1" "2" "3"	$egin{array}{llllllllllllllllllllllllllllllllllll$
"successor"	$\lambda n. \ \lambda s. \ \lambda z. \ s \ (n \ s \ z)$
"plus"	$\lambda n. \ \lambda m. \ \lambda s. \ \lambda z. \ n \ s \ (m \ s \ z)$
"times"	$\lambda n. \ \lambda m. \ m \ ("plus" \ n) \ "zero"$

times: take two "numbers" m and n and pass to m a function that adds n to its argument (so this will happen m times) and "zero" (where to start the m iterations of addition)

Church Numerals		Church Numerals	
"0" "1" "2" "3" "successor" "plus" "times" "isZero" isZero: an easy one, se correct answer	$\begin{array}{l} \lambda s. \ \lambda z. \ z \\ \lambda s. \ \lambda z. \ s \ z \\ \lambda s. \ \lambda z. \ s \ (s \ z) \\ \lambda s. \ \lambda z. \ s \ (s \ z)) \\ \lambda n. \ \lambda s. \ \lambda z. \ s \ (s \ (s \ z)) \\ \lambda n. \ \lambda m. \ \lambda s. \ \lambda z. \ n \ s \ (m \ s \ z) \\ \lambda n. \ \lambda m. \ m \ ("plus" \ n) \ "zero" \\ \lambda n. \ n \ (\lambda x. \ "false") \ "true" \\ \end{array}$	"0" "1" "2" "3" "successor" "plus" "times" "isZero" "predecessor" "minus" "isEqual"	$\begin{split} \lambda s. \ \lambda z. \ z \\ \lambda s. \ \lambda z. \ s \ z \\ \lambda s. \ \lambda z. \ s \ (s \ z) \\ \lambda s. \ \lambda z. \ s \ (s \ z) \\ \lambda s. \ \lambda z. \ s \ (s \ (s \ z)) \\ \end{split}$ $\begin{split} \lambda n. \ \lambda s. \ \lambda z. \ s \ (n \ s \ z) \\ \lambda n. \ \lambda m. \ \lambda s. \ \lambda z. \ n \ s \ (m \ s \ z) \\ \lambda n. \ \lambda m. \ m \ ("plus" \ n) "zero" \\ \lambda n. \ n \ (\lambda x. "false") "true" \\ \end{split}$ (with 0 sticky) the hard one; see Wikipedia similar to times with pred instead of plus subtract and test for zero

Dan Gro

Dan Grossman CS-XXX 2012, Lecture 7 27	Dan Grossman CS-XXX 2012, Lecture 7 28
Roadmap	
 Motivation for a new model (done) 	
 CBV lambda calculus using substitution (done) 	
 Notes on concrete syntax (done) 	
 Simple Lambda encodings (it is Turing complete!) (done) 	
 Other reduction strategies 	
 Defining substitution 	
Then start type systems	
 Later take a break from types to consider first-class continuations and related topics 	
Dan Grossman CS-XXX 2012, Lecture 7 29	