
Designing for Extensibility and Planning for Conflict: Experiments
in Web-Browser Design

Benjamin S. Lerner

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Washington

2011

Program Authorized to Offer Degree: UW Computer Science & Engineering

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Benjamin S. Lerner

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Chair of the Supervisory Committee:

Daniel Grossman

Reading Committee:

Daniel Grossman

Steven Gribble

John Zahorjan

Date:

In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree
at the University of Washington, I agree that the Library shall make its copies freely available for
inspection. I further agree that extensive copying of this dissertation is allowable only for scholarly
purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying
or reproduction of this dissertation may be referred to Proquest Information and Learning, 300

North Zeeb Road, Ann Arbor, MI 48106-1346, 1-800-521-0600, to whom the author has granted
“the right to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed
copies of the manuscript made from microform.”

Signature

Date

University of Washington

Abstract

Designing for Extensibility and Planning for Conflict: Experiments in
Web-Browser Design

Benjamin S. Lerner

Chair of the Supervisory Committee:
Associate Professor Daniel Grossman
UW Computer Science & Engineering

The past few years have seen a growing trend in application development toward “web ap-

plications”, a fuzzy category of programs that currently (but not necessarily) run within web

browsers, that rely heavily on network servers for data storage, and that are developed and de-

ployed differently from traditional desktop applications. Where (typical) traditional applications

are compiled pieces of code, written in arbitrary languages, that implement both an application’s

user interface and its functionality, web apps by contrast are written in three interpreted languages:

HTML to define the structure or content of the UI, CSS to define the appearance, and JavaScript

(JS) to define the behavior. These three languages feel nothing alike, and are used for different

facets of the applications.

The last decade has also seen the rise of Mozilla Firefox, a web browser whose UI and func-

tionality are themselves written in (dialects of) HTML, CSS, and JS, making Firefox one of the first

fully-fledged web apps. Part of Firefox’s appeal is its strong support for extensions, which are

downloadable, third-party pieces of code (i.e., not written by Mozilla or with Mozilla’s coopera-

tion) that enhance the browser with additional functionality or customizations. Firefox extensions

are wildly popular: over six thousand distinct extensions have been downloaded over 2.5 billion

times [193], and all major browser vendors have added varying degrees of support for extensions

to their own products. Crucially, these extensions are also written in HTML, CSS, and JS: writing

an extension feels fundamentally similar to writing a web page or web app.

Thanks to the dynamic, interpreted nature of these three languages, it is mostly straightforward

to incorporate the contents of an extension into the existing browser. There are, however, some

caveats. Not all programs are equally amenable to post-hoc extension, and there are currently no

guarantees that multiple extensions do not conflict, destabilizing each other or the base browser.

In this dissertation, I aim to provide better support for rich extensibility for web apps. In

particular, I claim that

Language-specific extension mechanisms are needed for each of HTML, CSS, and JS, and such mechanisms

are needed for building useful diagnostic tools to address inter-extension conflicts.

To support this thesis, I first present C3, the “Cloud Computing Client”, an implementation of the

HTML/CSS/JS platform architected explicitly to support experimentation with extensibility. I then

define two such extension mechanisms for HTML and for JS: overlays and aspects, respectively. I

develop conflict analyses for HTML overlays, and evaluate them on a sample of Firefox extensions.

Conflict analyses for JS are sketched, and extension mechanisms for CSS are left for future work.

TABLE OF CONTENTS

Page

List of Figures . vi

Chapter 1: Introduction . 1

1.1 From browsers to platforms . 1

1.2 Positioning extensions . 3

1.2.1 The case for extensions . 6

1.2.2 Designing for power, flexibility and stability 7

1.3 Contrasting two extension models . 8

1.3.1 Extending the user interface . 8

1.3.2 Extending the functionality . 9

1.4 Proposed support for improving extensions . 11

1.4.1 Necessary platform support . 12

1.4.2 Code extension via aspects . 13

1.4.3 ui extension via semantic overlays . 14

1.4.4 Enforcing security policies . 16

1.5 Summary . 16

Chapter 2: Defining an extension model . 17

2.1 Defining extensibility . 17

2.2 Extensibility in web platforms . 17

2.2.1 The extension development model . 18

2.2.2 The platform level . 19

2.2.3 The webapp level . 20

2.3 Extension mechanisms in existing browsers . 21

2.4 Defining extension models . 25

2.5 Aspect-oriented programming . 26

2.5.1 Language design . 28

2.5.2 Safe aop idioms . 28

2.5.3 Conflict detection among aspects . 30

2.6 Operating systems and other platforms . 31

2.6.1 Static os extensions: Aspects and code management 32

2.6.2 The Exokernel approach: Composable, pervasive but coarse 33

2.6.3 The SPIN approach: fine-grained and wide . 34

i

2.6.4 The Singularity approach: Fine-grained, not too wide or narrow 35

2.6.5 Other platforms . 37

2.7 Feature specification . 39

2.7.1 Logic choice . 40

2.7.2 Termination conditions . 40

2.7.3 Modular checking . 41

2.7.4 Reified features . 42

2.8 Security monitors . 43

2.8.1 Theoretical results . 44

2.8.2 Safety properties and beyond . 45

2.9 Contrasting the web platform with related work . 46

2.10 Summary . 48

Chapter 3: Browser architecture choices for extensibility 49

3.1 Introduction . 49

3.1.1 Addressing a broader need . 50

3.1.2 Contributions . 51

3.2 C3 architecture and design choices . 51

3.2.1 Pieces of an HTML platform . 52

3.2.2 Modularity . 53

3.2.3 Implementing JS objects . 53

3.2.4 dom implementation . 56

3.2.5 The HTML parser . 60

3.2.6 Computing visual structure . 60

3.2.7 The browser kernel and window proxies . 61

3.2.8 Accommodating privileged ui . 62

3.2.9 Threading architecture . 63

The dom/JS thread(s) . 63

The layout thread(s) . 64

The ui thread . 64

3.3 C3 Extension points . 65

3.3.1 HTML parsing/document construction . 66

3.3.2 JS execution . 70

3.3.3 CSS and layout . 71

3.4 Evaluation . 73

3.4.1 Performance . 73

3.4.2 Expressiveness . 73

XML3D: Extending HTML, CSS and layout . 74

Maverick: Extensions to the global scope . 74

RePriv: Extensions hosting extensions . 75

ii

3.4.3 Other extension models . 75

Shadow doms . 75

Extensions to application ui . 76

Extensions to scripts . 77

3.4.4 Security considerations . 78

3.5 Future work . 78

3.6 Summary . 79

Chapter 4: JS aspects . 81

4.1 Introduction . 81

4.1.1 Aspects for JavaScript . 81

4.1.2 Outline . 82

4.2 Extensible Web-Programming Examples . 83

4.2.1 Reformatting messages in Gmail . 83

4.2.2 SpeedDial: Customizing new tabs in Firefox 84

4.2.3 Discussion . 85

4.3 Using aspects for extensions . 85

4.3.1 Key aspect-oriented concepts . 86

4.3.2 Advice surrounding functions . 86

4.3.3 Advice within functions . 87

4.4 Aspects as a new JS primitive . 88

4.4.1 Key features of an aspect primitive . 88

4.4.2 Aspects cannot be implemented as a library 90

4.4.3 Language semantics . 91

Advising functions: at pointcut(callee(e)) . 91

Stack Filters . 93

Advising multiple functions simultaneously 95

Advising within function bodies . 95

Discussion . 97

4.5 Implementation of advice weaving . 98

4.5.1 Compiling unadvised code . 99

4.5.2 Compiling aspect expressions . 99

4.5.3 Weaving advice . 100

Weaving callee advice . 101

Weaving stack filters . 102

Weaving wrap and statement_containing . 103

4.6 Evaluation . 104

4.6.1 Performance . 104

4.6.2 Expressiveness . 106

4.7 Related work . 109

iii

4.7.1 Aspects for object-oriented languages . 109

4.7.2 Aspects for functional languages . 110

4.7.3 Aspects within JavaScript . 110

4.7.4 Web extension in practice . 111

4.8 Future work . 112

4.9 Summary . 112

Chapter 5: Layout/markup conflicts . 113

5.1 Introduction . 113

5.1.1 An overview of overlays . 113

5.1.2 Challenges of supporting multiple overlays 115

5.1.3 Detecting overlay conflicts . 116

5.1.4 Chapter overview . 118

5.2 CSS selector language . 118

5.2.1 CSS syntax and meaning . 118

5.2.2 CSS syntax with operator precedence . 121

5.3 C3 Overlays . 123

5.3.1 Applying overlays to a base HTML document 125

5.4 Overlay conflict detection: Naïve overlays . 129

5.4.1 Motivating examples . 129

5.4.2 Approach . 130

5.4.3 Examples, revisited . 131

5.5 Overlay conflict detection: Firefox-like overlays . 132

5.5.1 Motivating examples . 133

5.5.2 Guarded overlays and compositions . 134

Another representation of uniqueness . 136

Composing overlays within one extension . 136

5.5.3 Overlays as document transformers . 137

5.5.4 Determining overlay composition order: the conflict graph 140

5.5.5 Heuristics for determining optional composition order 144

5.6 Case study: Firefox extension conflicts . 145

5.6.1 Firefox extension structure . 145

5.6.2 Results . 146

5.6.3 Handling XUL idiosyncrasies . 149

Self-overlays: . 150

Recursive overlay weaving . 151

Elements without IDs . 154

5.7 Overlay conflict detection: Generalizing selectors . 154

5.7.1 Motivating examples . 155

5.7.2 CSS selector intersection . 157

iv

5.7.3 Runtime analysis . 161

5.7.4 Using descendant and sibling selectors . 163

5.8 Overlay conflict detection: Fully-general overlays . 166

5.8.1 Motivating examples: . 166

5.8.2 Approach: future work . 169

5.9 Runtime behavior of overlays . 172

5.10 Summary . 174

Chapter 6: Conclusion . 175

6.1 Future work . 175

6.1.1 Platform-level future work . 175

6.1.2 Aspects: Future work . 177

6.1.3 Overlays: Future work . 177

6.1.4 Security: Future work . 178

6.2 Conclusions . 179

Appendix A: Proofs . 181

Appendix B: Overlay details . 195

B.1 Firefox-like overlays: algorithmic details . 195

B.1.1 Motivating examples, revisited . 199

B.2 Manually Resolved Overlay False-positives . 206

Bibliography . 209

v

LIST OF FIGURES

Figure Number Page

1.1 Schematic overview of the current web platform . 3

1.2 Schematic overview of current browser architectures compared to future web plat-
form architectures . 4

1.3 Firefox running within Firefox . 5

1.4 Faking the StumbleUpon toolbar in Chrome . 9

1.5 The effect of composition order on XUL document structure 10

3.1 Screenshots of C3 . 51

3.2 C3’s modular architecture . 52

3.3 The structure of JS objects, including the built-in Function and Object functions . . 56

3.4 Part of the prototype and constructor hierarchy of the dom 57

3.5 Abbreviated idl and C# implementation for the Element dom interface 59

3.6 Factory and simple extension defining new tags . 67

3.7 The interface for HTML parser semantic actions . 68

3.8 The overlay language for document-construction extensions 69

3.9 Simulating list bullets (in language of Fig. 3.8) . 70

3.10 Example extensions in IE, Firefox, and Chrome, as well as research projects best
implemented in C3, and the C3 extension points that they might use 80

4.1 Central hook used to install a text formatter into Gmail 83

4.2 Central hooks used to modify the Firefox blank tab 84

4.3 Aspect syntax for JS . 91

4.4 Weaving of callee aspects . 102

4.5 Test microbenchmarks, without and with stack filters (boxed), written using advice 105

4.6 Overhead comparison for test in Fig. 4.5 . 107

4.7 Comparing 20 Firefox extensions by code size, patch size and patch counts 108

5.1 Simple example of XUL, overlay, and composite result 114

5.2 Key design choices in an overlay system . 117

5.3 CSS Syntax paraphrased from the CSS3 specification 119

5.4 Simple HTML tree, and nodes matched by various CSS selectors 120

5.5 CSS selector semantics . 122

5.6 CSS grammar with combinator precedence . 123

5.7 The concrete overlay language for C3 . 124

5.8 The complete abstract syntax for the overlay language of C3 126

vi

5.9 Static and dynamic weaving of overlays into HTML documents 127

5.10 Weaving an overlay into a target node . 128

5.11 Abstract overlay language with only strawman abilities 129

5.12 Abstract overlay language with insertion, attribute modification and composition . 132

5.13 Extending the overlay language in Fig. 5.12 with CSS simple selectors and some (but
not all) combinators . 154

5.14 CSS selector intersection algorithm . 160

5.15 The Interleavings and Pairings functions . 161

5.16 Demonstrating the interleaving algorithm . 162

A.1 An optimized form of Interleavings . 185

B.1 Helper routines for extracting selectors from trees . 196

B.2 Abstracting overlays into document-state interfaces 197

B.3 Compiling HTML to guarded overlays . 198

B.4 Semantics of guarded overlays . 199

B.5 Semantics of sequencing . 200

B.6 Semantics of Overlays . 201

vii

ACKNOWLEDGMENTS

I would not have reached this point but for the support and friendship of many advisors,

friends, colleagues and family, without whom graduate school would not have been possible on

an academic or personal level.

First, thanks go to my advisor, Dan Grossman, for teaching me how to formalize and clearly

explain ideas that seem intuitive, while still encouraging me to follow those flights of fancy and

see where they may lead. More importantly, by example he helped me refine my presentational

and teaching skills, for which my sincere thanks.

Thanks also go to my committee members, Steve Gribble and John Zahorjan, in whose classes

and seminars I learned the impact of asking—and answering—the right questions. Discussions

with them have helped guide and refine this work.

Thanks must also go to the tireless Lindsay Michimoto, for her always-ready support, advice,

and hard work.

This dissertation is in large measure the fruit of a very successful collaboration with Microsoft

Research, particularly with Herman Venter and Wolfram Schulte, and fellow intern Brian Burg. I

greatly enjoyed working with the RiSE team, and look forward to continuing our collaboration.

Heartfelt thanks go to all my friends, who remind me that work can be left at school and life

goes on afterward. In particular, thank you to my housemates, Steven Balensiefer, Kate Everitt, Stef

Schoenmackers, Charlie Reis, and Kevin Wampler, for all the challenges, stimulating conversations,

and fun times we’ve shared. Thanks also go to my long-distance friends, particularly Sara and Jeff

Gordon, Jon Kirsch, Vardit Samuels, and Mike Seplowitz, who all made the effort never to lose

touch. I am grateful also to my officemates, Neva Cherniavsky, Brian van Essen, Ethan Katz-Basset,

Martha Kim, Andrew Putnam and Qi Shan, for enlivening the work day.

A final thanks go to my family, who have listened to me ramble ad nauseum about the minutiae

of my work, and have even bravely attempted to read my papers. All I can say is, I’m glad

you were listening.

viii

DEDICATION

To my family, who never doubted me even when I did.

To Pop-pop, who is greatly missed.

ix

1

Chapter 1

INTRODUCTION1

1.1 From browsers to platforms

Intuitively, an extensible system is one that permits later revision of the previously-designed base

system: additions to, improvements upon, or replacements of existing functionality. In the past few

years, people have come to expect their web browser to be an extensible system, adding toolbars,

social-network customizations, interface tweaks, and many other personalizations to adapt the

browser to their needs. Browser extensions are wildly popular: as of July 2011, Mozilla hosts over

6,000 Firefox extensions downloaded over 2.5 billion times [167, 168], while Google already hosts

nearly 11,500 extensions for Chrome [95].

Writing individual browser extensions is not difficult: much like basing an application off an

existing, rich library, extensions can leverage some or all of the functionality of the browser and

its user interface. Indeed, these extensions frequently need to interact with the browser in fine-

grained, non-trivial ways. The challenge in writing browser extensions well lies in making them

robust in the face of other extensions: unlike standalone client applications, extensions do not get

to monopolize the browser that hosts them. This is both a hardship and a bonus, as extensions

can use this common host cooperatively to extend one another. However, currently there is no

adequate support for ensuring that extensions are compatible with each other.

Most recently, the browser has begun to “evaporate”, as browser vendors have competed

in streamlining the browser interface to the point where it nearly disappears in everyday use.

Production-quality and experimental systems such as Google’s Chrome, HP’s webOS, Mozilla

Labs’ Chromeless, Boot to Gecko, and the Webian shell all provide browser-like functionality with

progressively less “browser” ui—indeed, Chromeless provides no default ui at all! The browser

is morphing from a program into a platform for hosting web applications: the crucial elements of

a browser are its support for HTML, CSS and JavaScript (JS), rather than its particular user inter-

face. Accordingly, the emphasis is shifting from writing browser extensions to writing extensions

on and for the web platform.

1 This chapter is based on an earlier work: Language Support for Extensible Web Browsers, in Workshop on Analysis
and Programming Languages for Web Applications and Cloud Applications, {978-1-60558-913-8, (June 5)} © ACM, 2010.
http://doi.acm.org/10.1145/1810139.1810146 [136]

http://doi.acm.org/10.1145/1810139.1810146

2

My goal in this dissertation is to promote extension development on the web platform as a

programming model worthy of study, and to focus attention on language support for improving

extension development, and especially extension compatibility efforts. In particular, this thesis

argues that:

1. A powerful extension mechanism for the web platform is justified and desirable. The browser itself

has become an extensible system whose extensions often interact with, or are themselves,

web applications. Often, these extensions need to interact with each other as well. Extensions

are a hybrid: they are (pieces of) separate programs and so reasonably are self-contained

entities distinct from the browser, but are also shared tenants of a browser environment and

so must coexist with each other.

2. The browsers (i.e., implementations of the web platform) that currently implement extensions do so

poorly. Firefox provides a flexible and powerful framework that yields essentially no reason-

able semantics or security guarantees about multiple extensions: they are as privileged and

unrestricted as the browser itself. Chrome has the reverse problem: in sandboxing extensions

into a reasonable security framework, it has prevented useful and fine-grained interactions

among them. The remaining mainstream browsers (Internet Explorer, Opera and Safari) all

are adopting support for extensions, to varying degrees, but they all are less capable than

either Firefox or Chrome; consequently, I mostly ignore them in the remainder of this disser-

tation.

3. Programming languages research is an appropriate tool to help. Defining how extensions may or

may not interact with one another is a problem of semantics. Detecting and resolving con-

flicts among those interactions can benefit from declarative, language-based security tech-

niques.

The rest of this chapter demonstrates the above points by example, with further details elab-

orated in subsequent chapters, and is organized as follows. Section 1.2 justifies the need for

extensions by describing the breadth of extensions today and at a high level what browser sup-

port they require. Section 1.3 takes a closer look at the extension models of Firefox and Chrome,

focusing on the limitations mentioned above. Section 1.4 presents an overview of several of my

projects that help define a reasonable semantics for extensions, which will be described in detail

in the subsequent chapters. Section 1.5 summarizes this chapter, and describes the structure of

the rest of this dissertation.

3

Platform runtime
Networking JS engine Rendering engine HTML parser

Browser ui

Menus Preferences Tab/window ui Bookmarks . . .

http://a.com
webapp

http://b.com
webapp

http://c.com
webapp

userscript

add-on

plugin

userscript

add-on

plugin

Website
level:
HTML/CSS/JS

Browser
level

Platform
level:
native code

Figure 1.1: Schematic overview of the current web platform. Each website, the browser ui, and
the platform runtime are conceptually distinct entities. Thick lines separate the three levels of
the “web stack”.

1.2 Positioning extensions

Properly framing the discussion of web-platform extensions requires identifying three distinct

layers in the current client-side “web stack”, each of which has supported technologically distinct

extension mechanisms. A schematic diagram of this stack is shown in Fig. 1.1. I revisit these

distinctions in Chapter 3, and give an overview here:

1. The lowest platform level implements support for HTML parsing and rendering, JS execution,

and so on. This layer supports extensions, more commonly known as plugins, that add

support for rendering new content types: for example, Flash, Silverlight, and Java. Plugins

in this layer are site-agnostic: they are loaded to handle the relevant content, whichever site

it comes from. Additionally, plugins typically do not interact with one another: for example,

Java applets do not manipulate the state of pdfs viewed elsewhere in the page. This sort of

extensibility is of interest to researchers experimenting with new capabilities for the web; I

ignore them for now, but see Section 3.3 for further treatment.

2. The middle browser level implements the familiar idioms of browsing the web, such as page

navigation, address bars, history and bookmarks, etc., and hosts the website level. Imple-

menting the browser level relies on the platform level. Extensions at this level, also called

add-ons, typically enhance the browsing experience in various ways; I give examples below.

http://a.com
http://b.com
http://c.com

4

HTML,
CSS,
JS

Native
code

Platform runtime (Gecko)
Networking . . .

Browser ui

chrome://.../browser.xul,
chrome://../preferences.xul, . . .

http://a.com
webapp

http://b.com
webapp

userscript

add-on

plugin

userscript

add-on

plugin

Firefox executable

Platform runtime (Gecko)
Networking . . .

Mail ui

chrome://.../messenger.xul,
chrome://.../config.xul, . . .

Thunderbird executable

(a) Schematic overview of Mozilla products’ architecture. The platform runtime (known as Gecko) and the
browser ui (perceived as “Firefox”) are bundled into a single executable. That same runtime can be used
to run other programs such as Thunderbird, but it is duplicated in each separate executable.

Platform runtime
Networking JS engine Rendering engine HTML parser

Browser ui

chrome://browser/tabbrowser.html

http://b.com
webapp

http://c.com
webapp

http://a.com
webapp

extension

extension

extension

extension

extension

extension

Webapp
level:
HTML/CSS/JS

Platform
level:
native code

(b) Schematic overview of future web platforms, where from the perspective of the platform, the browser is
“just another webapp”, perhaps with elevated privileges compared to normal web content.

Figure 1.2: Schematic overview of current browser architectures compared to future web platform
architectures

chrome://.../browser.xul
chrome://../preferences.xul
http://a.com
http://b.com
chrome://.../messenger.xul
chrome://.../config.xul
chrome://browser/tabbrowser.html
http://b.com
http://c.com
http://a.com

5

Figure 1.3: Firefox running within Firefox: because its ui is essentially a web page, available at
a special url (chrome://browser/content/browser.xul), Firefox-the-application can render
Firefox-the-ui within itself.

These extensions are capable of manipulating the state of the browser, as a whole, and can

(sometimes) interact with one another.

3. The upper website level is where individual web sites execute. They are hosted by the browser

level. Extensions to web sites, commonly referred to as userscripts, are site-specific modifica-

tions that enhance the experience of a particular site. All userscripts on a single page can

interact with one another.

Historically, “web pages” and “web browsers” have been technologically distinct—one was

written in HTML/CSS/JS, one was not—and so were strictly separated as two levels of the stack.

With the development of Firefox and the recent rise of web applications, this distinction is rapidly

dissolving, shown schematically in Fig. 1.2. Everything that browsers use in their uis (e.g., menus,

toolbars, scrollbars, and controls) can be defined using HTML, CSS and JS to separate the ui struc-

ture, appearance and behavior—in precisely the same manner that developers define the widgets

and controls used in webapps today. In fact, as I argue more fully in Chapter 3, from the per-

spective of the platform level—i.e., the piece of the stack that implements the core engines for

interpreting HTML/CSS/JS—the following do not need to be distinguished:

1. a browser written in HTML/CSS/JS and allowing third-party extensions

2. a web-app written in HTML/CSS/JS and allowing third-party extensions, hosted inside a

browser window

chrome://browser/content/browser.xul

6

3. a web-app written in HTML/CSS/JS and allowing third-party extensions, running directly on

the underlying web platform

Consequently, the historical distinction between userscripts, which extend individual web pages,

and browser extensions, which extend the browser itself, should also vanish: only web applica-

tion extensions remain.

Since this dissertation is about implementing an extensible web platform and therefore takes

the perspective of that platform, I treat (1) as simply the most common example of (3), specifically

one that happens to include the familiar idioms of web browsing, e.g., back/forward buttons,

an address bar, etc.; see Fig. 1.3. (Indeed, projects like Mozilla Prism, Chromeless and Boot to

Gecko [66, 169, 170] are already starting along this approach, and simplify the browser layer into a

nearly-invisible wrapper: web applications can run in them without the intercession of a browser.)

The C3 architecture described in Chapter 3 implements the schematic architecture of Fig. 1.2b,

and (except where otherwise noted) I generally include both userscripts and browser extensions

under the term “extensions”. Most examples of extensions are drawn from browser extensions,

simply because there are more substantive and interesting examples from which to choose, but

my conclusions apply more broadly.

1.2.1 The case for extensions

Web applications are becoming large collaborations of software spanning server-side logic and

data storage, client-side code, data storage and ui elements, network interactions (both social

and otherwise), and more—the boundaries of such a web application are often indistinct, and

in general do not fit neatly into the legacy HTML page-as-document model of web interaction.

Browser extensions form a new facet of this space that runs neither on servers in the cloud nor

as web content within a browser. Rather, they run as part of the browser, transcending any one

web page to enhance the browsing experience itself. This “intermediate” execution model blurs

further the distinctions between client- and server-side code.

To highlight how inappropriate the page-as-document model has become, consider the various

clients for social networks, which are far more about the content being generated and shared by

their members than they are about the pages used to view that content. StumbleUpon2 is a browser

toolbar that lets its users group sites by their personal interests, then use those groupings to find

other pages matching their current interest quickly. This experience is inherently about pages,

2 All extensions mentioned here are available from http://addons.mozilla.org.

http://addons.mozilla.org

7

rather than within pages: a function of the browser and not its content. Likewise, Twitter clients

such as TwitterBar or Yoono focus on letting users quickly publish tweets, often in response to

what they are browsing; note that these clients are written to target the Twitter protocol, but are

not applications written by Twitter itself. rss aggregators such as Feedly explicitly create client-

side views of data published from multiple sources, without needing a dedicated web site such

as Google Reader to view the aggregated content.

Not all browser extensions are necessarily a part of web applications as these examples are.

