
A Sophomoric* Introduction to
Shared-Memory Parallelism and Concurrency

Dan Grossman

Version of August 14, 2023

A version of this material has been published as two chapters in the book Parallel and Distributed Computing edited by
Charles C. Weems Jr., Arnold Rosenberg, Sushil Prasad, Anshul Gupta, and Alan Sussman. As a result, the copyright
and all other rights have been transferred to Elsevier. However, the author has been explicitly given permission to
provide this draft of the materials on this website so that they can continue to be useful in this format for instructors,
students, and others.

*As in intended for second-year students, not as in immaturely pretentious

1

Contents
1 Meta-Introduction: An Instructor’s View of These Notes 3

1.1 Where This Material Fits in a Changing Curriculum . 3
1.2 Six Theses On A Successful Approach to this Material . 4
1.3 How to Use These Notes — And Improve Them . 4
1.4 Acknowledgments . 5

2 Introduction 5
2.1 More Than One Thing At Once . 5
2.2 Parallelism vs. Concurrency . 6
2.3 Basic Threads and Shared Memory . 7
2.4 Other Models . 11

3 Basic Fork-Join Parallelism 14
3.1 A Simple Example: Okay Idea, Inferior Style . 14
3.2 Why Not To Use One Thread Per Processor . 18
3.3 Divide-And-Conquer Parallelism . 20
3.4 The Java ForkJoin Framework . 25
3.5 Reductions and Maps . 28
3.6 Data Structures Besides Arrays . 30

4 Analyzing Fork-Join Algorithms 30
4.1 Work and Span . 30
4.2 Amdahl’s Law . 34
4.3 Comparing Amdahl’s Law and Moore’s Law . 36

5 Fancier Fork-Join Algorithms: Prefix, Pack, Sort 36
5.1 Parallel-Prefix Sum . 36
5.2 Pack . 39
5.3 Parallel Quicksort . 41
5.4 Parallel Mergesort . 43

6 Basic Shared-Memory Concurrency 44
6.1 The Programming Model . 44
6.2 The Need for Synchronization . 45
6.3 Locks . 48
6.4 Locks in Java . 49

7 Race Conditions: Bad Interleavings and Data Races 53
7.1 Bad Interleavings: An Example with Stacks . 53
7.2 Data Races: Wrong Even When They Look Right . 57

8 Concurrency Programming Guidelines 61
8.1 Conceptually Splitting Memory in Three Parts . 61
8.2 Approaches to Synchronization . 63

9 Deadlock 67

10 Additional Synchronization Primitives 69
10.1 Reader/Writer Locks . 69
10.2 Condition Variables . 71
10.3 Other . 76

2

1 Meta-Introduction: An Instructor’s View of These Notes

1.1 Where This Material Fits in a Changing Curriculum

These notes teach parallelism and concurrency as part of an advanced sophomore-level data-structures course
– the course that covers asymptotic complexity, balanced trees, hash tables, graph algorithms, sorting, etc.

Why parallelism and concurrency should be taught early:

Parallelism and concurrency are increasingly important topics in computer science and engineering. Traditionally,
most undergraduates learned rather little about these topics and did so rather late in the curriculum: Senior-level
operating-systems courses cover threads, scheduling, and synchronization. Early hardware courses have circuits and
functional units with parallel parts. Advanced architecture courses discuss cache coherence. Electives might cover
parallel algorithms or use distributed computing to solve embarrassingly parallel tasks.

Little of this scattered material emphasizes the essential concepts of parallelism and concurrency — and certainly
not in a central place such that subsequent courses can rely on it. These days, most desktop and laptop computers
have multiple cores. Modern high-level languages have threads built into them and standard libraries use threads
(e.g., Java’s Swing library for GUIs). It no longer seems reasonable to bring up threads “as needed” or delay until an
operating-systems course that should be focusing on operating systems. There is no reason to introduce threads first
in C or assembly when all the usual conveniences of high-level languages for introducing core concepts apply.

Why parallelism and concurrency should not be taught too early:

Conversely, it is tempting to introduce threads “from day one” in introductory programming courses before stu-
dents learn “sequential habits.” I suspect this approach is infeasible in most curricula. For example, it may make little
sense in programs where most students in introductory courses do not end up majoring in computer science. “Messing
with intro” is a high-risk endeavor, and introductory courses are already packed with essential concepts like variables,
functions, arrays, linked structures, etc. There is probably no room.

So put it in the data-structures course:

There may be multiple natural places to introduce parallelism and concurrency, but I claim “sophomore-level” data
structures (after CS2 and discrete math, but before “senior-level” algorithms) works very well. Here are some reasons:

• There is room: We made room by removing three weeks on skew heaps, leftist heaps, binomial queues, splay
trees, disjoint-set, and network flow. Some of the trimming was painful and will be compensated for in senior-
level algorithms, but all this material seems relatively less important. There was still plenty of room for essential
data structures and related concepts such as asymptotic analysis, (simple) amortization, graphs, and sorting.

• Fork-join parallel algorithms are amenable to asymptotic analysis in terms of “work” and “span” over dags —
all concepts that fit very naturally in the course. Amdahl’s Law is fundamentally an asymptotic argument too.

• Ideas from sequential algorithms already in the course reappear with parallelism. For example, just as constant
factors compel efficient quicksort implementations to switch to an O(n2) sort for small n, constant factors
compel efficient parallel algorithms to switch to sequential algorithms for small problem sizes. Parallel sorting
algorithms are also good examples of non-trivial parallelization.

• Many canonical examples for concurrency involve basic data structures: bounded buffers for condition variables,
dictionaries for reader/writer locks, parallel unstructured graph traversals, etc. Making a data structure “thread-
safe” is an ideal way to think about what it means to be “thread-safe.”

• We already used Java in the course. Java 7 (and higher)’s ForkJoin framework is excellent for teaching fork-
join parallelism. Java’s built-in support for threads, locks, and condition variables is sufficient for teaching
concurrency.

3

On the other hand, instructors wishing to introduce message passing or distributed computation will have to consider
whether it makes sense in this course. I focus on shared memory, only mentioning other models. I do not claim shared
memory is “better” (that’s an endless argument on which I have no firm opinion), only that it is an important model
and a good one to start with pedagogically. I also do not emphasize asynchrony and masking I/O latency. Such topics
are probably better covered in a course on systems programming, though one could add them to these notes.

While most of the material is these notes is not specific to a particular programming language, all examples and
discussions use Java when a specific language is warranted. A C++ version of these materials is also available thanks
to Steve Wolfman from the University of British Columbia. Porting to additional languages should be quite doable,
and I would be happy to collaborate with people interested in doing so.

For more information on the motivation and context, see a SIGCSE2012 paper coauthored with Ruth E. Anderson.

1.2 Six Theses On A Successful Approach to this Material
In summary, these notes rest on several theses for how to teach this material:

1. Integrate it into a data-structures course.

2. Distinguish parallelism (using extra computational units to do more work per unit time) from concurrency
(managing access to shared resources). Teach parallelism first because it is easier and helps establish a non-
sequential mindset.

3. Teach in a high-level language, using a library for fork-join parallelism. Teach how to use parallelism, threads,
locks, etc. Do not teach how to implement them.

4. Conversely, do not teach in terms of higher-order parallel patterns like maps and reduces. Mention these, but
have students actually do the divide-and-conquer underlying these patterns.

5. Assume shared memory since one programming model is hard enough.

6. Given the limited time and student background, do not focus on memory-hierarchy issues (e.g., caching), much
like these issues are mentioned (e.g., with B-trees) but rarely central in data-structures courses. (Adding a
discussion should prove straightforward.)

If you strongly disagree with these theses, you will probably not like these notes — but you might still try them.

1.3 How to Use These Notes — And Improve Them
These notes were originally written for CSE332 at the University of Washington
(http://courses.cs.washington.edu/courses/cse332). They account for 3 weeks of a required 10-week
course (the University uses a quarter system). Alongside these notes are PowerPoint slides, homework assignments,
and a programming project. In fact, these notes were the last aspect to be written — the first edition of the course went
great without them and students reported parallelism to be their favorite aspect of the course.

Surely these notes have errors and explanations could be improved. Please let me know of any problems you find.
I am a perfectionist: if you find a typo I would like to know. Ideally you would first check that the most recent version
of the notes does not already have the problem fixed.

I encourage you to use these notes in whatever way works best for you. The LATEX sources are also available. I
would like to know if you are using these notes and how. It motivates me to improve them and, frankly, it’s not bad for
my ego. Constructive criticism is also welcome. That said, I don’t expect any thoughtful instructor to agree completely
with me on what to cover and how to cover it.

Contact me at the email djg and then the at-sign and then cs.washington.edu. The current home for these
notes and related materials is http://homes.cs.washington.edu/~djg/teachingMaterials/. Students are
more than welcome to contact me: who better to let me know where these notes could be improved.

4

http://courses.cs.washington.edu/courses/cse332
http://homes.cs.washington.edu/~djg/teachingMaterials/

1.4 Acknowledgments
I deserve no credit for the material in these notes. If anything, my role was simply to distill decades of wisdom from
others down to three weeks of core concepts and integrate the result into a data-structures course. When in doubt, I
stuck with the basic and simplest topics and examples.

I was particularly influenced by Guy Blelloch and Charles Leisersen in terms of teaching parallelism before con-
currency and emphasizing divide-and-conquer algorithms that do not consider the number of processors. Doug Lea
and other developers of Java’s ForkJoin framework provided a wonderful library that, with some hand-holding, is
usable by sophomores. Larry Snyder was also an excellent resource for parallel algorithms.

The treatment of shared-memory synchronization is heavily influenced by decades of operating-systems courses,
but with the distinction of ignoring all issues of scheduling and synchronization implementation. Moreover, the em-
phasis on the need to avoid data races in high-level languages is frustratingly under-appreciated despite the noble work
of memory-model experts such as Sarita Adve, Hans Boehm, and Bill Pugh.

Feedback from Ruth Anderson, Kim Bruce, Kristian Lieberg, Tyler Robison, Cody Schroeder, and Martin Tompa
helped improve explanations and remove typos. Tyler and Martin deserve particular mention for using these notes
when they were very new. James Fogarty made many useful improvements to the presentation slides that accompany
these reading notes. Steve Wolfman created the C++ version of these notes.

Nicholas Shahan created almost all the images and diagrams in these notes, which make the accompanying expla-
nations much better.

I have had enlightening and enjoyable discussions on “how to teach this stuff” with too many researchers and
educators over the last few years to list them all, but I am grateful.

This work was funded in part via grants from the U.S. National Science Foundation and generous support, financial
and otherwise, from Intel Labs University Collaborations.

2 Introduction

2.1 More Than One Thing At Once
In sequential programming, one thing happens at a time. Sequential programming is what most people learn first and
how most programs are written. Probably every program you have written in Java (or a similar language) is sequential:
Execution starts at the beginning of main and proceeds one assignment / call / return / arithmetic operation at a time.

Removing the one-thing-at-a-time assumption complicates writing software. The multiple threads of execution
(things performing computations) will somehow need to coordinate so that they can work together to complete a task
— or at least not get in each other’s way while they are doing separate things. These notes cover basic concepts related
to multithreaded programming, i.e., programs where there are multiple threads of execution. We will cover:

• How to create multiple threads

• How to write and analyze divide-and-conquer algorithms that use threads to produce results more quickly

• How to coordinate access to shared objects so that multiple threads using the same data do not produce the
wrong answer

A useful analogy is with cooking. A sequential program is like having one cook who does each step of a recipe in
order, finishing one step before starting the next. Often there are multiple steps that could be done at the same time —
if you had more cooks. But having more cooks requires extra coordination. One cook may have to wait for another
cook to finish something. And there are limited resources: If you have only one oven, two cooks won’t be able to bake
casseroles at different temperatures at the same time. In short, multiple cooks present efficiency opportunities, but also
significantly complicate the process of producing a meal.

Because multithreaded programming is so much more difficult, it is best to avoid it if you can. For most of
computing’s history, most programmers wrote only sequential programs. Notable exceptions were:

• Programmers writing programs to solve such computationally large problems that it would take years or cen-
turies for one computer to finish. So they would use multiple computers together.

5

• Programmers writing systems like an operating system where a key point of the system is to handle multiple
things happening at once. For example, you can have more than one program running at a time. If you have
only one processor, only one program can actually run at a time, but the operating system still uses threads to
keep track of all the running programs and let them take turns. If the taking turns happens fast enough (e.g., 10
milliseconds), humans fall for the illusion of simultaneous execution. This is called time-slicing.

Sequential programmers were lucky: since every 2 years or so computers got roughly twice as fast, most programs
would get exponentially faster over time without any extra effort.

Around 2005, computers stopped getting twice as fast every 2 years. To understand why requires a course in
computer architecture. In brief, increasing the clock rate (very roughly and technically inaccurately speaking, how
quickly instructions execute) became infeasible without generating too much heat. Also, the relative cost of memory
accesses can become too high for faster processors to help.

Nonetheless, chip manufacturers still plan to make exponentially more powerful chips. Instead of one processor
running faster, they will have more processors. The next computer you buy will likely have 4 processors (also called
cores) on the same chip and the number of available cores will likely double every few years.

What would 256 cores be good for? Well, you can run multiple programs at once — for real, not just with time-
slicing. But for an individual program to run any faster than with one core, it will need to do more than one thing
at once. This is the reason that multithreaded programming is becoming more important. To be clear, multithreaded
programming is not new. It has existed for decades and all the key concepts are just as old. Before there were multiple
cores on one chip, you could use multiple chips and/or use time-slicing on one chip — and both remain important tech-
niques today. The move to multiple cores on one chip is “just” having the effect of making multithreading something
that more and more software wants to do.

2.2 Parallelism vs. Concurrency
These notes are organized around a fundamental distinction between parallelism and concurrency. Unfortunately, the
way we define these terms is not entirely standard, so you should not assume that everyone uses these terms as we
will. Nonetheless, most computer scientists agree that this distinction is important.

Parallel programming is about using additional computational resources to produce an answer faster.

As a canonical example, consider the trivial problem of summing up all the numbers in an array. We know no
sequential algorithm can do better than Θ(n) time. Suppose instead we had 4 processors. Then hopefully we could
produce the result roughly 4 times faster by having each processor add 1/4 of the elements and then we could just add
these 4 partial results together with 3 more additions. Θ(n/4) is still Θ(n), but constant factors can matter. Moreover,
when designing and analyzing a parallel algorithm, we should leave the number of processors as a variable, call it P .
Perhaps we can sum the elements of an array in time O(n/P) given P processors. As we will see, in fact the best
bound under the assumptions we will make is O(log n + n/P).

In terms of our cooking analogy, parallelism is about using extra cooks (or utensils or pans or whatever) to get a
large meal finished in less time. If you have a huge number of potatoes to slice, having more knives and people is
really helpful, but at some point adding more people stops helping because of all the communicating and coordinating
you have to do: it is faster for me to slice one potato by myself than to slice it into fourths, give it to four other people,
and collect the results.

Concurrent programming is about correctly and efficiently controlling access by multiple threads to shared
resources.

As a canonical example, suppose we have a dictionary implemented as a hashtable with operations insert,
lookup, and delete. Suppose that inserting an item already in the table is supposed to update the key to map to
the newly inserted value. Implementing this data structure for sequential programs is something we assume you could
already do correctly. Now suppose different threads use the same hashtable, potentially at the same time. Suppose
two threads even try to insert the same key at the same time. What might happen? You would have to look at your
sequential code carefully, but it is entirely possible that the same key might end up in the table twice. That is a problem
since a subsequent delete with that key might remove only one of them, leaving the key in the dictionary.

6

To prevent problems like this, concurrent programs use synchronization primitives to prevent multiple threads
from interleaving their operations in a way that leads to incorrect results. Perhaps a simple solution in our hashtable
example is to make sure only one thread uses the table at a time, finishing an operation before another thread starts.
But if the table is large, this is unnecessarily inefficient most of the time if the threads are probably accessing different
parts of the table.

In terms of cooking, the shared resources could be something like an oven. It is important not to put a casserole
in the oven unless the oven is empty. If the oven is not empty, we could keep checking until it is empty. In Java, you
might naively write:

while(true) {

if(ovenIsEmpty()) {

putCasseroleInOven();

break;

}

}

Unfortunately, code like this is broken if two threads run it at the same time, which is the primary complication in
concurrent programming. They might both see an empty oven and then both put a casserole in. We will need to learn
ways to check the oven and put a casserole in without any other thread doing something with the oven in the meantime.

Comparing Parallelism and Concurrency

We have emphasized here how parallel programming and concurrent programming are different. Is the problem
one of using extra resources effectively or is the problem one of preventing a bad interleaving of operations from
different threads? It is all-too-common for a conversation to become muddled because one person is thinking about
parallelism while the other is thinking about concurrency.

In practice, the distinction between parallelism and concurrency is not absolute. Many programs have aspects of
each. Suppose you had a huge array of values you wanted to insert into a hash table. From the perspective of dividing
up the insertions among multiple threads, this is about parallelism. From the perspective of coordinating access to the
hash table, this is about concurrency. Also, parallelism does typically need some coordination: even when adding up
integers in an array we need to know when the different threads are done with their chunk of the work.

We believe parallelism is an easier concept to start with than concurrency. You probably found it easier to un-
derstand how to use parallelism to add up array elements than understanding why the while-loop for checking the
oven was wrong. (And if you still don’t understand the latter, don’t worry, later sections will explain similar examples
line-by-line.) So we will start with parallelism (Sections 3, 4, 5), getting comfortable with multiple things happening
at once. Then we will switch our focus to concurrency (Sections 6, 7, 8, 9, 10) and shared resources (using memory
instead of ovens), learn many of the subtle problems that arise, and present programming guidelines to avoid them.

2.3 Basic Threads and Shared Memory
Before writing any parallel or concurrent programs, we need some way to make multiple things happen at once and
some way for those different things to communicate. Put another way, your computer may have multiple cores, but all
the Java constructs you know are for sequential programs, which do only one thing at once. Before showing any Java
specifics, we need to explain the programming model.

The model we will assume is explicit threads with shared memory. A thread is itself like a running sequential
program, but one thread can create other threads that are part of the same program and those threads can create more
threads, etc. Two or more threads can communicate by writing and reading fields of the same objects. In other words,
they share memory. This is only one model of parallel/concurrent programming, but it is the only one we will use. The
next section briefly mentions other models that a full course on parallel/concurrent programming would likely cover.

Conceptually, all the threads that have been started but not yet terminated are “running at once” in a program. In
practice, they may not all be running at any particular moment:

• There may be more threads than processors. It is up to the Java implementation, with help from the underlying
operating system, to find a way to let the threads “take turns” using the available processors. This is called

7

Figure 1: The key pieces of an executing sequential program: A program counter, a call stack, and a heap of objects.
(There are also static fields of classes, which we can think of as being in the heap.)

scheduling and is a major topic in operating systems. All we need to know is that it is not under the Java
programmer’s control: you create the threads and the system schedules them.

• A thread may be waiting for something to happen before it continues. For example, the next section discusses
the join primitive where one thread does not continue until another thread has terminated.

Let’s be more concrete about what a thread is and how threads communicate. It is helpful to start by enumerating
the key pieces that a sequential program has while it is running (see also Figure 1):

1. One call stack, where each stack frame holds the local variables for a method call that has started but not yet
finished. Calling a method pushes a new frame and returning from a method pops a frame. Call stacks are why
recursion is not “magic.”

2. One program counter. This is just a low-level name for keeping track of what statement is currently executing.
In a sequential program, there is exactly one such statement.

3. Static fields of classes.

4. Objects. An object is created by calling new, which returns a reference to the new object. We call the memory
that holds all the objects the heap. This use of the word “heap” has nothing to do with heap data structure used
to implement priority queues. It is separate memory from the memory used for the call stack and static fields.

With this overview of the sequential program state, it is much easier to understand threads:

Each thread has its own call stack and program counter, but all the threads share one collection of static fields
and objects. (See also Figure 2.)

8

Figure 2: The key pieces of an executing multithreaded program: Each thread has its own program counter and
call-stack, but objects in the heap may be shared by multiple threads. (Static fields of classes are also shared by all
threads.)

9

• When a new thread starts running, it will have its own new call stack. It will have one frame on it, which is like
that thread’s main, but it won’t actually be main.

• When a thread returns from its first method, it terminates.

• Each thread has its own program counter and local variables, so there is no “interference” from other threads for
these things. The way loops, calls, assignments to variables, exceptions, etc. work for each thread is just like
you learned in sequential programming and is separate for each thread.

• What is different is how static fields and objects work. In sequential programming we know x.f=42; y =

x.f; always assigns 42 to the variable y. But now the object that x refers to might also have its f field written
to by other threads, so we cannot be so sure.

In practice, even though all objects could be shared among threads, most are not. In fact, just as having static fields
is often poor style, having lots of objects shared among threads is often poor style. But we need some shared objects
because that is how threads communicate. If we are going to create parallel algorithms where helper threads run in
parallel to compute partial answers, they need some way to communicate those partial answers back to the “main”
thread. The way we will do it is to have the helper threads write to some object fields that the main thread later reads.

We finish this section with some Java specifics for exactly how to create a new thread in Java. The details vary in
different languages and in fact the parallelism portion of these notes mostly uses a different Java library with slightly
different specifics. In addition to creating threads, we will need other language constructs for coordinating them. For
example, for one thread to read the result another thread wrote as its answer, the reader often needs to know the writer
is done. We will present such primitives as we need them.

To create a new thread in Java requires that you define a new class (step 1) and then perform two actions at run-time
(steps 2–3):

1. Define a subclass of java.lang.Thread and override the public method run, which takes no arguments and
has return type void. The run method will act like “main” for threads created using this class. It must take no
arguments, but the example below shows how to work around this inconvenience.

2. Create an instance of the class you defined in step 1. That is, if you defined class ExampleThread, then use new
to create an ExampleThread object. Note this does not yet create a running thread. It just creates an object of
class ExampleThread, which is a subclass of Thread.

3. Call the start method of the object you created in step 2. This step does the “magic” creation of a new thread.
That new thread will execute the run method of the object. Notice that you do not call run; that would just be
an ordinary method call. You call start, which makes a new thread that runs run. The call to start “returns
immediately” so the caller continues on, in parallel with the newly-created thread running run. The new thread
terminates when its run method completes.