Many “only” modify the browser’s ui, or stay purely on the client’s machine. Others are pri-

marily client-based but extend into network services. Mozilla Weave, for example, synchronizes

multiple clients’ history, bookmarks, and passwords with cloud-backed storage: it improves the

client-side experience by transparently using the network. There is no clear line separating “client”

extensions from “web application” ones. Moreover, in many cases, there may not even be a clear

line separating one extension from another. For example, Firebug is an extremely popular exten-

sion permitting developers to debug web content, capturing page content, script, network requests,

cache behavior and more. FireDiff is another extension that explicitly extends Firebug with a new

view showing diff-like traces of page events.

These seven examples demonstrate how broadly extensions may behave. Moreover, no one user

will ever install all available extensions: a web developer might install Firebug and scoff at using

Yoono, while a social-networker might take the exact opposite stance. Not only do extensions let

users customize the browser to their own needs without bloating it for others, they let users add

features that may not have existed when the browser was first developed.

1.2.2 Designing for power, flexibility and stability

Current browser designs trade extension capability and flexibility for security and stability. On

the one hand, extensions should be able to customize the appearance and behavior of the browser

in a fine-grained, pervasive way, while multiple extensions should be able to interact with, build

upon, or complement each other. This is the essence of Firefox’s approach. On the other, extensions

must be restrained sufficiently that they cannot destabilize the base system; in particular, malicious

extensions should not be able to subvert the browser. This is the essence of Chrome’s approach.

An extension system such as Firefox’s poses an additional stability challenge: multiple inter-

acting extensions must coexist compatibly, or detect when they cannot do so. Extensions are in

some ways “selfish” code: they want to have unfettered access to the internals of the mainline

code or other extensions, and yet want to protect their own code from that same unfettered ac-

8

cess. Since extensions are intended to themselves be extensible, they require a design that by

default leaves them as extensible as the underlying browser, but that lets them (and the browser)

protect their critical internals.

1.3 Contrasting two extension models

Both Firefox and Chrome let authors extend two fundamental resources, namely the ui of the

browser and the functionality of the browser, to varying levels and in different ways. These two

resources are very different—one is declarative, one imperative and free-form—so both browsers

define separate mechanisms for extending each. I compare each browser’s approach to extending

each resource, and give examples of actual problems that extensions face in each browser.

1.3.1 Extending the user interface

Chrome: Chrome deliberately aims to minimize the user interface (the “chrome” surrounding

the web content) in its browser, and so offers a limited selection of interface elements to extensions:

Chrome extensions use 16 fields to describe themselves, and of those only four are ui extension

points. This is a “pull” model: Chrome collates extensions’ self-descriptions, and creates the new

ui elements (e.g., toolbar buttons) accordingly. Because extending the ui is intentionally limited,

extensions cannot extend each other’s ui.

StumbleUpon: Working around limitations The four ui extension points supported in Chrome

intentionally do not include a facility for creating toolbars. Some extensions, such as StumbleUpon,

rely on a custom toolbar as their exclusive user interface. For these extensions, the only solution is

to inject HTML into web pages that mimics the appearance of a toolbar positioned at the top edge

of the content area. Unfortunately, this workaround cannot be fully robust: the vertical scrollbars

in the chrome will reveal that the “toolbar” is part of the page (see Fig. 1.4), CSS in the page may

inadvertently restyle the toolbar, frame-busting code may be triggered to remove the toolbar, and

the toolbar cannot be injected until after the page has finished loading (yielding a visually-jarring

flicker). StumbleUpon lists these as known issues, unsolvable without a richer extension api [205].

Firefox: By contrast, Firefox defines its entire ui using XUL, a markup language much like HTML,

and CSS. It then exposes everything in its user interface to extensions via overlays, a reflective

mechanism that lets extension authors “patch” XUL documents at runtime. Given a base docu-

ment, an overlay can select nodes in the document by their id attribute and define new content

9

Figure 1.4: Faking the StumbleUpon toolbar in Chrome: the vertical scrollbar reveals that the
toolbar (dark gray bar) is actually injected into the document

to be inserted into them. Since nearly every element in Firefox’s ui has an id, this allows devel-

opers to target the whole ui freely and to insert any ui element they choose. This is a “push”

model: Firefox does not decide a priori which ui elements to expose, but rather extensions force

themselves into their targets.

The overlay mechanism suffers from several important flaws. First, its current implementation

has no well-defined semantics and exposes race conditions: the loading order of multiple overlays

determines the document order of their composite result (see Fig. 1.5). This might change or break

the event handling order of keyboard shortcuts, or cause ui elements to be pushed outside the

visible space of the window. Second, nothing prevents multiple extensions from using overlays to

create elements with duplicate identifiers, breaking the crucial uniqueness property of identifiers

and potentially fooling other extensions into overlaying the wrong portion of the ui. Third, no

practical way exists for an extension (or Firefox) to declare some document nodes as frozen for

overlaying. Finally, no error is raised if an overlay fails to find a target element to extend, which

masks errors among different versions of Firefox.

1.3.2 Extending the functionality

The program logic for both Firefox and Chrome extensions is written in JavaScript, but beyond

that the two extension approaches differ.

Firefox: As with its ui, Firefox defines much of its functionality in JS and permits extensions

to modify that code arbitrarily. Firefox extensions typically use two idioms, wrapping and mon-

keypatching, to inject themselves into existing functionality. These idioms use a combination of

JS quirks, eval, and runtime rebinding of variables to change existing code’s behavior. Since all

chrome code (from Firefox and extensions alike) lives in a common namespace, it is frequently

impossible to prevent one extension from modifying another’s code. Said another way, there is no

10

Add extension A Add extension B

Add extension B Add extension A

Figure 1.5: The effect of composition order on XUL document structure: Both extensions A and B
insert their menu item just before Item 3. Adding either one alone to the base menu yields a
predictable composite result. Adding both extensions yields two different results, depending
on load order—and the menu hotkeys no longer work.

notion of extensions as distinct security principals, and hence extensions (and Firefox too) cannot

ensure their own integrity at runtime.

AdBlock Plus and NoScript: A cautionary tale AdBlock Plus and NoScript are two extremely

popular Firefox extensions that between them block content from user-selected ad providers and

script from all but user-whitelisted sites. AdBlock collaborates with several authors who maintain

subscription lists of ad domains to block; these subscriptions update without user intervention.

However, NoScript’s development is supported by first-run ads that display each time an updated

version of the extension is installed. For the many users running both extensions, this posed a

problem for NoScript. In May 2009 a brief “arms race” began between the two extensions. No-

Script used a known bug in AdBlock to hide its ads from detection; AdBlock asked for NoScript’s

domains to be added to the most common subscription list. NoScript countered by obfuscating

the sources of its ads; the list was updated to match, and so on several times a day for most of

a week. Eventually the filters were so over-broad as to break legitimate script on NoScript’s in-

11

stallation page. Consequently, NoScript released an update that modified some internal functions

of AdBlock to permanently construct a whitelist for NoScript’s ads; that modification destabilized

and broke AdBlock on legitimate sites [152, 175].

While this particular spat was resolved successfully and without harm to users’ machines or

data, the implications are chilling. The same ability to extend another extension amicably can be

abused intentionally to disable, cripple or subvert other extensions.

Chrome: By contrast, Chrome focuses heavily on robustness: extensions should not be able to

subvert or destabilize the user’s browsing session. To achieve this, Chrome extensions are seg-

regated into individual security principals by the same-origin policy (where an origin is either a

triple 〈host, port, protocol〉 or a unique token equal to nothing but itself) [188], and are further split

into three layers: 1) JS running in the context of the web pages being viewed, 2) additional JS and

HTML running in a separate process, and 3) binary components running in a third process. Each

layer can communicate with the next via message passing. Only the topmost layer can manipulate

web pages; only the middle layer can coordinate the extension across multiple pages or access

network resources, and even then it is constrained only to resources declared in the extension

manifest. (The third layer is irrelevant for my purposes.)

One strong advantage of the Chrome approach is that each extension runs in its own JS names-

pace: extensions cannot accidentally interfere with each other’s code. No wrapping or monkey-

patching is necessary—or possible. The layered architecture is both a strength and weakness: it

helps ensure stability and prevent capability leaks, but is perhaps too limiting in preventing exten-

sions from collaborating with each other: extensions cannot deliberately interfere with another’s

code, either. For instance, it would be impossible to implement a generic messaging client exten-

sion and later write supplemental extensions supporting specific protocols.

1.4 Proposed support for improving extensions

I claim that neither the free-wheeling sharing of Firefox nor the overly-partitioned approach of

Chrome are appropriate designs for web-platform extensions. The former provides no aid in

determining or ensuring extension compatibility, while the latter is too limiting for the compelling

but unanticipated extensions that have been developed.

An idealized extensible web platform permits extensions to modify the state, functionality, and appear-

ance of client webapps in a fine-grained, pervasive manner. Interactions between extensions are possible:

extensions may communicate, may adapt to each other’s presence, and may modify the mainline webapp

12

in benign ways. Extensions must have a mechanism for controlling their composition to resolve conflicts,

either automatically or through user intervention.

Defining the notion of extension compatibility must account for the inherent differences be-

tween imperative script extension and declarative ui extension. Perhaps unsurprisingly, the latter

will be much easier. For both facets of extension, I focus on commutativity as a first-order approx-

imation for extension independence: if two extensions “produce the same effect” on the webapp

regardless of their execution order, they might reasonably be considered independent of, and thus

compatible with, each other. I expect many unrelated extensions to commute with each other. But

when one extension relies on the presence or absence of another, commutativity is insufficient.

1.4.1 Necessary platform support

Unfortunately, no current browser implementation is an appropriate vehicle for research and exper-

imentation on extension mechanisms themselves. Firefox is tightly wedded to XUL and the particu-

lar idiosyncrasies of its overlay mechanism; replacing or modifying these would require rewriting

Firefox to accommodate the changes. Chrome has deeply ingrained notions of security principals

and limits on extension abilities that are coupled to its treatment of websites; revising these poli-

cies would likewise require a large overhaul of Chrome’s internals. And all other browsers are

saddled with legacy codebases that are not easily amenable to adding hooks for extensions.

Instead, to facilitate the research in this dissertation, it was necessary for me to start from

scratch and write a new implementation of the web platform, C3, that will be described in detail

in Chapter 3. C3 is designed from the outset to redress the challenges listed above: it is highly

modular, and therefore less explicitly dependent on particular mechanisms or security policies.

At the same time, the default implementation includes several mechanisms for extending many

parts of the system: among others, overlays for HTML to extend the structure of web pages or the

browser chrome itself, and aspects for JS to extend their scripts; both of these are outlined below.

Crucially, these extension points are tailored for analyzability: this thesis develops several

analyses for overlay compatibility, and proposes others for aspects. Additionally, the design of the

extension mechanisms can easily be further refined to support additional guarantees. For instance,

the current implementation presumes that overlay- and aspect-based extensions can extend one

another for maximum flexibility, but in practice extensions may want to “seal” portions of them-

selves to safeguard their behavior against further extension. In this thesis I have chosen one form

of such safeguarding, and future work may indicate better such forms; C3 is designed to make

such experiment-driven revisions easy, with little modification to the rest of the platform.

13

1.4.2 Code extension via aspects

Extensions change behavior by overwriting existing code to call new functions in the extensions

instead. Currently this is done by redefining top-level functions or rewriting code using eval,

both of which are hard to analyze and have semantic problems. In Chapter 4, I define an aspect-

oriented system for JavaScript where these code-injection points are made declarative and explicit.

While that chapter focuses on designing and implementing the aspect primitives, I highlight a

key benefit here: if all extension points used by extensions are declaratively specified, then it is

much easier to detect a broad (but not exhaustive) class of conflicts by checking if two extensions’

aspects advise the same targets. while this benefit is likely of great help in practice, it nonetheless

has two fundamental limitations.

First, extensions may have disjoint effects on the code, yet still cause behaviors that are broken

“at a higher level”. Consider the following code:

var x = 1;

function f() { x++; }

function g() { x++; }

function h() { f(); g(); assert(x != 6); }

And consider the following two extensions:

1. f = function() { x *= 2; }

2. g = function() { x *= 3; }

While both extensions change different pieces of code (f and g, respectively), if both extensions

are installed, then the assertion in h will fail—and such a failure would not happen if at most one

extension were installed. It is beyond the scope of this thesis to attempt to detect such application-

specific semantic problems.

Second, since JS is a Turing-complete language, extensions’ code cannot easily be analyzed

for conflict because whether extension points alias can depend on arbitrary run-time behavior: in

the previous example, it is non-trivial merely to determine whether f and g are distinct. More-

over, pairwise analyses may not be correct for larger sets of extensions. For example, suppose

the baseline browser has three distinct functions bound to a, b and c and consider the follow-

ing three extensions:

1. At some point, extend a to always return 42.

2. At some point, extend b to always return 53.

3. Extend c to set a = b.

14

Any two of these extensions are compatible with each other, as they advise different functions.

However, if all three extensions are installed together, if extension 3 loads first then extensions 1

and 2 might conflict, depending on whether h happens to execute before the other extensions

install their advice. Thus precisely detecting this type of conflict is undecidable statically.

Consequently, the only program with perfect information about installed extensions is the

user’s browser itself. Only it can correctly analyze running extensions and raise warnings if, when

weaving advice into a function, the advice bodies do not commute: some alternate weaving order

might yield different overall program execution. This dynamic approach will certainly yield more

detailed information than is currently available, because it can track which extensions installed

the advice, and so be of use to extension developers. However it may not be very helpful to end

users, as the only actions available to them at runtime are either to abort the offending extensions

or permit an unanticipated action, neither of which may be palatable.

Far better would be to detect statically, i.e., at extension installation time or earlier, whether sev-

eral extensions conflict. The example above of racing to apply extensions is admittedly far-fetched:

perhaps an unsound analysis could assume such strange code isn’t used, and pragmatically de-

tect valid weaving errors. Additionally, Douence et al. [59, 60] have made progress in analyzing

aspects without reference to a base system. They define notions of strong and weak compatibility

among aspects, which may be enough in practice to make an approximate static dependency anal-

ysis feasible, or to decide exactly what runtime checks are needed for a sound analysis. (I discuss

this and other related efforts in more detail in Chapter 2.)

Finally, as mentioned earlier, extensions may want to “seal” some of their functionality against

modification by other extensions. I am not the first to notice this; Aldrich [6] proposed the notion

of “open modules” to achieve such sealing, and the technique should fit well with my own aspect

work and the browser setting. In this dissertation, I address only the language-implementation

challenges of integrating aspects into JavaScript. My implementation makes it easy to seal a func-

tion against further advice. I have not yet implemented the dynamic compatibility analyses al-

luded to above; they are left for future work.

1.4.3 ui extension via semantic overlays

As a reasonable minimum requirement, the platform must ensure that the net ui effect of a set

of installed extensions is defined solely in terms of the elements of the set: it should not depend

on installation order, or naming conventions, or anything external to the extensions themselves.

Therefore extensions must provide sufficient information to specify uniquely their loading order

15

up to commutativity: for each extension, which other extensions must precede or follow it, and

which other extensions do not matter?

The design for overlays presented in this thesis starts in a manner based upon Firefox’s overlays,

by permitting extension authors to inject new content into specified locations in the base document,

and generalizes the selection mechanism for additional flexibility. Next, they permit extension

authors to seal portions of the overlay against further overlaying. Finally, extension authors specify

a specific composition order for the various overlays in their extension, which includes details on

which overlays may be optional, or which overlays are mutually exclusive variations that target

different versions of the base system. These abilities to guard overlays or to specify composition

order are missing from Firefox’s approach. Ultimately, the design presented here identifies each

extension as a single composition, which must as a whole succeed or fail.

Determining whether a set of compositions is internally compatible happens within the plat-

form, as it launches. A document is a base document followed by an ordered sequence of composi-

tions. I abstract the state of the document as four lists describing which requirements 1) must be

defined in the document, 2) must be undefined, 3) have not yet been overlaid by a composition,

or 4) must never again be overlaid, corresponding to the four guard types g. Using this machin-

ery, I can interpret compositions c as document transformers that relate an initial document state

before c is applied to a final state afterward, assuming the application succeeds. These abstract

transformers are used to define a notion of when two compositions commute: if the output state

of composition c1 cannot satisfy the needed input state of composition c2, then c2 must precede

c1 and they do not commute. Any compositions not related by (chains of) such dependencies

commute with each other. Such dependencies can then be used to find a valid loading sequence,

if one exists, or find a set of conflicting extensions, if one does not.

Note that extension authors can modularly specify their compositions without knowing about

any other extensions. Further, the compatibility analysis can be done by the browser without input

from the user, and can simply inform the user (or developer) whether installing a new extension

will yield a compatible composition or not. Thus in theory, with minimal developer overhead and

no user effort, and without restricting ui extension points, I can solve the problems with Firefox

overlays described above. In practice, defining the commutativity of compositions can be much

harder, depending on the expressiveness of the overlay language. As shown in Chapter 5, the full

language with all the composition operators and where targets may be described by arbitrary CSS

selectors, the approach described above gradually breaks down, yielding first approximate and

then incorrect results. I define the approach above more carefully in Chapter 5, and in Sections 5.7

and 5.8 I explore the failure modes of this algorithm.

16

1.4.4 Enforcing security policies

I have said nothing about enforcing security policies on these well-composed extensions; in fact,

this dissertation will completely ignore security concerns for extensions. Instead, I see all of the

challenges above for simply defining a clearer semantics for extensions and compatibility as being

prerequisites to security efforts.

Chrome’s extension security model takes a capability-based approach, wherein extensions de-

clare which resources they require (e.g., “browser history”, “network access to foo.com”) and

users grant those permissions at extension install-time. I do not yet address such policies, except

to note that when extensions may interact freely (unlike in Chrome); more work must be done

to prevent a confused-deputy attack or outright collusion between extensions; this extends the

threat model in [16]. Additional care must be taken to protect such a composite system from

runaway extensions, as in [84].

1.5 Summary

I have described the three main layers of the “web stack”, and the types of extensions applicable

to each layer. In particular I have described the space of webapp/browser extensions, and argued

that they are in need of programming-language research. I have sketched the essential features

of two browser extension systems, and identified key strengths and flaws of each. Finally, I have

proposed two language mechanisms for improving the development of extensions, and suggest

that together they provide a more compelling platform for supporting extensions.

The rest of this dissertation fleshes out these claims and sketches, and is organized as follows.

In Chapter 2, I examine the space of extensibility in broad, and define a vocabulary for discussing

extension models. Chapter 3 describes the implementation of C3, a new implementation of the web

framework (HTML, CSS and JS) that is engineered to support easy extensibility and research experi-

mentation throughout the system. Chapter 4 defines the aspect-oriented extension to JS described

in Section 1.4.2, which I have implemented in C3, and evaluates both its performance and its ef-

fectiveness in streamlining actual Firefox extension code. Chapter 5 defines the overlay language

from Section 1.4.3 and conflict-detection algorithms over that language, which have also been im-

plemented in C3, and examines a survey of Firefox extensions to detect potential errors. Finally,

Chapter 6 summarizes the contributions of this thesis and positions several promising avenues of

future work. The technical details of proofs are relegated to Appendix A, while the precise formal-

ism of the conflict-detection algorithm, and a step-by-step walkthrough of it, are in Appendix B.

foo.com

17

Chapter 2

DEFINING AN EXTENSION MODEL

2.1 Defining extensibility

The preceding chapter claimed that the current state of extensibility in web browsers is insuffi-

cient, and that improvements must be developed. This chapter explores the mechanisms and

failings of current browsers’ extension approaches in more detail, and draw inspiration for their

improvement from widely disparate areas of previous research. Sections 2.2 and 2.3 lay out crucial

background information for the remainder of this dissertation. Section 2.4 introduces terminology

and a classification scheme for defining extension models. Sections 2.5 to 2.8 discuss various ex-

tension models in related areas, and can be skimmed and re-read in any order relative to the

following chapters. Section 2.9 contrasts these areas with the web platform area, and Section 2.10

summarizes the chapter.

2.2 Extensibility in web platforms

As sketched in Section 1.2, a browser is a multi-layered architecture, but it is more instructive to

view it as a two-layered webapp running atop a two-layered platform. The browser itself is respon-

sible for running individual sites at the website level, where each site is properly isolated from each

other; those sites are hosted within the browser level, which uses the familiar chrome idioms of the

browser to enable user interaction with the sites. That chrome—essentially the application logic

of the browser—relies upon all the functionality of the platform level beneath it to parse and render

the HTML and CSS of the sites, to execute their JS code, to handle all network or other resource

requests, and even to enforce security policies. In some browsers, such as Firefox, the chrome of

the browser is itself coded like a website, so that the same rendering and execution engines used

to display and protect individual sites are reused to display and protect the browser chrome itself.

Consequently, from the platform’s perspective, the browser and website levels are really just a

single webapp level—though obviously not all webapps require or employ such a distinction.

This perspective, that a browser is merely one webapp instance, is certainly not the commonly

held view: surely webapps are things such as Gmail or Office365 that are run in browsers, not

instead of browsers! But this is a historical accident, as it is already becoming clear that typical

18

application interactions are not easily shoehorned into page-based back/forward navigation of

urls. Many webapps have no real need of the browser’s chrome, and indeed projects like Mozilla

Labs’ Chromeless [169] can run such applications “outside” the browser, i.e., directly on top of

the platform level. And at a software-engineering level, Firefox partially embodies this split, by

building upon Gecko, Mozilla’s platform layer that implements support for HTML/CSS/JS as well

as XUL, the XML ui Language in which all Gecko-based applications (among others, Thunderbird, a

mail client; BlueGriffon, a wysiwyg HTML editor; Songbird, a music manager) construct their ui.

The primary advantage to this perspective is that each layer supports its own characteristic ex-

tension mechanisms—some of which are well-known, and others are novel and will be elaborated

in Chapter 3. Moreover, the kinds of extensions applicable to web browsers and to websites use

identical mechanisms, rather than their current unnatural split into separate technologies. In the

discussion that follows, extensions are defined to be additional pieces of code that are downloaded

individually and then dynamically merged into the base platform.

2.2.1 The extension development model

Extensions are written by third-party developers, who only have publicly available information on

which to base their code. For closed-source browsers, this information may be nothing more than

documentation on extension apis; for open-source browsers, the code itself is available. Beside

source code access, developers may be limited by the extension mechanisms themselves: Chrome’s

extensions are far less able to modify Chrome than Firefox’s extensions are.

Extensions are used by arbitrary people, who may have zero knowledge of how the browser

or extensions are implemented. Extension users typically install a handful of extensions simulta-

neously [194]. They expect to install extensions into their browser, perhaps setting some options,

and then simply have the extensions work compatibly with one another.

An idealized extensible browser permits extensions to modify the state, functionality, and appearance

of the browser in a fine-grained, pervasive manner. Extensions are written by amateur developers external

to the browser, and should require minimal cooperation from the browser to run successfully. Interactions

between extensions are possible: extensions may communicate, may adapt to each other’s presence, and

may modify the mainline browser in benign ways. Conflicts may occur when extensions try to modify each

other or the mainline browser in incompatible ways, by changing ui or invariants upon which the other

relies. It is not acceptable that extension conflicts first be found by end-users at runtime, so conflicts must

be detectable by load-time and preferably at install time. Extensions must have a mechanism for controlling

their composition to resolve conflicts, either automatically or through user intervention.

19

Any discussion of extensions therefore must be framed in terms useful to these two groups

of people: understanding what extensions may do must be defined by the publicly available in-

formation about the browser’s implementation and its extension mechanisms, and understanding

how extensions interact must be determined without any input from users beyond which set of

extensions are installed simultaneously.

2.2.2 The platform level

The lowest level of the web platform is essentially a collaboration of file type-specific “interpreters”

that combine to render content to the display and respond to user interaction. By default, explicit

interpreters exist for HTML, CSS and JS. Implicitly, interpreters exist for the supported image for-

mats; in browsers supporting HTML5, additional ones exist for supporting 〈audio/〉 and 〈video/〉

content. At any given time, each file format is handled by exactly one interpreter.

As long ago as Netscape Navigator 2.0, browsers have supported extension in the form of

plugins, binary modules that add new interpreters to the platform’s collaboration: the granular-

ity is fairly coarse. Common examples of browser plugins include Adobe Flash Player, Microsoft

Silverlight, Apple Quicktime, and many others. Support for these plugins comes from two stan-

dard apis, ActiveX (for Internet Explorer) and npapi (for every other browser), that define the

(intended) interactions between plugins and the rest of the browser. These plugins run in the

browser process, and while they should behave according to the specified interfaces, they in fact

are unconstrained in their behavior. They are analogous to kernel drivers in commodity os de-

signs: like drivers, a poorly-written plugin can destabilize the entire browser. And just as os

projects like SPIN [23] and Singularity [108, 109] try to tame drivers by corralling them behind

interfaces or separate processes, a new plugin api is being developed [93] to push these plugins

out of the browser kernel into separate processes. Regardless of the api, as with the default in-

terpreters, only one plugin can be active for a given file type at a given time, which neatly avoids

any conflicts between well-behaved plugins.

Depending on how the platform is architected, a finer-grained extension may be possible. As

I will demonstrate in Chapter 3, the default interpreters within the platform may themselves be

extensible: an extension might extend the languages recognized by the interpreter, adding support

for new HTML tag names, new CSS properties, or new layout routines (though only the first of these

is currently implemented). These extensions are intended to interact in the same manner as the

underlying components: layout routines collate tags and their styles and render them in various

ways. Importantly, multiple HTML tag-name extensions, say, are not intended to interact: all such

20

extensions must contribute disjoint sets of new tag names. Confirming that these extensions are

in fact non-conflicting can be detected as they are loaded into the platform.

2.2.3 The webapp level

Webapps and web pages are written in HTML, CSS and JS, and therefore extensions at this level

must be written within those languages as well. The HTML tree is exposed to JS via the Document

Object Model (dom), a suite of apis for manipulating that structure. Since the dom is mutable,

it is always possible to inject new nodes, including 〈style/〉 and 〈script/〉 nodes, into a page—at

which point they execute as if they had been part of the page ever since it was loaded. Extensions

at this level simply amount to idiomatic ways of causing these injections.