Here is a complete example of a useless Java program that starts with one thread and then creates 20 more threads:

class ExampleThread extends java.lang.Thread {

int i;

ExampleThread(int i) { this.i = i; }

public void run() {

System.out.println("Thread " + i + " says hi");

System.out.println("Thread " + i + " says bye");

}

}

class M {

public static void main(String[] args) {

for(int i=1; i <= 20; ++i) {

ExampleThread t = new ExampleThread(i);

t.start();

10

}

}

}

When this program runs, it will print 40 lines of output, one of which is:

Thread 13 says hi

Interestingly, we cannot predict the order for these 40 lines of output. In fact, if you run the program multiple times,
you will probably see the output appear in different orders on different runs. After all, each of the 21 separate threads
running “at the same time” (conceptually, since your machine may not have 21 processors available for the program)
can run in an unpredictable order. The main thread is the first thread and then it creates 20 others. The main thread
always creates the other threads in the same order, but it is up to the Java implementation to let all the threads “take
turns” using the available processors. There is no guarantee that threads created earlier run earlier. Therefore, multi-
threaded programs are often nondeterministic, meaning their output can change even if the input does not. This is a
main reason that multithreaded programs are more difficult to test and debug. Figure 3 shows two possible orders of
execution, but there are many, many more.

So is any possible ordering of the 40 output lines possible? No. Each thread still runs sequentially. So we
will always see Thread 13 says hi before the line Thread 13 says bye even though there may be other lines
in-between. We might also wonder if two lines of output would ever be mixed, something like:

Thread 13 Thread says 14 says hi hi

This is really a question of how the System.out.println method handles concurrency and the answer happens to
be that it will always keep a line of output together, so this would not occur. In general, concurrency introduces new
questions about how code should and does behave.

We can also see how the example worked around the rule that run must override java.lang.Thread’s run

method and therefore not take any arguments. The standard idiom is to pass any “arguments” for the new thread to
the constructor, which then stores them in fields so that run can later access them. In this simple example, this trick
is the only use of shared memory since the helper threads (the ones doing the printing) do not need to pass any other
data to/from the main thread or each other.

It may not look like this is using shared memory, but it is: When the main thread calls new ExampleThread(i),
this is a normal call to a constructor. A new object gets created and the main thread runs the constructor code, writing
to the i field of the new object. Later, after the “magic” call to start, the new running thread is running the run

method with this bound to the same object that the main thread wrote to. The helper thread then reads i, which
just means this.i, and gets the value previously written by the main thread: shared-memory communication. See
Figure 4.

As this example shows, shared-memory communication relies on aliasing. The t on some iteration of the for-loop
refers to the same object as this in one of the new threads’ run method. Aliasing is often difficult to reason about,
but it is the way we communicate in shared-memory multithreaded programs.

2.4 Other Models
While these notes focus on using threads and shared memory to handle parallelism and concurrency, it would be mis-
leading to suggest that this is the only model for parallel/concurrent programming. Shared memory is often considered
convenient because communication uses “regular” reads and writes of fields to objects. However, it is also considered
error-prone because communication is implicit; it requires deep understanding of the code/documentation to know
which memory accesses are doing inter-thread communication and which are not. The definition of shared-memory
programs is also much more subtle than many programmers think because of issues regarding data races, as discussed
in Section 7.

Here are three well-known, popular alternatives to shared memory. As is common in computer science, no option
is “clearly better.” Different models are best-suited to different problems, and any model can be abused to produce
incorrect or unnecessarily complicated software. One can also build abstractions using one model on top of another

11

Figure 3: Two possible outputs from running the program that creates 20 threads that each print two lines.

12

Figure 4: How we can use shared memory, specifically fields in a subclass of Thread, to pass data to a newly created
thread.

model, or use multiple models in the same program. These are really different perspectives on how to describe
parallel/concurrent programs.

Message-passing is the natural alternative to shared memory. In this model, we have explicit threads, but they do
not share objects. To communicate, there is a separate notion of a message, which sends a copy of some data to its
recipient. Since each thread has its own objects, we do not have to worry about other threads wrongly updating fields.
But we do have to keep track of different copies of things being produced by messages. When processors are far apart,
message passing is likely a more natural fit, just like when you send email and a copy of the message is sent to the
recipient. Here is a visual interpretation of message-passing:

Dataflow provides more structure than having “a bunch of threads that communicate with each other however they
want.” Instead, the programmer uses primitives to create a directed acyclic graph (DAG). A node in the graph performs
some computation using inputs that arrive on its incoming edges. This data is provided by other nodes along their
outgoing edges. A node starts computing when all of its inputs are available, something the implementation keeps
track of automatically. Here is a visual interpretation of dataflow where different nodes perform different operations
for some computation, such as “filter,” “fade in,” and “fade out:”

13

Data parallelism does not have explicit threads or nodes running different parts of the program at different times.
Instead, it has primitives for parallelism that involve applying the same operation to different pieces of data at the
same time. For example, you would have a primitive for applying some function to every element of an array. The
implementation of this primitive would use parallelism rather than a sequential for-loop. Hence all the parallelism
is done for you provided you can express your program using the available primitives. Examples include vector
instructions on some processors and map-reduce style distributed systems. Here is a visual interpretation of data
parallelism:

3 Basic Fork-Join Parallelism
This section shows how to use threads and shared memory to implement simple parallel algorithms. The only syn-
chronization primitive we will need is join, which causes one thread to wait until another thread has terminated.
We begin with simple pseudocode and then show how using threads in Java to achieve the same idea requires a bit
more work (Section 3.1). We then argue that it is best for parallel code to not be written in terms of the number of
processors available (Section 3.2) and show how to use recursive divide-and-conquer instead (Section 3.3). Because
Java’s threads are not engineered for this style of programming, we switch to the Java ForkJoin framework which is
designed for our needs (Section 3.4). With all of this discussion in terms of the single problem of summing an array
of integers, we then turn to other similar problems, introducing the terminology of maps and reduces (Section 3.5) as
well as data structures other than arrays (Section 3.6).

3.1 A Simple Example: Okay Idea, Inferior Style
Most of this section will consider the problem of computing the sum of an array of integers. An O(n) sequential
solution to this problem is trivial:

14

int sum(int[] arr) {

int ans = 0;

for(int i=0; i < arr.length; i++)

ans += arr[i];

return ans;

}

If the array is large and we have extra processors available, we can get a more efficient parallel algorithm. Suppose we
have 4 processors. Then we could do the following:

• Use the first processor to sum the first 1/4 of the array and store the result somewhere.

• Use the second processor to sum the second 1/4 of the array and store the result somewhere.

• Use the third processor to sum the third 1/4 of the array and store the result somewhere.

• Use the fourth processor to sum the fourth 1/4 of the array and store the result somewhere.

• Add the 4 stored results and return that as the answer.

This algorithm is clearly correct provided that the last step is started only after the previous four steps have completed.
The first four steps can occur in parallel. More generally, if we have P processors, we can divide the array into P
equal segments and have an algorithm that runs in time O(n/P + P) where n/P is for the parallel part and P is
for combining the stored results. Later we will see we can do better if P is very large, though that may be less of a
practical concern.

In pseudocode, a convenient way to write this kind of algorithm is with a FORALL loop. A FORALL loop is like a
for loop except it does all the iterations in parallel. Like a regular for loop, the code after a FORALL loop does not
execute until the loop (i.e., all its iterations) are done. Unlike the for loop, the programmer is “promising” that all
the iterations can be done at the same time without them interfering with each other. Therefore, if one loop iteration
writes to a location, then another iteration must not read or write to that location. However, it is fine for two iterations
to read the same location: that does not cause any interference.

Here, then, is a pseudocode solution to using 4 processors to sum an array. Note it is essential that we store the 4
partial results in separate locations to avoid any interference between loop iterations.1

int sum(int[] arr) {

results = new int[4];

len = arr.length;

FORALL(i=0; i < 4; ++i) {

results[i] = sumRange(arr,(i*len)/4,((i+1)*len)/4);

}

return results[0] + results[1] + results[2] + results[3];

}

int sumRange(int[] arr, int lo, int hi) {

result = 0;

for(j=lo; j < hi; ++j)

result += arr[j];

return result;

}

1We must take care to avoid bugs due to integer-division truncation with the arguments to sumRange. We need to process each array element
exactly once even if len is not divisible by 4. This code is correct; notice in particular that ((i+1)*len)/4 will always be len when i==3

because 4*len is divisible by 4. Moreover, we could write (i+1)*len/4 since * and / have the same precedence and associate left-to-right. But
(i+1)*(len/4) would not be correct. For the same reason, defining a variable int rangeSize = len/4 and using (i+1)*rangeSize would
not be correct.

15

Unfortunately, Java and most other general-purpose languages do not have a FORALL loop. (Java has various kinds
of for-loops, but all run all iterations on one thread.) We can encode this programming pattern explicitly using threads
as follows:

1. In a regular for loop, create one thread to do each iteration of our FORALL loop, passing the data needed in the
constructor. Have the threads store their answers in fields of themselves.

2. Wait for all the threads created in step 1 to terminate.

3. Combine the results by reading the answers out of the fields of the threads created in step 1.

To understand this pattern, we will first show a wrong version to get the idea. That is a common technique in these
notes — learning from wrong versions is extremely useful — but wrong versions are always clearly indicated.

Here is our WRONG attempt:

class SumThread extends java.lang.Thread {

int lo; // fields for communicating inputs

int hi;

int[] arr;

int ans = 0; // for communicating result

SumThread(int[] a, int l, int h) {

lo=l; hi=h; arr=a;

}

public void run() { // overriding, must have this type

for(int i=lo; i<hi; i++)

ans += arr[i];

}

}

class C {

static int sum(int[] arr) {

int len = arr.length;

int ans = 0;

SumThread[] ts = new SumThread[4];

for(int i=0; i < 4; i++) {

ts[i] = new SumThread(arr,(i*len)/4,((i+1)*len)/4);

ts[i].start();

}

for(int i=0; i < 4; i++) {

ans += ts[i].ans;

}

return ans;

}

}

The code above gets most of the pieces right. The sum method creates 4 instances of SumThread, which is a
subclass of java.lang.Thread, and calls start on each of them. The SumThread constructor takes as arguments
the data that the thread needs to do its job, in this case, the array and the range for which this thread is responsible.
(We use a convenient convention that ranges include the low bound and exclude the high bound.) The SumThread

constructor stores this data in fields of the object so that the new thread has access to them in the run method.
(Typically run would pass the relevant data to helper methods, but here the problem is simple enough not to bother.)

Notice each SumThread object also has an ans field. This is shared memory for communicating the answer back
from the helper thread to the main thread. In particular, for the thread created on the ith iteration of the for-loop in
sum, the field this.ans is an alias for ts[i].ans. So the main thread can sum the 4 ans fields from the threads it
created to produce the final answer.

16

The bug in this code has to do with synchronization: The main thread does not wait for the helper threads to
finish before it sums the ans fields. Remember that start returns immediately — otherwise we would not get any
parallelism. So the sum method’s second for-loop probably starts running before the helper threads are finished with
their work. Having one thread (the main thread) read a field while another thread (the helper thread) is writing the
same field is a bug, and here it would produce a wrong (too-small) answer. We need to delay the second for-loop until
the helper threads are done.

There is a method in java.lang.Thread, and therefore in all its subclasses such as SumThread, that is just what
we need. If one thread, in our case the main thread, calls the join method of a java.lang.Thread object, in our
case one of the helper threads, then this call blocks (i.e., does not return) unless/until the thread corresponding to the
object has terminated. So we can add another for-loop to sum in-between the two loops already there to make sure all
the helper threads finish before we add together the results:

for(int i=0; i < 4; i++)

ts[i].join();

Notice it is the main thread that is calling join, which takes no arguments. On the first loop iteration, the main thread
will block until the first helper thread is done. On the second loop iteration, the main thread will block until the second
helper thread is done. It is certainly possible that the second helper thread actually finished before the first thread. This
is not a problem: a call to join when the helper thread has already terminated just returns right away (no blocking).

Essentially, we are using two for-loops, where the first one creates helper threads and the second one waits for
them all to terminate, to encode the idea of a FORALL-loop. This style of parallel programming is called “fork-join
parallelism.” It is like we create a “(4-way in this case) fork in the road of execution” and send each helper thread down
one path of the fork. Then we join all the paths of the fork back together and have the single main thread continue.
Fork-join parallelism can also be nested, meaning one of the helper threads forks its own helper threads. In fact, we
will soon argue that this is better style. The term “join” is common in different programming languages and libraries,
though honestly it is not the most descriptive English word for the concept.

It is common to combine the joining for-loop and the result-combining for-loop. Understanding why this is still
correct helps understand the join primitive. So far we have suggested writing code like this in our sum method:

for(int i=0; i < 4; i++)

ts[i].join();

for(int i=0; i < 4; i++)

ans += ts[i].ans;

return ans;

There is nothing wrong with the code above, but the following is also correct:

for(int i=0; i < 4; i++) {

ts[i].join();

ans += ts[i].ans;

}

return ans;

Here we do not wait for all the helper threads to finish before we start producing the final answer. But we still ensure
that the main thread does not access a helper thread’s ans field until at least that helper thread has terminated.

There is one last Java-specific detail we need when using the join method defined in java.lang.Thread. It
turns out this method can throw a java.lang.InterruptedException so a method calling join will not compile
unless it catches this exception or declares that it might be thrown. For concurrent programming, it may be bad style
to ignore this exception, but for basic parallel programming like we are doing, this exception is a nuisance and will
not occur. So we will say no more about it. Also the ForkJoin framework we will use starting in Section 3.4 has a
different join method that does not throw exceptions.

17

Here, then, is a complete and correct program. 2 There is no change to the SumThread class. This example shows
many of the key concepts of fork-join parallelism, but Section 3.2 will explain why it is poor style and can lead to
suboptimal performance. Sections 3.3 and 3.4 will then present a similar but better approach.

class SumThread extends java.lang.Thread {

int lo; // fields for communicating inputs

int hi;

int[] arr;

int ans = 0; // for communicating result

SumThread(int[] a, int l, int h) {

lo=l; hi=h; arr=a;

}

public void run() { // overriding, must have this type

for(int i=lo; i<hi; i++)

ans += arr[i];

}

}

class C {

static int sum(int[] arr) throws java.lang.InterruptedException {

int len = arr.length;

int ans = 0;

SumThread[] ts = new SumThread[4];

for(int i=0; i < 4; i++) {

ts[i] = new SumThread(arr,(i*len)/4,((i+1)*len)/4);

ts[i].start();

}

for(int i=0; i < 4; i++) {

ts[i].join();

ans += ts[i].ans;

}

return ans;

}

3.2 Why Not To Use One Thread Per Processor
Having now presented a basic parallel algorithm, we will argue that the approach the algorithm takes is poor style and
likely to lead to unnecessary inefficiency. Do not despair: the concepts we have learned like creating threads and using
join will remain useful — and it was best to explain them using a too-simple approach. Moreover, many parallel
programs are written in pretty much exactly this style, often because libraries like those in Section 3.4 are unavailable.
Fortunately, such libraries are now available on many platforms.

The problem with the previous approach was dividing the work into exactly 4 pieces. This approach assumes there
are 4 processors available to do the work (no other code needs them) and that each processor is given approximately
the same amount of work. Sometimes these assumptions may hold, but it would be better to use algorithms that do not
rely on such brittle assumptions. The rest of this section explains in more detail why these assumptions are unlikely to
hold and some partial solutions. Section 3.3 then describes the better solution that we advocate.

Different computers have different numbers of processors

We want parallel programs that effectively use the processors available to them. Using exactly 4 threads is a
horrible approach. If 8 processors are available, half of them will sit idle and our program will be no faster than
with 4 processors. If 3 processors are available, our 4-thread program will take approximately twice as long as with

2Technically, for very large arrays, i*len might be too large and we should declare one of these variables to have type long. We will ignore
this detail throughout this chapter to avoid distractions, but long is a wiser choice when dealing with arrays that may be very large.

18

4 processors. If 3 processors are available and we rewrite our program to use 3 threads, then we will use resources
effectively and the result will only be about 33% slower than when we had 4 processors and 4 threads. (We will take
1/3 as much time as the sequential version compared to 1/4 as much time. And 1/3 is 33% slower than 1/4.) But we
do not want to have to edit our code every time we run it on a computer with a different number of processors.

A natural solution is a core software-engineering principle you should already know: Do not use constants where
a variable is appropriate. Our sum method can take as a parameter the number of threads to use, leaving it to some
other part of the program to decide the number. (There are Java library methods to ask for the number of processors
on the computer, for example, but we argue next that using that number is often unwise.) It would look like this:

static int sum(int[] arr, int numThreads) throws java.lang.InterruptedException {

int len = arr.length;

int ans = 0;

SumThread[] ts = new SumThread[numThreads];

for(int i=0; i < numThreads; i++) {

ts[i] = new SumThread(arr,(i*len)/numThreads,((i+1)*len)/numThreads);

ts[i].start();

}

for(int i=0; i < numThreads; i++) {

ts[i].join();

ans += ts[i].ans;

}

return ans;

}

Note that you need to be careful with integer division not to introduce rounding errors when dividing the work.

The processors available to part of the code can change

The second dubious assumption made so far is that every processor is available to the code we are writing. But
some processors may be needed by other programs or even other parts of the same program. We have parallelism after
all — maybe the caller to sum is already part of some outer parallel algorithm. The operating system can reassign
processors at any time, even when we are in the middle of summing array elements. It is fine to assume that the
underlying Java implementation will try to use the available processors effectively, but we should not assume 4 or
even numThreads processors will be available from the beginning to the end of running our parallel algorithm.

We cannot always predictably divide the work into approximately equal pieces

In our sum example, it is quite likely that the threads processing equal-size chunks of the array take approximately
the same amount of time. They may not, due to memory-hierarchy issues or other architectural effects, however.
Moreover, more sophisticated algorithms could produce a large load imbalance, meaning different helper threads are
given different amounts of work. As a simple example (perhaps too simple for it to actually matter), suppose we have
a large int[] and we want to know how many elements of the array are prime numbers. If one portion of the array
has more large prime numbers than another, then one helper thread may take longer.

In short, giving each helper thread an equal number of data elements is not necessarily the same as giving each
helper thread an equal amount of work. And any load imbalance hurts our efficiency since we need to wait until all
threads are completed.

A solution: Divide the work into smaller pieces

We outlined three problems above. It turns out we can solve all three with a perhaps counterintuitive strategy:
Use substantially more threads than there are processors. For example, suppose to sum the elements of an array we
created one thread for each 1000 elements. Assuming a large enough array (size greater than 1000 times the number
of processors), the threads will not all run at once since a processor can run at most one thread at a time. But this is
fine: the system will keep track of what threads are waiting and keep all the processors busy. There is some overhead
to creating more threads, so we should use a system where this overhead is small.

19

This approach clearly fixes the first problem: any number of processors will stay busy until the very end when
there are fewer 1000-element chunks remaining than there are processors. It also fixes the second problem since we
just have a “big pile” of threads waiting to run. If the number of processors available changes, that affects only how
fast the pile is processed, but we are always doing useful work with the resources available. Lastly, this approach helps
with the load imbalance problem: Smaller chunks of work make load imbalance far less likely since the threads do not
run as long. Also, if one processor has a slow chunk, other processors can continue processing faster chunks.

We can go back to our cutting-potatoes analogy to understand this approach: Rather than give each of 4 cooks
(processors), 1/4 of the potatoes, we have them each take a moderate number of potatoes, slice them, and then return
to take another moderate number. Since some potatoes may take longer than others (they might be dirtier or have more
eyes), this approach is better balanced and is probably worth the cost of the few extra trips to the pile of potatoes —
especially if one of the cooks might take a break (processor used for a different program) before finishing his/her pile.

Unfortunately, this approach still has two problems addressed in Sections 3.3 and 3.4.

1. We now have more results to combine. Dividing the array into 4 total pieces leaves Θ(1) results to combine.
Dividing the array into 1000-element chunks leaves arr.length/1000, which is Θ(n), results to combine.
Combining the results with a sequential for-loop produces an Θ(n) algorithm, albeit with a smaller constant
factor. To see the problem even more clearly, suppose we go to the extreme and use 1-element chunks — now
the results combining reimplements the original sequential algorithm. In short, we need a better way to combine
results.

2. Java’s threads were not designed for small tasks like adding 1000 numbers. They will work and produce the
correct answer, but the constant-factor overheads of creating a Java thread are far too large. A Java program that
creates 100,000 threads on a small desktop computer is unlikely to run well at all — each thread just takes too
much memory and the scheduler is overburdened and provides no asymptotic run-time guarantee. In short, we
need a different implementation of threads that is designed for this kind of fork/join programming.

3.3 Divide-And-Conquer Parallelism
This section presents the idea of divide-and-conquer parallelism using Java’s threads. Then Section 3.4 switches to
using a library where this programming style is actually efficient. This progression shows that we can understand all
the ideas using the basic notion of threads even though in practice we need a library that is designed for this kind of
programming.

The key idea is to change our algorithm for summing the elements of an array to use recursive divide-and-conquer.
To sum all the array elements in some range from lo to hi, do the following:

1. If the range contains only one element, return that element as the sum. Else in parallel:

(a) Recursively sum the elements from lo to the middle of the range.

(b) Recursively sum the elements from the middle of the range to hi.

2. Add the two results from the previous step.

The essence of the recursion is that steps 1a and 1b will themselves use parallelism to divide the work of their halves
in half again. It is the same divide-and-conquer recursive idea as you have seen in algorithms like mergesort. For se-
quential algorithms for simple problems like summing an array, such fanciness is overkill. But for parallel algorithms,
it is ideal.

As a small example (too small to actually want to use parallelism), consider summing an array with 10 elements.
The algorithm produces the following tree of recursion, where the range [i,j) includes i and excludes j:

Thread: sum range [0,10)

Thread: sum range [0,5)

Thread: sum range [0,2)

Thread: sum range [0,1) (return arr[0])

Thread: sum range [1,2) (return arr[1])

20

add results from two helper threads

Thread: sum range [2,5)

Thread: sum range [2,3) (return arr[2])

Thread: sum range [3,5)

Thread: sum range [3,4) (return arr[3])

Thread: sum range [4,5) (return arr[4])

add results from two helper threads

add results from two helper threads

add results from two helper threads

Thread: sum range [5,10)

Thread: sum range [5,7)

Thread: sum range [5,6) (return arr[5])

Thread: sum range [6,7) (return arr[6])

add results from two helper threads

Thread: sum range [7,10)

Thread: sum range [7,8) (return arr[7])

Thread: sum range [8,10)

Thread: sum range [8,9) (return arr[8])

Thread: sum range [9,10) (return arr[9])

add results from two helper threads

add results from two helper threads

add results from two helper threads

add results from two helper threads

The total amount of work done by this algorithm is O(n) because we create approximately 2n threads and each thread
either returns an array element or adds together results from two helper threads it created. Much more interestingly,
if we have O(n) processors, then this algorithm can run in O(log n) time, which is exponentially faster than the
sequential algorithm. The key reason for the improvement is that the algorithm is combining results in parallel.
The recursion forms a binary tree for summing subranges and the height of this tree is log n for a range of size n.
See Figure 5, which shows the recursion in a more conventional tree form where the number of nodes is growing
exponentially faster than the tree height. With enough processors, the total running time corresponds to the tree
height, not the tree size: this is the fundamental running-time benefit of parallelism. Later sections will discuss why
the problem of summing an array has such an efficient parallel algorithm; not every problem enjoys exponential
improvement from parallelism.

Having described the algorithm in English, seen an example, and informally analyzed its running time, let us now
consider an actual implementation with Java threads and then modify it with two important improvements that affect
only constant factors, but the constant factors are large. Then the next section will show the “final” version where we
use the improvements and use a different library for the threads.

To start, here is the algorithm directly translated into Java, omitting some boilerplate like putting the main sum

method in a class and handling java.lang.InterruptedException.3

class SumThread extends java.lang.Thread {

int lo; // fields for communicating inputs

int hi;

int[] arr;

int ans = 0; // for communicating result

SumThread(int[] a, int l, int h) { arr=a; lo=l; hi=h; }

public void run() {

if(hi - lo == 1) {

3For the exception, you cannot declare that run throws this exception because it overrides a method in java.lang.Thread that does not have
this declaration. Since this exception is not going to be raised, it is reasonable to insert a catch statement and ignore this exception. The Java
ForkJoin Framework introduced in Section 3.4 does not have this problem; its join method does not throw checked exceptions.

21

Figure 5: Recursion for summing an array where each node is a thread created by its parent. For example (see shaded
region), the thread responsible for summing the array elements from index 5 (inclusive) to index 10 (exclusive), creates
two threads, one to sum the elements from index 5 to 7 and the other to sum the elements from index 7 to 10.

22

ans = arr[lo];

} else {

SumThread left = new SumThread(arr,lo,(hi+lo)/2);

SumThread right = new SumThread(arr,(hi+lo)/2,hi);

left.start();

right.start();

left.join();

right.join();

ans = left.ans + right.ans;

}

}

}

int sum(int[] arr) {

SumThread t = new SumThread(arr,0,arr.length);

t.run();

return t.ans;

}

Notice how each thread creates two helper threads left and right and then waits for them to finish. Crucially,
the calls to left.start and right.start precede the calls to left.join and right.join. If for example,
left.join() came before right.start(), then the algorithm would have no effective parallelism whatsoever.
It would still produce the correct answer, but so would the original much simpler sequential program.

As a minor but important coding point, notice that the “main” sum method calls the run method directly. As such,
this is an ordinary method call like you have used since you started programming; the caller and callee are part of
the same thread. The fact that the object is a subclass of java.lang.Thread is only relevant if you call the “magic”
start method, which calls run in a new thread.

In practice, code like this produces far too many threads to be efficient. To add up four numbers, does it really
make sense to create six new threads? Therefore, implementations of fork/join algorithms invariably use a cutoff below
which they switch over to a sequential algorithm. Because this cutoff is a constant, it has no effect on the asymptotic
behavior of the algorithm. What it does is eliminate the vast majority of the threads created, while still preserving
enough parallelism to balance the load among the processors.

Here is code using a cutoff of 1000. As you can see, using a cutoff does not really complicate the code.

class SumThread extends java.lang.Thread {

static int SEQUENTIAL_CUTOFF = 1000;

int lo; // fields for communicating inputs

int hi;

int[] arr;

int ans = 0; // for communicating result

SumThread(int[] a, int l, int h) { arr=a; lo=l; hi=h; }

public void run(){

if(hi - lo <= SEQUENTIAL_CUTOFF) {

for(int i=lo; i < hi; i++)

ans += arr[i];

} else {

SumThread left = new SumThread(arr,lo,(hi+lo)/2);

SumThread right= new SumThread(arr,(hi+lo)/2,hi);

left.start();

right.start();

left.join();

right.join();

ans = left.ans + right.ans;

23

}

}

}

int sum(int[] arr) {

SumThread t = new SumThread(arr,0,arr.length);

t.run();

return t.ans;

}

Using cut-offs is common in divide-and-conquer programming, even for sequential algorithms. For example, it is
typical for quicksort to be slower than an O(n2) sort like insertionsort for small arrays (n < 10 or so). Therefore, it is
common to have the recursive quicksort switch over to insertionsort for small subproblems. In parallel programming,
switching over to a sequential algorithm below a cutoff is the exact same idea. In practice, the cutoffs are usually
larger, with numbers between 500 and 5000 being typical.

It is often worth doing some quick calculations to understand the benefits of things like cutoffs. Suppose we are
summing an array with 230 elements. Without a cutoff, we would use 231− 1, (i.e., two billion) threads. With a cutoff
of 1000, we would use approximately 221 (i.e., 2 million) threads since the last 10 levels of the recursion would be
eliminated. Computing 1− 221/231, we see we have eliminated 99.9% of the threads. Use cutoffs!

Our second improvement may seem anticlimactic compared to cutoffs because it only reduces the number of
threads by an additional factor of two. Nonetheless, it is worth seeing for efficiency especially because the ForkJoin
Framework in the next section performs poorly if you do not do this optimization “by hand.” The key is to notice
that all threads that create two helper threads are not doing much work themselves: they divide the work in half, give
it to two helpers, wait for them to finish, and add the results. Rather than having all these threads wait around, it is
more efficient to create one helper thread to do half the work and have the thread do the other half itself. Modifying
our code to do this is easy since we can just call the run method directly, which recall is just an ordinary method call
unlike the “magic” start method.

class SumThread extends java.lang.Thread {

static int SEQUENTIAL_CUTOFF = 1000;

int lo; // fields for communicating inputs

int hi;

int[] arr;

int ans = 0; // for communicating result

SumThread(int[] a, int l, int h) { arr=a; lo=l; hi=h; }

public void run(){

if(hi - lo <= SEQUENTIAL_CUTOFF) {

for(int i=lo; i < hi; i++)

ans += arr[i];

} else {

SumThread left = new SumThread(arr,lo,(hi+lo)/2);

SumThread right= new SumThread(arr,(hi+lo)/2,hi);

left.start();

right.run();

left.join();

ans = left.ans + right.ans;

}

}

}

int sum(int[] arr) {

SumThread t = new SumThread(arr,0,arr.length);

t.run();

return t.ans;

}

24

Notice how the code above creates two SumThread objects, but only creates one helper thread with left.start().
It then does the right half of the work itself by calling right.run(). There is only one call to join because only
one helper thread was created. The order here is still essential so that the two halves of the work are done in parallel.
Creating a SumThread object for the right half and then calling run rather than creating a thread may seem odd, but
it keeps the code from getting more complicated and still conveys the idea of dividing the work into two similar parts
that are done in parallel.

Unfortunately, even with these optimizations, the code above will run poorly in practice, especially if given a large
array. The implementation of Java’s threads is not engineered for threads that do such a small amount of work as
adding 1000 numbers: it takes much longer just to create, start running, and dispose of a thread. The space overhead
may also be prohibitive. In particular, it is not uncommon for a Java implementation to pre-allocate the maximum
amount of space it allows for the call-stack, which might be 2MB or more. So creating thousands of threads could use
gigabytes of space. Hence we will switch to the library described in the next section for parallel programming. We
will return to Java’s threads when we learn concurrency because the synchronization operations we will use work with
Java’s threads.

3.4 The Java ForkJoin Framework
Java 7 (and higher) includes classes in the java.util.concurrent package designed exactly for the kind of fine-
grained fork-join parallel computing these notes use. In addition to supporting lightweight threads (which the library
calls ForkJoinTasks) that are small enough that even a million of them should not overwhelm the system, the imple-
mentation includes a scheduler and run-time system with provably optimal expected-time guarantees, as described
in Section 4. Similar libraries for other languages include Intel’s Thread Building Blocks, Microsoft’s Task Parallel
Library for C#, and others. The core ideas and implementation techniques go back much further to the Cilk language,
an extension of C developed since 1994.

This section describes just a few practical details and library specifics. Compared to Java threads, the core ideas
are all the same, but some of the method names and interfaces are different — in places more complicated and in
others simpler. Naturally, we give a full example (actually two) for summing an array of numbers. The actual library
contains many other useful features and classes, but we will use only the primitives related to forking and joining,
implementing anything else we need ourselves.

For introductory notes on using the library and avoiding some difficult-to-diagnose pitfalls, see http://www.cs.
washington.edu/homes/djg/teachingMaterials/grossmanSPAC_forkJoinFramework.html. The examples
in these notes below assume Java 8 or higher; the url includes a small amount of extra code you need to modify these
examples for Java 7 or Java 6.

We first show a full program (minus a main method) that is as much as possible like the version we wrote using
Java threads. We show a version using a sequential cut-off and only one helper thread at each recursive subdivision
though removing these important improvements would be easy. After discussing this version, we show a second
version that uses Java’s generic types and a different library class. This second version is better style, but easier to
understand after the first version.

FIRST VERSION (INFERIOR STYLE):

import java.util.concurrent.ForkJoinPool;

import java.util.concurrent.RecursiveAction;

class SumArray extends RecursiveAction {

static int SEQUENTIAL_THRESHOLD = 1000;

int lo;

int hi;

int[] arr;

int ans = 0;

SumArray(int[] a, int l, int h) { lo=l; hi=h; arr=a; }

25

http://www.cs.washington.edu/homes/djg/teachingMaterials/grossmanSPAC_forkJoinFramework.html
http://www.cs.washington.edu/homes/djg/teachingMaterials/grossmanSPAC_forkJoinFramework.html

protected void compute() {

if(hi - lo <= SEQUENTIAL_THRESHOLD) {

for(int i=lo; i < hi; ++i)

ans += arr[i];

} else {

SumArray left = new SumArray(arr,lo,(hi+lo)/2);

SumArray right = new SumArray(arr,(hi+lo)/2,hi);

left.fork();

right.compute();

left.join();

ans = left.ans + right.ans;

}

}

}

class Main {

static int sumArray(int[] array) {

SumArray t = new SumArray(array,0,array.length);

ForkJoinPool.commonPool().invoke(t);

return t.ans;

}

}

While there are many differences compared to using Java’s threads, the overall structure of the algorithm should
look similar. Furthermore, most of the changes are just different names for classes and methods:

• Subclass java.util.concurrent.RecursiveAction instead of java.lang.Thread.

• The method that “magically” creates parallelism is called fork instead of start.

• The method that starts executing when a new thread begins is called compute instead of run. Recall these
methods can also be called normally.

• (The method join is still called join.)

The small additions involve starting the computation with a call to ForkJoinPool.commonPool().invoke These
are just some details because the library is not built into the Java language, so we have to do a little extra to initialize
the library and start using it. Here is all you really need to know:

• The entire program should have exactly one ForkJoinPool, so it makes sense to store it in a static field and
use it for all the parallel algorithms in your program. The library’s commonPool static method returns such an
object for you.

• Inside a subclass of RecursiveAction, you use fork, compute, and join just like we previously used start,
run, and join. But outside such classes, you cannot use these methods or the library may not work correctly.
To “get the parallelism started,” you instead use the invoke method of the ForkJoinPool. You pass to invoke

a subclass of RecursiveAction and that object’s compute method will be called. Basically, use invoke once
to start the algorithm and then fork or compute for the recursive calls. Conversely, do not use invoke from
“inside” the library, i.e., in compute or any helper methods it uses.

We will present one final version of our array-summing program to demonstrate one more class of the ForkJoin
Framework that you should use as a matter of style. The RecursiveAction class is best only when the subcomputa-
tions do not produce a result, whereas in our example they do: the sum of the range. It is quite common not to produce
a result, for example a parallel program that increments every element of an array. So far, the way we have “returned”
results is via a field, which we called ans.

26

Instead, we can subclass RecursiveTask instead of RecursiveAction. However, RecursiveTask is a generic
class with one type parameter: the type of value that compute should return. Here is the full version of the code using
this more convenient and less error-prone class, followed by an explanation:

FINAL, BETTER VERSION:

import java.util.concurrent.ForkJoinPool;

import java.util.concurrent.RecursiveTask;

class SumArray extends RecursiveTask<Integer> {

static int SEQUENTIAL_THRESHOLD = 1000;

int lo;

int hi;

int[] arr;

SumArray(int[] a, int l, int h) { lo=l; hi=h; arr=a; }

public Integer compute() {

if(hi - lo <= SEQUENTIAL_THRESHOLD) {

int ans = 0;

for(int i=lo; i < hi; ++i)

ans += arr[i];

return ans;

} else {

SumArray left = new SumArray(arr,lo,(hi+lo)/2);

SumArray right = new SumArray(arr,(hi+lo)/2,hi);

left.fork();

int rightAns = right.compute();

int leftAns = left.join();

return leftAns + rightAns;

}

}

}

class Main {

static int sumArray(int[] array) {

return ForkJoinPool.commonPool().invoke(new SumArray(array,0,array.length));

}

}

Here are the differences from the version that subclasses RecursiveAction:

• compute returns an object of whatever (object) type we want. Because int is not an object type, we write
Integer instead. Java implicitly converts an int to/from an Integer in all the places it is needed in this
program.

• The join method also returns the value returned by compute in the thread that is being joined to. Therefore,
we do not need an ans field: we write int leftAns = left.join() to get the value that the thread bound to
left returned from its compute method.

• The invoke method works similarly when passed a subclass of a RecursiveTask class: It returns the value of
the compute method that is called.

• The class declaration of SumArray indicates that it extends RecursiveTask<Integer>. More generally, al-
ways put the same type between the angle brackets as the return type of compute.

27

• Note that because Java expressions are always evaluated left-to-right, we could replace the last 3 lines of the
else-branch in compute with just return right.compute() + left.join();. But this is rather subtle —
left.join() + right.compute() would destroy the parallelism — so we do not advise writing this shorter
but less clear code.

If you are familiar with Java’s generic types, this use of them should not be particularly perplexing. The library is
also using static overloading for the invoke method. But as users of the library, it suffices just to follow the pattern in
the example above.

Why is there RecursiveAction and RecursiveTask? The former is better style when there really is nothing to
return; otherwise RecursiveTask is better. Both are actually implemented in terms of the same superclass inside the
library. You can use that class directly, but it is less convenient.

Given the convenience of not needing a field for returning values, why not also provide the convenience of not
needing fields to pass arguments (arr, lo, and hi)? That would be nice, but there just isn’t a particularly pleasant way
to write such a library in Java. The ForkJoin framework is just a library; it cannot make any changes/extensions to the
Java language. It uses some advanced Java features to be as convenient as it can be.

3.5 Reductions and Maps
It may seem that given all the work we did to implement something as conceptually simple as summing an array that
fork/join programming is too complicated. To the contrary, it turns out that many, many problems can be solved very
much like we solved this one. Just like regular for-loops took some getting used to when you started programming but
now you can recognize exactly what kind of loop you need for all sorts of problems, divide-and-conquer parallelism
often follows a small number of patterns. Once you know the patterns, most of your programs are largely the same.

For example, here are several problems for which efficient parallel algorithms look almost identical to summing
an array:

• Count how many array elements satisfy some property (e.g., how many elements are the number 42).

• Find the maximum or minimum element of an array.

• Given an array of strings, compute the sum (or max, or min) of all their lengths.

• Find the left-most array index that has an element satisfying some property.

Compared to summing an array, all that changes is the base case for the recursion and how we combine results. For
example, to find the index of the leftmost 42 in an array of length n, we can do the following (where a final result of n
means the array does not hold a 42):

• For the base case, return lo if arr[lo] holds 42 and n otherwise.

• To combine results, return the smaller number.

Implement one or two of these problems to convince yourself they are not any harder than what we have already done.
Or come up with additional problems that can be solved the same way.

Problems that have this form are so common that there is a name for them: reductions, which you can remember
by realizing that we take a collection of data items (in an array) and reduce the information down to a single result.
As we have seen, the way reductions can work in parallel is to compute answers for the two halves recursively and in
parallel and then merge these to produce a result.

However, we should be clear that not every problem over an array of data can be solved with a simple parallel
reduction. To avoid getting into arcane problems, let’s just describe a general situation. Suppose you have sequential
code like this:

interface BinaryOperation<T> {

T m(T x, T y);

}

28

class C<T> {

T fold(T[] arr, BinaryOperation<T> binop, T initialValue) {

T ans = initialValue;

for(int i=0; i < arr.length; ++i)

ans = binop.m(ans,arr[i]);

return ans;

}

}

The name fold is conventional for this sort of algorithm. The idea is to start with initialValue and keep updating
the “answer so far” by applying some binary function m to the current answer and the next element of the array.

Without any additional information about what m computes, this algorithm cannot be effectively parallelized since
we cannot process arr[i] until we know the answer from the first i-1 iterations of the for-loop. For a more humorous
example of a procedure that cannot be sped up given additional resources: 9 women can’t make a baby in 1 month.

So what do we have to know about the BinaryOperation above in order to use a parallel reduction? It turns out
all we need is that the operation is associative, meaning for all a, b, and c, m(a,m(b, c)) is the same as m(m(a, b), c).
Our array-summing algorithm is correct because a + (b + c) = (a + b) + c. Our find-the-leftmost-index-holding 42
algorithm is correct because min is also an associative operator.

Because reductions using associative operators are so common, we could write one generic algorithm that took
the operator, and what to do for a base case, as arguments. This is an example of higher-order programming, and
the fork-join framework has several classes providing this sort of functionality. Higher-order programming has many,
many advantages (see the end of this section for a popular one), but when first learning a programming pattern, it
is often useful to “code it up yourself” a few times. For that reason, we encourage writing your parallel reductions
manually in order to see the parallel divide-and-conquer, even though they all really look the same.

Parallel reductions are not the only common pattern in parallel programming. An even simpler one, which we
did not start with because it is just so easy, is a parallel map. A map performs an operation on each input element
independently; given an array of inputs, it produces an array of outputs of the same length. A simple example would
be multiplying every element of an array by 2. An example using two inputs and producing a separate output would
be vector addition. Using pseudocode, we could write:

int[] add(int[] arr1, int[] arr2) {

assert(arr1.length == arr2.length);

int[] ans = new int[arr1.length];

FORALL(int i=0; i < arr1.length; i++)

ans[i] = arr1[i] + arr2[i];

return ans;

}

Coding up this algorithm in the ForkJoin framework is straightforward: Have the main thread create the ans array
and pass it before starting the parallel divide-and-conquer. Each thread object will have a reference to this array but
will assign to different portions of it. Because there are no other results to combine, subclassing RecursiveAction is
appropriate. Using a sequential cut-off and creating only one new thread for each recursive subdivision of the problem
remain important — these ideas are more general than the particular programming pattern of a map or a reduce.

Recognizing problems that are fundamentally maps and/or reduces over large data collections is a valuable skill
that allows efficient parallelization. In fact, it is one of the key ideas behind Google’s MapReduce framework and the
open-source variant Hadoop. In these systems, the programmer just writes the operations that describe how to map data
(e.g., “multiply by 2”) and reduce data (e.g., “take the minimum”). The system then does all the parallelization, often
using hundreds or thousands of computers to process gigabytes or terabytes of data. For this to work, the programmer
must provide operations that have no side effects (since the order they occur is unspecified) and reduce operations that
are associative (as we discussed). As parallel programmers, it is often enough to “write down the maps and reduces”
— leaving it to systems like the ForkJoin framework or Hadoop to do the actual scheduling of the parallelism.

29

3.6 Data Structures Besides Arrays
So far we have considered only algorithms over one-dimensional arrays. Naturally, one can write parallel algorithms
over any data structure, but divide-and-conquer parallelism requires that we can efficiently (ideally in O(1) time)
divide the problem into smaller pieces. For arrays, dividing the problem involves only O(1) arithmetic on indices, so
this works well.

While arrays are the most common data structure in parallel programming, balanced trees, such as AVL trees or B
trees, also support parallel algorithms well. For example, with a binary tree, we can fork to process the left child and
right child of each node in parallel. For good sequential cut-offs, it helps to have stored at each tree node the number
of descendants of the node, something easy to maintain. However, for trees with guaranteed balance properties, other
information — like the height of an AVL tree node — should suffice.

Certain tree problems will not run faster with parallelism. For example, searching for an element in a balanced
binary search tree takes O(log n) time with or without parallelism. However, maps and reduces over balanced trees
benefit from parallelism. For example, summing the elements of a binary tree takes O(n) time sequentially where n
is the number of elements, but with a sufficiently large number of processors, the time is O(h), where h is the height
of the tree. Hence, tree balance is even more important with parallel programming: for a balanced tree h = Θ(log n)
compared to the worst case h = Θ(n).

For the same reason, parallel algorithms over regular linked lists are typically poor. Any problem that requires
reading all n elements of a linked list takes time Ω(n) regardless of how many processors are available. (Fancier list
data structures like skip lists are better for exactly this reason — you can get to all the data in O(log n) time.) Streams
of input data, such as from files, typically have the same limitation: it takes linear time to read the input and this can
be the bottleneck for the algorithm.

There can still be benefit to parallelism with such “inherently sequential” data structures and input streams. Sup-
pose we had a map operation over a list but each operation was itself an expensive computation (e.g., decrypting a
significant piece of data). If each map operation took time O(x) and the list had length n, doing each operation in
a separate thread (assuming, again, no limit on the number of processors) would produce an O(x + n) algorithm
compared to the sequential O(xn) algorithm. But for simple operations like summing or finding a maximum element,
there would be no benefit.

4 Analyzing Fork-Join Algorithms
As with any algorithm, a fork-join parallel algorithm should be correct and efficient. This section focuses on the latter
even though the former should always be one’s first concern. For efficiency, we will focus on asymptotic bounds and
analyzing algorithms that are not written in terms of a fixed number of processors. That is, just as the size of the
problem n will factor into the asymptotic running time, so will the number of processors P . The ForkJoin framework
(and similar libraries in other languages) will give us an optimal expected-time bound for any P . This section explains
what that bound is and what it means, but we will not discuss how the framework achieves it.

We then turn to discussing Amdahl’s Law, which analyzes the running time of algorithms that have both sequential
parts and parallel parts. The key and depressing upshot is that programs with even a small sequential part quickly stop
getting much benefit from running with more processors.

Finally, we discuss Moore’s “Law” in contrast to Amdahl’s Law. While Moore’s Law is also important for under-
standing the progress of computing power, it is not a mathematical theorem like Amdahl’s Law.

4.1 Work and Span
4.1.1 Defining Work and Span

We define TP to be the time a program/algorithm takes to run if there are P processors available during its execution.
For example, if a program was the only one running on a quad-core machine, we would be particularly interested in
T4, but we want to think about TP more generally. It turns out we will reason about the general TP in terms of T1 and
T∞:

30

Figure 6: An example dag and the path (see thicker blue arrows) that determines its span.