Userscripts and bookmarklets: Like user-mode applications in an os, web pages from different

origins are isolated from one another. This level supports two closely related kinds of extensions:

bookmarklets and userscripts. A bookmarklet is a bookmark containing a snippet of script that,

when selected by a user, runs in the context of the current page. Userscripts do the same, but

are activated automatically upon navigating to a page that the script selects as relevant. These

extensions are analogous to, and as powerful as, remote thread injection in operating systems. If

multiple bookmarklets or userscripts run on a page, they may conflict with one another and break

the behavior of scripts on that web page, but cannot interact with or do any harm to the browser

as a whole (assuming proper page isolation [182]). All modern browsers support bookmarklets;

nearly all have support for userscripts either built into the browser or (in an ironic technical twist)

patched in as an extension.

At a finer granularity, injected scripts may wish to modify or patch existing code that has already

been loaded into a page. This is made possible due to various quirks of JS, including its ability

to rebind functions at runtime (known as wrapping) and to manipulate functions’ source code

and to eval the resulting strings (known as monkeypatching). Unfortunately, these two idioms are

semantically broken and cannot work in all cases. As I will explore in detail in Chapter 4, a modest

enhancement to the JS engine to support dynamic aspect weaving (note: not an extension, in the

technical sense being used here, but rather a new version of the engine) can provide a semantically

robust mechanism for such code injection that avoids these faults.

Overlays: Much as userscripts attempt to patch the existing JS of a webpage, overlays attempt to

patch the existing dom of the page. As described in Section 1.3, overlays are a declarative (i.e.,

markup-based) way to select nodes in the document and insert new content into them. To date,

21

the only implementation of overlays is in XUL, which in turn is supported only in Firefox. As I will

explain briefly below, and in more detail in Chapter 5, this implementation has a poorly defined

semantics, which makes it particularly problematic for determining extension compatibility. Fire-

fox’s overlays are very fine-grained, as they can patch individual nodes, though they may be too

fine-grained, as they cannot patch groups of nodes in a uniform way. Additionally, where overlays

can interact by patching the same target nodes, there is no facility in Firefox for controlling the

patch order (and therefore the resulting document order) to enforce desired ordering constraints.

2.3 Extension mechanisms in existing browsers

Firefox supports two extension formats: “traditional” extensions that are powerful, flexible and

potentially error-prone, and newer “jetpacks” that are simpler to write, less powerful, but less

error-prone. Chrome’s extension model is closer to that of jetpacks, but is far more focused on

sandboxing extensions securely. Internet Explorer supports a few ad hoc extension points, and

Opera and Safari both support limited extensions that are a subset of Chrome’s approach’s func-

tionality. I describe Firefox’s, Chrome’s and Internet Explorer’s extension mechanisms below.

Traditional Firefox extensions: Traditional Firefox extensions consist of three primary pieces: a

set of XUL overlays that define new ui content to be appended to existing ui that itself is defined

in XUL, a set of JS files that define the functionality of the extension, and a simple manifest that

declares some minimal metadata about the extension to Firefox. XUL, like HTML, exposes a dom

to scripts that manipulate it. Extensions can therefore define new ui with as rich capabilities

as Firefox itself, and their scripts can manipulate both new and existing content. Additionally,

Firefox exports a very wide api for internal functionality, which extensions can use to modify

the browser’s behavior.

Firefox extensions enjoy a uniquely powerful relationship with their host browser. While many

of the extension mechanisms considered here are permitted to define limited forms of ui (e.g.,

toolbars, badges, or context-menu items), and some are capable of arbitrarily modifying existing

ui (e.g., ActiveX controls), only Firefox extensions are given a sanctioned mechanism—overlays—

to modify any portion of Firefox’s ui. Accordingly, any discussion of web-platform extensions’

design must be careful to distinguish ui-specific architectural choices from functionality ones,

especially when considering abilities of and conflicts among extensions.

Firefox extensions’ ability to manipulate the host browser’s functionality is similarly unique:

most of the extension mechanisms here are permitted modify some of the behavior of their host

browser, and some may use unsanctioned (and unstable) methods to modify other behaviors, only

22

in Firefox is the vast majority of the browser’s behavior deliberately available—exposed via JS—for

modification and extension. Extensions have been used to modify core browser policies (e.g., block-

ing script execution), and to add new abilities (e.g., adding integration to various web services).

Extension authors are afforded an erratic level of cooperation from Firefox, with strong sup-

port for ui extension and weaker cooperation for code extension. A technical restriction in the

implementation of overlays permits only XUL elements with identifiers to be extended: on the

one hand, overlays would be effectively impotent without extensive cooperation from Firefox; on

the other, giving identifiers to (nearly all) page elements is standard practice in HTML and so is

no onerous burden. Further, no explicit support is given for extending Firefox’s code; because JS

is so mutable at runtime, at first glance it seems none is needed. But precisely because JS is so

mutable, it is exceedingly difficult to describe exactly what interactions may occur between the

code of multiple extensions.

The actual process of integrating overlays into Firefox’s ui occurs at load-time. Code extensions

may be integrated at any point after loading, since JS makes no essential distinction between load-

time and runtime. Firefox only implements very rudimentary conflict checking: an extension’s

manifest can declare with which versions of Firefox it is compatible, and which other extensions

it depends upon for successful execution; these checks can be enforced at extension installation

and load time. However, all interactions over ui, code or execution state are not detectable until

runtime, by users who likely cannot debug problems they encounter. Improvements to this status

quo are the main contributions of Chapters 4 and 5.

Firefox permits users to install multiple extensions simultaneously; extensions load in some

unspecified order as Firefox loads. Interactions between extensions can occur via code or over-

lays. Extensions may modify each other’s ui, dynamically change each other’s code, or interfere

with each other’s state. (These last two are particularly troublesome: since JS has no mandatory

namespace mechanism for modularity, poorly-written extensions pollute the global namespace,

which can silently redefine code added by other extensions. Recent community-driven standards

such as CommonJS [47] attempt to define idioms and apis to redress this lack.) Some of these

interactions are intentional: for instance, TabMix Plus and Session Manager both implement sav-

ing and restoring of browser sessions (open windows and tabs), and the former changes both

extensions’ ui to enable exactly one or the other’s ability, as both managers running simultane-

ously would break. However, many extensions have inadvertent conflicts: FoxyTunes inserts a

small Flash object to play mp3 files directly from the browser, while FlashBlock eponymously

disables this functionality. Other, more subtle and often surprising interactions are possible, due

to quirks in Firefox’s architecture.

23

Jetpacks: Mozilla Jetpack [165, 178–180] is a recent project to simplify the development of addons

for Firefox. It aims to address several major pain points in addon authorship, particularly provid-

ing a stable api to use that will not change between versions of Firefox. This becomes even more

crucial when rapid development and release cycles change the browser ui and internals more

rapidly than extension authors can keep pace [213]. Additionally, Jetpack addons are restartless:

they can be added and removed from the running browser without restarting it [212, 214].

Achieving both of these goals requires sacrificing much of the power of the traditional ex-

tensions: in particular, jetpacks do not include overlays. Instead, Jetpack provides an api for

constructing common pieces of ui, such as context menu items, status-bar icons, new tabs, etc.

Additionally, as it currently stands Jetpack asks extension authors to correctly write main() and

onUnload() functions that are true inverses of each other, if main() does anything stateful that goes

beyond the declarative Jetpack apis. For example, while Jetpack lets you declare a new context

menu item that it will automatically insert and remove as needed, with no need for onUnload(), if

a jetpack uses dom manipulation methods to insert content directly then it will require a purpose-

built onUnload() to remove that content.

Fortunately, many simple extensions can comfortably use the apis and not require much ad-

ditional support. Consequently, jetpacks have eliminated one major source of conflicts between

traditional extensions. However, the Jetpack apis are limited (though growing steadily); as such

jetpacks can never be as surgically targeted or as powerful as traditional extensions can be.

Chrome extensions: Chrome extensions are split into two or three pieces: one “background

page” where the main extension logic occurs, userscripts injected into the content of relevant

web pages, and an optional binary component for specialized computation better suited to native

code. Both the userscripts and the binary component are given narrow message-passing apis to

communicate with the background page. At a high level, the apis available to the background

page of Chrome extensions look very similar to those of Jetpack (which indeed modeled itself on

Chrome’s approach): a set of limited but robust apis for manipulating portions of Chrome’s ui,

e.g., adding toolbar buttons or context-menu items.

What distinguishes Chrome’s approach from traditional Firefox extensions is that in Chrome,

extensions are fully sandboxed from one another, from the browser, and from the pages being

rendered. Each background page is considered a separate origin for purposes of the same-origin

policy, which immediately implies that even if scripts from two extensions could see each other’s

background pages, they would not be able to manipulate each other. Additionally, if one extension

were to crash, hang, or otherwise “go wrong”, other extensions would not be affected. Similarly, if

24

scripts on some content page forced that page to go wrong, extensions could continue to interact

with other content pages.

This sandboxing also distinguishes them from jetpacks: while their apis are similar, Chrome

extensions cannot use any platform functionality except those apis. The primary benefit of the

sandboxing is to provide the user with per-page and per-extension performance isolation. In

this regard they are more advanced than either of Firefox’s approaches. Again because of their

sandboxing, extensions cannot extend each other, so interactions—and hence conflicts—are au-

tomatically minimized.

Internet Explorer: At the platform level, Internet Explorer has supported ActiveX controls (bi-

nary plugins) since version 3.0, so-called “browser helper objects” (similar to ActiveX controls

but with a slightly different api) since version 4.0, and even supported the competing npapi

plugins through version 5.5. These extensions were all fully-privileged native code that ran in

the same process as the browser itself, leading to frequent crashes from faulty plugins. Ver-

sion 5.0 formalized apis for customized toolbars and context-menu entries, but these too were

over-privileged native code.

Finally, Internet Explorer 8 introduced two new forms of extension, Web Slices and Accelera-

tors [124, 158, 162], which are quicker ways of interacting with web content and provide the same

functionality as many common plugins in a far more stable and secure manner. Analogues of

both abilities have been implemented as Firefox extensions [77, 91, 164]. Both Accelerators and

Web Slices offer limited extensibility: authors can define short XML files which add support for a

new accelerator or slice; these extensions cannot interact with each other at all.

Internet Explorer does not include support for userscripts, though several (now defunct) Ac-

tiveX controls were written to create such support.

Security concerns: There are two primary security concerns relating to extensions: whether

extensions can compromise the security of each other or the security of the browser.

In systems where extensions can communicate with and potentially extend one another, it

is reasonable to ask whether extensions can safeguard their own integrity: can they ensure that

other malicious or buggy extensions cannot compromise their own code and state? Currently, no

extension system supports this: either extensions cannot communicate, as in Chrome, or they can

trample each other’s code freely, as in traditional Firefox extensions. Jetpacks pose an odd middle

ground: by using the CommonJS framework, it becomes nearly impossible for one extension

to modify another—but using that framework is optional and partial; jetpacks might still define

25

functionality without using the framework. It remains to be seen whether such opt-in behavior

will be sufficient in general, or whether more robust enforcement mechanisms will be needed.

Beyond manipulating each other’s code, extensions can violate security guarantees of the base

browser. For example, all modern browsers support a “private browsing” or “incognito” mode,

which is intended to leave no trace of a user’s browsing on the computer once the browser session

is closed. However, extensions have access to several means to persist state, including HTML5

local storage, file-system apis, or remote calls to servers. Because of these many information

channels, no browser currently enforces that extensions automatically abide by the goals of incog-

nito mode; in fact, the documentation for both Chrome and Firefox extensions include apis to

check whether incognito mode is active, and admonish extension authors to respect that flag by

not recording sensitive data.

2.4 Defining extension models

The preceding sections described the current state of the art in browser extensibility. But extensi-

bility is everywhere, in varying degrees. On the minimalist extreme, simple music players admit

additional codecs to support new encoding formats, but for example no extension may define

streaming media support when no prior internet functionality exists. More flexibly, office suites

embed scripting languages that can encode fairly powerful computations, but for example cannot

add support for new file formats. On the far extreme, some systems are practically nothing but

extensions—other than a small runtime core, the emacs editor is a default collection of macro

packages, written the same way as the non-default packages known as extensions.

The remainder of this chapter chapter examines the extensibility problem—understanding how

extensions interact with one another and how best to resolve conflicts that arise—by examining

prior work in four other areas of research: aspect-oriented programming and systems design,

which focus primarily on defining extensions; and feature specification and security monitors,

which focus mainly on resolving conflicts. (As this dissertation focuses primarily on defining

extensions, it draws more heavily on the ideas from the former two; the latter are more useful

for future work.) To frame the discussion, I introduce a set of criteria against which to describe

an extensibility system. Previous efforts have classified system-specific criteria for operating sys-

tems [54, 200] and feature specification [122]; my criteria generalize and combine these to apply to

all systems examined here. In this chapter, extensions will be examined based upon their:

• Design considerations: What behavior does the extension have—e.g., new policies, better

performance, new functionality? Alternatively, what semantics are designed into the exten-

26

sion system? Who is the author—e.g., the base system’s designer, an external developer, or

an amateur? When is the extension integrated with the base system—e.g., at design, build,

install, load, or run time? Finally, how much cooperation does the extension need from the

base system—e.g., can the base system be written obliviously to future extensions, or must

it accommodate them during its design?

• Extension abilities: What base system resource do extensions target—e.g., the set of sup-

ported hardware, or the set of security policies? Given that, how pervasive is the extension—

how much of the system may be modified? How granular can extensions be—e.g., can they

replace single lines of code, or only entire subsystems at once? In what ways can extensions

compose? Finally, what interactions are possible between multiple extensions or between each

other and the base system, and what guarantees can be made when no features interact?

• Troubleshooting techniques: What conflicts are possible—i.e., which interactions are unde-

sirable? When can conflicts be detected—e.g., at design time, via runtime testing, or via user

problems? Can individual extensions be checked modularly for conflicts? Finally, how are

conflicts resolved—e.g., by restricting the action of the extensions, by manually composing

them into a corrected composite, or by rewriting the extensions to cooperate?

The next four sections discuss aspect-oriented programming (Section 2.5), operating systems

and other platforms (Section 2.6), feature specification (Section 2.7), and security monitors (Sec-

tion 2.8). The breadth of each area precludes defining the extension model for each domain, so

I first give an overview and a strawman extension model of the four systems types mentioned

above. I then describe salient research efforts that explore different facets of the organizing criteria

above. Section 2.9 relates particularly useful efforts back to the motivating area of extensible web

platforms. Section 2.10 summarizes the contributions of this chapter.

2.5 Aspect-oriented programming

Fundamentally, an aspect extends the control flow of an existing program by declaring what addi-

tional work must be done when certain conditions arise. The primitive hook for extension within

aop is the joinpoint, which describes an “interesting” moment of control-flow such as a function

entry or exit. Pointcuts1 define groups of joinpoints, usually via simple set operations. Specifying

what action to take at a given pointcut is known as advice. Multiple pointcut/advice pairs may be

1 Occasionally known as crosscuts [58], though that term is more often used as an adjective [186]; I avoid using it further.

27

combined to define a single aspect, which is defined compactly and separately from the mainline

code (i.e., the non-aspect remainder of the program), until being woven together at compile time.

Advice may apply before, after, or around a pointcut, though these forms may be simplified: as

presented in Walker et al. [221], these can all be compiled to idioms of joinpoints, where advice

is executed at the moment the joinpoint is reached. While aop looks similar to event-based sys-

tems, aop permits replacing the control flow of the advised program, which events cannot do.

Concretely, a minimal aspect in AspectJ might define just one pointcut and one piece of advice:

public aspect HelloMain {

pointcut runningMain() : execution(public static void main(String[]));

after() returning : runningMain() { System.out.println("Now leaving main"); }

}

An idealized aop system permits extensions to modify the state and control flow of the mainline program

via aspects that advise function calls. Advice is authored by the same developers as the mainline system,

and is integrated at build time. The mainline code need not cooperate to enable advice, though care must be

taken for the advice to work properly: conflicts may arise when multiple advice apply to a particular pointcut

(detectable by the compiler), when aspects overlap in function, or when changes in the mainline break an

aspect (detectable only by testing); all require programmer intervention. When all aspects are compatible

with each other and the mainline, the semantics of the woven program is predictable and independent of the

weaving order (modulo any explicitly specified ordering constraints.)

The above definitions are very much simplified; each part of these definitions can be varied,

yielding systems with greater or lesser flexibility—and impact on ease of analysis for conflict.

The set of available joinpoint kinds (granularity) differs considerably between aop implementa-

tions; while AspectJ contains a predefined set [123], they could be programmer-specified labels

interspersed anywhere within the code [221]. Moreover, while AspectJ’s joinpoints are focused

on oo-style code (e.g., a special joinpoint for object constructors), there is nothing inherently

object-oriented about aspects, and indeed aspects can be formalized for functional languages as

well [49, 50, 58, 221]. Similarly, the flexibility of pointcut specification differs between imple-

mentations (e.g., [32, 58, 62, 123, 221]), and is a key factor in the utility of the aop approach.

More complex systems permit pointcuts that can examine the stack [48, 123]; others permit state

machine-like inspection of the history of the computation. aop languages may choose whether

aspects are second-order, syntactic constructs baked into the language [123], are extensible but still

second-order language constructs [32], or are first-order values definable and manipulable within

the language itself [62]. Advice can be dynamically installed for a given scope, or lexically inserted

at compile time. One point of common disagreement appears to be the appropriate weaving order

28

for aspects. Aldrich [6] applies advice in a lifo order, while Dantas and Walker [48] take the

exact opposite approach. AspectJ [123] defines a complex (and incomplete) set of rules governing

weaving. Other systems (e.g., Douence et al. [60]) permit programmer-specified weaving orders.

The only commonalities seem to be the need for clearly specifying the semantics of the system un-

der study, and to choose the appropriate heuristic for the task at hand. Finally, the pervasiveness

of the advice itself can be varied, by varying the environment available to the advice.

2.5.1 Language design

Common wisdom [81] suggests that aspects are most effective when the mainline code is oblivious

to the effects of the aspects, i.e., written without consideration of or accommodation for future

aspect extension, though this is somewhat oversimplified [106], and demands understanding what

effects aspects can have on a program. There is extensive work on formalizing the foundations

of aspects [5, 44, 49–51, 58, 62, 106, 107, 117, 147, 190, 195, 215, 221, 224, 225]. Several of these

try to apply aspects to a typed (e.g., [49, 51, 147]) and/or higher-order functional [62, 153] setting.

The former, while technically demanding, ensures that well-typed aspects cannot cause well-typed

programs to go wrong. The latter adds enormous flexibility by permitting the definition of new

forms of pointcuts as needed, though it makes compiling and optimizing the woven code much

harder. At the moment, JS is dynamically typed, though proposals for ECMAScript 5 and beyond

are looking to add some form of static typing to JS. Coupled with JS’s support for higher-order

functions, these research efforts provide a useful background for future aspect-like mechanisms for

JS. There is also work that examines the semantics of extending one language with multiple aspect

mechanisms themselves [127]. This level of extensibility does not bear on the browser extensibility

model, and will not be addressed further here.

2.5.2 Safe aop idioms

There are several efforts to define safer idioms of programming with aspects [6, 17, 48, 118, 174,

186]. This line of work seeks to place limits on either pointcuts [6] or advice [48] to restrict their

unprincipled tampering with the mainline program. These two approaches roughly correspond, in

other systems settings, to narrowing the client api and to restricting permissions on client actions.

Aldrich [6] takes as his starting point the fragility of pointcuts: by hooking into the control

flow of a program, they necessarily rely on that structure remaining unchanged across versions.

Moreover, such deep hooks prevent most local reasoning about abstraction boundaries. To address

this, Aldrich restricts his set of primitive joinpoints to include only call sites of declarations, rather

29

than of all functions, a distinction that exposes only named, exported functions to advice, while

anonymous lambda expressions and functions hidden behind module boundaries are immune.

Within a module’s definition, all call sites are available as joinpoints; “open modules” can choose

to expose some of these otherwise-hidden joinpoints as part of their signature,2 making them

targetable by external advice. External calls to functions in the signature are advisable; intra-

modular calls to those functions are not, unless they are exposed through an explicit addition to

the module signature. Doing this makes the exposed joinpoints “a part of the api”, implying they

will be stable in the face of future internal changes. Note that this comes at a price: the module

author is no longer oblivious to the potential for future advice.

This stability is formalized by Aldrich’s treatment of the equivalence of modules, which for my

purposes is the key contribution of this paper. A revision of a module is equivalent to the original

when it does not break aspects that previously worked. More formally, “equivalent functions must

not only produce equivalent results given equivalent arguments, they must also trigger advice on

client-accessible labels in the same sequence with the same arguments”—revisions must preserve

the behavior of their declared joinpoints, and the social conventions regarding api change come

into effect. The essence of the open module approach has been adopted, for example, by the

Eclipse platform [27], where plugin authors explicitly declare extension points for future plugins

to use. Additionally, extension points must be deprecated before they are removed or changed. By

contrast, in current browser designs, extensions frequently break between minor version changes

of the browser; while effort is made to prevent needless problems, such brittleness is endemic

when extension points are not promised to be stable.

Dantas and Walker [48] take the dual approach, placing restrictions on what advice can do

with a source program. They focus on when is it possible to be certain that aspects do not in-

terfere with the mainline program. So-called harmless aspects may observe the execution of a

program and may influence its termination behavior (e.g., they can terminate it in response to an

error condition) but they cannot influence its computed results; this definition preserves partial-

correctness properties of the mainline program, in the face of changes to the aspects woven into

it. To achieve this noninterference result, the authors define an information flow-like type system

that ascribes protection domains to code. Their goal is an integrity property, so intuitively they

ascribe a high-protection domain to the mainline code and low-protection domains to the aspects;

the typing rules then guarantee that non-unit (i.e., information-carrying) values cannot flow back

from the advice to the mainline code.

2 The use of modules, opaque signatures, and functors derives heavily from ML’s module system, but includes width,
depth and transitivity subtyping rules among signatures, which will not be described here.

30

The key contribution here is their simplification of information-flow to the aspect setting.

Harmless aspects are consumers of the state produced by the mainline program, and the type

system enforces the producer/consumer split. But while their exposition in the paper only con-

cerns separating aspects from mainline code via low- and high-integrity levels, their framework

supports a standard lattice. Such a general stratification could support the layering of aspects,

guaranteeing that for a weaving order compatible with the lattice order, aspects can be protected

from each other as well. The primary drawback to this particular approach is its rejection of

any other kind of aspect. Other work [42, 186] developed a classification of aspects supporting

both consumers and the dual producers, as well as independent and interfering varieties. In the

web browser setting, extension authors typically write extensions that interfere with the mainline

browser, though potentially most extensions may not write to or interfere with each other.

2.5.3 Conflict detection among aspects

Another broad trend in aop research focuses on giving developers tools to detect conflicts among

aspects or to manage their composition manually [17, 59, 60, 121, 128, 129, 186]. Aspects may

conflict with each other in two ways: directly, by overlaying the same joinpoint, or indirectly, by

mutating shared state in ways the other extension does not expect. (In AspectJ, advice is arbitrary

Java code that can be granted read/write access to the pointcut’s parameters, such as function

arguments, potentially even to private members of classes. Aspects can change the dispatching

behavior of a program by adding new interface implementations to classes or even by changing the

class hierarchy itself [104, 140, 207, 208].) Of the two, indirect conflicts will persist independently of

the weaving order (two aspects may be disjoint in their pointcuts, yet still overlap in their effects

on the program state), and are considered a coding flaw rather than an aspect-related problem.

Therefore, research has focused on capturing weaving-related conflicts.

Douence et al. [59, 60] have developed a framework for modeling aspects whose pointcuts

change over the course of the program, and which can carry runtime-derived information through

their evolution. They model aspects via finite-state machines, where transitions between states

correspond to triggering of pointcuts and associated advice. A global program monitor is respon-

sible for weaving the advice into the mainline and updating the aspects’ state as the program

runs. The expressiveness of their pointcut language is carefully engineered to keep certain in-

tersection problems decidable; as one consequence, their system cannot express AspectJ’s cflow

pointcut for recursive functions.

Practically all the main ideas of these papers are applicable to the web setting; I focus here on

31

just two. First, they permit aspects to “change interest” and focus on different pointcuts at different

times, in a history-dependent way. This is far more general than AspectJ’s approach, or even the

stack-based inspection examined before, and it remains orthogonal to the safe-idiom techniques

described above. Additionally, in the web setting, the behavior of extensions depends heavily on

user interaction, so this facility is a natural fit. Second, the authors define notions of strong and

weak independence: whether two aspects are always compatible with each other, or compatible

within the confines of a specific mainline program. They also note that neither independence

notion is necessary for aspects to be compatible; commutativity is sufficient as well. The work

in later chapters will take the dual approach; commutativity is sufficient, but other independence

notions are possible too. Further, they go on to describe an intermediate independence relation,

where aspects may declare a minimal set of requirements on the base program; the aspects will be

compatible with any mainline program satisfying those requirements.

2.6 Operating systems and other platforms

Operating systems are the lowest-level software interface between physical resources and soft-

ware. They are traditionally responsible for multiplexing those limited resources between multiple

clients, and for abstracting the details of those resources into a convenient programming interface.

In one sense all operating systems are trivially extensible: they permit an unbounded set of user-

level programs by exposing an abstracted view of the machine. In the following discussion, I am

uninterested in these applications, and focus rather on more fundamental changes in functionality,

which require operating beneath the user-visible abstraction layers. I am likewise uninterested

in hypervisors sitting beneath the os, since they expose no fundamentally new challenges for

extensibility than oses do. The case for kernel extensibility has been made numerous times (see

for instance [8, 65, 68, 102, 135, 139, 191]) and can be summarized by the simple observation that

no closed system can be all things to all people. An extensible os therefore must expose enough

control over its internal structures to permit tailoring their behavior to applications’ needs. Such

extensibility must be tempered by concerns for performance and safety—if the extensibility mech-

anisms are too expensive, functionality would be better written in user-mode on a system with a

cheaper mechanism; if unsafe, the system behavior becomes unmanageable.