• T1 is called the work. By definition, this is how long it takes to run on one processor. More intuitively, it is just
the total of all the running time of all the pieces of the algorithm: we have to do all the work before we are done,
and there is exactly one processor (no parallelism) to do it. In terms of fork-join, we can think of T1 as doing
one side of the fork and then the other, though the total T1 does not depend on how the work is scheduled.

• T∞ is called the span, though other common terms are the critical path length or computational depth. By
definition, this is how long it takes to run on an unlimited number of processors. Notice this is not necessarily
O(1) time; the algorithm still needs to do the forking and combining of results. For example, under our model of
computation — where creating a new thread and adding two numbers are both O(1) operations — the algorithm
we developed is asymptotically optimal with T∞ = Θ(log n) for an array of length n.

We need a more precise way of characterizing the execution of a parallel program so that we can describe and
compute the work, T1, and the span, T∞. We will describe a program execution as a directed acyclic graph (dag)
where:

• Nodes are pieces of work the program performs. Each node will be a constant, i.e., O(1), amount of work that
is performed sequentially. So T1 is asymptotically just the number of nodes in the dag.

• Edges represent that the source node must complete before the target node begins. That is, there is a com-
putational dependency along the edge. This idea lets us visualize T∞: With unlimited processors, we would
immediately start every node as soon as its predecessors in the graph had finished. Therefore T∞ is just the
length of the longest path in the dag.

Figure 6 shows an example dag and the longest path, which determines T∞.
If you have studied combinational hardware circuits, this model is strikingly similar to the dags that arise in that

setting. For circuits, work is typically called the size of the circuit, (i.e., the amount of hardware) and span is typically
called the depth of the circuit, (i.e., the time, in units of “gate delay,” to produce an answer).

With basic fork-join divide-and-conquer parallelism, the execution dags are quite simple: The O(1) work to set up
two smaller subproblems is one node in the dag. This node has two outgoing edges to two new nodes that start doing
the two subproblems. (The fact that one subproblem might be done by the same thread is not relevant here. Nodes
are not threads. They are O(1) pieces of work.) The two subproblems will lead to their own dags. When we join on
the results of the subproblems, that creates a node with incoming edges from the last nodes for the subproblems. This
same node can do an O(1) amount of work to combine the results. (If combining results is more expensive, then it
needs to be represented by more nodes.)

Overall, then, the dag for a basic parallel reduction would look like this:

31

The root node represents the computation that divides the array into two equal halves. The bottom node represents
the computation that adds together the two sums from the halves to produce the final answer. The base cases represent
reading from a one-element range assuming no sequential cut-off. A sequential cut-off “just” trims out levels of the
dag, which removes most of the nodes but affects the dag’s longest path by “only” a constant amount. Note that this
dag is a conceptual description of how a program executes; the dag is not a data structure that gets built by the program.

From the picture, it is clear that a parallel reduction is basically described by two balanced binary trees whose size
is proportional to the input data size. Therefore T1 is O(n) (there are approximately 2n nodes) and T∞ is O(log n)
(the height of each tree is approximately log n). For the particular reduction we have been studying — summing an
array — Figure 7 visually depicts the work being done for an example with 8 elements. The work in the nodes in the
top half is to create two subproblems. The work in the nodes in the bottom half is to combine two results.

The dag model of parallel computation is much more general than for simple fork-join algorithms. It describes all
the work that is done and the earliest that any piece of that work could begin. To repeat, T1 and T∞ become simple
graph properties: the number of nodes and the length of the longest path, respectively.

4.1.2 Defining Speedup and Parallelism

Having defined work and span, we can use them to define some other terms more relevant to our real goal of reasoning
about TP . After all, if we had only one processor then we would not study parallelism and having infinity processors
is impossible.

We define the speedup on P processors to be T1/TP . It is basically the ratio of how much faster the program runs
given the extra processors. For example, if T1 is 20 seconds and T4 is 8 seconds, then the speedup for P = 4 is 2.5.

You might naively expect a speed-up of 4, or more generally P for TP . In practice, such a perfect speedup is rare
due to several issues including the overhead of creating threads and communicating answers among them, memory-
hierarchy issues, and the inherent computational dependencies related to the span. In the rare case that doubling P
cuts the running time in half (i.e., doubles the speedup), we call it perfect linear speedup. In practice, this is not the
absolute limit; one can find situations where the speedup is even higher even though our simple computational model
does not capture the features that could cause this.

It is important to note that reporting only T1/TP can be “dishonest” in the sense that it often overstates the ad-
vantages of using multiple processors. The reason is that T1 is the time it takes to run the parallel algorithm on one
processor, but this algorithm is likely to be much slower than an algorithm designed sequentially. For example, if
someone wants to know the benefits of summing an array with parallel fork-join, they probably are most interested
in comparing TP to the time for the sequential for-loop. If we call the latter S, then the ratio S/TP is usually the
speed-up of interest and will be lower, due to constant factors like the time to create recursive tasks, than the definition
of speed-up T1/TP . One measure of the overhead of using multiple threads is simply T1/S, which is usually greater
than 1.

As a final definition, we call T1/T∞ the parallelism of an algorithm. It is a measure of how much improvement
one could possibly hope for since it should be at least as great as the speed-up for any P . For our parallel reductions
where the work is Θ(n) and the span is Θ(log n), the parallelism is Θ(n/ log n). In other words, there is exponential

32

Figure 7: Example execution dag for summing an array.

33

available parallelism (n grows exponentially faster than log n), meaning with enough processors we can hope for an
exponential speed-up over the sequential version.

4.1.3 The ForkJoin Framework Bound

Under some important assumptions we will describe below, algorithms written using the ForkJoin Framework, in
particular the divide-and-conquer algorithms in these notes, have the following expected time bound:

TP is O(T1/P + T∞)

The bound is expected because internally the framework uses randomness, so the bound can be violated from “bad
luck” but such “bad luck” is exponentially unlikely, so it simply will not occur in practice. This is exactly like the
expected-time running-time guarantee for the sequential quicksort algorithm when a pivot element is chosen randomly.
Because these notes do not describe the framework’s implementation, we will not see where the randomness arises.

Notice that, ignoring constant factors, this bound is optimal: Given only P processors, no framework can expect
to do better than T1/P or better than T∞. For small P , the term T1/P is likely to be dominant and we can expect
roughly linear speed-up. As P grows, the span becomes more relevant and the limit on the run-time is more influenced
by T∞.

Constant factors can be relevant, and it is entirely possible that a hand-crafted parallel algorithm in terms of some
fixed P could do better than a generic library that has no idea what sort of parallel algorithm it is running. But just
like we often use asymptotically optimal data structures even if hand-crafted ones for our task might be a little faster,
using a library such as this is often an excellent approach.

Thinking in terms of the program-execution dag, it is rather amazing that a library can achieve this optimal result.
While the program is running, it is the framework’s job to choose among all the threads that could run next (they are
not blocked waiting for some other thread to finish) and assign P of them to processors. For simple parallel reductions,
the choice hardly matters because all paths to the bottom of the dag are about the same length, but for arbitrary dags
it seems important to work on the longer paths. Yet it turns out a much greedier algorithm that just picks randomly
among the available threads will do only a constant factor worse. But this is all about the library’s internal scheduling
algorithm (which is not actually totally random) and we, as library users, can just rely on the provided bound.

However, as mentioned above, the bound holds only under a couple assumptions. The first is that all the threads
you create to do subproblems do approximately the same amount of work. Otherwise, if a thread with much-more-
work-to-do is scheduled very late, other processors will sit idle waiting for this laggard to finish. The second is that all
the threads do a small but not tiny amount of work. This again helps with load balancing. The documentation for the
library suggests aiming for approximately 5000 basic computational steps (additions, method calls, etc.) and that the
exact figure can be off by a factor of 10 or so without problem. In other words, just avoid threads that do millions of
operations as well as threads that do dozens.

To summarize, as a user of a library like this, your job is to pick a good parallel algorithm, implement it in terms of
divide-and-conquer with a reasonable sequential cut-off, and analyze the expected run-time in terms of the provided
bound. The library’s job is to give this bound while trying to maintain low constant-factor overheads. While this
library is particularly good for this style of programming, this basic division is common: application writers develop
good algorithms and rely on some underlying thread scheduler to deliver reasonable performance.

4.2 Amdahl’s Law
So far we have analyzed the running time of a parallel algorithm. While a parallel algorithm could have some “se-
quential parts” (a part of the dag where there is a long linear sequence of nodes), it is common to think of an execution
in terms of some entirely parallel parts (e.g., maps and reductions) and some entirely sequential parts. The sequential
parts could simply be algorithms that have not been parallelized or they could be inherently sequential, like reading in
input. As this section shows, even a little bit of sequential work in your program drastically reduces the speed-up once
you have a significant number of processors.

This result is really a matter of very basic algebra. It is named after Gene Amdahl, who first articulated it. Though
almost all computer scientists learn it and understand it, it is all too common to forget its implications. It is, perhaps,

34

counterintuitive that just a little non-parallelism has such a drastic limit on speed-up. But it’s a fact, so learn and
remember Amdahl’s Law!

With that introduction, here is the full derivation of Amdahl’s Law: Suppose the work T1 is 1, i.e., the total program
execution time on one processor is 1 “unit time.” Let S be the portion of the execution that cannot be parallelized and
assume the rest of the execution (1 − S) gets perfect linear speed-up on P processors for any P . Notice this is a
charitable assumption about the parallel part equivalent to assuming the span is O(1). Then:

T1 = S + (1− S) = 1

TP = S + (1− S)/P

Notice all we have assumed is that the parallel portion (1 − S) runs in time (1 − S)/P . Then the speed-up, by
definition is:

Amdahl’s Law: T1/TP = 1/(S + (1− S)/P)

As a corollary, the parallelism is just the simplified equation as P goes to∞:

T1/T∞ = 1/S

The equations may look innocuous until you start plugging in values. For example, if 33% of a program is
sequential, then a billion processors can achieve a speed-up of at most 3. That is just common sense: they cannot
speed-up 1/3 of the program, so even if the rest of the program runs “instantly” the speed-up is only 3.

The “problem” is when we expect to get twice the performance from twice the computational resources. If those
extra resources are processors, this works only if most of the execution time is still running parallelizable code. Adding
a second or third processor can often provide significant speed-up, but as the number of processors grows, the benefit
quickly diminishes.

Recall that from 1980–2005 the processing speed of desktop computers doubled approximately every 18 months.
Therefore, 12 years or so was long enough to buy a new computer and have it run an old program 100 times faster.
Now suppose that instead in 12 years we have 256 processors rather than 1 but all the processors have the same speed.
What percentage of a program would have to be perfectly parallelizable in order to get a speed-up of 100? Perhaps a
speed-up of 100 given 256 cores seems easy? Plugging into Amdahl’s Law, we need:

100 ≤ 1/(S + (1− S)/256)

Solving for S reveals that at most 0.61% of the program can be sequential.
Given depressing results like these — and there are many, hopefully you will draw some possible-speedup plots as

homework exercises — it is tempting to give up on parallelism as a means to performance improvement. While you
should never forget Amdahl’s Law, you should also not entirely despair. Parallelism does provide real speed-up for
performance-critical parts of programs. You just do not get to speed-up all of your code by buying a faster computer.
More specifically, there are two common workarounds to the fact-of-life that is Amdahl’s Law:

1. We can find new parallel algorithms. Given enough processors, it is worth parallelizing something (reducing
span) even if it means more total computation (increasing work). Amdahl’s Law says that as the number of
processors grows, span is more important than work. This is often described as “scalability matters more than
performance” where scalability means can-use-more-processors and performance means run-time on a small-
number-of-processors. In short, large amounts of parallelism can change your algorithmic choices.

2. We can use the parallelism to solve new or bigger problems rather than solving the same problem faster. For
example, suppose the parallel part of a program is O(n2) and the sequential part is O(n). As we increase
the number of processors, we can increase n with only a small increase in the running time. One area where
parallelism is very successful is computer graphics (animated movies, video games, etc.). Compared to years
ago, it is not so much that computers are rendering the same scenes faster; it is that they are rendering more
impressive scenes with more pixels and more accurate images. In short, parallelism can enable new things
(provided those things are parallelizable of course) even if the old things are limited by Amdahl’s Law.

35

4.3 Comparing Amdahl’s Law and Moore’s Law
There is another “Law” relevant to computing speed and the number of processors available on a chip. Moore’s Law,
again named after its inventor, Gordon Moore, states that the number of transistors per unit area on a chip doubles
roughly every 18 months. That increased transistor density used to lead to faster processors; now it is leading to more
processors.

Moore’s Law is an observation about the semiconductor industry that has held for decades. The fact that it has held
for so long is entirely about empirical evidence — people look at the chips that are sold and see that they obey this
law. Actually, for many years it has been a self-fulfilling prophecy: chip manufacturers expect themselves to continue
Moore’s Law and they find a way to achieve technological innovation at this pace. There is no inherent mathematical
theorem underlying it. Yet we expect the number of processors to increase exponentially for the foreseeable future.

On the other hand, Amdahl’s Law is an irrefutable fact of algebra.

5 Fancier Fork-Join Algorithms: Prefix, Pack, Sort
This section presents a few more sophisticated parallel algorithms. The intention is to demonstrate (a) sometimes prob-
lems that seem inherently sequential turn out to have efficient parallel algorithms, (b) we can use parallel-algorithm
techniques as building blocks for other larger parallel algorithms, and (c) we can use asymptotic complexity to help
decide when one parallel algorithm is better than another. The study of parallel algorithms could take an entire course,
so we will pick just a few examples that represent some of the many key parallel-programming patterns.

As is common when studying algorithms, we will not show full Java implementations. It should be clear at this
point that one could code up the algorithms using the ForkJoin framework even if it may not be entirely easy to
implement more sophisticated techniques.

5.1 Parallel-Prefix Sum
Consider this problem: Given an array of n integers input, produce an array of n integers output where output[i]
is the sum of the first i elements of input. In other words, we are computing the sum of every prefix of the input array
and returning all the results. This is called the prefix-sum problem.4 Figure 8 shows an example input and output. A
Θ(n) sequential solution is trivial:

int[] prefix_sum(int[] input) {

int[] output = new int[input.length];

output[0] = input[0];

for(int i=1; i < input.length; i++)

output[i] = output[i-1] + input[i];

return output;

}

It is not at all obvious that a good parallel algorithm, say, one with Θ(log n) span, exists. After all, it seems we
need output[i-1] to compute output[i]. If so, the span will be Θ(n). Just as a parallel reduction uses a totally
different algorithm than the straightforward sequential approach, there is also an efficient parallel algorithm for the
prefix-sum problem. Like many clever data structures and algorithms, it is not something most people are likely to
discover on their own, but it is a useful technique to know.

The algorithm works in two passes. We will call the first pass the “up” pass because it builds a binary tree from
bottom to top. We first describe the resulting tree and then explain how it can be produced via a fork-join computation.
Figure 9 shows an example.

• Every node holds the sum of the integers for some range of the input array.

• The root of the tree holds the sum for the entire range [0, n).5

4It is common to distinguish the inclusive-sum (the first i elements) from the exclusive-sum (the first i-1 elements); we will assume inclusive
sums are desired.

5As before, we describe ranges as including their left end but excluding their right end.

36

Figure 8: Example input and output for computing a prefix sum. Notice the sum of the first 5 elements is 52.

• A node’s left child holds the sum for the left half of the node’s range and the node’s right child holds the sum
for the right half of the node’s range. For example, the root’s left child is for the range [0, n/2) and the root’s
right child is for the range [n/2, n).

• Conceptually, the leaves of the tree hold the sum for one-element ranges. So there are n leaves. In practice, we
would use a sequential cut-off and have the leaves store the sum for a range of, say, approximately 500 elements.

To build this tree — and we do mean here to build the actual tree data-structure6 because we need it in the second
pass — we can use a straightforward fork-join computation:

• The overall goal is to produce the node for the range [0, n).

• To build the node for the range [x, y):

– If x == y − 1, produce a node holding input[x].

– Else recursively in parallel build the nodes for [x, (x + y)/2) and [(x + y)/2, y). Make these the left and
right children of the result node. Add their answers together for the result node’s sum.

In short, the result of the divide-and-conquer is a tree node and the way we “combine results” is to use the two recursive
results as the subtrees. So we build the tree “bottom-up,” creating larger subtrees from as we return from each level
of the recursion. Figure 9 shows an example of this bottom-up process, where each node stores the range it stores the
sum for and the corresponding sum. The “fromleft” field is blank — we use it in the second pass.

Convince yourself this algorithm is Θ(n) work and Θ(log n) span.
The description above assumes no sequential cut-off. With a cut-off, we simply stop the recursion when y − x is

below the cut-off and create one node that holds the sum of the range [x, y), computed sequentially.
Now we are ready for the second pass called the “down” pass, where we use this tree to compute the prefix-sum.

The essential trick is that we process the tree from top to bottom, passing “down” as an argument the sum of the array
indices to the left of the node. Figure 10 shows an example. Here are the details:

• The argument passed to the root is 0. This is because there are no numbers to the left of the range [0, n) so their
sum is 0.

• The argument passed to a node’s left child is the same argument passed to the node. This is because the sum of
numbers to the left of the range [x, (x + y)/2) is the sum of numbers to the left of the range [x, y).

• The argument passed to a node’s right child is the argument passed to the node plus the sum stored at the node’s
left child. This is because the sum of numbers to the left of the range [(x + y)/2, y) is the sum to the left of x
plus the sum of the range [x, (x + y)/2). This is why we stored these sums in the up pass!

6As a side-note, if you have seen an array-based representation of a complete tree, for example with a binary-heap representation of a priority
queue, then notice that if the array length is a power of two, then the tree we build is also complete and therefore amenable to a compact array
representation. The length of the array needs to be 2n − 1 (or less with a sequential cut-off). If the array length is not a power of two and we still
want a compact array, then we can either act as though the array length is the next larger power of two or use a more sophisticated rule for how to
divide subranges so that we always build a complete tree.

37

Figure 9: Example of the first pass of the parallel prefix-sum algorithm: the overall result (bottom-right) is a binary
tree where each node holds the sum of a range of elements of the input. Each node holds the index range for which
it holds the sum (two numbers for the two endpoints) and the sum of that range. At the lowest level, we write r for
range and s for sum just for formatting purposes. The fromleft field is used in the second pass. We can build this tree
bottom-up with Θ(n) work and Θ(log n) span because a node’s sum is just the sum of its children.

38

When we reach a leaf, we have exactly what we need: output[i] is input[i] plus the value passed down to the ith

leaf. Convincing yourself this algorithm is correct will likely require working through a short example while drawing
the binary tree.

This second pass is also amenable to a parallel fork-join computation. When we create a subproblem, we just need
the value being passed down and the node it is being passed to. We just start with a value of 0 and the root of the tree.
This pass, like the first one, is Θ(n) work and Θ(log n) span. So the algorithm overall is Θ(n) work and Θ(log n)
span. It is asymptotically no more expensive than computing just the sum of the whole array. The parallel-prefix
problem, surprisingly, has a solution with exponential parallelism!

If we used a sequential cut-off, then we have a range of output values to produce at each leaf. The value passed
down is still just what we need for the sum of all numbers to the left of the range and then a simple sequential
computation can produce all the output-values for the range at each leaf proceeding left-to-right through the range.

Perhaps the prefix-sum problem is not particularly interesting. But just as our original sum-an-array problem
exemplified the parallel-reduction pattern, the prefix-sum problem exemplifies the more general parallel-prefix pattern.
Here are two other general problems that can be solved the same way as the prefix-sum problem; you can probably
think of more.

• Let output[i] be the minimum (or maximum) of all elements to the left of i.

• Let output[i] be a count of how many elements to the left of i satisfy some property.

Moreover, many parallel algorithms for problems that are not “obviously parallel” use a parallel-prefix computation
as a helper method. It seems to be “the trick” that comes up over and over again to make things parallel. Section 5.2
gives an example, developing an algorithm on top of parallel-prefix sum. We will then use that algorithm to implement
a parallel variant of quicksort.

5.2 Pack
This section develops a parallel algorithm for this problem: Given an array input, produce an array output con-
taining only those elements of input that satisfy some property, and in the same order they appear in input.
For example if the property is, “greater than 10” and input is {17,4,6,8,11,5,13,19,0,24}, then output is
{17,11,13,19,24}. Notice the length of output is unknown in advance but never longer than input. A Θ(n)
sequential solution using our “greater than 10” example is:

int[] greaterThanTen(int[] input) {

int count = 0;

for(int i=0; i < input.length; i++)

if(input[i] > 10)

count++;

int[] output = new int[count];

int index = 0;

for(int i=0; i < input.length; i++)

if(input[i] > 10)

output[index++] = input[i];

assert(index==count);

return output;

}

Writing a generic version is really no more difficult; as in Section 3.5 it amounts to a judicious use of generics and
higher-order programming. In general, let us call this pattern a pack operation, adding it to our patterns of maps,
reduces, and prefixes. However, the term pack is not standard, nor is there a common term to our knowledge. Filter is
also descriptive, but underemphasizes that the order is preserved.

This problem looks difficult to solve with effective parallelism. Finding which elements should be part of the
output is a trivial map operation, but knowing what output index to use for each element requires knowing how many
elements to the left also are greater than 10. But that is exactly what a prefix computation can do!

39

Figure 10: Example of the second pass of the parallel prefix-sum algorithm. Starting with the result of the first pass
and a “fromleft” value at the root of 0, we proceed down the tree filling in fromleft fields in parallel, propagating the
same fromleft value to the left-child and the fromleft value plus the left-child’s sum to the right-value. At the leaves,
the fromleft value plus the (1-element) sum is precisely the correct prefix-sum value. This pass is Θ(n) work and
Θ(log n) span.

40

We can describe an efficient parallel pack algorithm almost entirely in terms of helper methods using patterns we
already know. For simplicity, we describe the algorithm in terms of 3 steps, each of which is Θ(n) work and Θ(log n)
span; in practice it is straightforward to do the first two steps together in one fork-join computation.

1. Perform a parallel map to produce a bit vector where a 1 indicates the corresponding input element is greater
than 10. So for {17,4,6,8,11,5,13,19,0,24} this step produces {1,0,0,0,1,0,1,1,0,1}.

2. Perform a parallel prefix sum on the bit vector produced in the previous step. Continuing our example produces
{1,1,1,1,2,2,3,4,4,5}.

3. The array produced in the previous step provides the information that a final parallel map needs to produce the
packed output array. In pseudocode, calling the result of step (1) bitvector and the result of step (2) bitsum:

int output_length = bitsum[bitsum.length-1];

int[] output = new int[output_length];

FORALL(int i=0; i < input.length; i++) {

if(bitvector[i]==1)

output[bitsum[i]-1] = input[i];

}

Note it is also possible to do step (3) using only bitsum and not bitvector, which would allow step (2) to do
the prefix sum in place, updating the bitvector array. In either case, each iteration of the FORALL loop either
does not write anything or writes to a different element of output than every other iteration.

Just as prefix sum was surprisingly useful for pack, pack turns out to be surprisingly useful for more important
algorithms, including a parallel variant of quicksort...

5.3 Parallel Quicksort
Recall that sequential quicksort is an in-place sorting algorithm with O(n log n) best- and expected-case running time.
It works as follows:

1. Pick a pivot element (O(1))

2. Partition the data into: (O(n))

(a) Elements less than the pivot

(b) The pivot

(c) Elements greater than the pivot

3. Recursively sort the elements less than the pivot

4. Recursively sort the elements greater than the pivot

Let’s assume for simplicity the partition is roughly balanced, so the two recursive calls solve problems of approxi-
mately half the size. If we write R(n) for the running time of a problem of size n, then, except for the base cases of the
recursion which finish in O(1) time, we have R(n) = O(n)+2R(n/2) due to the O(n) partition and two problems of
half the size.7 It turns out that when the running time is R(n) = O(n)+2R(n/2), this works out to be O(n log n), but
we do not show the derivation of this fact here. Moreover, if pivots are chosen randomly, the expected running time
remains O(n log n). For simplicity, the analysis below will continue to assume the chosen pivot is magically exactly
the median. As with sequential quicksort, the expected-time asymptotic bounds are the same if the pivot is chosen
uniformly at random, but the proper analysis under this assumption is more mathematically intricate.

7The more common notation is T (n) instead of R(n), but we will use R(n) to avoid confusion with work T1 and span T∞.

41

Figure 11: Example using two pack operations to partition in parallel

How should we parallelize this algorithm? The first obvious step is to perform steps (3) and (4) in parallel. This
has no effect on the work, but changes the recurrence for the span to R(n) = O(n) + 1R(n/2), (because we can solve
the two problems of half the size simultaneously), which works out to be O(n). Therefore, the parallelism, T1/T∞,
is O(n log n)/O(n), i.e., O(log n). While this is an improvement, it is a far cry from the exponential parallelism we
have seen for algorithms up to this point. Concretely, it suggests an infinite number of processors would sort billions
of elements dozens of times faster than one processor. This is okay but underwhelming.

To do better, we need to parallelize the step that produces the partition. The sequential partitioning algorithm uses
clever swapping of data elements to perform he in-place sort. To parallelize it, we will sacrifice the in-place property.
Given Amdahl’s Law, this is likely a good trade-off: use extra space to achieve additional parallelism. All we will
need is one more array of the same length as the input array.

To partition into our new extra array, all we need are two pack operations: one into the left side of the array and
one into the right side. In particular:

• Pack all elements less than the pivot into the left side of the array: If x elements are less than the pivot, put this
data at positions 0 to x− 1.

• Pack all elements greater than the pivot into the right side of the array: If x elements are greater than the pivot,
put this data at positions n− x to n− 1.

The first step is exactly like the pack operation we saw earlier. The second step just works down from the end of the
array instead of up from the beginning of the array. After performing both steps, there is one spot left for the pivot
between the two partitions. Figure 11 shows an example of using two pack operations to partition in parallel.

Each of the two pack operations is O(n) work and O(log n) span. The fact that we look at each element twice,
once to decide if it is less than the pivot and once to decide if it is greater than the pivot is only a constant factor
more work. Also note that the two pack operations can be performed in parallel, though this is unnecessary for the
asymptotic bound.

After completing the partition, we continue with the usual recursive sorting (in parallel) of the two sides. Rather
than create another auxiliary array, the next step of the recursion can reuse the original array. Sequential mergesort
often uses this same space-reuse trick.

Let us now re-analyze the asymptotic complexity of parallel quicksort using our parallel (but not in-place) partition
and, for simplicity, assuming pivots always divide problems exactly in half. The work is still R(n) = O(n) +
2R(n/2) = O(n log n) where the O(n) now includes the two pack operations. The span is now R(n) = O(log n) +
1R(n/2) because the span for the pack operations is O(log n). This turns out to be (again, not showing the derivation)
O(log2 n), not as good as O(log n), but much better than the O(n) (in fact, Θ(n)) we had with a sequential partition.
Hence the available parallelism is proportional to n log n/ log2 n = n/ log n, an exponential speed-up.

42

5.4 Parallel Mergesort
As a final parallel algorithm, we develop a parallel version of mergesort. As with quicksort, achieving a little par-
allelism is trivial, but achieving a lot of parallelism requires much more cleverness. We first recall the sequential
mergesort algorithm, which always has running time O(n log n) and is not in-place:

1. Recursively sort the left half and right half of the input.

2. Merge the sorted results into a new sorted array by repeatedly moving the smallest not-yet-moved element into
the new array.

The running time for this algorithm is R(n) = 2R(n/2) + O(n) because there are two subproblems of half the size
and the merging is O(n) using a single loop that progresses through the two sorted recursive results.8 This is the same
running time as sequential quicksort, and it works out to O(n log n).

The trivial first parallelization step is to do the two recursive sorts in parallel. Exactly like with parallel quicksort,
this has no effect on the work and reduces the span to R(n) = 1R(n/2)+O(n), which is O(n). Hence the parallelism
is O(log n).

To do better, we need to parallelize the merge operation. Our algorithm will take two sorted subarrays of length
x and y and merge them. In sequential mergesort, the two lengths are equal (or almost equal when merging an odd
number of elements), but as we will see, our recursive parallel merging will create subproblems that may need to
merge arrays of different lengths. The algorithm is:9

• Determine the median element of the larger array. This is just the element in the middle of its range, so this
operation is O(1).

• Use binary search to find the position j in the smaller array such that all elements to the left of j are less than
the larger array’s median. Binary search is O(logm) where m is the length of the smaller array.

• Recursively merge the left half of the larger array with positions 0 to j of the smaller array.

• Recursively merge the right half of the larger array with the rest of the smaller array.

The total number of elements this algorithm merges is x + y, which we will call n. The first two steps are O(log n)
since n is greater than the length of the array on which we do the binary search. That leaves the two subproblems,
which are not necessarily of size n/2. That best-case scenario occurs when the binary search ends up in the middle of
the smaller array. The worst-case scenario is when it ends up at one extreme, i.e., all elements of the smaller array are
less than the median of the larger array or all elements of the smaller array are greater than the median of the larger
array.

But we now argue that the worst-case scenario is not that bad. The larger array has at least n/2 elements —
otherwise it would not be the larger array. And we always split the larger array’s elements in half for the recursive
subproblems. So each subproblem has at least n/4 (half of n/2) elements. So the worst-case split is n/4 and 3n/4.
That turns out to “good enough” for a large amount of parallelism for the merge. The full analysis of the recursive
algorithm is a bit intricate, so we just mention a few salient facts here.

Because the worst-case split is n/4 and 3n/4, the worst-case span is R(n) = R(3n/4) + O(log n): the R(n/4)
does not appear because it can be done in parallel with the R(3n/4) and is expected to finish first (and the O(log n) is
for the binary search). R(n) = R(3n/4) + O(log n) works out to be O(log2 n) (which is not obvious and we do not
show the derivation here). The work is R(n) = R(3n/4) + R(n/4) + O(log n), which works out to be O(n) (again
omitting the derivation).

Recall this analysis was just for the merging step. Adding O(log2 n) span and O(n) work for merging back into
the overall mergesort algorithm, we get a span of R(n) = 1R(n/2) + O(log2 n), which is O(log3 N), and a work of
R(n) = 2R(n/2) + O(n), which is O(n log n). While the span and resulting parallelism is O(log n) worse than for
parallel quicksort, it is a worst-case bound compared to quicksort’s expected case.

8As with the analysis for parallel quicksort, we are writing R(n) instead of the more common T (n) just to avoid confusion with our notation
for work and span.

9The base case, ignoring a sequential cut-off, is when x and y are both ≤ 1, in which case merging is trivially O(1).

43

6 Basic Shared-Memory Concurrency
We now leave fork-join parallelism behind to focus on concurrent programming, which is about correctly and effi-
ciently controlling access by multiple threads to shared resources. As described in Section 2, the line between parallel
and concurrent programming is not clear, and many programs have aspects of both, but it is best at first to study each
by itself.

We will still have threads and shared memory. We will use Java’s built-in threads (java.lang.Thread), not any
classes in the ForkJoin Framework. The “shared resources” will be memory locations (fields of objects) used by more
than one thread. We will learn how to write code that provides properly synchronized access to shared resources even
though it may not be known what order the threads may access the data. In fact, multiple threads may try to access
and/or modify the data at the same time. We will see why this cannot be allowed and how programmers must use
programming-language features to avoid it. The features we will focus on involve mutual-exclusion locks, introduced
in Section 6.3.

Here are some simple high-level examples of shared resources where we need to control concurrent access:

1. We are writing banking software where we have an object for each bank account. Different threads (e.g., one
per bank teller or ATM) deposit or withdraw funds from various accounts. What if two threads try to manipulate
the same account at the same time?

2. We have a hashtable storing a cache of previously-retrieved results. For example, maybe the table maps patients
to medications they need to be given. What if two threads try to insert patients — maybe even the same patient
— at the same time? Could we end up with the same patient in the table twice? Could that cause other parts of
the program to indicate double the appropriate amount of medication for the patient?

3. Suppose we have a pipeline, which is like an assembly line, where each stage is a separate thread that does some
processing and then gives the result to the subsequent stage. To pass these results, we could use a queue where
the result-provider enqueues and the result-receiver dequeues. So an n-stage pipeline would have n− 1 queues;
one queue between each pair of adjacent stages. What if an enqueue and a dequeue happen at the same time?
What if a dequeue is attempted when there are no elements in the queue (yet)? In sequential programming,
dequeueing from an empty queue is typically an error. In concurrent programing, we may prefer instead to wait
until another thread enqueues something.

6.1 The Programming Model
As the examples above hint at, in concurrent programming we have multiple threads that are “largely doing their own
thing” but occasionally need to coordinate since they are accessing shared resources. It is like different cooks working
in the same kitchen — easy if they are using different utensils and stove burners, but more difficult if they need to
share things. The cooks may be working toward a shared goal like producing a meal, but while they are each working
on a different recipe, the shared goal is not the focus.

In terms of programming, the basic model comprises multiple threads that are running in a mostly uncoordinated
way. We might create a new thread when we have something new to do. The operations of each thread are interleaved
(running alongside, before, after, or at the same time) with operations by other threads. This is very different from
fork-join parallelism. In fork-join algorithms, one thread creates a helper thread to solve a specific subproblem and
the creating thread waits (by calling join) for the other thread to finish. Here, we may have 4 threads processing bank-
account changes as they arrive. While it is unlikely that two threads would access the same account at the same time,
it is possible and we must be correct in this case.

One thing that makes concurrent programs very difficult to debug is that the bugs can be very unlikely to occur.
If a program exhibits a bug and you re-run the program another million times with the same inputs, the bug may not
appear again. This is because what happens can depend on the order that threads access shared resources, which is
not entirely under programmer control. It can depend on how the threads are scheduled onto the processors, i.e., when
each thread is chosen to run and for how long, something that is decided automatically (when debugging, it often feels
capriciously) by the implementation of the programming language, with help from the operating system. Therefore,
concurrent programming is nondeterministic, the output does not depend only on the input. Because testing concurrent

44

programs is so difficult, it is exceedingly important to design them well using well-understood design principles (see
Section 8) from the beginning.

As an example, suppose a bank-account class has methods deposit and withdraw. Suppose the latter throws an
exception if the amount to be withdrawn is larger than the current balance. If one thread deposits into the account and
another thread withdraws from the account, then whether the withdrawing thread throws an exception could depend
on the order the operations occur. And that is still assuming all of one operation completes before the other starts. In
upcoming sections, we will learn how to use locks to ensure the operations themselves are not interleaved, but even
after ensuring this, the program can still be nondeterministic.

As a contrast, we can see how fork-join parallelism made it relatively easy to avoid having two threads access the
same memory at the same time. Consider a simple parallel reduction like summing an array. Each thread accesses
a disjoint portion of the array, so there is no sharing like there potentially is with bank accounts. The sharing is
with fields of the thread objects: One thread initializes fields (like the array range) before creating the helper thread.
Then the helper thread may set some result fields that the other thread reads after the helper thread terminates. The
synchronization here is accomplished entirely via (1) thread creation (not calling start or fork until the correct
fields are written) and (2) join (not reading results until the other thread has terminated). But in our concurrent
programming model, this form of synchronization will not work because we will not wait for another thread to finish
running before accessing a shared resource like a bank account.

It is worth asking why anyone would use this difficult programming model. It would certainly be simpler to have
one thread that does everything we need to do. There are several reasons:

• Parallelism: Despite conceptual differences between parallelism and concurrency, it may well be that a parallel
algorithm needs to have different threads accessing some of the same data structures in an unpredictable way.
For example, we could have multiple threads search through a graph, only occasionally crossing paths.

• Responsiveness: Many programs, including operating systems and programs with user interfaces, want/need to
respond to external events quickly. One way to do this is to have some threads doing the program’s expensive
computations while other threads are responsible for “listening for” events like buttons being clicked or typing
occurring. The listening threads can then (quickly) write to some fields that the computation threads later read.

• Processor utilization: If one thread needs to read data from disk (e.g., a file), this will take a very long time
relatively speaking. In a conventional single-threaded program, the program will not do anything for the mil-
liseconds it takes to get the information. But this is enough time for another thread to perform millions of
instructions. So by having other threads, the program can do useful work while waiting for I/O. This use of
multithreading is called masking (or hiding) I/O latency.

• Failure/performance isolation: Sometimes having multiple threads is simply a more convenient way to structure
a program. In particular, when one thread throws an exception or takes too long to compute a result, it affects
only what code is executed by that thread. If we have multiple independent pieces of work, some of which might
(due to a bug, a problem with the data, or some other reason) cause an exception or run for too long, the other
threads can still continue executing. There are other approaches to these problems, but threads often work well.

It is common to hear that threads are useful only for performance. This is true only if “performance” includes respon-
siveness and isolation, which stretches the definition of performance.

6.2 The Need for Synchronization
This section presents in detail an initial example to demonstrate why we should prevent multiple threads from simulta-
neously performing operations on the same memory. We will focus on showing possible interleavings that produce the
wrong answer. However, the example also has data races, which Section 7 explains must be prevented. We will show
that using “ordinary” Java features to try to prevent bad interleavings simply does not work. Instead, we will learn to
use locks, which are primitives provided by Java and other programming languages that provide what we need. We
will not learn how to implement locks, since the techniques use low-level features more central to courses in operating
systems and computer architecture.

Consider this code for a BankAccount class:

45

class BankAccount {

private int balance = 0;

int getBalance() {

return balance;

}

void setBalance(int x) {

balance = x;

}

void withdraw(int amount) {

int b = getBalance();

if(amount > b)

throw new WithdrawTooLargeException();

setBalance(b - amount);

}

// ... other operations like deposit, etc.

}

This code is correct in a single-threaded program. But suppose we have two threads, one calls x.withdraw(100),
and the other calls y.withdraw(100). The two threads could truly run at the same time on different processors. Or
they may run one at a time, but the thread scheduler might stop one thread and start the other at any point, switching
between them any number of times. Still, in many scenarios it is not a problem for these two method calls to execute
concurrently:

• If x and y are not aliases, meaning they refer to distinct bank accounts, then there is no problem because the
calls are using different memory. This is like two cooks using different pots at the same time.

• If one call happens to finish before the other starts, then the behavior is like in a sequential program. This is
like one cook using a pot and then another cook using the same pot. When this is not the case, we say the calls
interleave. Note that interleaving can happen even with one processor because a thread can be pre-empted at
any point, meaning the thread scheduler stops the thread and runs another one.

So let us consider two interleaved calls to withdraw on the same bank account. We will “draw” interleavings using
a vertical timeline (earlier operations closer to the top) with each thread in a separate column. There are many possible
interleavings since even the operations in a helper method like getBalance can be interleaved with operations in other
threads. But here is one incorrect interleaving. Assume initially the balance field holds 150 and both withdrawals are
passed 100. Remember that each thread executes a different method call with its own “local” variables b and amount

but the calls to getBalance and setBalance are, we assume, reading/writing the one balance field of the same
object.

Thread 1 Thread 2

-------- --------

int b = getBalance();

int b = getBalance();

if(amount > b)

throw new ...;

setBalance(b - amount); // sets balance to 50

if(amount > b) // no exception: b holds 150

throw new ...;

setBalance(b - amount);

If this interleaving occurs, the resulting balance will be 50 and no exception will be thrown. But two withdraw

operations were supposed to occur — there should be an exception. Somehow we “lost” a withdraw, which would not
make the bank happy. The problem is that balance changed after Thread 1 retrieved it and stored it in b.

46

When first learning concurrent programming there is a natural but almost-always WRONG attempted fix to this
sort of problem. It is tempting to rearrange or repeat operations to try to avoid using “stale” information like the value
in b. Here is a WRONG idea:

void withdraw(int amount) {

if(amount > getBalance())

throw new WithdrawTooLargeException();

// maybe balance changed, so get the new balance

setBalance(getBalance() - amount);

}

The idea above is to call getBalance() a second time to get any updated values. But there is still the potential for
an incorrect interleaving. Just because setBalance(getBalance() - amount) is on one line in our source code
does not mean it happens all at once. This code still (a) calls getBalance, then (b) subtracts amount from the result,
then (c) calls setBalance. Moreover (a) and (c) may consist of multiple steps. In any case, the balance can change
between (a) and (c), so we have not really accomplished anything except we might now produce a negative balance
without raising an exception.

The sane way to fix this sort of problem, which arises whenever we have concurrent access to shared memory
that might change (i.e., the contents are mutable), is to enforce mutual exclusion: allow only one thread to access any
particular account at a time. The idea is that a thread will “hang a do-not-disturb sign” on the account before it starts
an operation such as withdraw and not remove the sign until it is finished. Moreover, all threads will check for a
“do-not-disturb sign” before trying to hang a sign and do an operation. If such a sign is there, a thread will wait until
there is no sign so that it can be sure it is the only one performing an operation on the bank account. Crucially, the
act of “checking there is no sign hanging and then hanging a sign” has to be done “all-at-once” or, to use the common
terminology, atomically. We call the work done “while the sign is hanging” a critical section; it is critical that such
operations not be interleaved with other conflicting ones. (Critical sections often have other technical requirements,
but this simple informal definition will suffice for our purposes.)

Here is one WRONG way to try to implement this idea. You should never write code that tries to do this manually,
but it is worth understanding why it is WRONG:

class BankAccount {

private int balance = 0;

private boolean busy = false;

void withdraw(int amount) {

while(busy) { /* spin-wait */ }

busy = true;

int b = getBalance();

if(amount > b)

throw new WithdrawTooLargeException();

setBalance(b - amount);

busy = false;

}

// deposit would spin on same boolean

}

The idea is to use the busy variable as our do-not-disturb sign. All the other account operations would use the busy

variable in the same way so that only one operation occurs at a time. The while-loop is perhaps a little inefficient since
it would be better not to do useless work and instead be notified when the account is “available” for another operation,
but that is not the real problem. The busy variable does not work, as this interleaving shows:

Thread 1 Thread 2

-------- --------

while(busy) { }

while(busy) { }

47

busy = true;

busy = true;

int b = getBalance();

int b = getBalance();

if(amount > b)

throw new ...;

setBalance(b - amount);

if(amount > b)

throw new ...;

setBalance(b - amount);

Essentially we have the same problem with busy that we had with balance: we can check that busy is false,
but then it might get set to true before we have a chance to set it to true ourselves. We need to check there is no
do-not-disturb sign and put our own sign up while we still know there is no sign. Hopefully you can see that using a
variable to see if busy is busy is only going to push the problem somewhere else again.

To get out of this conundrum, we rely on synchronization primitives provided by the programming language.
These typically rely on special hardware instructions that can do a little bit more “all at once” than just read or write a
variable. That is, they give us the atomic check-for-no-sign-and-hang-a-sign that we want. This turns out to be enough
to implement mutual exclusion properly. The particular kind of synchronization we will use is locking.

6.3 Locks
We can define a mutual-exclusion lock, also known as just a lock (or sometimes called a mutex), as an abstract datatype
designed for concurrent programming and supporting three operations:

• new creates a new lock that is initially “not held”

• acquire takes a lock and blocks until it is currently “not held” (this could be right away, i.e., not blocking at
all, since the lock might already be not held). It sets the lock to “held” and returns.

• release takes a lock and sets it to “not held.”

This is exactly the “do-not-disturb” sign we were looking for, where the acquire operation blocks (does not return)
until the caller is the thread that most recently hung the sign. It is up to the lock implementation to ensure that it
always does the right thing no matter how many acquires and/or releases different threads perform simultaneously.
For example, if there are three acquire operations at the same time for a “not held” lock, one will “win” and return
immediately while the other two will block. When the “winner” calls release, one other thread will get to hold the
lock next, and so on.

The description above is a general notion of what locks are. Section 6.4 will describe how to use the locks that are
part of the Java language. But using the general idea, we can write this PSEUDOCODE (Java does not actually have
a Lock class), which is almost correct (i.e., still WRONG but close):

class BankAccount {

private int balance = 0;

private Lock lk = new Lock();

...

void withdraw(int amount) {

lk.acquire(); /* may block */

int b = getBalance();

if(amount > b)

throw new WithdrawTooLargeException();

setBalance(b - amount);

lk.release();

}

48

// deposit would also acquire/release lk

}

Though we show only the withdraw operation, remember that all operations accessing balance and whatever other
fields the account has should acquire and release the lock held in lk. That way, only one thread will perform any
operation on a particular account at a time. Interleaving a withdraw and a deposit, for example, is incorrect. If any
operation does not use the lock correctly, it is like threads calling that operation are ignoring the do-not-disturb sign.
Because each account uses a different lock, different threads can still operate on different accounts at the same time.
But because locks work correctly to enforce that only one thread holds any given lock at a time, we have the mutual
exclusion we need for each account. If instead we used one lock for all the accounts, then we would still have mutual
exclusion, but we could have worse performance since threads would be waiting unnecessarily.

What, then, is wrong with the pseudocode? The biggest problem occurs if amount > b. In this case, an exception
is thrown and therefore the lock is not released. So no thread will ever be able to perform another operation on this
bank account and any thread that attempts to do so will be blocked forever waiting for the lock to be released. This
situation is like someone leaving the room through a window without removing the do-not-disturb sign from the door,
so nobody else ever enters the room.