An idealized extensible os permits kernel extensions to expand the resources (e.g., new hardware or

better performance) available to the rest of the system, via modules that expose new apis. Extensions are

typically authored by the vendors of those new resources, rather than the os developer, and are loaded

dynamically when the os boots. The os itself must expose some hooks so modules can rely upon a standard

32

interface. Modules may interact through any shared state of the os, and may conflict if multiple modules

expect exclusive control over some resource; such conflicts are detectable only through detailed testing, and

require developer intervention to fix. Compatible extensions may be loaded in any order (unless otherwise

specified), and will not destabilize the system.

This focus on extensibility leads to the microkernel approach to os architecture: as explained

by Liedtke [143, 144], microkernels should include in the kernel only that which is necessary to

implement the remainder of the system; everything else need not be in the kernel. (Note that this

is distinct from whether extensions may run in the kernel memory space or not, a choice which

varies among different microkernels—for instance, device drivers are not considered part of a

microkernel, but may run with kernel privileges.) Since operating system efficiency is paramount,

endless clever mechanisms have been proposed to provide extensibility.

Broadly, all os extensions, regardless of mechanism, supply a new method of interacting with

some resource of the system: they extend the set of resource access protocols. The space of

extensions therefore depends heavily on the granularity of the resources exposed by the existing

kernel. If a kernel exposes a file system abstraction, for instance, then extending it might entail

permitting new access-control mechanisms or policies for files. If the kernel only exposes a disk-

level abstraction, extensions might include file system implementations themselves.

2.6.1 Static os extensions: Aspects and code management

There is a small line of research porting the code-management facilities of aop to os development.

In a short position paper, Fiuczynski et al. [83] observe that while several research os projects are

obviously extensions to some mainline os, they are equally well aspects—each one a single concern

cutting across the codebase to implement a feature. Indeed, matching my taxonomy, these exten-

sions are build-time integrated, pervasive and fine-grained, and provide new functionality and

new policies. Like all aspects, they extend the control flow and state of the mainline kernel. How-

ever, the authors lament that the current notation of these extensions as patch sets—collections of

the syntactic differences between the mainline and the extension—is inadequate. These extensions

are semantic units, and therefore ought to be expressed explicitly in an aop language. Further,

patches are notoriously brittle to tiny perturbations in the mainline code, and a more semantics-

driven weaving mechanism (explored also in [172]) would ease extension management consider-

ably. (In this spirit, Lohmann et al. [149] built an aspect-oriented embedded os, and described

their successes implementing various memory protection schemes as aspects—unsurprisingly, the

aop approach permitted more flexibility than patch-sets would have.)

33

In follow-up work, Reynolds et al. [184] examine to what extent the Linux kernel can be “un-

woven” into separate aspects, and how amenable it is to extension by advice. They note that

coding conventions weakly approximate aspects, as preprocessor directives are used to separate

code pertaining to only one use-case, and optimistically suggest that an aop rephrasing of the

code is feasible. As an added benefit, by making these aspects explicit, the analytical tools of aop

(some of which were described earlier) can be applied to kernel maintenance issues, including

easing the brittleness of applying extensions and identifying when two extensions might cause

conflicting changes to the mainline code.

2.6.2 The Exokernel approach: Composable, pervasive but coarse

In some sense, any time a computer spends “running the operating system” is time better spent

running user programs, and therefore the design of the operating system should optimize for

unobtrusiveness and speed. Further, since no operating system can suffice for all users’ needs,

surely it would be sheer hubris to select some subset of needs to be addressed and declare the

result sufficient. Instead, the appropriate design should therefore be to address no needs beyond

multiplexing the hardware resources of the system to all users. This rather extreme rationale

motivates the Exokernel system.

Exokernel defines an operating system as “any piece of software that the application cannot

either change or avoid”. It views a kernel as a meticulous switchboard operator, whose sole func-

tion is to safely multiplex physical resources [68, 69]. Everything else is policy—and therefore

relegated to an extension: how to use the compute, storage or communications resources is left to

a “library os”, on a per-application basis, that defines the semantics connecting the low-level hard-

ware and the application needs. Thus a databaseOS could implement a completely customized

file system, while a webOS could implement a highly-tuned network interface [88]. If necessary,

a common libOS could be implemented to provide emulation of a more traditional operating

system [120]. The extension model here is application-centric and very pervasive, but not very

granular: a user-mode extension can do anything it wants, using a nearly-native interface to the

hardware of the system, but must reimplement an entire libOS to do so. The only conflicts relevant

to an exokernel are when a libOS or application hoards resources the system as a whole requires

for some other purpose. To that end, an exokernel defines a secure binding, a combination of a

physical resource name (when possible) and capabilities granting privileges over that resource to

the requesting process. These capabilities are enforced by hardware as often as possible, for sheer

speed, and in software when unavoidable.

34

2.6.3 The SPIN approach: fine-grained and wide

On one level, the SPIN project can be seen as an experiment in mechanisms, showing that by

requiring extensions to be written in a certain way, one could build a system with easier-to-use

base abstractions, comparable performance, and stronger security guarantees than an exokernel

approach [23]. On another level, SPIN is very similar to an exokernel, “one step up”: provid-

ing as part of its abi some abstractions above the hardware level, but still permitting extensive

customization. Philosophically, SPIN adopts the more traditional model of actual kernel-mode

extensions, which yields a non-degenerate kernel extension model.

The fundamental choice in SPIN, from which the rest of its architecture falls out as a conse-

quence, is the choice of Modula-3 as the only supported language for writing kernel extensions.

Modula-3 is an object-oriented language that has support for modules with opaque types: in a

type-safe language, values of an opaque type may be used as capabilities, and SPIN exploits this

for its security mechanism. Unlike prior capability systems that required complex data structures

and capability checking (e.g., Hydra [229]), SPIN represents capabilities as bare pointers and ca-

pability checking degenerates to pointer dereference. A pointer of type Console.T, for instance,

permits the holder of that pointer to do nothing beyond calling methods expecting a Console.T:

this is a special case of a more general parametricity theorem that in essence states that type-safe

code cannot violate the encapsulation of opaque types. SPIN therefore discharges most safety

checks at compile or link time, rather than requiring runtime hardware or software support.3

SPIN defines higher-level abstractions than exokernel does: for instance, it defines the rudi-

ments of a thread library and provides a default global scheduler, though it does not impose a

specific threading discipline to applications.4 It also chooses not to expose physical names for

memory to extensions, but rather capabilities and virtual addresses; extensions may implement

memory management policies manipulating these abstractions (for instance, [189]). To surface

these interfaces to extensions, SPIN defines its extension model in terms of events and event han-

dlers. Event handlers are merely procedures of a given interface; raising an event is essentially

just a procedure call. SPIN permits multiple extensions to register handlers for an event.5 The

ordering of such handlers is explicitly undefined, so extensions cannot make assumptions about

the presence of other extensions or of their relative ordering. For even finer granularity than

3 One runtime precaution is needed: since user code is type-unsafe, raw pointers are wrapped as externalized references
before escaping the kernel.

4 At least in user-mode; the kernel controls scheduling while an application thread makes a system call.

5 In general, with multiple handlers, event dispatch bears an overhead linear in the size of handlers and guards.

35

handling every event of a given type, extensions may provide guards that pass along only those

events they deem relevant. In short, the SPIN model is less pervasive than that of Exokernel but

of much finer granularity.

SPIN defines no explicit notion of conflict, though operationally, conflicts among extensions are

simply those problems caught by the compiler and linker. But other problems are left unspecified:

extensions may remove other extensions’ handlers for a given event, and an event’s dispatcher re-

turns the value of the last-run handler, which is ill-specified (as handlers are unordered). However,

if extensions are well-behaved (for example, when extensions are application-specific or disjoint),

SPIN’s semantics are well-defined: faulty extensions used by one application will not cause an-

other application (or its extensions) to malfunction.

The SPIN model seems a closer fit to the web browser space than Exokernel’s does. The

ability to define customized protection domains is useful, especially in an environment where

the best delineations of those boundaries are not yet known [182, 183]. Additionally, since web

browsers currently distribute extensions in source-code form, using a language mechanism to

reduce execution overhead is a timely and practical approach. These language-level benefits shine

through even more clearly when considering the Singularity architecture.

2.6.4 The Singularity approach: Fine-grained, not too wide or narrow

Singularity is a recent research effort in a clean-slate redesign of an operating system [24, 55, 108–

110, 203]. It is predicated on three primary techniques: the exclusive use of type-safe languages, a

first-class notion of an application, and a carefully managed channel abstraction for interprocess

communication. Together, these techniques permit a robust extensibility model: both user-mode

extensions (applications) and kernel-mode extensions (drivers) play by the same rules [110].

An extension in Singularity is defined by a manifest, declaring what resources it must be

granted, what resources it would like to use, and what channels it exports for interaction. (In

fact, the only distinctions between applications and drivers are merely the claim of belonging to

the 〈driverCategory/〉 of extensions, and the dependency on raw hardware resources.) Code is

annotated with pre- and post-conditions using Spec# [14], thereby specifying requirements down

to the individual procedure level. Channels are essentially two-way pipes that are annotated with

state-based contract types, which encode the expected message protocol for the channel. These

declarations and types are more than documentation: they are checked by the kernel repeatedly,

at compile time, at install time, and at load time.6 These repeated checks ensure that drivers that

6 These declarations imply a need for some form of side-by-side versioning, to ensure that older drivers still have the

36

cannot run properly do not compile, that drivers that cannot ever successfully load on a partic-

ular machine are never installed, and that drivers that cannot run in the current machine state

are never loaded. Singularity thereby provides feedback early and often, explaining the cause of

an extension failure before it causes a crash. Essentially, the manifest becomes a model for the

extension, making it a “self-describing artifact” [203].

For all that it formalizes, Singularity does not explicitly define the notions of extension com-

patibility or conflict. From the system invariants, compatibility among extensions amounts to re-

quiring only resources already available from the system and existing extensions, and using those

resources in type-safe ways. All extensions in Singularity are sealed, prohibiting runtime code gen-

eration or injection of data into a running process. Therefore all communication between processes

takes place via channels. Forcing this communication pattern ensures that the temporal guarantees

from the types apply in all circumstances. Thus type-safety here is a stronger claim than it is in

SPIN. Note that while this does not prevent logic bugs from making extensions handle inputs in-

correctly, it does ensure extensions never have to handle incorrect inputs. Dually, one can infer the

kinds of conflicts avoided by the system: requiring unavailable resources, sending incorrect inputs

to another extension, or breaking abstraction and directly modifying another extension’s data.

Relative to the other operating systems discussed above, Singularity permits fewer lowest-level

extensions than Exokernel or SPIN allow. For example, Singularity provides thread-manipulation

and exchange-heap functions as part of the kernel abi [109]; Exokernel permits a libOS to define

its own threading model [11], while SPIN permits extensible memory management [23]. This is

mostly because the projects goals are orthogonal—Singularity aims first to improve the depend-

ability and security of operating systems, and this imposes certain design choices that require a

more extensive kernel. This decision also simplifies the Sing# type system to ignore such low-

level details.

As alluded to when discussing SPIN, language-level techniques seem particularly apropos for

the browser space. The choice of manifest-based extensions is particularly appropriate: Firefox’s

extensions already use a manifest to describe some (minimal) information about themselves, and

enhancing these to declare needed resources, à la Singularity, is a natural step. Further, Singu-

larity’s type system encodes communication patterns of the extension; currently such patterns in

Firefox are merely unenforced documentation. Additionally, Singularity demonstrates a decent

compromise between lowest-level extensibility and a strong, expressive type system: by analogy,

a browser (or any webapp, for that matter) has no need for replaceable HTML rendering engines.

expected versions of dependencies and prevent “dll Hell”. This is merely an engineering problem; the .Net framework
addresses this issue.

37

(But see Section 3.3, where this possibility is addressed.) The largest remaining challenge is the

lack of a convenient but type-safe api for accessing web pages’ contents: similarly to Singularity’s

drivers and applications, extensions and web pages are defined almost identically, differing only

in what resources they are initially allowed to access.

2.6.5 Other platforms

As mentioned at the outset of this section, extensibility can be found to varying degrees in many

systems. Though few formal research papers document these efforts, several of these systems bear

many resemblances to idioms seen in browser extensions, or to trends highlighted in oses above.

LATEX: A patchwork of pervasive, mutable macros The “LATEX document preparation system”

[134, 163] describes both the program that compiles input markup into output documents and the

ecosystem of packages that customize every aspect of the appearance of those documents. The

core of the program is based on Knuth’s TEX [125], which defines a startlingly simple algorithm

for optimally typesetting pages, paragraphs, and mathematical content [126]. Other than bug-fixes

and updates to incorporate multi-lingual fonts, the TEX kernel has hardly changed in over thirty

years. By contrast, thousands of packages currently exist and more are being added constantly,

and it is very common for packages to conflict with one another.

The TEX markup language is fundamentally macro based, and includes both primitives to

describe page parameters (e.g., font size, page dimensions) and the ability to create user-defined

macros. These macros are used to build up larger units of text, such as chapter titles or page

headers; packages are nothing more than collections of macros. Often, packages produce nearly

the desired results, so many macros (and packages) resort to patching the commands of other

packages to modify their definitions:

\newcommand{\Hello}{Hello}

% \Hello --> "Hello"

\let\oldhello=\Hello % saves an alias to original \Hello macro

\renewcommand{\Hello}[1]{\oldhello, #1} % "calls" original \Hello macro

% \Hello{world} --> "Hello, world"

Often, such patches insert additional content before or after existing macros; occasionally they will

replace the original definitions entirely. It should therefore be completely unsurprising that such

macro patches, which crudely emulate manual aspect weaving, are highly sensitive to weaving-

order conflicts. Resolving these conflicts is often quite tedious, and package authors frequently

38

have to add “compatibility flags” that modify how the package is loaded in order to account for

other packages’ presence. In contrast to web extension conflicts, where the user of extensions has

no expertise to resolve problems, the user of LATEX packages often understands the rudiments of

macros well enough to troubleshoot their particular problems.

Emacs, Eclipse and Visual Studio Integrated development environments (ides) are a frequent

target for extension, perhaps because their primary users—developers—are precisely the same

people capable of writing extensions. Different ides support different apis for extensibility, and

may permit varying amounts of functionality to be replaced.

Emacs (short for “editor macros”) [204] is essentially a thin shell for editing buffers of plain text,

interpreting LISP programs, and handling i/o. Much like an exokernel, its default functionality

merely multiplexes the keyboard to the display or the disk. All of the other functionality that emacs

can host—e.g., language-specific syntax highlighting, automatic word wrapping, a mail client, an

ide—is provided by LISP modules that are dynamically loaded and interpreted by that minimal

shell. By convention, these functions are divided into “major” and “minor” modes: major modes

are mutually exclusive, while minor modes embellish a major one. Consequently, major modes

frequently do not conflict with each other, except perhaps by clashing over global hotkeys, while

minor modes frequently do conflict. (Ironically, there exists a package that attempts to provide

“multiple major modes” simultaneously, and this package is itself a frequent source of conflicts.)

To accommodate packages that must adapt to each other’s presence, the LISP interpreter includes

aspect-oriented primitives to modify existing code. As with LATEX, resolving conflicts between

emacs packages often amounts to manipulating the package loading order, but if necessary users

can modify the packages themselves, which are nearly always distributed in source-code form.

Eclipse is also an ide that is entirely built up from packages (known as “plugins”) interpreted

by, in this case, a Java runtime. But in stark contrast to emacs, Eclipse plugins must explicitly state

their dependencies and their extension points [27]; if the dependencies can be satisfied, then the

set of plugins can be loaded. As noted earlier, this approach resembles that of open modules [6],

and in practice works relatively well. However, the Eclipse architecture is fairly “rigid”: if a

needed extension point does not exist, there is no way for another plugin to hook into that point

without reimplementing the target extension entirely.7 Additionally, Eclipse tends to suffer from

its own version of “dll hell”, where unless precisely the expected versions of all plugins are

present, the system as a whole will not work. When packages do not work together, users have

7 Recent versions of Eclipse include support for AspectJ, which permits some dynamic weaving of functions that were
not exposed as extension points; this is very brittle and not recommended practice.

39

no recourse beyond disabling the broken extensions, since packages are compiled jar files that

cannot readily be modified.

Visual Studio permits far more limited extensibility than either emacs or Eclipse, but its exten-

sions often are more stable [160]. Built atop a larger kernel than the others, many of its major

ui elements are provided by a collection of packages [161] that expose additional apis to extend

various components of the platform [30, 31]. Visual Studio does not yet support any form of aspect

weaving in its extensions, so unless an extension point is provided there is nothing for extensions

to modify. Extensions are compiled code, so again when conflicts occur the user has no choice

but to disable the troublesome extensions.

2.7 Feature specification

The larger a system grows, the greater the chance that seemingly unrelated parts interact in unex-

pected ways. At the concrete level of code, interactions may make the codebase difficult to improve

over time; at a higher level, interactions may threaten the correctness of the system’s user-visible

behavior. Feature specification aims to address this higher-level concern: a feature is an informal, self-

contained, user-visible piece of functionality, whose behavior may be rigorously specified using a

number of techniques. These specifications may be checked against each other and against axioms

of the base system, to detect unwanted interactions—conflicts. This feature interaction problem has

been intensely studied by the telecommunications industry: as they roll out new features (e.g., call

waiting, caller id) they must ensure that previously-working features do not break unexpectedly.

Unlike aop or operating system extension mechanisms, feature specification is a step removed

from the extensible systems it is used to model. While the underlying system therefore has to

contend with granularity, pervasiveness, integration and other architectural issues, feature specifi-

cation simply uses a very expressive (and therefore granular) logic to express whatever properties

the underlying system ought to have. Likewise, the integration of multiple feature specifications

mimics whichever integration technique the underlying system uses. Feature specification con-

cerns itself almost exclusively with the troubleshooting part of extensibility.

An idealized feature specification effort is a collection of abstracted, checkable formal models that represent

the desired behavior of the implemented system. Features can specify fine-grained responses to individual

situations, and may require behavior that spans the entire underlying system. New features can be added

to the collection over time, and the collection can be checked anew to ensure different features do not break

each other’s specifications. Interactions occur when feature specifications require distinct reactions to the

same situation; conflicts occur when interactions were not expected. Conflicts are resolved by prioritizing

40

features (i.e., restricting their scope) or rewriting them; these resolutions are then reflected in the eventual

implemented program. When all features are compatible, all behaviors demanded of the system hold—a

guarantee only as strong as the specification effort.

As should be no surprise, there are a wealth of techniques for defining and modeling features,

and defining, detecting and resolving conflicts. Keck and Kuehn [122] and Calder et al. [36] give

several axes to examine the literature; I will focus on their causal view, where the goal is to iden-

tify a witness to the cause of the interaction, rather than classifying interactions by when during

development they might have been introduced or managed. Additionally, I will focus solely on

design-time specification techniques. Though there are several efforts at run-time feature specifi-

cation (e.g., [25, 26, 35]), these feature-managers look very similar to runtime security monitors.

The essential idea behind feature specification is to describe the behavior over time of the

features in the system: a temporal property is true now if at some time later a sub-property holds.

All temporal logics can express several powerful notions relating to time: e.g., a property p holds

always, eventually, until a property q holds, or at the next moment in time. Deterministic automata

encode (nearly) the same notions via sequences of states. (Some temporal logics can also express

properties concerning nondeterminism; I ignore the details here.) For both mechanisms, all feature

specification work focuses on predicates that will be satisfied infinitely often—temporally finite

properties are a special case as they trivially can be converted to infinite ones. Depending on the

problem formulation, conflicts arise either when two specifications are simultaneously enabled

infinitely often (where each feature thinks it has sole control but doesn’t), or when combining two

specifications admits no solutions at all (no system could satisfy both).

2.7.1 Logic choice

As with aspects, nearly every feature specification effort proposes a slightly different mechanism

(among others, [29, 61, 105, 154, 177, 196]), and the subtleties distinguishing one temporal logic

from another are not important here (indeed, no real consensus has been reached; see for in-

stance [1, 2, 67, 133, 216]). Choosing a particular logic ultimately depends on knowing what

conflicts need to be expressed for a given problem.

2.7.2 Termination conditions

Felty and Namjoshi [79] adopt the use of temporal logic for specifying both the system and the

features. (Since temporal logic will eventually be necessary, they view the use of additional mech-

anisms, such as state machines, as needless additional sources of error.) Specifications in their sys-

41

tem are divided into system axioms and feature properties. Their system is not modular: adding

new features may require adding to or changing the set of system axioms. (They give the example

of adding a new type of call resolution; existing axioms must be enriched to reason about this new

status.) Feature properties as presented here are engineered to be intuitive to specify.

Recall that a specification details the behavior over time of a feature: once a feature has reached

a given state (a precondition), it will exhibit a certain property until no longer applicable (a post-

condition). Felty and Namjoshi give an intuitive internal structure to pre- and post-conditions.

Preconditions are modeled as a sequence of events, between which a sequence of properties hold.

Postconditions specify what behavior persists as a consequence, either until some normal resolution

or until an exception discharges the situation. For example, an informal specification of patients

visiting a doctor might say “the patient must arrive at the office, and stay there until the receptionist

greets him; once greeted, the doctor sees the patient until finished or another emergency discharges

the patient early”. This rule schema is simple but redundant: in their case study, the authors never

used multiple events in their preconditions, and instead encoded the ongoing properties as persis-

tent postconditions of multiple rules. Additionally, distinguishing the release and the discharge

conditions adds no expressive power to the rules, but does simplify their definition of conflict.

A conflict occurs in every execution where 1) two features are enabled simultaneously infinitely

often, 2) the system axioms hold, 3) the features are not discharged, but 4) somehow a feature

property does not hold. When conflicts occur, the authors either strengthen the precondition of

one feature (making it apply less often) or weaken the discharge postcondition (making it apply

more often), so as to prioritize the other feature. This is again not modular, as adding a feature

requires editing the properties of the others to resolve conflicts. For browser extensions, the lack

of modularity is problematic. However, this clean skeleton for specifying a weakening of one rule

with respect to another will be very useful for resolving feature conflicts and, using the insights

I explore below, may be achievable in a modular way.

2.7.3 Modular checking

Li et al. [141, 142] propose a modular approach to feature checking. They work with open fea-

tures, which depend upon variables or predicates not under the control of the feature. Their key

approach (shared by [33, 37]) is to interpret temporal logic formulas using a three-valued logic:

variables may be unknown, indicating the lack of knowledge that one feature has about another’s

behavior. When validating feature composition, modularly guess the values for these unknown

predicates. Pessimistically, if everything unknown is assumed false, and the feature still validates,

42

then the feature will always validate successfully. Conversely, if everything unknown is assumed

true and the feature fails to validate, then the feature will never validate and there is an intrinsic

conflict. Otherwise, manual intervention is needed to resolve possible conflicts, by modifying the

specifications or by manually composing features.

To achieve modular checking, i.e., validation of a single open feature without knowing the

precise set of other features being composed into the system, the authors require that specifications

not be written obliviously: if a given property p plausibly may be reduced (resp. expanded)

in scope by later features, it must be specified proactively as p ∧ cp (resp. p ∨ cp), where cp is

a symbol of unknown value. Moreover, they split the validation process into two: first, they

verify that the feature’s specifications hold in the current product. The same technique as above

broadly applies: optimistically set all cp that reduce scope, and pessimistically set the others, and

see if any verifications fail.8 Second, they ensure that any changes the new feature makes to the

product preserve existing properties required by prior features. This is their modularity result: once

composed and verified, it becomes later features’ responsibilities to ensure they do not invalidate

prior features. In short, while their modular checking does model only one feature at a time, it

still requires the presence of the base program and hence is not as modular as might be desired.

The essential points for my purposes are the elaboration on the idea of cleanly weakening of

one feature with respect to another from Felty and Namjoshi [79], and identifying a plausible way

to modularly specify and reason about open features. Their modularity result depends heavily on

“unknown” values and on the cooperation of specification authors—oblivious properties cannot

be modularly checked. Additionally, as presented, the authors acknowledge that they assume a

linear ordering of feature composition, but state that the work easily extends to composing fea-

tures in the absence of a base product. If so, the essence of this approach may be very useful for

browser extensions, indicating what cooperation levels may be necessary for independent exten-

sion authors to produce easily composable extensions.

2.7.4 Reified features

Plath and Ryan [176] propose making features an explicit construct of the language used to ver-

ify feature interactions. They also use a hybrid approach in which the system is specified as a

state machine while the requirements over it are specified as temporal formulas. Together, these

essentially form a feature aspect: a reified, syntactic component that may specify the presence

8 The actual algorithm is much subtler for improved precision; the gist shown here omits the requisite but confusing
bookkeeping.

43

of required data, functionality or other features; may introduce new data, functionality, or spec-

ifications; and may change the behavior of existing data. Like aspect weaving, this last step is

inherently not modular. They identify four types of conflict between two extensions, reminiscent

of aspect conflicts: a feature composed later (resp. earlier) breaks one composed earlier (resp.

later); both features together break a property satisfied by the base system and either feature

alone; finally, the two features do not commute.

Firefox extensions are already syntactically reified, declarative objects. (They are not quite

first-class in the language sense, as they cannot be assigned as values.) Extending them to include

verification information would be natural. The exact technical assumptions made in this work may

be too expensive: the authors admit that even in their case study with a small number of simple

features, the state-space explosion quickly made the verification intractable. Perhaps surprisingly,

they argue for relative nonchalance over conflicts that break the original system (after all, exten-

sions are intended to change system behavior). It is unclear whether this argument is warranted

for browsers: most browser extensions do not supplant core functionality (unlike some telephony

features they examined), but merely augment it.

2.8 Security monitors

Security monitors are necessary whenever a user (or a runtime system) does not trust another piece

of code to run within some prescribed bounds. Monitors supervise the execution of untrusted code

and intervene when necessary to maintain the desired policy of the system, accepting all program

executions the policy deems good and rejecting the rest. Most practical policies are properties: they

judge a program execution in isolation and not relative to other executions. There are two funda-

mental kinds of properties: safety properties that ensure “nothing bad ever happens”, and liveness

properties that ensure “something good eventually happens”. Thus, never accessing /etc/passwd

is a safety property, while always closing all open files is a liveness property. Obviously, these two

properties can be conjoined to yield a non-safety, non-liveness property; surprisingly, all reason-

able9 properties can be written in this form [148]. All security monitors can thus be classified by

whether they support safety, liveness, or a combination of both property types.