A fix in this case would be to add lk.release in the branch of the if-statement before the throw-statement. But
more generally we have to worry about any exception that might be thrown, even while some other method called
from within the critical section is executing or due to a null-pointer or array-bounds violation. So more generally it
would be safer to use a catch-statement or finally-statement to make sure the lock is always released. Fortunately, as
Section 6.4 describes, when we use Java’s locks instead of our pseudocode locks, this will not be necessary.

A second problem, also not an issue in Java, is more subtle. Notice that withdraw calls getBalance and
setBalance while holding the lock for the account. These methods might also be called directly from outside the
bank-account implementation, assuming they are public. Therefore, they should also acquire and release the lock be-
fore accessing the account’s fields like balance. But if withdraw calls these helper methods while holding the lock,
then as we have described it, the thread would block forever — waiting for “some thread” to release the lock when in
fact the thread itself already holds the lock.

There are two solutions to this problem. The first solution is more difficult for programmers: we can define two
versions of getBalance and setBalance. One would acquire the lock and one would assume the caller already
holds it. The latter could be private, perhaps, though there are any number of ways to manually keep track in the
programmer’s head (and hopefully documentation!) what locks the program holds where.

The second solution is to change our definition of the acquire and release operations so that it is okay for a
thread to (re)acquire a lock it already holds. Locks that support this are called reentrant locks. (The name fits well
with our do-not-disturb analogy.) To define reentrant locks, we need to adjust the definitions for the three operations
by adding a count to track how many times the current holder has reacquired the lock (as well as the identity of the
current holder):

• new creates a new lock with no current holder and a count of 0

• acquire blocks if there is a current holder different from the thread calling it. Else if the current holder is the
thread calling it, do not block and increment the counter. Else there is no current holder, so set the current holder
to the calling thread.

• release only releases the lock (sets the current holder to “none”) if the count is 0. Otherwise, it decrements
the count.

In other words, a lock is released when the number of release operations by the holding thread equals the number of
acquire operations.

6.4 Locks in Java
The Java language has built-in support for locks that is different than the pseudocode in the previous section, but
easy to understand in terms of what we have already discussed. The main addition to the language is a synchronized
statement, which looks like this:

49

synchronized (expression) {

statements

}

Here, synchronized is a keyword. Basically, the syntax is just like a while-loop using a different keyword, but this
is not a loop. Instead it works as follows:

1. The expression is evaluated. It must produce (a reference to) an object — not null or a number. This object
is treated as a lock. In Java, every object is a lock that any thread can acquire or release. This decision is a bit
strange, but is convenient in an object-oriented language as we will see.

2. The synchronized statement acquires the lock, i.e., the object that is the result of step (1). Naturally, this may
block until the lock is available. Locks are reentrant in Java, so the statement will not block if the executing
thread already holds it.

3. After the lock is successfully acquired, the statements are executed.

4. When control leaves the statements, the lock is released. This happens either when the final } is reached or
when the program “jumps out of the statement” via an exception, a return, a break, or a continue.

Step (4) is the other unusual thing about Java locks, but it is quite convenient. Instead of having an explicit release
statement, it happens implicitly at the ending }. More importantly, the lock is still released if an exception causes the
thread to not finish the statements. Naturally, statements can contain arbitrary Java code: method calls, loops,
other synchronized statements, etc. The only shortcoming is that there is no way to release the lock before reaching
the ending }, but it is rare that you want to do so.

Here is an implementation of our bank-account class using synchronized statements as you might expect. However,
this example is UNUSUAL STYLE and is NOT ENCOURAGED. The key thing to notice is that any object can serve
as a lock, so for the lock we simply create an instance of Object, the built-in class that is a superclass of every other
class.

class BankAccount {

private int balance = 0;

private Object lk = new Object();

int getBalance() {

synchronized (lk) {

return balance;

}

}

void setBalance(int x) {

synchronized (lk) {

balance = x;

}

}

void withdraw(int amount) {

synchronized (lk) {

int b = getBalance();

if(amount > b)

throw new WithdrawTooLargeException();

setBalance(b - amount);

}

}

// deposit and other operations would also use synchronized(lk)

}

50

Because locks are reentrant, it is no problem for withdraw to call setBalance and getBalance. Because locks are
automatically released, the exception in withdraw is not a problem.

While it may seem naturally good style to make lk a private field since it is an implementation detail (clients
need not care how instances of BankAccount provide mutual exclusion), this choice prevents clients from writing their
own critical sections involving bank accounts. For example, suppose a client wants to double an account’s balance. In
a sequential program, another class could include this correct method:

void doubleBalance(BankAccount acct) {

acct.setBalance(acct.getBalance()*2);

}

But this code is subject to a bad interleaving: the balance might be changed by another thread after the call to
getBalance. If lk were instead public, then clients could use it — and the convenience of reentrant locks —
to write a proper critical section:

void doubleBalance(BankAccount acct) {

synchronized(acct.lk) {

acct.setBalance(acct.getBalance()*2);

}

}

There is a simpler and more idiomatic way, however: Why create a new Object and store it in a public field?
Remember any object can serve as a lock, so it is more convenient, and the custom in Java, to use the instance of
BankAccount itself (or in general, the object that has the fields relevant to the synchronization). So we would remove
the lk field entirely like this (there is one more slightly shorter version coming):

class BankAccount {

private int balance = 0;

int getBalance() {

synchronized (this) {

return balance;

}

}

void setBalance(int x) {

synchronized (this) {

balance = x;

}

}

void withdraw(int amount) {

synchronized (this) {

int b = getBalance();

if(amount > b)

throw new WithdrawTooLargeException();

setBalance(b - amount);

}

}

// deposit and other operations would also use synchronized(this)

}

All we are doing differently is using the object itself (referred to by the keyword this) rather than a different object.
Of course, all methods need to agree on what lock they are using. Then a client could write the doubleBalance

method like this:

void doubleBalance(BankAccount acct) {

51

synchronized(acct) {

acct.setBalance(acct.getBalance()*2);

}

}

In this way, doubleBalance acquires the same lock that the methods of acct do, ensuring mutual exclusion. That is,
doubleBalance will not be interleaved with other operations on the same account.

Because this idiom is so common, Java has one more shortcut to save you a few keystrokes. When an entire method
body should be synchronized on this, we can omit the synchronized statement and instead put the synchronized

keyword in the method declaration before the return type. This is just a shorter way of saying the same thing. So our
FINAL VERSION looks like this:

class BankAccount {

private int balance = 0;

synchronized int getBalance() {

return balance;

}

synchronized void setBalance(int x) {

balance = x;

}

synchronized void withdraw(int amount) {

int b = getBalance();

if(amount > b)

throw new WithdrawTooLargeException();

setBalance(b - amount);

}

// deposit and other operations would also be declared synchronized

}

There is no change to the doubleBalance method. It must still use a synchronized statement to acquire acct.
While we have built up to our final version in small steps, in practice it is common to have classes defining shared

resources consist of all synchronized methods. This approach tends to work well provided that critical sections only
access the state of a single object. For some other cases, see the guidelines in Section 8.

Remember that each Java object represents a different lock. If two threads use synchronized statements to acquire
different locks, the bodies of the synchronized statements can still execute simultaneously. Here is a subtle BUG
emphasizing this point, assuming arr is an array of objects and i is an int:

void someMethod() {

synchronized(arr[i]) {

if(someCondition()) {

arr[i] = new Foo();

}

// some more statements using arr[i]

}

}

If one thread executes this method and someCondition() evaluates to true, then it updates arr[i] to hold a different
object, so another thread executing someMethod() could acquire this different lock and also execute the synchronized
statement at the same time as the first thread.

Finally, note that the synchronized statement is far from the only support for concurrent programming in Java.
In Section 10.2 we will show Java’s support for condition variables. The package java.util.concurrent also
has many library classes useful for different tasks. For example, you almost surely should not implement your own
concurrent hashtable or queue since carefully optimized correct implementations are already provided. In addition to
concurrent data structures, the standard library also has many features for controlling threads. A standard reference
(an entire book!) is, “Java Concurrency in Practice” by Brian Goetz et al.

52

7 Race Conditions: Bad Interleavings and Data Races
A race condition is a mistake in your program (i.e., a bug) such that whether the program behaves correctly or not
depends on the order that the threads execute. The name is a bit difficult to motivate: the idea is that the program will
“happen to work” if certain threads during program execution “win the race” to do their next operation before some
other threads do their next operations. Race conditions are very common bugs in concurrent programming that, by
definition, do not exist in sequential programming. This section defines two kinds of race conditions and explains why
you must avoid them. Section 8 describes programming guidelines that help you do so.

One kind of race condition is a bad interleaving, sometimes called a higher-level race (to distinguish it from the
second kind). Section 6 showed some bad interleavings and this section will show several more. The key point is that
“what is a bad interleaving” depends entirely on what you are trying to do. Whether or not it is okay to interleave two
bank-account withdraw operations depends on some specification of how a bank account is supposed to behave.

A data race is a specific kind of race condition that is better described as a “simultaneous access error” although
nobody uses that term. There are two kinds of data races:

• When one thread might read an object field at the same moment that another thread writes the same field.

• When one thread might write an object field at the same moment that another thread also writes the same field.

Notice it is not an error for two threads to both read the same object field at the same time.
As Section 7.2 explains, your programs must never have data races even if it looks like a data race would not

cause an error — if your program has data races, the execution of your program is allowed to do very strange things.
To better understand the difference between bad interleavings and data races, consider the final version of the

BankAccount class from Section 6. If we accidentally omit the synchronized keyword from the withdraw def-
inition, the program will have many bad interleavings, such as the first one we considered in Section 6. But since
getBalance and setBalance are still synchronized, there are no data races: Every piece of code that reads or
writes balance does so while holding the appropriate lock. So there can never be a simultaneous read/write or
write/write of this field.

Now suppose withdraw is synchronized but we accidentally omitted synchronized from getBalance. Data
races now exist and the program is wrong regardless of what a bank account is supposed to do. Figure 12 depicts an
example that meets our definition: two threads reading/writing the same field at potentially the same time. (If both
threads were writing, it would also be a data race.) Interestingly, simultaneous calls to getBalance do not cause a
data race because simultaneous reads are not an error. But if one thread calls getBalance at the same time another
thread calls setBalance, then a data race occurs. Even though setBalance is synchronized, getBalance is not, so
they might read and write balance at the same time. If your program has data races, it is infeasible to reason about
what might happen.

7.1 Bad Interleavings: An Example with Stacks
A useful way to reason about bad interleavings is to think about intermediate states that other threads must not “see.”
Data structures and libraries typically have invariants necessary for their correct operation. For example, a size

field may need to store the correct number of elements in a data structure. Operations typically violate invariants
temporarily, restoring the invariant after making an appropriate change. For example, an operation might add an
element to the structure and increment the size field. No matter what order is used for these two steps, there is
an intermediate state where the invariant does not hold. In concurrent programming, our synchronization strategy
often amounts to using mutual exclusion to ensure that no thread can observe an invariant-violating intermediate state
produced by another thread. What invariants matter for program correctness depends on the program.

Let’s consider an extended example using a basic implementation of a bounded-size stack. (This is not an interest-
ing data structure; the point is to pick a small example so we can focus on the interleavings. Section 10.2 discusses an
alternative to throwing exceptions for this kind of structure.)

class Stack<E> {

private E[] array;

53

Figure 12: Visual depiction of a data race: Two threads accessing the same field of the same object, at least one of
them writing to the field, without synchronization to ensure the accesses cannot happen, “at the same time.”

private int index = 0;

Stack(int size) {

array = (E[]) new Object[size];

}

synchronized boolean isEmpty() {

return index==0;

}

synchronized void push(E val) {

if(index==array.length)

throw new StackFullException();

array[index++] = val;

}

synchronized E pop() {

if(index==0)

throw new StackEmptyException();

return array[--index];

}

}

The key invariant is that if index>0 then index-1 is the position of the most recently pushed item that has not
yet been popped. Both push and pop temporarily violate this invariant because they need to modify index and the
contents of the array. Even though this is done in one Java statement, it does not happen all at once. By making each
method synchronized, no thread using these operations can see an incorrect intermediate state. It effectively ensures
there is some global order of calls to isEmpty, push, and pop. That order might differ across different executions
because scheduling is nondeterministic, but the calls will not be interleaved.

Also notice there are no data races because array and size are accessed only while holding the this lock. Not
holding the lock in the constructor is fine because a new object is not yet reachable from any other thread. The new
object that the constructor produces (i.e., the new instance of Stack) will have to be assigned to some thread-shared
location before a second thread could use it, and such an assignment will not happen until after the constructor finishes
executing.10

10This would not necessarily be the case if the constructor did something like someObject.f = this;, but doing such things in constructors is
usually a bad idea.

54

Now suppose we want to implement a new operation for our stack called peek that returns the newest not-yet-
popped element in the stack without popping it. (This operation is also sometimes called top.) A correct implemen-
tation would be:

synchronized E peek() {

if(index==0)

throw new StackEmptyException();

return array[index-1];

}

If we omit the synchronized keyword, then this operation would cause data races with simultaneous push or pop
operations.

Consider instead this alternate also-correct implementation:

synchronized E peek() {

E ans = pop();

push(ans);

return ans;

}

This version is perhaps worse style, but it is certainly correct. It also has the advantage that this approach could be
taken by a helper method outside the class where the first approach could not since array and index are private fields:

class C {

static <E> E myPeekHelper(Stack<E> s) {

synchronized (s) {

E ans = s.pop();

s.push(ans);

return ans;

}

}

}

Notice this version could not be written if stacks used some private inaccessible lock. Also notice that it relies on
reentrant locks. However, we will consider instead this WRONG version where the helper method omits its own
synchronized statement:

class C {

static <E> E myPeekHelperWrong(Stack<E> s) {

E ans = s.pop();

s.push(ans);

return ans;

}

}

Notice this version has no data races because the pop and push calls still acquire and release the appropriate lock.
Also notice that myPeekHelperWrong uses the stack operators exactly as it is supposed to. Nonetheless, it is incorrect
because a peek operation is not supposed to modify the stack. While the overall result is the same stack if the code
runs without interleaving from other threads, the code produces an intermediate state that other threads should not see
or modify. This intermediate state would not be observable in a single-threaded program or in our correct version that
made the entire method body a critical section.

To show why the wrong version can lead to incorrect behavior, we can demonstrate interleavings with other
operations such that the stack does the wrong thing. Writing out such interleavings is good practice for reasoning
about concurrent code and helps determine what needs to be in a critical section. As it turns out in our small example,
myPeekHelperWrong causes race conditions with all other stack operations, including itself.

55

Figure 13: A bad interleaving for a stack with a peek operation that is incorrect in a concurrent program.

myPeekHelperWrong and isEmpty:

If a stack is not empty, then isEmpty should return false. Suppose two threads share a stack stk that has one
element in it. If one thread calls isEmpty and the other calls myPeekHelperWrong, the first thread can get the wrong
result:

Thread 1 Thread 2 (calls myPeekHelperWrong)

-------- ----------------------------------

E ans = stk.pop();

boolean b = isEmpty();

stk.push(ans);

return ans;

Figure 13 shows how this interleaving produces the wrong result when the stack has one element. Notice there is
nothing wrong with what “Java is doing” here. It is the programmer who wrote myPeekHelperWrong such that it
does not behave like a peek operation should. Yet the code that gets the wrong answer is isEmpty, which is another
reason debugging concurrent programs is difficult.

myPeekHelperWrong and push:

Another key property of stacks is that they return elements in last-in-first-out order. But consider this interleaving,
where one of Thread 1’s push operations happens in the middle of a concurrent call to myPeekHelperWrong.

Thread 1 Thread 2 (calls myPeekHelperWrong)

-------- ----------------------------------

stk.push(x);

E ans = stk.pop();

stk.push(y);

stk.push(ans);

return ans;

E z = stk.pop();

56

This interleaving has the effect of reordering the top two elements of the stack, so z ends up holding the wrong value.

myPeekHelperWrong and pop:

Similar to the previous example, a pop operation (instead of a push) that views the intermediate state of
myPeekHelperWrong can get the wrong (not last-in-first-out) answer:

Thread 1 Thread 2 (calls myPeekHelperWrong)

-------- ----------------------------------

stk.push(x);

stk.push(y);

E ans = stk.pop();

E z = stk.pop();

stk.push(ans);

return ans;

myPeekHelperWrong and myPeekHelperWrong:

Finally, two threads both calling myPeekHelperWrong causes race conditions. First, if stk initially has one
element, then a bad interleaving of the two calls could raise a StackEmptyException, which should happen only
when a stack has zero elements:

Thread 1 Thread 2 (calls myPeekHelperWrong)

-------- ----------------------------------

E ans = stk.pop();

E ans = stk.pop(); // exception!

stk.push(ans);

return ans;

Second, even if the stack has more than 1 element, we can extend the interleaving above to swap the order of the top
two elements, which will cause later pop operations to get the wrong answer.

Thread 1 Thread 2 (calls myPeekHelperWrong)

-------- ----------------------------------

E ans = stk.pop();

E ans = stk.pop();

stk.push(ans);

return ans;

stk.push(ans);

return ans;

In general, bad interleavings can involve any number of threads using any operations. The defense is to define
large enough critical sections such that every possible thread schedule is correct. Because push, pop, and isEmpty are
synchronized, we do not have to worry about calls to these methods being interleaved with each other. To implement
peek correctly, the key insight is to realize that its intermediate state must not be visible and therefore we need its
calls to pop and push to be part of one critical section instead of two separate critical sections. As Section 8 discusses
in more detail, making your critical sections large enough — but not too large — is an essential task in concurrent
programming.

7.2 Data Races: Wrong Even When They Look Right
This section provides more detail on the rule that data races — simultaneous read/write or write/write of the same field
— must be avoided even if it “seems like” the program would be correct anyway.

57

For example, consider the Stack implementation from Section 7.1 and suppose we omit synchronization from the
isEmpty method. Given everything we have discussed so far, doing so seems okay, if perhaps a bit risky. After all,
isEmpty only reads the index field and since all the other critical sections write to index at most once, it cannot be
that isEmpty observes an intermediate state of another critical section: it would see index either before or after it
was updated — and both possibilities remain when isEmpty is properly synchronized.

Nonetheless, omitting synchronization introduces data races with concurrent push and pop operations. As soon as
a Java program has a data race, it is extremely difficult to reason about what might happen. (The author of these notes
is genuinely unsure if the stack implementation is correct with isEmpty unsynchronized.) In the C++11 standard,
it is impossible to do such reasoning: any program with a data race is as wrong as a program with an array-bounds
violation. So data races must be avoided. The rest of this section gives some indication as to why and a little more
detail on how to avoid data races.

7.2.1 Inability to Reason In the Presence of Data Races

Let’s consider an example that is simpler than the stack implementation but is so simple that we won’t motivate why
anyone would write code like this:

class C {

private int x = 0;

private int y = 0;

void f() {

x = 1; // line A

y = 1; // line B

}

void g() {

int a = y; // line C

int b = x; // line D

assert(b >= a);

}

}

Notice f and g are not synchronized, leading to potential data races on fields x and y. Therefore, it turns out the
assertion in g can fail. But there is no interleaving of operations that justifies the assertion failure! Here we prove that
all interleavings are correct. Then Section 7.2.2 explains why the assertion can fail anyway.

• If a call to g begins after at least one call to f has ended, then x and y are both 1, so the assertion holds.

• Similarly, if a call to g completes before any call to f begins, then x and y are both 0, so the assertion holds.

• So we need only concern ourselves with a call to g that is interleaved with the first call to f. One way to proceed
is to consider all possible interleavings of the lines marked A, B, C, and D and show the assertion holds under all
of them. Because A must precede B and C must precede D, there are only 6 such interleavings: ABCD, ACBD,
ACDB, CABD, CADB, CDAB. Manual inspection of all six possibilities completes the proof.

A more illuminating approach is a proof by contradiction: Assume the assertion fails, meaning !(b>=a). Then
a==1 and b==0. Since a==1, line B happened before line C. Since (1) A must happen before B, (2) C must
happen before D, and (3) “happens before” is a transitive relation, A must happen before D. But then b==1 and
the assertion holds.

There is nothing wrong with the proof except its assumption that we can reason in terms of “all possible interleav-
ings” or that everything happens in certain orders. We can reason this way only if the program has no data races.

58

7.2.2 Partial Explanation of Why Data Races Are Disallowed

To understand why one cannot always reason in terms of interleavings requires taking courses in compilers and/or
computer architecture.

Compilers typically perform optimizations to execute code faster without changing its meaning. If we required
compilers to never change the possible interleavings, then it would be too difficult for compilers to be effective.
Therefore, language definitions allow compilers to do things like execute line B above before line A. Now, in this
simple example, there is no reason why the compiler would do this reordering. The point is that it is allowed to, and
in more complicated examples with code containing loops and other features there are reasons to do so. Once such a
reordering is allowed, the assertion is allowed to fail. Whether it will ever do so depends on exactly how a particular
Java implementation works.

Similarly, in hardware, there isn’t really one single shared memory containing a single copy of all data in the
program. Instead there are various caches and buffers that let the processor access some memory faster than other
memory. As a result, the hardware has to keep track of different copies of things and move things around. As it does
so, memory operations might not become “visible” to other threads in the order they happened in the program. As
with compilers, requiring the hardware to expose all reads and writes in the exact order they happen is considered too
onerous from a performance perspective.

To be clear, compilers and hardware cannot just “do whatever they want.” All this reordering is completely hidden
from you and you never need to worry about it if you avoid data races. This issue is irrelevant in single-threaded
programming because with one thread you can never have a data race.

7.2.3 The Grand Compromise

One way to summarize the previous section is in terms of a “grand compromise” between programmers who want to
be able to reason easily about what a program might do and compiler/hardware implementers who want to implement
things efficiently and easily:

• The programmer promises not to write data races.

• The implementers promise that if the programmer does his/her job, then the implementation will be indistin-
guishable from one that does no reordering of memory operations. That is, it will preserve the illusion that all
memory operations are interleaved in a global order.

Why is this compromise the state of the art rather than a more extreme position of requiring the implementation to
preserve the “interleaving illusion” even in the presence of data races? In short, it would make it much more difficult to
develop compilers and processors. And for what? Just to support programs with data races, which are almost always
bad style and difficult to reason about anyway! Why go to so much trouble just for ill-advised programming style? On
the other hand, if your program accidentally has data races, it might be more difficult to debug.