An idealized security monitor enforces a single policy over a given program, by observing and mediating

any security-relevant actions taken by the program. The monitored program is oblivious to the presence of

monitors (ignoring side channels such as timing discrepancies); in fact this obliviousness ensures that the

monitor is not subvertible by the program. Policies are usually written by users or system administrators,

9 Formally, a reasonable property is a decidable predicate over program executions that at minimum is true for the empty
execution.

44

rather than the program’s developers, and their granularity depends on the monitoring technique used.

Multiple policies must be combined before the monitor can enforce the composite; the default is merely to

intersect the policies and reject the program if any monitor rejects it, which means conflicts among policies

may cause fewer programs than expected to be valid. Conflicts among policies are simply mismanaged user

expectations; the monitor will run properly regardless of what cumulative policy it enforces.

The distinctions in security monitor implementations lie mainly in integration time: static

access controls for specific policies can be enforced at build time (of either the mainline program

or the policies) [18, 63, 113, 116, 199]; execution monitors can supervise the program’s runtime;

inlined reference monitors activate (at the latest) at load time. Among the dynamic approaches,

few systems actually consider their extension model in any detail (e.g., [4, 52, 53]): how might

multiple policies compose for a given target? For those that do, designs must consider whether

policies apply only to the mainline program, or whether they layer over each other. (Consider

combining a policy limiting memory usage with one limiting processor time: if for a tiny, fast

program the cpu-usage policy took too much memory to enforce, should the memory-usage

policy abort the program due to the cpu policy’s expensive behavior, or accept the well-behaved

mainline program?) Systems that ignore policy composition implicitly assume that policies inspect

only the original program.

As was mentioned earlier, security monitors are one of aop’s strengths, describing a whole-

program property that should be expressible in a concise and easily-understood way. Unsurpris-

ingly, aop is one of several typical implementation techniques for security monitors [52, 101, 201],

though binary rewriting has been explored more thoroughly [19, 43, 70–73, 76] (among other

reasons, because it can be used even when application sources are not available). Additionally, se-

curity monitors also appear as access control mechanisms in operating systems (e.g., [96, 150, 187]).

These systems usually enforce only one policy at a time, obviating the need for policy composition.

2.8.1 Theoretical results

Before addressing the pragmatic concerns of how security policies might be specified, it is neces-

sary to know what policies are expressible and enforceable. One line of research [7, 145, 146, 192,

217] precisely defined the complexity class of properties enforceable by security automata: if the

only remedy available to a monitor is to terminate the offending program, then such a monitor

can enforce precisely the safety policies; if a monitor can also forge or suppress behavior of the

offending program, then a wider class of transaction-like policies are available. Understanding

this class, and under what operations it remains closed, informs how policies may compose.

45

2.8.2 Safety properties and beyond

Evans [75], Evans and Twyman [76] focus on code safety properties, which ensure that no “bad

thing” can occur in a program execution. Their implementation rewrites the monitored code

during compilation to wrap all security-relevant functions with calls into the monitor, which in

turn enforces the desired safety properties. Safety policies are straightforward to combine, since

they are closed under conjunction: if two policies each prevent something bad from occurring,

the conjunction of those policies naturally would prevent both bad things from occurring. When

all policies are safety properties, then there can be no conflicts. Strict safety properties are of

somewhat limited use, so their system supports slightly looser policies that wish to prohibit bad

things except in special circumstances. These weakened policies provide a modicum of added

flexibility without creating new conflict types.

Bauer et al. [19] provide a much richer environment for defining security policies. Most no-

tably, they use a more expressive mechanism for defining policies, and they give the policy

author much greater control over policy composition. Their formalism is based upon edit au-

tomata [145, 146, 148], which can delay, suppress or forge security-relevant actions taken by the

monitored program. Like safety properties, edit automata are closed under composition, but per-

mit a much broader class of enforceable transaction-like renewal policies. In essence, the monitor

can delay the beginnings of a transaction (e.g., logging in to an atm and asking for money) until

a crucial commit action occurs (recording the withdrawal), at which point the monitor can replay

the beginning of the transaction and insert the remaining events needed to complete it (logging

out), in one atomic action. In this way, the observed behavior of the program jumps from one valid

state to another, without the possibility of crashing in a visibly invalid state. To define the com-

position of multiple policies, their system permits higher-order policies that suggest modifications

(intersection, or precedence, or outright modification) to earlier policies to fit them together.

Unfortunately, as noted by the authors [148, section 5], it is not always reasonable to assume

the monitor can delay, suppress or forge arbitrary security-related actions. For instance, if a policy

requires that programs close all opened files, it may not be possible to delay the open event until

the matching close occurs: any intervening i/o operations would block or fail without a valid file

handle. Dually, the monitor cannot forge events that require secrets or time-sensitive responses.

These and other obstacles make the edit automata model a challenging fit for the current form of

webapp programming, where authentication and time-sensitive network events are the norm.

Additionally, note that multiple policies cannot be written modularly in their system without

someone eventually manually composing them. Their language does not expose any conflict

46

checking (i.e., if two policies both address the same situation)—though it is possible that the

underlying edit automata may admit an intersection test answering exactly this question. Because

the intended user of browser extensions is not equipped to write additional extensions, the edit-

automata model cannot be used directly to resolve webapp extension conflicts.

2.9 Contrasting the web platform with related work

At first impression, the exokernel approach seems a poor fit for browser extensibility. Representing

an extreme design point, an exokernel aims to let applications manage and define the semantics

of their required resources: speed is a primary concern. But the resources available in a browser,

such as incoming web content, profile data, or the user interface, are qualitatively different than

those in an os: these are structured, semantics-laden resources, and are the output of substantial

processing effort. Skewing the system design to allow rapid access to slow resources does not

address the performance bottlenecks of the system. Speed is not the primary concern, and browser

extensions therefore need to be examined in a much more full-featured base environment.

On the other hand, if used correctly exokernels can provide robustness guarantees that current

browsers cannot match. If the minimal kernel contains just enough power to draw the window

containing content, and provided a narrow interface to talk to a renderer process, the result is fairly

close to Chrome’s architecture [182]. Alternatively, if the kernel provided most of the rendering

logic, but provided a narrow interface for extensions to masquerade as http content providers,

the result is essentially the Xax approach [57], which (along with the similar Native Client [230])

provides practical mechanisms for safely running (nearly) unmodified third-party binary code in

today’s browsers. Pushing Chrome’s approach to the extreme permits arbitrary content-renderers

to be fitted into the browser’s ui: there would be no fundamental distinction between rendering

HTML and rendering Flash, for instance. This approach does make the browser dramatically more

flexible, allowing increased experimentation with new scripting languages or web standards. To an

extent, this form of flexibility is very useful (cf. C3 in Chapter 3). But it also strains the definition

of the “web platform”, since Xax or Native Client libraries are independent of the HTML/CSS/JS

trio, and merely use the browser for its access to network-available information.

Firefox’s traditional extension model is not ideal, but it is far more capable than any other

current browser extension model. Firefox’s glaring failing is in conflict detection. Because exten-

sions by nature split into functionality and interface, it is natural that the techniques to resolve ui

conflicts be different than those tailored for functionality.

Considering first ui conflicts, it seems reasonable for feature specification techniques to be

47

readily applicable. Indeed, viewing sequences of user interaction as features, feature specification

readily checks that patterns of interaction remain feasible despite the addition of new features.

(For instance, a feature could declare that “from any state, the Save functionality is available” and

“once the Save menu item or Save toolbar button is selected, the page will eventually be saved”.

Extensions may then remove either the toolbar or the menu and not violate the existing feature,

but removing both would result in conflict.) Ideally, conflict checking should be as efficient as pos-

sible (since users are notoriously impatient), which argues for modular verification of extensions.

Unfortunately, modularity is in direct tension with the desire for minimal cooperation: while Li

et al. [141, 142] enable modular checking of features compared to Felty and Namjoshi [79], it

comes at the cost of explicitly specifying interaction points between features. Depending on how

this is presented to the developer, this again may not be too onerous or restrictive a requirement.

Additionally, Douence et al. [59] distinguish the notions of strong and weak independence. Adapt-

ing this notion to ui specification, the more extensions can be certified as strongly independent

(i.e., never in conflict regardless of other extensions), the more modularly they can be verified for

other feature interactions. In Chapter 5, I model XUL overlays as document transformers; weak

and strong independence fall out naturally from those definitions (though exploiting such notions

fully is left as future work).

Turning to address conflicts from code as well, it is apparent that the full flexibility of JS is a

liability, and some more constrained language is necessary to prevent conflicts here. This was the

approach taken by SPIN [23] and Singularity [55], which both abandoned C/C++ for a strongly

typed extension language that permitted compile-time assurances of correctness. The danger with

static type systems is they are specialized to enforce a particular safety property of the code;

as I have shown, not all policies are safety policies, and policies may override each other when

composed. However as Singularity has shown, a strong type system may be sufficient (but not

necessary) to enforce an over-approximation of desired properties, provided one uses a narrow

interface with just the right abstractions. The engineering challenge in adapting Singularity’s ap-

proach will be to apply a typing discipline to the dom [210] and extend it to a suitably constrained

interface to the browser’s runtime services. Several more dynamic attempts have been made to

tame the control flow of JS [157] and the behavior of JS or dom objects [209].

It is likely that many browser extensions cannot be considered “harmless”, as they deliberately

change behaviors of the browser. However, perhaps a weaker noninterference result holds: if the

browser declares certain behaviors as extensible (à la open modules), harmless extensions merely

must not modify anything else. If not: JS routinely employs event handlers that are dynamically

added and removed; perhaps these patterns can be expressed using the dynamic pointcuts of

48

Douence et al. [59, 60], or even more powerfully using Felty and Namjoshi’s intuitive specifica-

tion language [79]? Then the absence of conflicts using these systems would imply extension

compatibility.

Not all conflicts may be resolvable by load-time; sometimes users may wish to choose to dynam-

ically prioritize one extension over another. Here security monitors’ runtime techniques become

relevant. Assuming the runtime system can present the user with a sufficient approximation of all

conflicts between two extensions, the user can define a policy resolving the conflicts. When more

than two extensions conflict, users may naturally need to compose policies. Moreover, these need

not be simple security policies: it is too limiting to ensure only that no bad thing occurs (e.g., two

extensions activate simultaneously); users may want to ensure that eventually something good

occurs (e.g., both extensions run in a well-defined order). For appropriately expressive sets of

“security-relevant” events, this is precisely Polymer’s aim [19].

2.10 Summary

This chapter has examined the extensibility problem: how systems should be designed to sup-

port extensions, and how to reason about conflicts between them, particularly in the relatively

new context of the extensible web browser, and I have explored extensibility efforts in aspect-

oriented programming, operating systems, feature specification and security monitors in order to

better understand the browser. I developed a classification scheme through which I have defined

the extensibility models for each of these systems. Finally, I have examined several specific tech-

niques from these domains, and explored how they might be used to design a better extensibility

model for a web browser.

49

Chapter 3

BROWSER ARCHITECTURE CHOICES FOR EXTENSIBILITY1

3.1 Introduction

As I have described in previous chapters, browsers as they exist today all provide some measure

of extensibility, but their approaches are ill-equipped to handle the intrinsic compatibility chal-

lenges that extensions cause. Further, because production-quality browsers are all monolithic,

complex systems, it is particularly challenging to modify or experiment with the extension mech-

anisms themselves. Modifying Chrome’s extension model, for example, would entail modifying

their multi-process architecture, and modifying Firefox’s extension mechanisms would require

rewriting the entire Firefox ui!

The time has come to reconsider browser architectures with a focus on extensibility. This

chapter presents C3: a reconfigurable, extensible implementation of HTML, CSS and JS designed

for web client research and experimentation. C3 is written entirely in C# and takes advantage of

.Net’s libraries and type-safety. Similar to Firefox building atop Gecko, I have built a prototype

browser atop C3, using only HTML, CSS and JS.

By reconfigurable, I mean that each of the modules in the browser—Document Object Model

(dom) implementation, HTML parser, JS engine, etc.—is loosely coupled by narrow, type-safe in-

terfaces and can be replaced with alternate implementations compiled separately from C3 itself.

By extensible, I mean that the default implementations of the modules support run-time extensions

that can be systematically introduced to

1. extend the syntax and implementation of HTML with new tag names and dom node types

that are technically indistinguishable from the default C3-provided tags,

2. transform the dom when being parsed from HTML by post-processing subtrees as the parser

constructs them,

3. extend the ui of the running browser with new content,

4. extend the environment for executing JS with additional bindings to new native objects, and

5. modify running JS code by dynamically weaving advice into existing functions.

1 This chapter is based on work initially published in the 2
nd USENIX Conference on Web Application Development

(WebApps ’11) [138]

50

Compared to existing browsers, C3 introduces novel extension points (1) and (5), and generalizes

existing extension points (2)–(4). These extension points are treated in order in Section 3.3. I dis-

cuss their functionality and their security implications with respect to the same-origin policy [188].

I also provide examples of various extensions that I and others have built.

3.1.1 Addressing a broader need

While my initial motivation for developing C3 grew from a need for a platform to develop novel

extension mechanisms, a clean-slate reimplementation of the web platform is also of use to many

other researchers who are experimenting with internal components of today’s browsers:

1. XML3D [202] defines new HTML tags and renders them with a 3d ray-tracing engine—but

neither HTML nor the layout algorithm are extensible.

2. Maverick [185] permits writing device drivers in JS and connecting the devices (e.g., web-

cams, usb thumb drives, gpus, etc.) to web pages—but JS cannot send raw usb packets to

the usb root hub.

3. RePriv [86] experiments with new ways to securely expose and interact with private brows-

ing information (e.g., topics inferred from browsing history) via reference-monitored apis—

but neither plug-ins nor JS extensions can guarantee the integrity or security of the mined

data as it flows through the browser.

4. Reis and Gribble [182] identify desired security and performance boundaries for webapps—

but the existing abstractions (based on the same-origin policy) are only imperfect and inflex-

ible proxies.

These projects incur development and maintenance costs well above the inherent complexity of

their added functionality. Researchers often must modify the source code of the browsers—usually

tightly-optimized, obscure, and sprawling C/C++ code—and this requirement of deep domain

knowledge poses a high barrier to entry, correctness, and adoption of research results. Moreover,

patching browser sources makes it difficult to update the projects for new versions of the browsers.

This overhead obscures the fact that such research projects are essentially extensions to the web-

browsing experience, and would be much simpler to realize on a flexible platform with more

powerful extension mechanisms. Though existing extension points in mainstream browsers vary

widely in both design and power, none can support the research projects described above.

51

Figure 3.1: Screenshots of C3. Everything but the title bar is HTML (left), including the browser
chrome (right).

3.1.2 Contributions

The rest of the chapter is structured as follows. Section 3.2 gives an overview of C3’s architecture,

highlighting the software engineering choices made to further the modularity and extensibility

design goals. Section 3.3 presents the design rationale and implementation for the supported

extension points. Section 3.4 evaluates the performance, expressiveness, and security implications

of the extension points. Section 3.5 describes future work. Section 3.6 summarizes the chapter.

Developing a project as large as C3 would not have been possible without the collaboration

and support of colleagues at Microsoft Research. Of specific note, Herman Venter designed and

implemented the JS engine and the HTML and CSS parsers, and Nikolai Tillman and his interns

implemented the Spur j it engine used for JS execution. Wolfram Schulte led the project and

prototyped the layout engine, which was enormously enhanced by Brian Burg during his intern-

ship. During my internships with the project, I designed the dom implementation, the basic

browser ui, and focused most of my attention on the extension mechanisms described in this

and the following chapters.

3.2 C3 architecture and design choices

As a research platform, C3’s explicit design goals are architectural modularity and flexibility where

possible, instead of raw performance. Supporting the various extension mechanisms above re-

quires hooks at many levels of the system. These goals are realized through careful design and

implementation choices. Since many requirements of an HTML platform are standardized, as-

pects of the architecture are necessarily similar to other HTML implementations. C3 lacks some

52

Event loop

dom implementation

Node, Element, . . .

Default down-
load manager

JS Engine

“Browser” executable

ui
WinForms
renderer

Layout

ILayoutListener

IRenderer

IHtmlParser
HtmlParser

CssParser
ICssParser

IDownloadManager

.Net Assembly
Class
Interface
Communication
Implementation
Threads

Figure 3.2: C3’s modular architecture

of the features present in mature implementations, but contains all of the essential architectural

details of an HTML platform.

C3’s clean-slate implementation presented an opportunity to leverage modern software engi-

neering tools and practices. Using a managed language such as C# sidesteps the headaches of

memory management, buffer overruns, and many of the common vulnerabilities in production

browsers. Using a higher-level language better preserves abstractions and simplifies many imple-

mentation details. Code Contracts [78] are used throughout C3 to ensure implementation-level

invariants and safety properties—something that is not feasible in existing browsers.

Below, I sketch C3’s module-level architecture, and elaborate on several core design choices and

resulting customization opportunities. I also highlight features that enable the extension points

examined in Section 3.3.

3.2.1 Pieces of an HTML platform

The primary task of any web platform is to parse, render, and display an HTML document. For

interactivity, web applications additionally require the managing of events such as user input,

network connections, and script evaluation. Many of these sub-tasks are independent; Fig. 3.2

shows C3’s module-level decomposition of these tasks. The HTML parser converts a text stream

into an object tree, while the CSS parser recognizes stylesheets. The JS engine dispatches and

53

executes event handlers. The dom implementation implements the api of dom nodes, and also

defines bindings to expose these methods to JS scripts. The download manager handles actual

network communication and interactions with any on-disk cache. The layout engine computes the

visual structure and appearance of a dom tree given current CSS styles. The renderer displays a

computed layout. The browser’s ui displays the output of the renderer on the screen, and routes

user input to the dom.

3.2.2 Modularity

Unlike many modern browsers, C3’s design embraces loose coupling between browser compo-

nents. For example, it is trivial to replace the HTML parser, renderer front end, or JS engine with-

out modifying the dom implementation or layout algorithm. To make such drop-in replacements

feasible, C3 requires that all data structures shared between modules (e.g., the representation of

objects between the JS engine, the dom and the HTML parser) are hidden behind interfaces, and

avoids sharing data structures between modules whenever possible (e.g., the dom and the lay-

out engine are heap-disjoint). This design decision also simplifies threading disciplines, and is

further discussed in Section 3.2.9.

Simple implementation-agnostic interfaces describe the operations of the dom implementa-

tion, HTML parser, CSS parser, JS engine, layout engine, and front-end renderer modules. Each

module is implemented as a separate .Net assembly, which prevents modules from breaking ab-

stractions and makes swapping implementations simple. Parsers could be replaced with paral-

lel [119] or speculative [198] versions; layout might be replaced with a parallel [156] or incremen-

talizing version, and so on. The default module implementations are intended as straightforward,

unoptimized reference implementations. This permits easy per-module evaluations of alternate

implementation choices.

3.2.3 Implementing JS objects

The JS language is prototype based rather than class-based like C#. This impedance mismatch has

several technical consequences for the implementation of the JS engine that, while not directly

related to extensions, do bear on the modularity of the engine as it fits into C3. Specifically, the

choices for implementing JS objects directly impact the implementation of dom objects, which

in turn affects the simplicity of the HTML extension point (discussed later). This section may be

confusing, since it must discuss both the JS language and the C# implementation of that language.

54

The JS object model Each JS object is essentially a property bag that maps names to values.

Additionally, each object internally contains a distinguished pointer to its prototype object; these

pointers are not mutable, and each so-called prototype chain eventually terminates at one unique

prototypical object that is the root of the prototype hierarchy. Prototype objects are crucial in

property resolution: to determine the value of fooObj.bar, fooObj’s property bag is checked to

see if it contains bar, and if so, the value is returned. If not, then fooObj’s prototype is recursively

checked to see if it contains bar, and so on until the prototype chain ends:

var fooProto = { bar: 42 };

var fooObj = { baz: 43 };

// Assume fooObj.[[prototype]] == fooProto

fooObj.bar == (fooObj.[[prototype]]).bar == fooProto.bar == 42

fooObj.baz == 43

fooObj.notFound == (fooObj.[[prototype]]).notFound == fooProto.notFound

== (fooProto.[[prototype]]).notFound == null.notFound

== undefined

(The prototype pointers are not available in standard JS code, though some engines, including

SpiderMonkey and V8, have exposed them via the property name __proto__. The notation used

here conforms to the ECMAScript specification, and calls them [[prototype]].)

Because prototype pointers are not directly manipulable through JS code, JS uses a concept of

constructor functions to create new objects and populate their prototypes. Accordingly, constructor

functions are JS functions—which means they are JS objects—that have a prototype property. This

is a normal JS property that contains a normal JS object. When new JS objects are created from a

constructor function, their internal [[prototype]] pointers are set to the current value of the con-

structor function’s prototype property; additionally, the prototype object contains a field, named

constructor, that points back to the constructor function:

function Foo() { this.baz = 43; };

Foo.prototype.bar = 42;

var fooProto = Foo.prototype;

// fooProto.constructor == Foo

var fooObj = new Foo();

// fooObj.[[prototype]] == fooProto

A diagram showing the relationships between fooObj, fooProto, and Foo, along with the built-in

objects Function and Object, is shown in Fig. 3.3.

55

Implementing the JS object model The JS engine in C3 is part of a self-contained subproject

called Spur [20], which is is a tracing-based j it for msil. The JS engine is designed to work as

a standalone shell or embedded in a web-platform or other “host environment”, and is entirely

implemented in C#. Consequently, the central design goal of the C# implementation of JS objects

is that it simultaneously expose the correct semantics to JS and expose a natural api to .Net code.

Exposing the correct semantics to JS is not trivial: where class-based oo languages have classes

(that are not themselves objects) and instances (that are), JS has constructor functions, prototypes,

and instances, all of which are objects. Accordingly, the C# implementation of JS must construct

instances of three C# classes for each built-in JS object type:

1. A constructor class, e.g., NumberConstructor, that exposes properties equivalent to static

constants or methods, e.g., Number.MAX_VALUE. Only one instance of this class is created.

2. A prototype class, e.g., NumberProtoype, that implements methods shared by all instances,

e.g., aNumber.toFixed(). Only one instance of this class is created.

3. An instance class, e.g., Number, that implements the behavior of individual instances. Natu-

rally, one instance of this class is created for each JS instance object.

The actual implementation of each object’s “property bag” is an instance of another C# class called

TypeObject: for example, the TypeObject in the NumberPrototype instance contains a mapping

from the name constructor to the NumberConstructor instance.

However, having to work with three parallel classes for each object type does not yield a nat-

ural .Net api. Instead, the design follows a pattern where the constructor and prototype classes

delegate their functionality to corresponding methods in the instance class. For example, calling

aNumber.toFixed() resolves to the JS-callable method toFixed that is exposed on (the singleton

C# instance of) NumberPrototype, which is implemented by a stub that marshals the arguments

into strongly-typed C# values and then calls the ToFixed method of (the aNumber instance of) the

Number class. While this indirection seems needlessly convoluted, the net effect is that C# code can

completely ignore the constructor and prototype classes and pretend all functionality is defined on

the instance class alone. (This is why the class is called Number, and not NumberInstance; C# code

only deals with instances.) At the same time, the rest of the JS engine ensures that the prototype

and constructor classes are instantiated as needed to make JS objects work, thereby fulfilling the

main design goal at the outset of this section.

Note that ObjectInstance and TypeObject classes are public Spur apis. This means that host

environments such as the web platform can easily add their own built-in objects, as in Section 3.2.4.

56

[[prototype]]

bar: 42

foo

[[prototype]]

prototype

Foo

[[prototype]]

constructor

fooProto

[[prototype]]

prototype

Function

[[prototype]]

constructor

prototype function

[[prototype]]

prototype

Object

[[prototype]]

constructor

prototype object

Figure 3.3: The structure of JS objects, including the built-in Function and Object functions

3.2.4 dom implementation

The dom api is a large set of interfaces, methods and properties for interacting with a document

tree. I highlight two key design choices in the implementation: what the object graph for the

tree looks like, and the bindings of these interfaces to C# classes. These choices aim to minimize

overhead and “boilerplate” coding burdens for extension authors.

Object trees: The dom apis are used throughout the browser: by the HTML parser (Section 3.2.5)

to construct the document tree, by JS scripts to manipulate that tree’s structure and query its

properties, and by the layout engine to traverse and render the tree efficiently. These clients use

distinct but overlapping subsets of the apis, which means they must be exposed both to JS and

to C#, which in turn leads to the first design choice.

One natural choice is to maintain a tree of “implementation” objects in the C# heap separate

from a set of “wrapper” objects in the JS heap. These “wrapper objects” would be C# objects

deriving from ObjectInstance and visible to JS; the implementation objects would not. The im-

plementations of these JS objects would contain pointers to their C# counterparts: the JS objects

are a “view” of the underlying C# “model”. The JS objects contain stubs for all the dom apis,

while the C# objects contain implementations and additional helper routines. This design incurs

the overheads of extra pointer dereferences (from the JS apis to the C# helpers) and of keeping

the wrappers synchronized with the implementation tree. However, it permits specializing both

representations for their respective uses, and the extra indirection enables multiple views of the

model: This is essentially the technical basis of Chrome extensions’ “isolated worlds” [16], where

the indirection is used to ensure security properties about extensions’ JS access to the dom. Firefox

also uses the split to improve JS memory locality with “compartments” [220].

57

[[prototype]]

constructor

object Proto

[[prototype]]

constructor

appendChild()
insertBefore()
...

Node.prototype

[[prototype]]

prototype

ELEMENT_NODE
ATTRIBUTE_NODE
...

Node

[[prototype]]

constructor

open()
...

Document.prototype

. . .

[[prototype]]

constructor

getAttribute()
...

Element.prototype

[[prototype]]

prototype

Element

[[prototype]]

constructor

focus()
blur()
...

HTMLElement.prototype

[[prototype]]

prototype

HTMLElement

[[prototype]]

constructor

load()
play()
...

HTMLMediaElement.prototype

[[prototype]]

prototype

NETWORK_EMPTY
HAVE_CURRENT_DATA
...

HTMLMediaElement

. . .