7.2.4 Avoiding Data Races

To avoid data races, we need synchronization. Given Java’s locks, which we already know about, we could rewrite our
example from Section 7.2.1 as follows:

class C {

private int x = 0;

private int y = 0;

void f() {

synchronized(this) { x = 1; } // line A

synchronized(this) { y = 1; } // line B

}

void g() {

int a, b;

59

synchronized(this) { a = y; } // line C

synchronized(this) { b = x; } // line D

assert(b >= a);

}

}

In practice you might choose to implement each method with one critical section instead of two, but using two is still
sufficient to eliminate data races, which allows us to reason in terms of the six possible interleavings, which ensures the
assertion cannot fail. It would even be correct to use two different locks, one to protect x (lines A and D) and another
to protect y (lines B and C). The bottom line is that by avoiding data races we can reason in terms of interleavings
(ignoring reorderings) because we have fulfilled our obligations under The Grand Compromise.

There is a second way to avoid data races when writing tricky code that depends on the exact ordering of reads and
writes to fields. Instead of using locks, we can declare fields to be volatile. By definition, accesses to volatile fields do
not count as data races, so programmers using volatiles are still upholding their end of the grand compromise. In fact,
this definition is the reason that volatile is a keyword in Java — and the reason that until you study concurrency you
will probably not run across it. Reading/writing a volatile field is less efficient than reading/writing a regular field, but
more efficient than acquiring and releasing a lock. For our example, the code looks like this:

class C {

private volatile int x = 0;

private volatile int y = 0;

void f() {

x = 1; // line A

y = 1; // line B

}

void g() {

int a = y; // line C

int b = x; // line D

assert(b >= a);

}

}

Volatile fields are typically used only by concurrency experts. They can be convenient when concurrent code is
sharing only a single field. Usually with more than one field you need critical sections longer than a single memory
access, in which case the right tool is a lock, not a volatile field.

7.2.5 A More Likely Example

Since the previous discussion focused on a strange and unmotivated example (who would write code like f and g?),
this section concludes with a data-race example that would arise naturally.

Suppose we want to perform some expensive iterative computation, for example, rendering a really ugly monster
for a video game, until we have achieved a perfect solution or another thread informs us that the result is “good
enough” (it’s time to draw the monster already) or no longer needed (the video-game player has left the room with the
monster). We could have a boolean stop field that the expensive computation checks periodically:

class MonsterDraw {

boolean stop = false;

void draw(...) {

while(!stop) {

... keep making uglier ...

}

...

60

}

}

Then one thread would execute draw and other threads could set stop to true as necessary. Notice that doing so
introduces data races on the stop field. To be honest, even though this programming approach is wrong, with most
Java implementations it will probably work. But if it does not, it is the programmer’s fault. Worse, the code might
work for a long time, but when the Java implementation changes or the compiler is run with different pieces of code,
the idiom might stop working. Most likely what would happen is the draw method would never “see” that stop was
changed and it would not terminate.

The simplest “fix” to the code above is to declare stop volatile. However, many concurrency experts would
consider this idiom poor style and would recommend learning more about Java’s thread library, which has built-in
support for having one thread “interrupt” another one. Java’s concurrency libraries are large with built-in support for
many coding patterns. This is just one example of a pattern where using the existing libraries is “the right thing to do,”
but we do not go into the details of the libraries in these notes.

8 Concurrency Programming Guidelines
This section does not introduce any new primitives for concurrent programming. Instead, we acknowledge that writing
correct concurrent programs is difficult — just saying, “here is how locks work, try to avoid race conditions but still
write efficient programs” would leave you ill-equipped to write non-trivial multithreaded programs. Over the decades
that programmers have struggled with shared memory and locks, certain guidelines and methodologies have proven
useful. Here we sketch some of the most widely agreed upon approaches to getting your synchronization correct.
Following them does not make concurrency easy, but it does make it much easier. We focus on how to design/organize
your code, but related topics like how to use tools to test and debug concurrent programs are also important.

8.1 Conceptually Splitting Memory in Three Parts
Every memory location in your program (for example an object field), should meet at least one of the following three
criteria:

1. It is thread-local: Only one thread ever accesses it.

2. It is immutable: (After being initialized,) it is only read, never written.

3. It is synchronized: Locks are used to ensure there are no race conditions.

Put another way, memory that is thread-local or immutable is irrelevant to synchronization. You can ignore it
when considering how to use locks and where to put critical sections. So the more memory you have that is thread-
local or immutable, the easier concurrent programming will be. It is often worth changing the data structures and
algorithms you are using to choose ones that have less sharing of mutable memory, leaving synchronization only for
the unavoidable communication among threads. We cannot emphasize enough that each memory location needs to
meet at least one of the three conditions above to avoid race conditions, and if it meets either of the first two (or both),
then you do not need locks.

So a powerful guideline is to make as many objects as you can immutable or thread-local or both. Only when
doing so is ineffective for your task do you need to figure out how to use synchronization correctly. Therefore, we next
consider ways to make more memory thread-local and then consider ways to make more memory immutable.

More Thread-Local Memory

Whenever possible, do not share resources. Instead of having one resource, have a separate (copy of the) resource
for each thread. For example, there is no need to have one shared Random object for generating pseudorandom
numbers, since it will be just as random for each thread to use its own object. Dictionaries storing already-computed
results can also be thread-local: This has the disadvantage that one thread will not insert a value that another thread
can then use, but the decrease in synchronization is often worth this trade-off.

61

Note that because each thread’s call-stack is thread-local, there is never a need to synchronize on local variables.
So using local variables instead of object fields can help where possible, but this is good style anyway even in single-
threaded programming.

Overall, the vast majority of objects in a typical concurrent program should and will be thread-local. It may not
seem that way in these notes, but only because we are focusing on the shared objects, which are the difficult ones.
In conclusion, do not share objects unless those objects really have the explicit purpose of enabling shared-memory
communication among threads.

More Immutable Memory

Whenever possible, do not update fields of objects: Make new objects instead. This guideline is a key tenet of
functional programming, which unfortunately is typically not taught in the same course as data structures or con-
currency. Even in single-threaded programs, it is often helpful to avoid mutating fields of objects because other
too-often-forgotten-about aliases to that object will “see” any mutations performed.

Let’s consider a small example that demonstrates some of the issues. Suppose we have a dictionary such as a
hashtable that maps student ids to names where the name class is represented like this:

class Name {

public String first;

public String middle;

public String last;

public Name(String f, String m, String l) {

first = f;

middle = m;

last = l;

}

public String toString() {

return first + " " + middle + " " + last;

}

}

Suppose we want to write a method that looks up a student by id in some table and returns the name, but using a
middle initial instead of the full middle name. The following direct solution is probably the BEST STYLE:

Name n = table.lookup(id);

return n.first + " " + n.middle.charAt(0) + " " + n.last;

Notice that the computation is almost the same as that already done by toString. So if the computation were more
complicated than just a few string concatenations, it would be tempting and arguably reasonable to try to reuse the
toString method. This approach is a BAD IDEA:

Name n = table.lookup(id);

n.middle = n.middle.substring(0,1);

return n.toString();

While this code produces the right answer, it has the side-effect of changing the name’s middle field. Worse, the
Name object is still in the table. Actually, this depends on how the lookup method is implemented. We assume here it
returns a reference to the object in the table, rather than creating a new Name object. If Name objects are not mutated,
then returning an alias is simpler and more efficient. Under this assumption, the full middle name for some student
has been replaced in the table by the middle initial, which is presumably a bug.

In a SINGLE-THREADED PROGRAM, the following workaround is correct but POOR STYLE:

Name n = table.lookup(id);

String m = n.middle;

n.middle = m.substring(0,1);

62

String ans = n.toString();

n.middle = m;

return ans;

Again, this is total overkill for our example, but the idea makes sense: undo the side effect before returning.
But if the table is shared among threads, the APPROACH ABOVE IS WRONG. Simultaneous calls using the same

ID would have data races. Even if there were no data races, there would be interleavings where other operations might
see the intermediate state where the middle field held only the initial. The point is that for shared memory, you cannot
perform side effects and undo them later: later is too late in the presence of concurrent operations. This is a major
reason that the functional-programming paradigm is even more useful with concurrency.

The solution is to make a copy of the object and, if necessary, mutate the (thread-local) copy. So this WORKS:

Name n1 = table.lookup(id);

Name n2 = new Name(n1.first, n1.middle.substring(0,1), n1.last);

return n2.toString();

Note that it is no problem for multiple threads to lookup up the same Name object at the same time. They will all
read the same fields of the same object (they all have aliases to it), but simultaneous reads never lead to race conditions.
It is like multiple pedestrians reading the same street sign at the same time: They do not bother each other.

8.2 Approaches to Synchronization
Even after maximizing the thread-local and immutable objects, there will remain some shared resources among the
threads (else threads have no way to communicate). The remaining guidelines suggest ways to think about correctly
synchronizing access to these resources.

Guideline #0: Avoid data races

Use locks to ensure that two threads never simultaneously read/write or write/write the same field. While guideline
#0 is necessary (see Section 7.2), it is not sufficient (see Section 7.1 and other examples of wrong programs that have
no data races).

Guideline #1: Use consistent locking

For each location that needs synchronization, identify a lock that is always held when accessing that location. If
some lock l is always held when memory location m is read or written, then we say that l guards the location m. It
is extremely good practice to document (e.g., via comments) for each field needing synchronization what lock guards
that location. For example, the most common situation in Java would be, “this guards all fields of instances of the
class.”

Note that each location would have exactly one guard, but one lock can guard multiple locations. A simple example
would be multiple fields of the same object, but any mapping from locks to locations is okay. For example, perhaps all
nodes of a linked list are protected by one lock. Another way to think about consistent locking is to imagine that all
the objects needing synchronization are partitioned. Each piece of the partition has a lock that guards all the locations
in the piece.

Consistent locking is sufficient to prevent data races, but is not sufficient to prevent bad interleavings. For example,
the extended example in Section 7.1 used consistent locking.

Consistent locking is not necessary to prevent data races nor bad interleavings. It is a guideline that is typically
the default assumption for concurrent code, violated only when carefully documented and for good reason. One good
reason is when the program has multiple conceptual “phases” and all threads globally coordinate when the program
moves from one phase to another. In this case, different phases can use different synchronization strategies.

For example, suppose in an early phase multiple threads are inserting different key-value pairs into a dictionary.
Perhaps there is one lock for the dictionary and all threads acquire this lock before performing any dictionary op-
erations. Suppose that at some point in the program, the dictionary becomes fixed, meaning no more insertions or
deletions will be performed on it. Once all threads know this point has been reached (probably by reading some other

63

synchronized shared-memory object to make sure that all threads are done adding to the dictionary), it would be correct
to perform subsequent lookup operations without synchronization since the dictionary has become immutable.

Guideline #2: Start with coarse-grained locking and move to finer-grained locking only if contention is hurting
performance

This guideline introduces some new terms. Coarse-grained locking means using fewer locks to guard more ob-
jects. For example, one lock for an entire dictionary or for an entire array of bank accounts would be coarse-grained.
Conversely, fine-grained locking means using more locks, each of which guards fewer memory locations. For exam-
ple, using a separate lock for each bucket in a chaining hashtable or a separate lock for each bank account would be
fine-grained. Honestly, the terms “coarse-grained” and “fine-grained” do not have a strict dividing line: we can really
only say that one locking strategy is “more coarse-grained” or “more fine-grained” than another one. That is, locking
granularity is really a continuum, where one direction is coarser and the other direction is finer.

Coarse-grained locking is typically easier. After grabbing just one lock, we can access many different locations in
a critical section. With fine-grained locking, operations may end up needing to acquire multiple locks (using nested
synchronized statements). It is easy to forget to acquire a lock or to acquire the wrong lock. It also introduces the
possibility of deadlock (Section 9).

But coarse-grained locking leads to threads waiting for other threads to release locks unnecessarily, i.e., in situa-
tions when no errors would result if the threads proceeded concurrently. In the extreme, the coarsest strategy would
have just one lock for the entire program! Under this approach, it is obvious what lock to acquire, but no two oper-
ations on shared memory can proceed in parallel. Having one lock for many, many bank accounts is probably a bad
idea because with enough threads, there will be multiple threads attempting to access bank accounts at the same time
and they will be unable to. Contention describes the situation where threads are blocked waiting for each other: They
are contending (in the sense of competing) for the same resource, and this is hurting performance. If there is little
contention (it is rare that a thread is blocked), then coarse-grained locking is sufficient. When contention becomes
problematic, it is worth considering finer-grained locking, realizing that changing the code without introducing race
conditions is difficult. A good execution profiler11 should provide information on where threads are most often blocked
waiting for a lock to be released.

Guideline #3: Make critical sections large enough for correctness but no larger. Do not perform I/O or expensive
computations within critical sections.

The granularity of critical sections is completely orthogonal to the granularity of locks (guideline #2). Coarse-
grained critical sections are “large” pieces of code whereas fine-grained critical sections are “small” pieces of code.
However, what matters is not how many lines of code a critical section occupies. What matters is how long a critical
section takes to execute (longer means larger) and how many shared resources such as memory locations it accesses
(more means larger).

If you make your critical sections too short, you are introducing more possible interleavings and potentially incor-
rect race conditions. For example, compare:

synchronized(lk) { /* do first thing */ }

/* do second thing */

synchronized(lk) { /* do third thing */ }

with:

synchronized(lk) {

/* do first thing */

/* do second thing */

/* do third thing */

}

The first version has smaller critical sections. Smaller critical sections lead to less contention. For example, other
threads can use data guarded by lk while the code above is doing the “second thing.” But smaller critical sections

11A profiler is a tool that reports where a run of a program is spending time or other resources.

64

expose more states to other threads. Perhaps only the second version with one larger critical section is correct. This
guideline is therefore a tough one to follow because it requires moderation: make critical sections no longer or shorter
than necessary.

Basic operations like assignment statements and method calls are so fast that it is almost never worth the trouble
of splitting them into multiple critical sections. However, expensive computations inside critical sections should
be avoided wherever possible for the obvious reason that other threads may end up blocked waiting for the lock.
Remember in particular that reading data from disk or the network is typically orders of magnitude slower than reading
memory. Long running loops and other computations should also be avoided.

Sometimes it is possible to reorganize code to avoid long critical sections by repeating an operation in the (hope-
fully) rare case that it is necessary. For example, consider this large critical section that replaces a table entry by
performing some computation on its old value:

synchronized(lk) {

v1 = table.lookup(k);

v2 = expensive(v1);

table.remove(k);

table.insert(k,v2);

}

We assume the program is incorrect if this critical section is any smaller: We need other threads to see either the old
value in the table or the new value. And we need to compute v2 using the current v1. So this variation would be
WRONG:

synchronized(lk) {

v1 = table.lookup(k);

}

v2 = expensive(v1);

synchronized(lk) {

table.remove(k);

table.insert(k,v2);

}

If another thread updated the table to map k to some v3 while this thread was executing expensive(v1), then we
would not be performing the correct computation. In this case, either the final value in the table should be v3 (if that
thread ran second) or the result of expensive(v3) (if that thread ran first), but never v2.

However, this more complicated version would WORK in this situation, under the CAVEAT described below:

boolean loop_done = false;

while(!loop_done) {

synchronized(lk) {

v1 = table.lookup(k);

}

v2 = expensive(v1);

synchronized(lk) {

if(table.lookup(k)==v1) {

loop_done = true;

table.remove(k);

table.insert(k,v2);

}

}

}

The essence of the trick is the second critical section. If table.lookup(k)==v1, then we know what expensive(v1)
would compute, having already computed it! So the critical section is small, but does the same thing as our original

65

large critical section. But if table.lookup(k)!=v1, then our precomputation did useless work and the while-loop
starts over. If we expect concurrent updates to be rare, then this approach is a “good performance bet” while still
correct in all cases.

As promised, there is an important caveat to mention. This approach does not ensure the table entry for key k

was unmodified during the call to expensive. There could have been any number of concurrent updates, removals,
insertions, etc. with this key. All we know is that when the second critical section executes, the key k has value v1.
Maybe it was unchanged or maybe it was changed and then changed back.

In our example, we assumed it did not matter. There are many situations where it does matter and in such cases,
checking the value is wrong because it does not ensure the entry has not been modified. This is known as an “A-B-
A” problem, meaning the value started as A, changed to B, and changed back to A, causing some incorrect code to
conclude, wrongly, that it was never changed.

Guideline #4: Think in terms of what operations need to be atomic. Determine a locking strategy after you
know what the critical sections are.

An operation is atomic, as in indivisible, if it executes either entirely or not at all, with no other thread able
to observe that it has partly executed. (In the databases literature, this would be called atomic and isolated, but
it is common in concurrent programming to conflate these two ideas under the term atomic.) Ensuring necessary
operations appear to be atomic is exactly why we have critical sections. Since this is the essential point, this guideline
recommends thinking first in terms of what the critical sections are without thinking about locking granularity. Then,
once the critical sections are clear, how to use locks to implement the critical sections can be the next step.

In this way, we ensure we actually develop the software we want — the correct critical sections — without being
distracted prematurely by the implementation details of how to do the locking. In other words, think about atomicity
(using guideline #3) first and the locking protocol (using guidelines #0, #1, and #2) second.

Unfortunately, one of the most difficult aspects of lock-based programming is when software needs change. When
new critical sections are needed in “version 2.0” of a program, it may require changing the locking protocol, which
in turn will require carefully modifying the code for many other already-working critical sections. Section 9 even
includes an example where there is really no good solution. Nonetheless, following guideline #4 makes it easier to
think about why and how a locking protocol may need changing.

Guideline #5: Do not implement your own concurrent data structures. Use carefully tuned ones written by
experts and provided in standard libraries.

Widely used libraries for popular programming languages already contain many reusable data structures that you
should use whenever they meet your needs. For example, there is little reason in Java to implement your own hashtable
since the Hashtable class in the standard library has been carefully tuned and tested. For concurrent programming,
the advice to “reuse existing libraries” is even more important, precisely because writing, debugging, and testing
concurrent code is so difficult. Experts who devote their lives to concurrent programming can write tricky fine-grained
locking code once and the rest of us can benefit. For example, the ConcurrentHashMap class implements a hashtable
that can be safely used by multiple threads with very little contention. It uses some techniques more advanced than
discussed in these notes, but clients to the library have such trickiness hidden from them. For basic things like queues
and dictionaries, do not implement your own.

If standard libraries are so good, then why learn about concurrent programming at all? For the same reason that
educated computer scientists need a basic understanding of sequential data structures in order to pick the right ones
and use them correctly (e.g., designing a good hash function), concurrent programmers need to understand how to
debug and performance tune their use of libraries (e.g., to avoid contention).

Moreover, standard libraries do not typically handle all the necessary synchronization for an application. For ex-
ample, ConcurrentHashMap does not support atomically removing one element and inserting two others. If your
application needs to do that, then you will need to implement your own locking protocol to synchronize access to a
shared data structure. Understanding race conditions is crucial. While the examples in these notes consider race con-
ditions on simple data structures like stacks, larger applications using standard libraries for concurrent data structures
will still often have bad interleavings at higher levels of abstraction.

66

9 Deadlock
There is another common concurrency bug that you must avoid when writing concurrent programs: If a collection of
threads are blocked forever, all waiting for another thread in the collection to do something (which it won’t because
it’s blocked), we say the threads are deadlocked. Deadlock is a different kind of bug from a race condition, but
unfortunately preventing a potential race condition can cause a potential deadlock and vice-versa. Deadlocks typically
result only with some, possibly-rare, thread schedules (i.e., like race conditions they are nondeterministic). One
advantage compared to race conditions is that it is easier to tell a deadlock occurred: Some threads never terminate
because they are blocked.

As a canonical example of code that could cause a deadlock, consider a bank-account class that includes a method
to transfer money to another bank-account. With what we have learned so far, the following WRONG code skeleton
looks reasonable:

class BankAccount {

...

synchronized void withdraw(int amt) { ... }

synchronized void deposit(int amt) { ... }

synchronized void transferTo(int amt, BankAccount a) {

this.withdraw(amt);

a.deposit(amt);

}

}

This class uses a fine-grained locking strategy where each account has its own lock. There are no data races because the
only methods that directly access any fields are (we assume) synchronized like withdraw and deposit, which acquire
the correct lock. More subtly, the transferTo method appears atomic. For another thread to see the intermediate
state where the withdraw has occurred but not the deposit would require operating on the withdrawn-from account.
Since transferTo is synchronized, this cannot occur.

Nonetheless, there are interleavings of two transferTo operations where neither one ever finishes, which is
clearly not desired. For simplicity, suppose x and y are static fields each holding a BankAccount. Consider this
interleaving in pseudocode:

Thread 1: x.transferTo(1,y) Thread 2: y.transferTo(1,x)

-------------------------- ---------------------------

acquire lock for x

withdraw 1 from x

acquire lock for y

withdraw 1 from y

block on lock for x

block on lock for y

In this example, one thread transfers from one account (call it “A”) to another (call it “B”) while the other thread
transfers from B to A. With just the wrong interleaving, the first thread holds the lock for A and is blocked on the lock
for B while the second thread holds the lock for B and is blocked on the lock for A. So both are waiting for a lock to
be released by a thread that is blocked. They will wait forever.

More generally, a deadlock occurs when there are threads T1, T2, ..., Tn such that:

• For 1 ≤ i ≤ (n− 1), Ti is waiting for a resource held by Ti+1

• Tn is waiting for a resource held by T1

In other words, there is a cycle of waiting.
Returning to our example, there is, unfortunately, no obvious way to write an atomic transferTo method that

will not deadlock. Depending on our needs we could write:

67

void transferTo(int amt, BankAccount a) {

this.withdraw(amt);

a.deposit(amt);

}

All we have done is make transferTo not be synchronized. Because withdraw and deposit are still synchronized
methods, the only negative effect is that an intermediate state is potentially exposed: Another thread that retrieved the
balances of the two accounts in the transfer could now “see” the state where the withdraw had occurred but not the
deposit. If that is okay in our application, then this is a sufficient solution. If not, another approach would be to resort
to coarse-grained locking where all accounts use the same lock.

Either of these approaches avoids deadlock because they ensure that no thread ever holds more than one lock at a
time. This is a sufficient but not necessary condition for avoiding deadlock because it cannot lead to a cycle of waiting.
A much more flexible sufficient-but-not-necessary strategy that subsumes the often-unworkable “only one lock at a
time strategy” works as follows: For all pairs of locks x and y, either do not have a thread ever (try to) hold both x and
y simultaneously or have a globally agreed upon order, meaning either x is always acquired before y or y is always
acquired before x.

This strategy effectively defines a conceptual partial order on locks and requires that a thread tries to acquire a
lock only if all locks currently held by the thread (if any) come earlier in the partial order. It is merely a programming
convention that the entire program must get right.

To understand how this ordering idea can be useful, we return to our transferTo example. Suppose we wanted
transferTo to be atomic. A simpler way to write the code that still has the deadlock problem we started with is:

void transferTo(int amt, BankAccount a) {

synchronized(this) {

synchronized(a) {

this.withdraw(amt);

a.deposit(amt);

}

}

}

Here we make explicit that we need the locks guarding both accounts and we hold those locks throughout the critical
section. This version is easier to understand and the potential deadlock — still caused by another thread performing
a transfer to the accounts in reverse order — is also more apparent. (Note in passing that a deadlock involving more
threads is also possible. For example, thread 1 could transfer from A to B, thread 2 from B to C, and thread 3 from C
to A.)

The critical section has two locks to acquire. If all threads acquired these locks in the same order, then no
deadlock could occur. In our deadlock example where one thread calls x.transferTo(1,y) and the other calls
y.transferTo(1,x), this is exactly what goes wrong: one acquires x before y and the other y before x. We want
one of the threads to acquire the locks in the other order.

In general, there is no clear way to do this, but sometimes our data structures have some unique identifier that
lets us pick an arbitrary order to prevent deadlock. Suppose, as is the case in actual banks, that every BankAccount

already has an acctNumber field of type int that is distinct from every other acctNumber. Then we can use these
numbers to require that threads always acquire locks for bank accounts in increasing order. (We could also require
decreasing order, the key is that all code agrees on one way or the other.) We can then write transferTo like this:

class BankAccount {

...

private int acctNumber; // must be unique

void transferTo(int amt, BankAccount a) {

if(this.acctNumber < a.acctNumber)

synchronized(this) {

synchronized(a) {

68

this.withdraw(amt);

a.deposit(amt);

}

}

else

synchronized(a) {

synchronized(this) {

this.withdraw(amt);

a.deposit(amt);

}

}

}

}

While it may not be obvious that this code prevents deadlock, it should be obvious that it follows the strategy described
above. And any code following this strategy will not deadlock because we cannot create a cycle if we acquire locks
according to the agreed-upon partial order.

In practice, methods like transferTo where we have two instances of the same class are a difficult case to handle.
Even in the Java standard library it does not always work well: The StringBuffer class has an append method that is
subject to race conditions (bad interleavings) because the only way to avoid it would be to create a possible deadlock.
With no clear, efficient solution (buffers do not have unique identifiers like bank accounts), the documentation for
StringBuffer indicates that clients of the library must use their own synchronization to prevent calls to append

from interleaving with other methods that change the contents or size of a StringBuffer.
Fortunately, there are other situations where preventing deadlock amounts to fairly simple rules about the order

that locks are acquired. Here are two examples:

• If you have two different types of objects, you can order the locks by the types of data they protect. For example,
the documentation could state, “When moving an item from the hashtable to the work queue, never try to acquire
the queue’s lock while holding the hashtable’s lock (the other order is acceptable).”

• If you have an acyclic data structure like a tree, you can use the references in the data structure to define the
locking order. For example, the documentation could state, “If holding a lock for a node in the tree, do not
acquire other nodes’ locks unless they are descendants in the tree.”

10 Additional Synchronization Primitives
So far, the synchronization primitives we have seen are (reentrant) locks, join, and volatile fields. This section
describes two more useful primitives — reader/writer locks and condition variables — in detail, emphasizing how
they provide facilities that basic locks do not. Then Section 10.3 briefly mentions some other primitives.

10.1 Reader/Writer Locks
These notes have emphasized multiple times that it is not an error for multiple threads to read the same information at
the same time. Simultaneous reads of the same field by any number of threads is not a data race. Immutable data does
not need to be accessed from within critical sections. But as soon as there might be concurrent writes, we have used
locks that allow only one thread at a time. This is unnecessarily conservative. Considering all the data guarded by a
lock, it would be fine to allow multiple simultaneous readers of the data provided that any writer of the data does so
exclusively, i.e., while there are neither concurrent readers nor writers. In this way, we still prevent any data race or
bad interleaving resulting from read/write or write/write errors. A real-world (or at least on-line) analogy could be a
web-page: It is fine for many people to read the same page at the same time, but there should be at most one person
editing the page, during which nobody else should be reading or writing the page.

69

As an example where this would be useful, consider a dictionary such as a hashtable protected by a single lock
(i.e., simple, coarse-grained locking). Suppose that lookup operations are common but insert or delete operations
are very rare. As long as lookup operations do not actually mutate any elements of the dictionary, it is fine to allow
them to proceed in parallel and doing so avoids unnecessary contention.12 When an insert or delete operation does
arrive, it would need to block until there were no other operations active (lookups or other operations that mutate the
dictionary), but (a) that is rare and (b) that is what we expect from coarse-grained locking. In short, we would like to
support simultaneous concurrent reads. Fine-grained locking might help with this, but only indirectly and incompletely
(it still would not help with reads of the same dictionary key), and it is much more difficult to implement.

Instead a reader/writer lock provides exactly what we are looking for as a primitive. It has a different interface than
a regular lock: A reader/writer lock is acquired either “to be a reader” or “to be a writer.” The lock allows multiple
threads to hold the lock “as a reader” at the same time, but only one to hold it as a writer and only if there are no
holders as readers. In particular, here are the operations:

• new creates a new lock that initially has “0 readers and 0 writers”

• acquire_write blocks if there are currently any readers or writers, else it makes the lock “held for writing”

• release_write returns the lock to its initial state

• acquire_read blocks if the lock is currently “held for writing” else it increments the number of readers

• release_read decrements the number of readers, which may or may not return the lock to its initial state

A reader/writer lock will block an acquire_write or acquire_read operation as necessary to maintain the fol-
lowing invariants, where we write |r| and |w| for the number of threads holding the lock for reading and writing,
respectively.

• 0 ≤ |w| ≤ 1, i.e., |w| is 0 or 1

• |w| ∗ |r| = 0, i.e., |w| is 0 or |r| is 0

Note that the name reader/writer lock is really a misnomer. Nothing about the definition of the lock’s operations
has anything to do with reading or writing. A better name might be a shared/exclusive lock: Multiple threads can hold
the lock in “shared mode” but only one can hold it in “exclusive mode” and only when no threads hold it in “shared
mode.” It is up to the programmer to use the lock correctly, i.e., to ensure that it is okay for multiple threads to proceed
simultaneously when they hold the lock for reading. And the most sensible way to ensure this is to read memory but
not write it.

Returning to our dictionary example, using a reader/writer lock is entirely straightforward: The lookup operation
would acquire the coarse-grained lock for reading, and other operations (insert, delete, resize, etc.) would acquire it
for writing. If these other operations are rare, there will be little contention.

There are a few details related to the semantics of reader/writer locks worth understanding. To learn how a partic-
ular library resolves these questions, you need to read the documentation. First, some reader/writer locks give priority
to writers. This means that an “acquire for writing” operation will succeed before any “acquire for reading” operations
that arrive later. The “acquire for writing” still has to wait for any threads that already hold the lock for reading to
release the lock. This priority can prevent writers from starving (blocking forever) if readers are so common or have
long enough critical sections that the number of threads wishing to hold the lock for reading is never 0.

Second, some libraries let a thread upgrade from being a reader to being a writer without releasing the lock.
Upgrading might lead to deadlock though if multiple threads try to upgrade.

Third, just like regular locks, a reader/writer lock may or may not be reentrant. Aside from the case of upgrading,
this is an orthogonal issue.

12A good question is why lookups would mutate anything. To clients of the data structure, no mutation should be apparent, but there are data-
structure techniques that internally modify memory locations to improve asymptotic guarantees. Two examples are move-to-front lists and splay
trees. These techniques conflict with using reader/writer locks as described in this section, which is another example of the disadvantages of
mutating shared memory unnecessarily.

70

Java’s synchronized statement supports only regular locks, not reader/writer locks. But Java’s standard library
has reader/writer locks, such as the class ReentrantReadWriteLock in the java.util.concurrent.locks pack-
age. The interface is slightly different than with synchronized statements (you have to be careful to release the lock
even in the case of exceptions). It is also different than the operations we described above. Methods readLock

and writeLock return objects that then have lock and unlock methods. So “acquire for writing” could look like
lk.writeLock().lock(). One advantage of this more complicated interface is that some library could provide
some clients only one of the “read lock” or the “write lock,” thereby restricting which operations the clients can
perform.

10.2 Condition Variables
Condition variables are a mechanism that lets threads wait (block) until another thread notifies them that it might be
useful to “wake up” and try again to do whatever could not be done before waiting. (We assume the thread that waited
chose to do so because some condition prevented it from continuing in a useful manner.) It can be awkward to use
condition variables correctly, but most uses of them are within standard libraries, so arguably the most useful thing is
to understand when and why this wait/notification approach is desirable.

To understand condition variables, consider the canonical example of a bounded buffer. A bounded buffer is just a
queue with a maximum size. Bounded buffers that are shared among threads are useful in many concurrent programs.
For example, if a program is conceptually a pipeline (an assembly line), we could assign some number of threads to
each stage and have a bounded buffer between each pair of adjacent stages. When a thread in one stage produces an
object for the next stage to process, it can enqueue the object in the appropriate buffer. When a thread in the next stage
is ready to process more data, it can dequeue from the same buffer. From the perspective of this buffer, we call the
enqueuers producer threads (or just producers) and the dequeuers consumer threads (or just consumers).

Naturally, we need to synchronize access to the queue to make sure each object is enqueued/dequeued exactly once,
there are no data races, etc. One lock per bounded buffer will work fine for this purpose. More interesting is what to
do if a producer encounters a full buffer or a consumer encounters an empty buffer. In single-threaded programming,
it makes sense to throw an exception when encountering a full or empty buffer since this is an unexpected condition
that cannot change. But here:

• If the thread simply waits and tries again later, a producer may find the queue no longer full (if a consumer has
dequeued) and a consumer may find the queue no longer empty (if a producer has enqueued).

• It is not unexpected to find the queue in a “temporarily bad” condition for continuing. The buffer is for managing
the handoff of data and it is entirely natural that at some point the producers might get slightly ahead (filling
the buffer and wanting to enqueue more) or the consumers might get slightly ahead (emptying the buffer and
wanting to dequeue more).

The fact that the buffer is bounded is useful. Not only does it save space, but it ensures the producers will not get too
far ahead of the consumers. Once the buffer fills, we want to stop running the producer threads since we would rather
use our processors to run the consumer threads, which are clearly not running enough or are taking longer. So we
really do want waiting threads to stop using computational resources so the threads that are not stuck can get useful
work done.

With just locks, we can write a version of a bounded buffer that never results in a wrong answer, but it will be
INEXCUSABLY INEFFICIENT because threads will not stop using resources when they cannot proceed. Instead
they keep checking to see if they can proceed:

class Buffer<E> {

// not shown: an array of fixed size for the queue with two indices

// for the front and back, along with methods isEmpty() and isFull()

void enqueue(E elt) {

while(true) {

synchronized(this) {

if(!isFull()) {

71

... do enqueue as normal ...

return;

}

}

}

}

E dequeue() {

while(true) {

synchronized(this) {

if(!isEmpty()) {

E ans = ... do dequeue as normal ...

return ans;

}

}

}

}

}

The purpose of condition variables is to avoid this spinning, meaning threads checking the same thing over and over
again until they can proceed. This spinning is particularly bad because it causes contention for exactly the lock that
other threads need to acquire in order to do the work before the spinners can do something useful. Instead of constantly
checking, the threads could “sleep for a while” before trying again. But how long should they wait? Too little waiting
slows the program down due to wasted spinning. Too much waiting is slowing the program down because threads that
could proceed are still sleeping.

It would be best to have threads “wake up” (unblock) exactly when they might usefully continue. In other words,
if producers are blocked on a full queue, wake them up when a dequeue occurs and if consumers are blocked on an
empty queue, wake them up when an enqueue occurs. This cannot be done correctly with just locks, which is exactly
why condition variables exist.

In Java, just like every object is a lock, every object is also a condition variable. So we will first explain condition
variables as extra methods that every object has. (Quite literally, the methods are defined in the Object class.) We
will see later that while this set-up is often convenient, associating (only) one condition variable with each lock (the
same object) is not always what you want. There are three methods:

• wait should be called only while holding the lock for the object. (Typically, the call is to this.wait so the
lock this should be held.) The call will atomically (a) block the thread, (b) release the lock, and (c) register the
thread as “waiting” to be notified. (This is the step you cannot reasonably implement on your own; there has to
be no “gap” between the lock-release and registering for notification else the thread might “miss” being notified
and never wake up.) When the thread is later woken up it will re-acquire the same lock before wait returns.
(If other threads also seek the lock, then this may lead to more blocking. There is no guarantee that a notified
thread gets the lock next.) Notice the thread then continues as part of a new critical section; the entire point is
that the state of shared memory has changed in the meantime while it did not hold the lock.

• notify wakes up one thread that is blocked on this condition variable (i.e., has called wait on the same object).
If there are no such threads, then notify has no effect, but this is fine. (And this is why there has to be no
“gap” in the implementation of wait.) If there are multiple threads blocked, there is no guarantee which one is
notified.

• notifyAll is like notify except it wakes up all the threads blocked on this condition variable.

The term wait is standard, but the others vary in different languages. Sometimes notify is called signal or pulse.
Sometimes notifyAll is called broadcast or pulseAll.

Here is a WRONG use of these primitives for our bounded buffer. It is close enough to get the basic idea. Identi-
fying the bugs is essential for understanding how to use condition variables correctly.

72

class Buffer<E> {

// not shown: an array of fixed size for the queue with two indices

// for the front and back, along with methods isEmpty() and isFull()

void enqueue(E elt) {

synchronized(this) {

if(isFull())

this.wait();

... do enqueue as normal ...

if(... buffer was empty (i.e., now has 1 element) ...)

this.notify();

}

}

E dequeue() {

synchronized(this) {

if(isEmpty())

this.wait();

E ans = ... do dequeue as normal ...

if(... buffer was full (i.e., now has room for 1 element) ...)

this.notify();

return ans;

}

}

}

Enqueue waits if the buffer is full. Rather than spinning, the thread will consume no resources until awakened. While
waiting, it does not hold the lock (per the definition of wait), which is crucial so other operations can complete. On
the other hand, if the enqueue puts one item into an empty queue, it needs to call notify in case there are dequeuers
waiting for data. Dequeue is symmetric. Again, this is the idea — wait if the buffer cannot handle what you need to
do and notify others who might be blocked after you change the state of the buffer — but this code has two serious
bugs. It may not be easy to see them because thinking about condition variables takes some getting used to.

The first bug is that we have to account for the fact that after a thread is notified that it should try again, but before
it actually tries again, the buffer can undergo other operations by other threads. That is, there is a “gap” between
the notification and when the notified thread actually re-acquires the lock to begin its new critical section. Here is
an example bad interleaving with the enqueue in Thread 1 doing the wrong thing; a symmetric example exists for
dequeue.

Initially the buffer is full (so Thread 1 blocks)

Thread 1 (enqueue) Thread 2 (dequeue) Thread 3 (enqueue)

------------------ ------------------ -------------------

if(isFull())

this.wait();

... do dequeue ...

if(... was full ...)

this.notify();

if(isFull()) (not full: don’t wait)

... do enqueue ...

... do enqueue ... (wrong!)

Thread 3 “snuck in” and re-filled the buffer before Thread 1 ran again. Hence Thread 1 adds an object to a full buffer,
when what it should do is wait again. The fix is that Thread 1, after (implicitly) re-acquiring the lock, must again check
whether the buffer is full. A second if-statement does not suffice because if the buffer is full again, it will wait and

73

need to check a third time after being awakened and so on. Fortunately, we know how to check something repeatedly
until we get the answer we want: a while-loop. So this version fixes this bug, but is still WRONG:

class Buffer<E> {

// not shown: an array of fixed size for the queue with two indices

// for the front and back, along with methods isEmpty() and isFull()

void enqueue(E elt) {

synchronized(this) {

while(isFull())

this.wait();

... do enqueue as normal ...

if(... buffer was empty (i.e., now has 1 element) ...)

this.notify();

}

}

E dequeue() {

synchronized(this) {

while(isEmpty())

this.wait();

E ans = ... do dequeue as normal ...

if(... buffer was full (i.e., now has room for 1 element) ...)

this.notify();

return ans;

}

}

}

The only change is using a while-loop instead of an if-statement for deciding whether to wait. Calls to wait should
always be inside while-loops that re-check the condition. Not only is this in almost every situation the right thing to
do for your program, but technically for obscure reasons Java is allowed to notify (i.e., wake up) a thread even if your
program does not! So it is mandatory to re-check the condition since it is possible that nothing changed. This is still
much better than the initial spinning version because each iteration of the while-loop corresponds to being notified, so
we expect very few (probably 1) iterations.

Unfortunately, the version of the code above is still wrong. It does not account for the possibility of multiple
threads being blocked due to a full (or empty) buffer. Consider this interleaving:

Initially the buffer is full (so Threads 1 and 2 block)

Thread 1 (enqueue) Thread 2 (enqueue) Thread 3 (two dequeues)

------------------ ------------------ ----------------------

while(isFull())

this.wait();

while(isFull())

this.wait();

... do dequeue ...

this.notify();

... do dequeue ...

// no notification!

Sending one notification on the first dequeue was fine at that point, but that still left a thread blocked. If the second
dequeue happens before any enqueue, no notification will be sent, which leaves the second blocked thread waiting
when it should not wait.

74

The simplest solution in this case is to change the code to use notifyAll instead of notify. That way, whenever
the buffer becomes non-empty, all blocked producers know about it and similarly whenever the buffer becomes non-
full, all blocked consumers wake up. If there are n blocked threads and there are no subsequent operations like the
second dequeue above, then n− 1 threads will simply block again, but at least this is correct. So this is RIGHT:

class Buffer<E> {

// not shown: an array of fixed size for the queue with two indices

// for the front and back, along with methods isEmpty() and isFull()

void enqueue(E elt) {

synchronized(this) {

while(isFull())

this.wait();

... do enqueue as normal ...

if(... buffer was empty (i.e., now has 1 element) ...)

this.notifyAll();

}

}

E dequeue() {

synchronized(this) {

while(isEmpty())

this.wait();

E ans = ... do dequeue as normal ...

if(... buffer was full (i.e., now has room for 1 element) ...)

this.notifyAll();

return ans;

}

}

}

If we do not expect very many blocked threads, this notifyAll solution is reasonable. Otherwise, it causes a lot of
probably-wasteful waking up (just to have n− 1 threads probably block again). Another tempting solution ALMOST
works, but of course “almost” means “wrong.” We could have every enqueue and dequeue call this.notify, not just
if the buffer had been empty or full. (In terms of the code, just replace the if-statements with calls this.notify().)
In terms of the interleaving above, the first dequeue would wake up one blocked enqueuer and the second dequeue
would wake up another one. If no thread is blocked, then the notify call is unnecessary but does no harm.

The reason this is incorrect is subtle, but here is one scenario where the wrong thing happens. For simplicity,
assume the size of the buffer is 1 (any size will do but larger sizes require more threads before there is a problem).

1. Assume the buffer starts empty.

2. Then two threads T1 and T2 block trying to dequeue.

3. Then one thread T3 enqueues (filling the buffer) and calls notify. Suppose this wakes up T1.

4. But before T1 re-acquires the lock, another thread T4 tries to enqueue and blocks (because the buffer is still full).

5. Now T1 runs, emptying the buffer and calling notify, but in a stroke of miserable luck this wakes up T2 instead
of T4.

6. T2 will see an empty buffer and wait again. So now T2 and T4 are blocked even though T4 should enqueue and
then T2 could dequeue.

The way to fix this problem is to use two condition variables — one for producers to notify consumers and one
for consumers to notify producers. But we need both condition variables to be “associated with” the same lock, since
we still need all producers and consumers to use one lock to enforce mutual exclusion. This is why Java’s choice

75

to associate one condition variable with every lock is somewhat strange. However, the Java standard library has a
ReentrantLock class that is more flexible. It has a newCondition method that lets you associate as many condition
variables as you want with the same lock. You then call wait and notify on these separate condition objects. In
other languages and libraries, it is common for locks and condition variables to be separate things entirely, leaving it
up to the programmer to manually associate each condition variable with a lock.

In any case, condition variables are:

• Important: Concurrent programs need ways to have threads wait without spinning until they are notified to try
again. Locks are not the right tool for this.

• Subtle: Bugs are more difficult to reason about and the correct programming idioms are less intuitive than with
locks.

In practice, condition variables tend to be used in very stylized ways. Moreover, it is rare that you need to use condition
variables explicitly rather than using a library that internally uses condition variables. For example, the Java standard
library already has a class java.util.concurrent.ArrayBlockingQueue<E> that is exactly what we need for a
bounded buffer. (It uses the names put and take rather than enqueue and dequeue.) It is good to know that any
blocking caused by calls to the library will be efficient thanks to condition variables, but we do not need to write or
understand the condition-variable code.

10.3 Other
Locks and condition variables are not the only synchronization primitives. For one, do not forget that join synchro-
nizes two threads in a particular way and is very convenient when it is the appropriate tool. You may encounter other
primitives as you gain experience with concurrent programming. Your experience learning about locks should make it
much easier to learn other constructs. Key things to understand when learning about synchronization are:

• What interleavings does a primitive prevent?

• What are the rules for using a primitive correctly?

• What are the standard idioms where a primitive proves most useful?

Another common exercise is to implement one primitive in terms of another, perhaps inefficiently. For example,
it is possible to implement join in terms of locks: The helper thread can hold a lock until just before it terminates.
The join primitive can then (try to) acquire and immediately release this lock. Such an encoding is poor style if join
is provided directly, but it can help understand how join works and can be useful if you are in a setting where only
locks are provided as primitives.

Here is an incomplete list of other primitives you may encounter:

• Semaphores are rather low-level mechanisms where two operations, called P and V for historical reasons,
increment or decrement a counter. There are rules about how these operations are synchronized and when they
block. Semaphores can be easily used to implement locks as well as barriers.

• Barriers are a bit more like join and are often more useful in parallel programming than concurrent program-
ming. When threads get to a barrier, they block until n of them (where n is a property of the barrier) reach the
barrier. Unlike join, the synchronization is not waiting for one other thread to terminate, but rather n other
threads to get to the barrier.

• Monitors provide synchronization that corresponds more closely to the structure of your code. Like an object,
they can encapsulate some private state and provide some entry points (methods). As synchronization, the basic
idea is that only one thread can call any of the methods at a time, with the others blocking. This is very much
like an object in Java where all the methods are synchronized on the this lock, which is exactly Java’s standard
idiom. Therefore, it is not uncommon for Java’s locks to be called monitors. We did not use this term because
the actual primitive Java provides is a reentrant lock even though the common idiom is to code up monitors
using this primitive.

76