Built-in JS objects

Core DOM objects

HTML5 objects

Figure 3.4: Part of the prototype and constructor hierarchy of the dom. Prototype objects contain
dom methods, and constructor objects contain static constants. Not shown are the Document
constructor or the rest of dom core interfaces, or nearly all of HTML5.

58

By contrast, C3 instead uses a single tree of objects visible to both languages, with each dom

node being a C# subclass of an ordinary JS object, and each dom api being a standard C#

method that is exposed to JS. This design choice avoids both overheads mentioned above. Fur-

ther, Spur [20], the tracing JS engine currently used by C3, can trace from JS into dom code for

better optimization opportunities. To date, no other dom implementation/JS engine pair can

support this optimization.

DOM language bindings: The second design choice stems from the first one: how to represent

dom objects such that their properties are callable from both C# and JS. Additionally, this rep-

resentation must be open: extensions such as XML3D must be able to define new types of dom

nodes that are instantiable from the parser (see Section 3.3.1) and capable of supplying new dom

apis to both languages as well. Therefore any new dom classes must be able to subclass the C#

dom class hierarchy easily, and be able to use the same mechanisms as the built-in dom classes.

Given the discussion in the previous section on implementing JS objects, C3’s chosen approach is

mostly straightforward; a subset of the JS objects comprising the dom is shown in Fig. 3.4, and an

excerpted example is shown in Fig. 3.5 for the implementation of the Element idl interface:

• The dom class hierarchy derives from DOMObjectInstance, a subclass of ObjectInstance,

and so dom objects are JS objects, as needed. (Note that DOMObjectInstance is a nearly

empty class, whose purpose is to ensure dom C# methods receive only dom C# objects.)

• Despite appearances, “constructors” such as Node or HTMLAnchorElement are not in fact

callable functions, so unlike true constructor functions, dom constructors’ prototype point-

ers are the prototypical object, and not the prototypical function. (See Fig. 3.4.)

• As required by JS semantics, dom methods, properties and constants are exposed on the re-

spective instance, prototype and constructor objects. To expose a method on a JS object (e.g.,

getAttribute), the implementation simply adds a property to the TypeObject mapping the

(JS) name to the (C#) stub function (see ElementPrototype::InitTypeObject in Fig. 3.5) that

in turn calls the actual implementation function (Element::GetAttribute). Similar steps ex-

pose a property (e.g., tagName) on instance objects using C# getters and setters (e.g., TagName).

Note that just as Spur permits host environments to add their own bindings easily, C3 continues

to provide that ability and so the dom implementation is readily extensible by new node types.

59

// WebIDL sources
interface Element : Node {
readonly attribute string tagName;
string getAttribute(string id);

}

// Generated C# implementation
class ElementConstructor : DOMObjectInstance {
protected InitTypeObject(TypeObject ty) {
ty.AddProperty("prototype", new ElementPrototype());

}
}
class Element : Node { // and Node : DOMObjectInstance
protected internal InitTypeObject(TypeObject ty) {
Element.AddInstanceProperties(ty);

}
new static internal AddInstanceProperties(TypeObject ty) {
// Add all new Element properties
ty.AddProperty("tagName", getTagName);
// Add all "inherited" Node properties
Node.AddInstanceProperties(ty);

}
// Marshal the properties from JS to C#
private void getTagName(ObjectInstance target,

ref ValueWrapper result) {
result.SetValue(((Element)target).TagName);

}
// Implement all properties and methods
public string TagName { get { ... } }
public string GetAttribute(string name) {
...

}
}
class ElementPrototype : DOMObjectInstance {
protected internal InitTypeObject(TypeObject ty) {
// Add all Element methods
AddProperty("getAttribute", getAttribute);
// Note: all Node methods come from JS prototype chain

}
// Marshal the methods from JS to C#
private void getAttribute(ObjectInstance target,

string name, ref ValueWrapper result) {
result.SetValue(((Element)target).GetAttribute(name));

}
}

1

2

3

1

2

3

Figure 3.5: Abbreviated example of idl definition and (slightly modified) C# implementation
for the Element dom interface. Each property in the idl is 1) declared in the TypeObject,
2) marshaled from JS to C#, and 3) implemented just once, in C#

.

60

3.2.5 The HTML parser

The HTML parser is concerned with transforming HTML source into a dom tree, just as a standard

compiler’s parser turns source into an ast. Extensible compilers’ parsers can recognize supersets

of their original language via extensions; similarly, C3’s default HTML parser supports extensions

that add new HTML tags (which are implemented by new C# dom classes as described above;

see also Section 3.3.1).

An extensible HTML parser has only two dependencies: a means for constructing a new node

given a tag name, and a factory method for creating a new node and inserting it into a tree. This in-

terface is far simpler than that of any dom node, and so exists as the separate INode interface. The

parser has no hard dependency on a specific dom implementation, and a minimal implementation

of the INode interface can be used to test the parser independently of the dom implementation.

The default parser implementation is given a dom node factory that can construct INodes for the

built-in HTML tag names. Extending the parser via this factory is discussed in Section 3.3.1.

3.2.6 Computing visual structure

C3 separates the interesting computation of layout from the mechanical steps of displaying it into

two disjoint subsystems. The layout engine takes a document and its stylesheets, and produces as

output a layout tree, an intermediate data structure that contains sufficient information to display

a visual representation of the document. The renderer then consults the layout tree to draw the

document in a platform- or toolkit-specific manner.

The layout engine’s job of computing a layout tree requires three steps, described below: first,

dom nodes are attributed with style information according to any present stylesheets; second,

the layout tree’s structure is determined; and third, nodes of the layout tree are annotated with

concrete styles (placement and sizing, fonts and colors, etc.) for the renderer to use. Each of

these steps admits a naïve reference implementation, but both more efficient and more extensible

algorithms are possible. I focus on the former here; layout extensibility is revisited in Section 3.3.3.

Assigning node styles The algorithm that decorates dom nodes with CSS styles does not de-

pend on any other parts of layout computation. Despite the top-down implementation suggested

by the name “cascading style sheets”, several efficient strategies exist, including recent and ongo-

ing research in parallel approaches [156].

The default style “cascading” algorithm is self-contained, single-threaded and straightforward.

It decorates each dom node with an immutable calculated style object, which is then passed

61

to the related layout tree node during construction. This immutable style suffices thereafter in

determining visual appearance.

Determining layout tree structure The layout tree is generated from the dom tree in a single

traversal. The two trees are approximately the same shape; the layout tree may omit nodes for

invisible dom elements (e.g., 〈script/〉), and may insert “synthetic” nodes for so-called generated

content (e.g., the numbers in a numbered list) or to simplify later layout invariants. For consistency,

this transformation must be serialized between dom mutations, and so runs on the dom thread

(see Section 3.2.9). The layout tree must preserve a mapping between dom elements and the

layout nodes they engender, so that mouse movement (which occurs in the renderer’s world of

screen pixels and layout tree nodes) can be routed to the correct target node (i.e., a dom element).

A naïve pointer-based solution runs afoul of an important design decision: C3’s architectural

goals of modularity require that the layout and dom trees share no pointers. Instead, all dom

nodes are given unique numeric ids, which are preserved by the dom-to-layout tree transformation.

Mouse targeting can now be defined in terms of these ids while preserving pointer-isolation of

the dom from layout: while numeric ids are conceptually similar to pointers, they cannot be used

for thread-unsafe dereferences of the dom nodes; see Section 3.2.9.

Solving layout constraints The essence of any layout algorithm is to solve constraints governing

the placement and appearance of document elements. In HTML, these constraints are irregular

and informally specified (if at all). Consequently the constraints are typically solved by a special-

purpose, multi-pass algorithm over the layout tree, rather than a generic constraint-solver [28, 111,

156]. The manual algorithms found in production HTML platforms are often tightly optimized to

eliminate some passes for efficiency.

C3’s architecture admits such optimized approaches, too; the reference implementation keeps

the steps separate for clarity and ease of experimentation. Indeed, because the layout tree interface

does not assume a particular implementation strategy, several layout algorithm variants have been

explored in C3 with minimal modifications to the layout algorithm or components dependent on

the computed layout tree.

3.2.7 The browser kernel and window proxies

All security-relevant decisions are made by a browser kernel [45, 223] that mediates origin compar-

isons, network and file i/o requests, and (eventually) thread scheduling decisions. The dom is

based roughly on a capability model: if a script can reference a dom node or object, it may call

62

any of its methods. Accordingly, access to dom nodes in different documents is gated by access-

ing the window object of the foreign document: there is no other way to obtain a reference to a

node in a foreign document than by first obtaining a reference to its window object and accessing

its properties. Whether these property accesses succeed or throw a security exception depends on

the security policy of the browser; in the same-origin policy [188], only accesses from documents

in the same origin will succeed. Rather than scatter the relevant security checks throughout the

browser kernel, C3 contains two implementations of window objects: a Window will always access

properties successfully, while a WindowProxy wraps an underlying Window and for nearly every

property will always throw a security exception.

Window objects also have a handful of properties that themselves return window objects (e.g.,

the opener of a popup, or the child frames contained within a window), and these properties

can be used to navigate the relationships between windows, regardless of origin.2 Therefore, the

implementations of these properties on both Window and WindowProxy always succeed, and return

either the requested window or a proxied version, as determined by the browser kernel and the

current executing script context. In this way, the implementation maintains the invariant that

(nodes from) documents from the same origin can always access each other’s unproxied Window

objects, while (nodes from) documents from separate origins can only ever see WindowProxys. This

in turn maintains the same-origin policy (but see the discussion of extensions and security, below).

3.2.8 Accommodating privileged ui

Both Firefox and Chrome implement some (or all) of their user interface (e.g., address bar, tabs,

etc.) in declarative markup, rather than hard-coded native controls. In both cases this gives the

browsers increased flexibility; it also enables Firefox’s extension ecosystem. The markup used by

these browsers is trusted, and can access internal apis not available to web content. To distinguish

the two, trusted ui files are accessed via a different url scheme: e.g., Firefox’s main ui is loaded

using chrome://browser/content/browser.xul.

I chose to implement the prototype browser’s ui in HTML for two reasons. First, it is an

experiment in writing sophisticated applications entirely within the web platform, and provides

first-hand experience with likely challenges. Even in the prototype, such experience led to the two

security-related changes described below. Second, having the ui in HTML enables the extensions

described in Section 3.3; the entirety of a C3-based application is available for extension. Like

2 Indeed, permitting these accesses while restricting all others is a tricky piece of engineering, particularly when re-
architecting a browser for multiple-process support; see [181] for details.

chrome://browser/content/browser.xul

63

Firefox, C3 supports a privileged url scheme: launching C3 with a command-line argument of

chrome://browser/tabbrowser.html will display the browser ui. Launching it with the url of

any website will display that site without any surrounding browser chrome. Currently, only HTML

file resources bundled within the C3 assembly itself may be given privileged chrome:// urls.

Designing this prototype exposed deliberate limitations in HTML when examining the naviga-

tion history of child windows (popups or 〈iframe/〉s): the apis restrict access to same-origin sites

only, and are write-only. A parent window cannot see what site a child is on unless it is from the

same origin as the parent, and can never see what sites a child has visited. A browser must avoid

both of these restrictions so that it can implement the address bar.

Rather than change api visibility, C3 extends the dom api in two ways. First, it gives priv-

ileged pages (i.e., from chrome:// urls) a new childnavigated notification when their children

are navigated, just before the unload events that the children already receive. Second, it treats

chrome:// urls as trusted origins that always pass same-origin checks. The trusted-origin mecha-

nism and the custom navigation event suffice to implement the browser ui.

3.2.9 Threading architecture

One important point of flexibility is the mapping between threads and the HTML platform compo-

nents described above. C3 does not impose any threading discipline beyond necessary serialization

required by HTML and dom standards. This is made possible by the decision to prevent data races

by design: in this architecture, data is either immutable, or it is not shared among multiple compo-

nents. Thus, it is possible to choose any threading discipline within a single component; a single

thread could be shared among all components for debugging, or several threads could be used

within each component to implement worker queues.

Below, I describe the default allocation of threads among components, as well as key concur-

rency concerns for each component.

The dom/JS thread(s)

The dom event dispatch loop and JS execution are single-threaded within a set of related web

pages.3 “Separate” pages that are unrelated4 can run entirely parallel with each other. Thus, ses-

sions with several tabs or windows open simultaneously use multiple dom event dispatch loops.

3 I ignore for now web-workers, which are an orthogonal concern.

4 Defining when pages are actually separate is non-trivial, and is a refinement of the same-origin policy, which in turn
has been the subject of considerable research [15, 114]

chrome://browser/tabbrowser.html
chrome://
chrome://
chrome://

64

In C3, each distinct event loop consists of two threads: a mutator to run script and a watchdog

to abort run-away scripts. The system maintains the invariant that all mutator threads are heap-

disjoint: JS code executing in a task on one event loop can only access the dom nodes of documents

sharing that event loop. This invariant, combined with the single-threaded execution model of JS

(from the script’s point of view), means all dom nodes and synchronous dom operations can

be lock-free. (Operations involving local storage are asynchronous and must be protected by the

storage mutex.) When a window or 〈iframe/〉 is navigated, the relevant event loop may change.

An event loop manager is responsible for maintaining the mappings between windows and event

loops to preserve the disjoint-heap invariant.

Every dom manipulation (node creation, deletion, insertion or removal; attribute creation or

modification; etc.) notifies any registered dom listener via a straightforward interface. One such

listener is used to inform the layout engine of all document manipulations; others could be used

for testing or various diagnostic purposes.

The layout thread(s)

Each top-level browser window is assigned a layout thread, responsible for resolving layout con-

straints as described in Section 3.2.6. Several browser windows might be simultaneously visible

on screen, so their layout computations must proceed in parallel for each window to quickly re-

flect mutations to the underlying documents. Once the dom thread computes a layout tree, it

transfers ownership of the tree to the layout thread, and begins building a new tree. Any exter-

nal resources necessary for layout or display (such as image data), are also passed to the layout

thread as uninterpreted .Net streams. This isolates the dom thread from any computational er-

rors on the layout threads.

The ui thread

It is common for gui toolkits to impose threading restrictions, such as only accessing ui widgets

from their creating thread. These restrictions influence the platform insofar as replaced elements

(such as buttons or text boxes) are implemented by toolkit widgets.

C3 is agnostic in choosing a particular toolkit, but rather exposes abstract interfaces for the few

widget properties actually needed by layout. The prototype currently uses the .Net WinForms

toolkit, which designates one thread as the “ui thread”, to which all input events are dispatched

and on which all widgets must be accessed. When the dom encounters a replaced element, an

actual WinForms widget must be constructed so that layout can in turn set style properties on that

65

widget. This requires synchronous calls from the dom and layout threads to the ui thread. Note,

however, that responding to events (such as mouse clicks or key presses) is asynchronous, due to the

indirection introduced by numeric node ids: the ui thread simply adds a message to the dom

event loop with the relevant ids, which the dom thread will eventually retrieve and dispatch to

the relevant event handlers.

3.3 C3 Extension points

The extension mechanisms I introduce into C3 stem from a principled examination of the various

semantics of HTML. When using a webapp, our interactions with them tacitly rely on manipulating

HTML in two distinct ways: webapps rely on the platform to interpret it operationally via the dom

and JS code, and also to interpret it visually via CSS and its associated layout algorithms. Teasing

these interpretations apart leads to the following two transformation pipelines:

• JS global object + HTML source1,2

HTML parsing−−−−−−−→ 3
dom subtrees4

onload−−−−→ dom document5

JS events−−−−→ dom document . . .

• dom document + CSS source6

CSS parsing−−−−−−→ CSS content model7

layout−−−→ CSS box model

The first pipeline distinguishes four phases of the document lifecycle, from textual sources through

to the event-based running of JS: the initial onload event marks the transition point after which

the document is asserted to be fully loaded; before this event fires, the page may be inconsistent

as critical resources in the page may not yet have loaded, or scripts may still be writing into

the document stream.

Explicitly highlighting these pipeline stages leads to designing extension points in a principled

way: there is an extension point associated with the inputs accepted or the outputs produced

by each stage, as long as the extensions preserve the pipeline structure, and always produce

outputs that are acceptable inputs to the following stages. This is in contrast to the extension

models of existing browsers, which support various extension points without relating them to

66

other possibilities or to the browser’s behavior as a whole. The extension points engendered by

the pipelines above are (as numbered):

1. Before beginning HTML parsing, extensions may provide new tag names and dom-node imple-

mentations for the parser to support.

2. Before running any scripts, extensions may modify the JS global scope by adding or removing

bindings.

3. Before inserting subtrees into the document, extensions may preprocess them using arbitrary

C# code.

4. Before firing the onload event, extensions may declaratively inject new content into the

nearly-complete tree using overlays.

5. Once the document is complete and events are running, extensions may modify existing

event handlers using aspects.

6. Before beginning CSS parsing, extensions may provide new CSS properties and values for the

parser to support.

7. Before computing layout, extensions may provide new layout box types and implementations to

affect layout and rendering.

Some of these extension points are simpler than others due to regularities in the input language,

others are more complicated, and others are as yet unimplemented. Points (1) and (5) are novel

to C3. C3 does not yet implement points (6) or (7), though they are planned future work; they

are also novel. I explain points (1), (3) and (4) in Section 3.3.1, points (2) and (5) in Section 3.3.2,

and finally points (6) and (7) in Section 3.3.3. Points (5) and (4) are the subjects of Chapters 4

and 5, respectively.

3.3.1 HTML parsing/document construction

Point (1): New tags and DOM nodes The HTML parser recognizes concrete syntax resembling

〈tagName attrName=“val”/〉 and constructs new dom nodes for each tag. In most browsers, the

choices of which tag names to recognize, and what corresponding objects to construct, are tightly

67

public interface IDOMTagFactory {
IEnumerable<Element> TagTemplates { get; }

}

public class HelloWorldTag : Element {
string TagName { get { return "HelloWorld"; } }
...

}
public class HelloWorldFactory : IDOMTagFactory {
IEnumerable<Element> TagTemplates { get {
yield return new HelloWorldTag();

} }
}

Figure 3.6: Factory and simple extension defining new tags

coupled into the parser. In C3, however, both of these decisions are abstracted behind a factory,

whose interface is shown in the top of Fig. 3.6.5 Besides simplifying the code’s internal structure,

this approach permits extensions to contribute factories too.

The default implementation of this interface provides one “template” element for each of the

standard HTML tag names; these templates inform the parser which tag names are recognized,

and are then cloned as needed by the parser. Any unknown tag names fall back to returning

an HTMLUnknownElement object, as defined by the HTML specification. However, if an extension

contributes another factory that provides additional templates, the parser seamlessly can clone

those instead of using the fallback: effectively, this extends the language recognized by the parser,

as XML3D needed, for example. A trivial example that adds support for a 〈HelloWorld/〉 tag

is shown in Fig. 3.6. A more realistic example is used by C3 to support overlays (see Fig. 3.8

and below).

The factory abstraction also provides the flexibility to support additional experiments: rather

than adding new tags, a researcher might wish to modify existing tags. Therefore, factories are per-

mitted to provide a new template for existing tag names—with the requirement that at most one

extension does so per tag name. This permits extensions to easily subclass the C3 dom imple-

mentation, e.g., to add instrumentation or auditing, or to modify existing functionality. Together,

these extensions yield a parser that accepts a superset of the standard HTML tags and still produces

a dom tree as output. (Note that tag names cannot currently be removed from the parser; exten-

5 Firefox seems not to use a factory; Chrome uses one, but the choice of factory is fixed at compile-time. C3 can load
factories dynamically.

68

public interface IParserMutatorExtension {
IEnumerable<string> TagNamesOfInterest { get; }
void OnFinishedParsing(Element element);

}

Figure 3.7: The interface for HTML parser semantic actions

sion authors wishing to filter the node types present in a document can use the next extension

point presented below.)

Point (3): Preprocessing subtrees The HTML5 parsing algorithm produces a document tree in a

bottom-up manner: nodes are created and then attached to parent nodes, which eventually are

attached to the root dom node. Compiler-authors have long known that it is useful to support

semantic actions, callbacks that examine or preprocess subtrees as they are constructed. Indeed, the

HTML parsing algorithm itself specifies some behaviors that are essentially semantic actions, e.g.,

“when an 〈img/〉 is inserted into the document, download the referenced image file”. Extensions

might use this ability to collect statistics on the document, or to sanitize it during construction.

These actions typically are local—they examine just the newly-inserted tree—and rarely mutate the

surrounding document. (In HTML in particular, because inline scripts execute during the parsing

phase, the document may change arbitrarily between two successive semantic-action callbacks,

and so semantic actions will be challenging to write if they are not local.)

Extensions in C3 can define custom semantic actions using the interface shown in Fig. 3.7.

The interface supplies a list of tag names, and a callback to be used when tags of those names

are constructed.

Point (4): Document construction Firefox pioneered the ability to define both application ui

and extensions to that ui using a single declarative markup language (XUL), an approach whose

success is witnessed by the variety and popularity of Firefox’s extensions. The basic construction is

the overlay, which behaves like a “tree-shaped patch”: the children of the 〈overlay/〉 select nodes

in a target document and define content to be inserted into or modified within them, much as

hunks within a patch select lines in a target text file. C3 adapts and generalizes this idea for HTML.

My implementation adds nine new tags to HTML, shown in Fig. 3.8 (and discussed more fully

in Chapter 5), to define overlays and the various actions they can perform. As they are a language

extension to HTML, I inform the parser of these new tags using the IDOMTagFactory described

69

Base constructions
〈overlay/〉: Root node of extension document
〈guard resource=“selector” type=“require|reject|first|last”/〉: Used within 〈overlay/〉,

add guards that restrict when the overlay successfully applies
〈insert selector=“selector” where=“before|after”/〉: Insert new content adjacent to all

nodes matched by CSS selector
〈replace selector=“selector”/〉: Replace existing subtrees matching selector with new content
〈self attrName=“value”. . . /〉: Used within 〈replace/〉, refers to node being replaced and

permits modifying its attributes
〈contents/〉: Used within 〈replace/〉, refers to children of node being replaced

Syntactic sugar
〈before . . . /〉 = 〈insert where=“before” . . . /〉
〈after . . . /〉 = 〈insert where=“after” . . . /〉

〈modify selector=“sel”
where=“before”〉
〈self new attributes〉

new content
〈/self〉
〈/modify〉

=

〈replace selector=“sel”〉
〈self new attributes〉

new content
〈contents/〉
〈/self〉
〈/replace〉

Figure 3.8: The overlay language for document construction extensions. The bottom set of tags
are syntactic sugar. A similar desugaring for 〈modify where=“after”/〉 swaps the order of
〈contents/〉 with new content.

above.6 Overlays can 〈insert/〉 or 〈replace/〉 elements, as matched by CSS selectors. To support

modifying content, overlays have the ability to refer to the target node (〈self/〉) or its 〈contents/〉.

Finally, the implementation defines syntactic sugar to make overlays easier to write.

Fig. 3.9 shows a simple but real example used during development of the system, to simulate

bulleted lists while generated content support was not yet implemented. It appends a 〈style/〉

element to the end of the 〈head/〉 subtree (and fails if no 〈head/〉 element exists), and inserts a

〈span/〉 element at the beginning of each 〈li/〉.

The subtlety of defining the semantics of overlays lies in their interactions with scripts: when

should overlays be applied to the target document? Clearly overlays must be applied after the

document structure is present, so a strawman approach would apply overlays “when parsing

finishes”. This exposes a potential inconsistency, as scripts that run during parsing would see

a partial, not-yet-overlaid document, with nodes a and b adjacent, while scripts that run after

6 Technically, this is not sufficient to implement overlays, as they are currently inert. Actually applying the overlays
requires just one general-purpose callback within the dom code. This callback could be factored as a standalone,
ad-hoc extension point, making overlays themselves truly an extension to C3.

70

〈overlay〉
〈modify selector=“head” where=“after”〉
〈self〉
〈style〉
li > #bullet { color: blue; }
〈/style〉
〈/self〉
〈/modify〉
〈before selector=“li > *:first-child”〉
〈span class=“bullet”〉•〈/span〉
〈/before〉
〈/overlay〉

Figure 3.9: Simulating list bullets (in language of Fig. 3.8)

parsing would see an overlaid document where a and b may no longer be adjacent. However, the

HTML specification offers a way out: the dom raises a particular event, onload, that indicates the

document has finished loading and is ready to begin execution. Prior to that point, the document

structure is in flux—and so I choose to apply overlays as part of that flux, immediately before the

onload event is fired. This may break poorly-coded sites, but in practice has not been an issue

with Firefox’s extensions.

3.3.2 JS execution

Point (2): Runtime environment Extensions such as Maverick may wish to inject new properties

into the JS global object. This object is an input to all scripts, and provides the initial set of func-

tionality available to pages. As an input, it must be constructed before HTML parsing begins, as the

constructed dom nodes should be consistent with the properties available from the global object:

e.g., document.body must be an instance of window.HTMLBodyElement. This point in the document’s

execution is stable—no scripts have executed, no nodes have been constructed—and extensions

are permitted to manipulate the global object as they please. (This could lead to inconsistencies,

e.g., if they modify window.HTMLBodyElement but do not replace the implementation of 〈body/〉

tags using the prior extension points. I ignore such buggy extensions for now.)

Point (5): Scripts themselves The extensions described so far modify discrete pieces of imple-

mentation, such as individual node types or the document structure, because there exist ways to

name each of these resources statically: e.g., overlays can examine the HTML source of a page and

71

write CSS selectors to name parts of the structure. The analogous extension to script code needs to

modify the sources of individual functions. Many JS idioms have been developed to achieve this,

but they all suffer from JS’s dynamic nature: function names do not exist statically, and scripts can

create new functions or alias existing ones at runtime; no static inspection of the scripts’ sources

can precisely identify these names. Moreover, the common idioms used by extensions today are

brittle and prone to silent failure.

C3 includes my prior work (see Chapter 4), which addresses this disparity by modifying the

JS compiler to support a dynamic weaving mechanism adapting ideas from aspect-oriented program-

ming to advise closures (rather than variables that point to them). Only a dynamic approach can

detect runtime-evaluated functions, and this requires compiler support to advise all aliases to a

function (rather than individual names). As a side benefit, aspects’ integration with the compiler

often improves the performance of the advice: examining the sources of twenty Firefox extensions,

aspects could express nearly all observed idioms with shorter, clearer and often faster code.

3.3.3 CSS and layout

Discussion An extensible CSS engine permits incrementally adding new features to layout in

a modular, clean way. The CSS3 specifications themselves are a step in this direction, breaking

the tightly-coupled CSS2.1 specification into smaller pieces. A true test of the proposed extension

points’ expressiveness would be to implement new CSS3 features, such as generated content or the

flex-box model, as extensions. An even harder test would be to extricate older CSS2 features, such

as floats, and re-implement them as compositional extensions. The benefit to successfully imple-

menting these extensions is clear: a stronger understanding of the semantics of (and particularly

the interactions between) CSS features.

I discovered the possibility of these CSS extension points quite late, in exploring the conse-

quences of making each stage of the layout pipeline extensible “in the same way” as the dom/JS

pipeline is. To my knowledge, implementing the extension points below has not been done before

in any browser, and is planned future work.

Point (6): Parsing CSS values The CSS language can be extended in four ways: 1) by adding new

property names and associated values, 2) by recognizing new values for existing properties, 3) by

extending the set of selectors, or 4) by adding entirely new syntax outside of style declaration

blocks. The latter two are beyond the scope of an extension, as they require more sweeping

changes to both the parser and to layout, and are better suited to an alternate implementation of

the CSS parser altogether (i.e., a different configuration of C3).

72

Supporting even just the first two extension points is nontrivial. Unlike HTML’s uniform tag

syntax, nearly every CSS attribute has its own idiosyncratic syntax:

font: italic bold 10pt/1.2em "Gentium", serif;

margin: 0 0 2em 3pt;

display: inline-block;

background-image: url(mypic.jpg);

...

However, a style declaration itself is very regular, as it is comprised of a semicolon-separated

list of colon-separated name/value pairs. Moreover, the CSS parsing algorithm discards any un-

parsable attributes (up to the semicolon), and then parse the rest of the style declaration normally.

This strategy for error recovery effectively splits each style declaration into individual substrings

that can be parsed independently, and therefore suggests an implementation strategy.

Supporting the first extension point—new property names—requires making the parser table-

driven and registering value-parsing routines for each known property name. Then, like HTML tag

extensions, CSS property extensions can register new property names and callbacks to parse the

values. (Those values must never contain semicolons, or else the underlying parsing algorithm

would not be able to separate one attribute from another.)

Supporting the second extension point is subtler. Unlike the HTML parser’s uniqueness con-

straint on tag names, here multiple extensions might contribute new values to an existing property;

a conflict-detection algorithm must ensure that the syntaxes of such new values do not overlap,

or else provide some ranking to choose among them.

Point (7): Composing layout The CSS layout algorithm describes how to transform the document

tree (the content model) into a tree of boxes of varying types, appearances and positions. Some

boxes represent lines of text, while others represent checkboxes, for example. This transformation

is not obviously compositional: many CSS properties interact with each other in non-trivial ways

to determine precisely which types of boxes to construct. As one example, 〈table/〉s create table-

cell, table-row and (possibly) table-column boxes, unless the display property is used to override

the defaults, in which case they might create text-line boxes instead. . . unless of course the float

property is also present to specify that the whole subtree should be rendered outside the normal

text flow. Floats also cause normal text to flow around them, which changes how the text is broken

into line boxes, unless the clear property is used to specify that text wrapping should not occur.

Rather than hard-code these (and many more) interactions, the layout transformation must become

73

table-driven as well. Then both types of extension above become easy: extensions can create new

box subtypes, and patch entries in the transformation table to indicate when to create them.

3.4 Evaluation

The C3 platform has reached a semi-stable and somewhat functional state, and only a few exten-

sions have yet been written. To evaluate the platform, I examine: the performance of the extension

points, ensuring that the benefits are not outweighed by huge overheads; the expressiveness, both

in the ease of “porting” existing extensions to this model and in comparison to other browsers’

models; and the security implications of providing such pervasive customizations.

3.4.1 Performance

Any time spent running the extension manager or conflict analyses slows down the perceived

performance of the browser. Fortunately, this process is very cheap: with one extension of each

supported type, it costs roughly 100ms to run the extensions. This time includes: enumerating

all extensions (27ms), loading all extensions (4ms), and detecting parser-tag conflicts (3ms), mu-

tator conflicts (2ms), and overlay conflicts (72ms). All but the last of these tasks runs just once,

at browser startup; overlay conflict detection must run per-page, since conflict detection cannot

complete without knowing the structure of the page being overlaid. Enumerating all extensions

currently reads a directory, and so scales linearly with the number of extensions. Parser and

mutator conflict detection scale linearly with the number of extensions as well; overlay conflict de-

tection is more expensive as each overlay provides more interacting constraints than other types of

extensions do. If necessary, these costs can be amortized further by caching the results of conflict

detection between browser executions.

3.4.2 Expressiveness

Fig. 3.10 lists several examples of extensions available for IE, Chrome, and Firefox, and the corre-

sponding C3 extension points they would use if ported to C3. Many of these extensions simply

overlay the browser’s user interface and require no additional support from the browser. Some,

such as Smooth Gestures or LastTab, add or revise ui functionality. As the ui is entirely script-

driven, I support these via script extensions (point (5)). Others, such as the various Native Client

libraries, are sandboxed programs that are then exposed through JS objects; I provide support for

the JS objects (point (2)) and .Net provides the sandboxing.

74

Fig. 3.10 also shows some research projects that are not implementable as extensions in any

other browser except C3. As described below, these projects extend the HTML language, CSS layout,

and JS environment to achieve their functionality. Implementing these on C3 requires no hacking

of C3, leading to a much lower learning curve and fewer implementation pitfalls than modifying

existing browsers. I examine some examples, and how they might look in C3, in more detail here.

XML3D: Extending HTML, CSS and layout

XML3D [202] is a recent project aiming to provide 3d scenes and real-time ray-traced graphics

for web pages, in a declarative form analogous to 〈svg/〉 for two-dimensional content. This work

uses XML namespaces to define new scene-description tags and requires modifying each browser to

recognize them and construct specialized dom nodes accordingly. To style the scenes, this work

must modify the CSS engine to recognize new style attributes. Scripting the scenes and making

them interactive requires constructing JS objects that expose the customized properties of the new

dom nodes. It also entails informing the browser of a new scripting language (AnySL) tailored

to animating 3d scenes.

Instead of modifying the browser to recognize new tag names, a C3 version would use exten-

sion point (1) to define them in an extension, and subclass the 〈script/〉 tag to recognize AnySL.

Similarly, it could provide new CSS values and new box subclasses for layout to use. The full

XML3D extension would consist of these four extension hooks and the ray-tracer engine.

Maverick: Extensions to the global scope

Maverick [185] aims to connect devices such as webcams or usb keys to web content, by writing

device drivers in JS and connecting them to the devices via Native Client (NaCl) [230]. NaCl

exposes a socket-like interface to web JS over which all interactions with native modules are mul-

tiplexed. To expose a more dom-like api, Maverick injects an actual dom 〈img/〉 node into the

document, stashing state within it, and using JS properties on that object to communicate with

NaCl. This object can then transliterate the image frames from the webcam into Base64-encoded

src urls on the the 〈img/〉, and so reuse the browser’s image decoding libraries.

There are two main difficulties with Maverick’s implementation that could be avoided in C3.

Fist, NaCl isolates native modules in a strong sandbox that prevents direct communication with

resources like devices; Maverick could not be implemented in NaCl without modifying the sandbox

to expose a new system call and writing untrusted glue code to connect it to JS. Second, all these

api marshaling functions are mutable JS properties; in particular, the internal state of the dom

75

node and the convenience functions on it are all manipulable by web script, potentially breaking

communication protocols the drivers expect. Ultimately, using a dom node to expose a device

is not the right abstraction: it is not a node in the document but rather a global JS object like

XMLHttpRequest. And while using Base64-encoded urls is a convenient implementation trick, it

would be far more natural to call the image-decoding libraries directly, avoiding both overhead

and potential transcoding errors.

RePriv: Extensions hosting extensions

RePriv [86] runs in the background of the browser and mines user browsing history to infer per-

sonal interests. It carefully guards the release of that information to websites, via apis whose

uses can be verified to avoid unwanted information leakage. At the same time, it offers its own

extension points for site-specific “interest miners” to use to improve the quality of inferred in-

formation. These miners are all scheduled to run during an onload event handler registered by

RePriv. Finally, extensions can be written to use the collected information to reorganize web pages

at the client to match the user’s interests.

While this functionality is largely implementable as a plug-in in other browsers, several factors

make it much easier to implement in C3. First and foremost, RePriv’s security guarantees rely on

C3 being entirely managed code: the browser can be removed from RePriv’s trusted computing

base by isolating RePriv extensions in an AppDomain and leveraging .Net’s memory safety guar-

antees. Obtaining such a strong security guarantee in other browsers is at best very challenging.

Second, the document construction hook makes it trivial for RePriv to install the onload event han-

dler. Third, AppDomains ensure the memory isolation of every miner from each other and from

the dom of the document, except as mediated by RePriv’s own apis; this makes proving the de-

sired security properties much easier. Finally, RePriv uses Fine [100] for writing its interest miners;

since C3, RePriv and Fine target .Net, RePriv can reuse .Net’s assembly-loading mechanisms.

3.4.3 Other extension models

Shadow doms

An extension author who wishes to inject new content into structured positions within an existing

document can use the overlay mechanism of C3 to do so. An extension author who wants to

construct a whole new kind of HTML node can do so in C3 by extending the HTML parser and

implemented the new node. However, these new node types are frequently widgets, composite

controls that can be implemented using existing HTML/CSS/JS techniques but that ought to behave

76

as a single logical unit. Nearly all major JS libraries include an api for simulating widgets using

HTML subtrees, but inter-framework incompatibilities hinder widget reuse [228].

Several techniques have been (or are being) proposed, with varying success and popularity, to

simplify this widget-creation task [89, 90, 159, 218, 228]. Each of these proposals relies on a notion

of “shadow doms” that imbue elements of a dom tree with a hidden internal structure. These

bindings are a declarative mix of XML, HTML, CSS and JS that is invisible to dom manipulation

methods (such as Element.children) but that is utilized for rendering and user-interaction. For

example, one binding for a desktop-like 〈scrollbar/〉 tag might internally contain three 〈button/〉

elements in a 〈div/〉 to implement the endpoints, thumb, and track of a typical scrollbar. Any

mouse clicks on these elements would appear as clicks on the scrollbar element itself. Another,

more phone-like binding might forego the track and end buttons, and only include the thumb.

The primary advantage to shadow dom-like schemes is that they enable self-hosting of HTML

controls (like buttons or text boxes) in HTML. This eliminates many of the special cases needed

to handle so-called “replaced content” in HTML. However, the major downside is that there is no

agreed-upon semantics for how these bindings themselves may be composed or extended. In many

regards, the range of proposed semantics for these bindings resembles the range of semantics

between object-oriented inheritance and mixins.

Extensions to application ui

Internet Explorer 4.0 introduced two extension points permitting customized toolbars (Explorer

Bars) and context-menu entries. These extensions were written in native C++ code, had full access

to the browser’s internal dom representations, and could implement essentially any functionality

they chose. Unsurprisingly, early extensions often compromised the browser’s security and sta-

bility. IE 8 later introduced two new extension points that permitted self-updating bookmarks of

web-page snippets (Web Slices) and context-menu items to speed access to repetitive tasks (Accel-

erators), providing safer implementations of common uses for Explorer Bars and context menus.

The majority of IE’s interface is not modifiable by extensions. By contrast, Firefox explored

the possibility that entire application interfaces could be implemented in a markup language,

and that a declarative extension mechanism could overlay those uis with new constructions. Re-

search projects such as Perspectives change the way Firefox’s ssl connection errors are presented,

while others such as Xmarks or Weave synchronize bookmarks and user settings between multiple

browsers. The ui for these extensions is written in precisely the same declarative way as Firefox’s

own ui, making it as simple to extend Firefox’s browser ui as it is to design any website.

77

But the single most compelling feature of these extensions is also their greatest weakness: they

permit implementing features that were never anticipated by the browser designers. End users can

then install multiple such extensions, thereby losing any assurance that the composite browser is

stable, or even that the extensions are compatible with each other. Indeed, Chrome’s carefully

curtailed extension model is largely a reaction to the instabilities often seen with Firefox exten-

sions. Chrome permits extensions only minimal change to the browser’s ui, and prevents interac-

tions between extensions. For comparison, Chrome directly implements bookmarks and settings

synchronization, and now permits extension context-menu actions, but the Perspectives behavior

remains unimplementable by design.

The current design for overlays is based strongly on Firefox’s declarative approach, but pro-

vides stronger semantics for overlays so that it can detect and either prevent or correct conflicts

between multiple extensions. It also generalized several details of Firefox’s overlay mechanism for

greater convenience, without sacrificing its analyzability.

Extensions to scripts

Almost the entirety of Firefox’s ui behaviors are driven by JS, and extensions can manipulate

those scripts to customize those behaviors. A similar ability lets extensions modify or inject scripts

within web pages. Extensions such as LastTab change the tab-switching order from cyclic to most-

recently-used, while others such as Ghostery block so-called “web tracking bugs” from executing.

Firefox exposes a huge api, opening basically the entire platform to extension scripts. This flexi-

bility poses a problem: multiple extensions may attempt to modify the same scripts, often leading

to broken or partially-modified scripts with unpredictable consequences.

Modern browser extension design, like Firefox’s jetpacks or Chrome’s extensions, are typically

developed using HTML, JS, and CSS. While jetpacks are currently still fully-privileged, Chrome

extensions run in sandboxed processes that cannot access privileged information and cannot crash

or hang the browser. While these guarantees are vital to the stability of a commercial system

protecting valuable user information, they also restrict the power of extensions.

The Fine project [100] is one attempt to curtail these scripts’ mutual interactions within web

pages. Instead of directly using JS, authors use a dependently-typed programming language to ex-

press the precise read- and write-sets of extension scripts, and a security policy constrains the infor-

mation flow between them. Extensions that satisfy the security policy are provably non-conflicting.

The Fine project targets C3 easily, either by compiling its scripts to .Net assemblies and loading

them dynamically (by subclassing the 〈script/〉 tag), or by statically compiling its scripts to JS and

78

dynamically injecting them into web content (via the JS global-object hook). Guha et al. success-

fully ported twenty Chrome extensions into Fine to run on C3 with minimal developer effort.

As mentioned earlier, C3 includes my prior work on aspects for JS (Chapter 4), permitting ex-

tensions clearer language mechanisms to express how their modifications apply to existing code.

Beyond the performance gains and clarity improvements, by eliminating the need for brittle mech-

anisms and exposing the intent of the extension, compatibility analyses between extensions be-

come feasible.

3.4.4 Security considerations

Of the five implemented extension points, two are written in .Net and have full access to the dom

internals. In particular, new dom nodes or new JS runtime objects that subclass the implementa-

tion may use protected dom fields inappropriately and violate the same-origin policy. I view this

flexibility as both an asset and a liability: it permits researchers to experiment with alternatives

to the sop, or to prototype enhancements to HTML and the dom. At the same time, I do not

advocate these extensions for web-scale use. The remaining extension points are either limited

to safe, narrow .Net interfaces or are written in HTML and JS and inherently subject to the sop.

Sanitizing potentially unsafe .Net extensions to preserve the sop is itself an interesting research

problem. Possible approaches include using .Net AppDomains to segregate extensions from the

main dom, or static analyses to exclude unsafe accesses to dom internals.

3.5 Future work

I have focused so far on the abilities extensions have within the C3 system. However, the more

powerful extensions become, the more likely they are to conflict with one another. Indeed, part of

the point of designing the extension mechanisms in C3 as I have is to expose this fact, and thereby

make these conflicts amenable to detection and resolution. Certain extension points are easily

amenable to conflict detection: for example, two parser tag extensions cannot both contribute

the same new tag name, so conflict detection becomes trivial and so is not discussed further.

Others are more challenging: as explained in Chapter 1, precisely defining conflicts between JS

runtime extensions is a more challenging task; Chapter 4 discusses this briefly but leaves much

of it to future work. Finally, some extension points admit a range of conflict detection schemes,

depending on their precise expressive power: this will be the main focus of Chapter 5, which

discusses variations on the overlay mechanism of C3.

Assuming a suitable notion of extension conflict exists for each extension type, it falls to the

79

extension loading mechanism to ensure that, whenever possible, conflicting extensions are not

loaded. In some ways this is very similar to the job of a compile-time linker, ensuring that all

modules are compatible before producing the executable image. Such load-time prevention gives

users a much better experience than in current browsers, where problems never surface until

runtime. However not all conflicts are detectable statically, and so some runtime mechanism is still

needed to detect conflict, blame the offending extension, and prevent the conflict from recurring.

3.6 Summary

I have presented C3, a platform implementing of HTML, CSS and JS, and explored how its design

was tuned for easy reconfiguration and runtime extension. I presented several motivating exam-

ples for each extension point, and confirmed that the design is at least as expressive as existing

extension systems, supporting current extensions as well as new ones not previously possible.

80

Extensions Available from C3-equivalent extension points used
IE:

Explorer bars (4) overlay the main browser ui

Context menu items (4) overlay the context menu in the
browser ui

Accelerators (4) overlay the context menu
WebSlices (4) overlay browser ui

Chrome:
Gmail checkers https://chrome.google.

com/extensions/
search?q=gmail

(4) overlay browser ui, (5) script advice

Skype http://go.skype.com/
dc/clicktocall

(4) overlay browser ui, (2) new JS
objects, (5) script advice

Smooth Gestures http://goo.gl/rN5Y (4) overlay browser ui, (5) script advice
Native Client libraries http://code.google.

com/p/nativeclient/
(2) new JS objects

Firefox:
TreeStyleTab https://addons.mozilla.

org/en-US/firefox/
addon/5890/

(4) overlay tabbar in browser ui, inject
CSS

LastTab https://addons.mozilla.
org/en-US/firefox/
addon/112/

(5) script advice

Perspectives [227] (5) script extensions, (4) overlay error
ui

Firebug http://getfirebug.com/ (4) overlays, (5) script extensions,
(2) new JS objects

Research projects:
XML3D [202] (1) new HTML tags, (6) new CSS values,

(7) new layouts
Maverick [185] (2) new JS objects
Fine [100] (1) HTML 〈script/〉 tag replacement
RePriv [86] (2) new JS objects

Figure 3.10: Example extensions in IE, Firefox, and Chrome, as well as research projects best
implemented in C3, and the C3 extension points that they might use

https://chrome.google.com/extensions/search?q=gmail
https://chrome.google.com/extensions/search?q=gmail
https://chrome.google.com/extensions/search?q=gmail
http://go.skype.com/dc/clicktocall
http://go.skype.com/dc/clicktocall
http://goo.gl/rN5Y
http://code.google.com/p/nativeclient/
http://code.google.com/p/nativeclient/
https://addons.mozilla.org/en-US/firefox/addon/5890/
https://addons.mozilla.org/en-US/firefox/addon/5890/
https://addons.mozilla.org/en-US/firefox/addon/5890/
https://addons.mozilla.org/en-US/firefox/addon/112/
https://addons.mozilla.org/en-US/firefox/addon/112/
https://addons.mozilla.org/en-US/firefox/addon/112/
http://getfirebug.com/

81

Chapter 4

JS ASPECTS1

4.1 Introduction

The software engineering challenges of building robust web applications are readily apparent: the

design, development, and deployment model for client-side web code is, for better or worse, very

different than the model for traditional desktop applications. Code is delivered in source form,

at run-time, from multiple sources, and in a language (JS) that is highly dynamic and encourages

run-time creation and evaluation of more code.

Consider just the JS code that runs when a user visits a typical “Web 2.0” site. The main

page will use JS to provide an interactive experience, probably incorporating popular third-party

JS libraries. Ads on the side will contain separately developed scripts. User-installed browser

extensions or userscripts include yet more JS to affect browser functionality and how pages are

displayed. In short, the code running for a page is a run-time conglomeration of scripts from

multiple sources with multiple purposes.

Matters get worse: The entire purpose of some JS (e.g., in a browser extension) is to change the

behavior of other JS (e.g., on a popular web page) in ways the affected code never expected. To do

so, programmers (ab)use JS features such as the redefinition of top-level functions and the ability to

retrieve a function’s source code at run-time using its toString() method, rewrite it in some man-

ner, and evaluate the result. While it is easy to dismiss such shenanigans as unprincipled hacks

unworthy of serious programming-languages study, in this chapter I choose instead to accept this

reality. Third-party modifications are extremely popular, with tens of thousands of extensions

run by millions of users every day. It is unreasonable to expect web programmers to modify the

behavior of web applications only in ways the application writers allow and prepare for.

4.1.1 Aspects for JavaScript

I propose adding to JS features that make third-party code modifications straightforward, with

clear semantics that avoid the pitfalls and awkwardness of current practice. My approach adapts

1 This chapter is based on an earlier work, originally published in OOPSLA’10 [137] and also published as: Support-
ing dynamic, third-party code customizations in JavaScript using aspects, in SIGPLAN Notices, {Vol. 45, 0362-1340,
(October)} © ACM, 2010. http://doi.acm.org/10.1145/1932682.1869490

http://doi.acm.org/10.1145/1932682.1869490

82

and extends mechanisms from aspect-oriented programming to the world of web applications

and JS. The motivation here differs from the conventional motivation for aspects: rather than

better modularizing code by separating cross-cutting concerns, aspects are used to specify code

modifications by third parties concisely and accurately.

This approach is the first JS just-in-time compiler with support for aspects, taking advantage

of the ideas behind recent advances in j it compilation for JS [87]. Implementing aspects within

the j it offers better performance and completeness than prior approaches. Most aspect systems

statically compile aspects into the code they modify. But the web domain has too much code

arriving and being generated dynamically for this to make sense: aspect weaving at runtime

permits advising of all JS code, regardless of its source. Moreover, aspects can be implemented

more efficiently via runtime support than via source-to-source transformation.

JS web code is imperative and event-driven, with first-class functions and prototype-based

object hierarchies. These features, combined with the unusual scoping and evaluation-order rules

of JS, form a very different substrate on which to define aspects than more well-known efforts

for object-oriented or functional languages. I also demonstrate that, despite efforts to the contrary,

aspects cannot be properly provided as a JS library; support from the JS implementation is needed.

To evaluate this work, I have taken several popular third-party extensions and rewritten them

using my aspects. The resulting code is shorter, simpler, and faster than existing idioms. To

justify the features present in this language, I have examined twenty popular Firefox extensions,

measuring the fraction of their code involved in aspect-like behavior and how frequently each type

of advice occurs. The language presented here supports nearly every idiom I encountered, and

every feature of the design is used significantly often.

Note that while this work required solving some technical issues peculiar to JS, many of the

contributions transcend this language. Given that web applications will be changed and rewrit-

ten at run-time in unexpected ways by third-party scripts, linguistic mechanisms are needed to

support such change in (relatively) robust ways.

4.1.2 Outline

Section 4.2 presents two examples of extensions—one userscript, one browser-level—and the id-

iomatic hooks they use to install their code. Section 4.3 introduces the key concepts of aspect-

oriented programming and revises the examples to use aspects instead. Section 4.4 lays out the

key properties that an dynamic weaving system for JS should support, then presents the aspect

language in full. Section 4.5 describes the implementation. Section 4.6 evaluates effectiveness

83

var oldP = unsafeWindow.P;
unsafeWindow.P = function(iframe, data) {
if (data[0] == "mb")
data[1] = format(data[1]);

return oldP.apply(iframe, arguments);
}

Figure 4.1: Central hook used to install a text formatter into Gmail. Note: The common
domwindow object is available via the unsafeWindow alias.

and efficiency. Section 4.7 discusses related work. Section 4.8 discusses future work. Section 4.9

summarizes the contributions of this chapter.

4.2 Extensible Web-Programming Examples

To understand the nature of code that modifies web applications, consider two examples. The first

modifies a web page running Gmail, Google’s webmail client, to reformat the display of emails.

The second modifies the Firefox browser to change the behavior of opening a new tab. Section 4.3

revisits these examples to show how aspects provide cleaner and more robust solutions.

4.2.1 Reformatting messages in Gmail

Many email clients detect /italic/, _underlined_ and *bold* text using punctuation and for-

mat the text appropriately. This functionality is not present in Gmail, so a userscript2 was writ-

ten to add this feature, replacing, e.g., /text/ with 〈i〉text〈/i〉. A userscript defines code and a

set of pages on which it should be run. When a page finishes loading, all relevant userscripts

are appended to the page and executed. For instance, this userscript runs for urls match-

ing http://mail.google.com/mail/*. Browsers may support userscript loading directly (as in

Chrome) or via an extension (as in Greasemonkey for Firefox).

If all the email data were already present in the page’s dom, it would be simple to identify

messages and format them. But like all modern webapps, Gmail fetches data lazily. All processing

of that data begins with a function at global scope and so the userscript hooks into this function

to preprocess the data. That crucial hook is shown in Fig. 4.1.

The basic idea is to replace Gmail’s unsafeWindow.P function with a new function that formats

the data when a message body ("mb") arrives, and then proceeds to call the original code bound

to P with the modified data. This technique is known as wrapping. The use of JS’s apply method

2 http://userscripts.org/scripts/show/8178

http://userscripts.org/scripts/show/8178

84

SpeedDial.init = function () {
...
eval("getBrowser().removeTab ="+
getBrowser().removeTab.toString().replace(’this.addTab("about:blank");’,
’if (SpeedDial.loadInLastTab) {’

+’ this.addTab("chrome://speeddial/content/speeddial.xul"’
+’)} else { this.addTab("about:blank")}’
));

...
if (SpeedDial.clearURLBarOnLoad) {
if (!SpeedDial.isFirefox3) {
...

} else {
var newLocationChange =

window.URLBarSetURI.toString().replace(/aURI.spec == \"about:blank\"/g,
’aURI.spec == "about:blank" || ’

+’(aURI.spec.indexOf("chrome://speeddial/content") == 0)’);
eval(’window.URLBarSetURI = ’ + newLocationChange + ’;’);

}
}

}

Figure 4.2: Central hooks used to modify the Firefox blank tab

is necessary so that the implicit this parameter of P is bound properly. This unintuitive idiom is

common, but my approach using aspects makes it largely unnecessary.

4.2.2 SpeedDial: Customizing new tabs in Firefox

The Opera and Safari browsers offer a home page showing a grid of the user’s most frequently

visited sites. This feature is not built into Firefox, but two extensions have been written to add

it. One in particular, SpeedDial, takes care to interact with other features of the browser: when

a blank new tab appears, a page of thumbnails of frequently visited sites should appear instead,

but the browser’s address bar should optionally (depending on user preference) remain blank (as

it does for normal blank tabs). Fig. 4.2 shows a simplified version of the main hook that installs

this change; understanding the details of this code is tedious and unnecessary.

As in the Gmail example, the code is redefining a method. However, it is doing so by rewrit-

ing the source-code string of the original method—using regular expressions to find and replace

text—and then calling eval on the resulting string. This technique is error-prone and brittle,

and it produces code that is difficult to analyze or maintain. Yet this precise sequence—retrieve

the source-code string, manipulate it, call eval—is so common that it has a name in web pro-

85

gramming: monkey-patching. My goal in this chapter is to design an aspect system expressive

enough to obviate this idiom.

4.2.3 Discussion

The two examples above are typical representatives of extensions. They interact with the structure

of the page or browser but need to patch the underlying scripts to enable their behaviors. Such

patches are more the rule than the exception: this is “how things are done” on the web. There are

nearly 40,000 userscripts and over 6,000 Firefox extensions available, with millions of daily users:

this development model is successful and growing daily.

Sometimes, patches such as these can drive application revision. Thanks to the popularity of

userscripts, Google has revised Gmail’s code to provide some apis for userscripts to use [94]. Sim-

ilarly, some exceptionally popular extensions for Firefox have been merged into the application’s

core as built-in features [130, 131], and new apis have been introduced to streamline ungainly

workarounds used by many extensions [82]. But not all web applications will be so accommodat-

ing, nor will users wait for such support. In general, the underlying programs cannot be expected

to plan for such diverse extensions, nor can extension authors be expected to know about and

plan for all other extensions. Instead, this research tries to provide a more principled framework

for writing and maintaining extensions.

Perhaps the most distasteful facet of monkey-patches is their rampant violation of function

abstractions through the use of replace and eval. In an ideal world, such tricks would be unnec-

essary. However, when mainline programs do not expose a particular value through a convenient

abstraction boundary (as with the aURI.spec variable in the SpeedDial example of Fig. 4.2), ex-

tension authors must resort to abstraction-violating patches to implement their features. My aim

in this chapter is not to eliminate such hacks (which would be futile), but rather to recognize and

give structure to commonly-used idioms, preserving abstraction boundaries where possible.

Wrapping and monkey-patching also make it difficult to analyze the impact extensions may

have on each other or the mainline program: due to aliasing, code paths that were identical may

now diverge, and of course all analyses are greatly complicated by the use of eval. By contrast,

aspects can eliminate almost all uses of these idioms and so they may make such analyses feasible.

4.3 Using aspects for extensions

An extension is a self-contained unit of code that needs to insert itself into various places in

the underlying application to implement its functionality. An extension is similar to an aspect,

86

though “extension-oriented” programming and aspect-oriented programming are very different

in motivation. Aspects have traditionally been used for crosscutting concerns such as security

monitors or loggers. I propose that the mechanisms of aspects are well-suited to the use case of

extending web applications.

I briefly review the terms and concepts of aspect-oriented programming, then introduce my

aspect language for JS by rewriting the examples in the previous section. The examples assume an

informal description of the language constructs, full and complete definitions follow in Section 4.4.

4.3.1 Key aspect-oriented concepts

As described initially in Section 2.5, an aspect inserts new code into an existing mainline program

to run at specific moments during that program’s execution. The new code is called advice. Each

specific moment is called a joinpoint, and sets of joinpoints are called pointcuts. There are several

kinds of pointcuts: for example, one might be “when function foo is called”, while another might

be “when field bar is accessed on object X”. Aspects also need to specify the type of advice: for

instance, before or after or around the call to a function. Sometimes a pointcut might be too broad,

describing too many moments during execution. A pointcut can therefore specify a filter to restrict

the joinpoint to some lexical or dynamic scope: for instance, “all calls to function foo, when called

by function bar”. Integrating advice into mainline code is called weaving: it incorporates the advice

into the mainline such that the advice is triggered at its specified pointcut. Multiple aspects may

advise the same pointcut; the weaver uses precedence rules to order the aspects. Advice should

rarely call the advised code directly, but rather use a mechanism, usually called proceed, to refer

to the next installed advice or the underlying mainline, as determined by the weaver.

4.3.2 Advice surrounding functions

Examining the text-formatting example in Section 4.2.1, note that it takes the precise form of before

advice. The new version of unsafeWindow.P inserts its preprocessing before executing the original

function. This example can be rewritten more concisely as

at pointcut(callee(unsafeWindow.P)) before(iframe, data) {

if (data[0] == "mb")

data[1] = format(data[1]);

}

An aspect must define a pointcut and advice. Here, the pointcut is callee(unsafeWindow.P), and

the advice is the before { } block. The name “callee” emphasizes that the advice applies to the

87

code inside unsafeWindow.P, rather than inside its caller. Unlike in the userscript, which had to

save a reference to and then manually call the original version of P, such explicit plumbing is

unneeded. Instead, the advice examines and modifies the actual arguments to the function: es-

sentially, the advice is inlined into the body of P. Traditionally, advice takes a parameter giving

reflective access to the arguments of the advised code; this design avoids the indirection and spec-

ifies arguments explicitly: iframe and data are names the aspect binds to the callee’s arguments.

4.3.3 Advice within functions

The SpeedDial extension in Section 4.2.2 inserted two hooks into Firefox code, so an equivalent

version must define two aspects. Examining the first portion of the code, it is executing a partic-

ular statement only in certain conditions. There are several ways to translate this intent. Most

literally, one might say:

at pointcut(statement_containing(this.addTab("about:blank"))

&& within(getBrowser().removeTab)) around(...) {

if (SpeedDial.loadInLastTab)

this.addTab("chrome://speeddial/content/speeddial.xul");

else

proceed;

}

This example shows a new type of pointcut, describing the nearest enclosing statement containing

a particular subexpression. It surrounds that statement with advice that in some cases calls an

entirely separate function, and in other cases proceeds with the original call. To avoid rewriting

every statement containing the specified expression, a filter is used to constrain it within the lexical

scope of the function getBrowser().removeTab. Note that this advice is still quite fragile, but is at

least defined in terms of JS expressions rather than strings of concrete syntax.

Perhaps the intention was more general: advise all calls to addTab to open the SpeedDial page:

at pointcut(callee(this.addTab)) before(url) {

if (url == "about:blank" && SpeedDial.loadInLastTab)

url="chrome://speeddial/content/speeddial.xul";

}

(Where, as before, url is a name assigned to addTab’s parameter.) The extension code, as currently

written, gives no indication which of these meanings (or others) were intended.

88

The second half of the SpeedDial code is actually broken: the mainline code no longer contains

the expression (aURI.spec == "about:blank"). That means the replace() call becomes a no-op,

and the monkey patch silently fails. However, the mainline code does set a variable isBlank,

which likely is the original intent of this extension. This patch can be expressed as:

at pointcut(field(isBlank) && within(unsafeWindow.URLBarSetURI)) wrap {

set { isBlank = (proceed ||

(uri.spec.indexOf("chrome://speeddial/content")==0)) }

}

This aspect uses the field pointcut to denote accessing variables or fields of objects, again filtered

within the lexical scope of a particular function. The advice itself wraps the variable, in this case

only when it is being set. Depending on the situation, one might write get advice as well.

Note that the statement_containing and field advice are fragile: they depend on the syntax

of the method being advised. If a subexpression is no longer used or a variable is renamed (which

is what broke the SpeedDial code), the advice will fail to apply. I cannot prevent that brittleness—

when extensions need to modify the internal logic of functions, there may be no simpler alternative.

However, unlike monkey patching, using aspects will result in a weaving warning indicating that

no joinpoints were found.

4.4 Aspects as a new JS primitive

In Section 4.4.1, I propose a more reasonable semantics for aspect weaving in JS than is possible

with wrapping or monkey-patching. My approach ensures that functions may be advised regard-

less of when they are defined, and regardless of how they are referenced. Implementing this relies

on two key features: weaving should occur at runtime rather than compile-time, and should apply

to closures rather than variables. These two together give a third key feature, the ability to disable

or re-enable installed advice dynamically. In Section 4.4.2, I show that neither wrapping, monkey-

patching, nor any other idiom within the JS language can provide these guarantees. Section 4.4.3

describes the full language extensions to JS precisely.

4.4.1 Key features of an aspect primitive

Dynamic weaving Aspect weaving depends on naming functions as targets for advice. Weaving

can happen at compile time or at runtime.3 I argue that dynamic weaving is the only appropriate

3 The expert JS programmer will note that “compile-time” is ambiguous, encompassing parsing time and function hoist-
ing time as distinct phases before executing the top-level script statements; moreover this repeats for each 〈script/〉 on

89

method for JS: code frequently defines anonymous functions, or creates closures at runtime. A

static weaver would be unable to advise either of these types of functions, leading to an artificial

and unintuitive split between advisable and non-advisable functions. A dynamic weaver has no

trouble with dynamically created functions: instead of being triggered based on the static name

of the function, it is triggered by the contents of variables at runtime.

Weaving into closures Dynamic weaving exposes the distinction between variables and their

values. Consider the following snippet:

var f = function(x) { return x*x; };

var g = f;

Install Advice: before executing f, print(x)

var h = f;

f(4); g(4); h(4);

Suppose the last four lines were in separate 〈script/〉 sources with an unknown loading order (e.g.,

as subfiles in a library, ads delivered to a page, or scripts in an application) following the first line.

The intent is for f, g, and h to be aliases of one another. Reasonably, one would expect that all

three calls in the last line ought to trigger the advice: clearly calling f should, and g and h are “the

same function”. The fact that g was defined before the advice was installed should be hidden from

the extension author since the loading order is likely unknown. Hence advice should apply to the

underlying closure, and not to a variable bound to the closure. In JS (or any higher-order language),

functions may not have unique names, and indeed frequently do have more than one (for instance,

by defining a function and subsequently installing it as an event handler in a page). Usually, the

developer who uses aspects intends that such aliased functions be advised consistently. Similar

conclusions have been reached by others [62].

The ability to advise closures marks the key departure from what is possible within JS: modi-

fying closures cannot be expressed within JS. When this behavior is not desired (i.e., the intended

behavior does depend on particular aliases), the wrapping idiom is appropriate and still available.

Dynamic disablement Disabling advice arises naturally in the extension setting as extensions

provide multiple, mutually-exclusive features that can be selected at runtime by the user. Contrast

this form of predicating the execution of advice with the filters mentioned earlier: filters restrict

the page. All of these suffer from the same inability to advise anonymous functions, so I consider them all “compile-
time” here.

90

advice to particular lexical or dynamic scopes; disablement restricts advice based on arbitrary

runtime decisions.

Disabling advice can be implemented manually by wrapping all advice code in if-tests, but

this is tedious, and the examples presented earlier only partially implement it: the userscript

makes no effort to do so, while the SpeedDial extension is inconsistent, inserting a guard around

one piece of advice but not the other. Instead, in this design, aspects are expressions in the lan-

guage that appear as objects, and are equipped with a mutable disabled field that selectively

disables or re-enables individual advice. This field may be used easily and consistently to “turn

off” woven advice.

4.4.2 Aspects cannot be implemented as a library

Both wrapping and monkey-patching rely on replacing the closure bound to a given variable;

nothing else is expressible with variables within JS. Hence they are incorrect in the presence of

aliasing. They also suffer additional, distinct problems.

Because wrapping eventually calls the underlying function, it is limited to adding code be-

fore and after the function—it cannot modify the internal control flow of the function. Extensions

frequently require this ability, making wrapping unsuitable for their needs. (For instance, the

SpeedDial code cannot be written as a wrapper, as it must modify code in the middle of the

target function.)

Monkey patching fails in two other critical ways. The essential difference between wrapping

and monkey-patching is that the former calls the original closure, while the latter discards it. Con-

sequently, the new function does not close over the same environment as the original function—the

eval happens in a different context. Consider this example:

function makeAdder(x) { return function(y) { return x + y; }; }

var addFive = makeAdder(5);

// addFive.toString() == "function(y) { return x + y; }"

The closure addFive makes use of closed-over variables, but evaling its source code will lose the

closure environment: if one were to monkey-patch addFive, the new function would use the global

value for x, if it existed, or fail otherwise. It is impossible, using monkey patching, to determine

if a function closed over local variables or not, and so this technique is fatally flawed.

While monkey patching can modify the middle of functions, it is challenging to write precisely

the correct replacement operations solely in terms of their textual representation (as opposed to

their more structured abstract syntax). The code invariably is obscure, needing fairly long pattern

91

e ∈ Expr ::= . . .
∣∣ a∣∣ retval

∣∣ proceed
a ∈ AspectExp ::= at pointcut(p) ad
p ∈ F ilteredPC ::= b [&& f]∗

∣∣ p||p
b ∈ BasePC ::= callee(e)

∣∣ field(e)∣∣ statement_containing(e)
f ∈ F ilter ::= stack(sd)

∣∣ within(e)
sd ∈ StackDesc ::= e[, sd]

∣∣ !e[, sd]
ad ∈ Advice ::= before(params) {s}∣∣ after(params) {s}∣∣ around(params) {s}∣∣ wrap {[get {e}][set {e}]}

params ∈ Params ::= [ident[, ident]∗]

Figure 4.3: Aspect syntax for JS

matches to find the right joinpoints, and inserting poorly-formatted and potentially malformed

strings as replacement code.4 Moreover, if the replace fails to match, it returns the original code

unchanged, which means that monkey patches fail silently, making them devilishly hard to debug.

4.4.3 Language semantics

My language extensions to JS are shown in Fig. 4.3. I explain the language in stages, focusing on

the semantics of each construct. Section 4.5 then shows how to implement these features efficiently,

avoiding extra work or code blowup that a naïve implementation of the semantics might incur.

Advising functions: at pointcut(callee(e))

Operationally, the simplest form of advice applies to closures: in the grammar above, these are

at pointcut(callee(e)) ad { s } expressions, where ad is one of before, after or around. Such

advice is inlined into the advised closure. When encountered, each pointcut evaluates e to a (ref-

erence to) a closure c, which I represent here as 〈env, λ(x1, . . . , xn){s}〉 where env is the environ-

ment when the closure was created. (If e does not evaluate to a closure, abort with a runtime

error.) I first define weaving one aspect before explaining how full weaving is defined for all

the aspects for a closure.

4 The expert JS programmer will note that poor formatting is not merely aesthetically problematic: problems may arise
due to the interaction of patch code containing newlines and the rules for semicolon insertion.

92

Given a closure 〈env, λ(y1, . . . , yn){s1}〉 and advice before(x1, . . . , xn) { s2 }, define the new

statement s′2 = s2[y1/x1, . . . , yn/xn]. To weave the advice I mutate the closure, replacing it with

〈env, λ(y1, . . . , yn){s′2; s1}〉. (After advice is analogous; around advice requires slightly more ef-

fort.) Notice that the updated closure uses the original environment, which avoids the rebinding-

of-variables problem associated with monkey patching. Moreover, because the closure is updated

in place, the aliasing problem is resolved: all references to that closure now contain the advice.

This neatly includes recursive calls to e: if env contained an entry pointing to this closure, it will

subsequently see the now-mutated version.

Proceed and retval Generalizing before and after, around advice surrounds the mainline code.

To “call” the mainline code, around advice uses the proceed keyword. This is again essentially

inlining: given around advice s2 and mainline s1 as above, define s′2 = s2[y1/x1, . . . , yn/xn]. The

woven code is then s′2[s1/proceed].

It is common for after or around advice to refer to the return value of the mainline code. In

the body of such advice, I bind the return value to the name retval, which then can be read or

modified as needed. (Outside advice, retval is not a reserved keyword.) Any return statements

become jumps to subsequent advice; the “last” one sets the final return value, and the caller

resumes control only after all advice have run.

Weaving order Overall, weaving for a particular closure c is defined in terms of all pointcuts for

which the expression e evaluates to c. Take the original, unadvised closure 〈env, λ(y1, . . . , yn){s}〉

and ordered lists for before (b1, ..., bi), after (a1, ..., aj), and around (r1, ..., rk) advice. (For simplicity,

assume all aspects use the same parameter names as the mainline function; in general I perform

the same substitution on parameter names as above.) Each list is ordered by when the pointcut

was encountered during program execution. Next, apply each advice one at a time, starting with

bi in order, then ai in reverse order, and then surrounding them by ri in order, similar to AspectJ’s

weaving order [123]. The woven result is then

r1
[
· · ·
[
rk
[
{b1; · · · ; bi; s; aj; · · · ; a1}/proceed

]
· · ·
]

/proceed
]

This ordering semantics means that weaving cannot be performed eagerly when dynamically eval-

uating each aspect expression. Instead, the j it (see Section 4.5.3) stores the aspects for each closure

with the closure and weaves while j iting when the closure is invoked. When the collection of

aspects for a closure changes, weaving/j iting is redone.

93

The translation above deliberately does not deal explicitly with exceptional control flow. If

any code (mainline or advice) throws an exception, all subsequent code is skipped. However,

because advice is truly inlined into the function, around advice may surround calls to proceed

with a try-catch statement, and control flow will work properly. (In AspectJ terms, all after ad-

vice is really after returning, and I do not support after throwing advice.) Similarly, if before

advice returns early, no mainline code or subsequent advice runs, unless around advice uses a

try-finally statement. This modifying of control flow by advice is surprisingly common behavior

by real-world extensions (cf. Fig. 4.7 and the usages of statement_containing advice).

Runtime representation of aspects and dynamic disablement Aspects are expressions in this

design, and when executed they evaluate to native objects (much like built-in objects, e.g., Math or

Array): aObj = at pointcut...{...};. These objects have a mutable disabled field that “turns

off” the advice. If the program sets aObj.disabled = true, then effectively aObj is removed

from the installed-advice list in the closure, and the advice is rewoven. When the program resets

aObj.disabled = false, aObj is restored to its original position in that list. (The implementation

does not actually reweave or re-j it, but still provides these semantics.)

Named parameters Note that in the example above, and in the abstract syntax for advice, I give

names to the parameters of the function. Advice parameters are resolved by position, and do not

have to match the parameter names defined by the mainline function. This has the benefit of let-

ting aspects name parameters for native methods (such as Math.sin), which do not have explicit JS

names for their parameters. By permitting the aspect author to name parameters, I enable a more

natural coding style for advice.5 Traditional aspect style would use a reflective parameters array; JS

already includes this via the arguments array-like object. However, for technical reasons, any usage

of the reflective arguments object prevents the JS engine from applying certain useful optimizations.

Referencing the arguments object requires an additional object creation and initialization per func-

tion call, and requires an extra indirection when referencing all parameters in that function.

Stack Filters

Extensions frequently need to advise utility or library functions so as to change behaviors of the

program. But perhaps not every call to those function needs advice; only ones with a particular

5 This is similar to an idiomatic usage of AspectJ’s args pointcut, though I do not support args as a pointcut for JS: all
functions take arguments of dynamic types and arities, which defeats the intention of args.

94

call stack should be advised. To achieve this, the language lets developers specify filters to con-

strain which joinpoints match a pointcut: callee(e) && stack(s). In this design, the stack filter

generalizes AspectJ’s cflow pointcut. It permits specifying multiple stack frames that must, or

must not, be present when the advice is triggered.

For example, a filter stack(a, !b, c, d) states that functions a, c and d must be on the stack

in that order, and that b must not be on the stack between a and c. Filters are designed to be

greedy—a matches the deepest (i.e., oldest) a on the stack—and permit arbitrary intervening stack

frames between specified frames. Thus, the pattern above will match the stack main, a, a, c,

b, d, but will not match the stack main, a, b, a, c, d. This semantics fits well with extensions’

requirements: supporting unspecified intervening frames lets stack patterns continue to match

even if other extensions insert themselves into the call stack, while the greediness of negative

assertions permits defensively avoiding specific other extensions.

To define the semantics for stack filters more precisely, let S = e1 :: · · · :: em :: > :: [] be a

stack, where e1 is the deepest stack frame and > is added after em at the young end of the stack.

Let F = f1::· · · ::fn::>::[] be a stack filter (again > is implicitly added). Inductively, F matches

S in the following cases:

1. F = []

2. F = !f1::· · · ::!fn::h::F’, S = e1 :: · · · :: em :: g :: S′, ei 6= fj, ei 6= h, g = h and F’ matches

S′

3. F = f::F’, S = e :: S′, e 6= f and F matches S′

4. F = f::F’, S = e :: S′, e = f and F’ matches S′

Note that negative assertions are not quite symmetric with positive assertions: they accumulate

until a positive assertion discharges them. Case 2 therefore has to skip over (zero or more) stack

frames ei until finding the first one (g) that matches the next positive assertion (h), and check that

none of ei match any of the accumulated fj.

Weaving with filters Naturally, the weaving definitions must change somewhat to accommodate

filters. For a set of stack filters f1, . . . , fn guarding some aspect, and a current stack S, they must

95

check that all filters match the stack S. For before advice b or after advice a, define

b′ = if (match(S, f1)&& · · ·&& match(S, fn)) {b}

a′ = if (match(S, f1)&& · · ·&& match(S, fn)) {a}

For around advice r, the woven code must be sure to call subsequent advice:

r′ = if (match(S, f1)&& · · ·&& match(S, fn)) {r}

else { proceed }

Weaving multiple pieces of advice proceeds as before.

Advising multiple functions simultaneously

The construction at pointcut(p1||p2) ad is roughly syntactic sugar for at pointcut(p1) ad; at

pointcut(p2) ad, and is evaluated in the obvious manner. This construct may nest arbitrarily:

p1||p2|| · · · ||pn. The sole distinction between the parallel and desugared forms is that the former

produces only one aspect object a while the latter produces several. Thus the parallel construction

lets programs enable or disable the advice on all targets simultaneously. Each base pointcut pi

must be the same type of pointcut—all callee, all field, or all statement_containing.

Advising within function bodies

My survey of popular extensions’ code emphasized that not all desired program modifications

fall neatly at function boundaries. I therefore support two additional pointcuts, advising how

variables are accessed within functions, and advising statements within function bodies.

Advising variables As in AspectJ, it is useful to advise getting and setting variables and fields.

Extension code often modifies local variables within a function, to influence its behavior. Therefore,

define the field pointcut and its corresponding wrap advice, which specifies a getter or setter (or

both) to be used instead of the designated variable or field. Since variable names are commonly

reused within a program, it is undesirable to advise all accesses to that name everywhere in the

program. Therefore any aspects using the field pointcut also specify a within filter which (like

the callee pointcut itself) accepts an expression that resolves to a closure at runtime; the advice

is applied only to that closure.

96

The advice code must be an expression, just like the code it is replacing.6 To accommodate

weaving multiple advice onto the same variable or field, the keyword proceed is used to denote

the next advice expression or the underlying expression as appropriate. Any expression of the

form a.b.c.d can be used with the field pointcut, rather than just variables. For now, I do not

support array indexing (e.g., field(a[e].f)), as the replacement advice may evaluate e at different

(or potentially multiple) times, which may cause unintuitive side effects.

For example, the following code ensures that the prefs object never appears null during the

config function:

at pointcut(field(prefs) && within(config))

wrap { get { prefs != null ? prefs : getPrefs() } }

while the following advice ensures that a variable containing a maximum value can never decrease:

at pointcut(field(maxVal) && within(computeStats))

wrap { set { maxVal = Math.max(maxVal, proceed) } }

Note that in JS, assignments are expressions, so the code above assigns the correct value to maxVal,

and then returns it to any surrounding code.

The semantics of field advice are straightforward: given an aspect at pointcut(field(x.y)

&& within(f)){ get { g } set { s } }, evaluate f to some closure 〈env, λ(y1, . . . , yn){b}〉. Re-

place all assignments x.y = e in b with s[e/proceed]. Replace all other occurrences of x.y with

g[x.y/proceed]. The extension to multiple advice for the same x.y is analogous to callee advice.

Two subtleties arise: first, in the expression a.b.c = 5, if one aspect advises a.b and a later one

advises a.b.c, the second one will not apply, because its target expression is no longer present. Sec-

ond, if one aspect contains the expression x.y in its advice, and a later aspect advises x.y, again the

second one will not apply, because later advice does not apply to code introduced by earlier advice.

Advising statements The remaining type of advice is a new way to insert code into the body of

a function, inserting new statements before, after, or around existing statements within function

code. Other than systems that expose explicit labels for joinpoints, I am unaware of any aspect

system that allows this flexibility. The challenge is isolating a sufficiently expressive pointcut to

identify individual statements. Define statement_containing(e) as the smallest statement con-

taining expression e, as matched by abstract syntax. This has some subtleties: in the statement

while (x + 1 > 0) { if (x < 5 && x > 0) { x--; } }

6 If desired, the programmer may wrap the advice in the (function(){...})() idiom to use statements and return.

97

the pointcut statement_containing(x) matches each of the while loop, the if statement, and the

decrement statement, because each one contains an instance of x not contained in any smaller

statement. Conversely, it matches the if statement only once, despite the repeated usages of x, so

that advice is not woven multiple times at the same point.

Once the pointcut selects statements, it is easy to apply before, after, or around advice to

them, replacing statements with statements. The proceed keyword executes the original statement

or subsequent advice. This pointcut is particularly useful with extensions where the original

code handled a certain set of behaviors and the extension adds a new, unexpected one. Suppose

a mainline function assumes its argument is a member of some enumeration {A,B,C,D}, and

throws an error otherwise. If an extension adds a new member E to that enumeration, it must

also add code that handles E and avoids raising the error. Such code can be inserted before each

statement_containing that argument.

Discussion

This section considers additional aspect constructs one might contemplate adding and discusses

how the current aspects language may interact with new features added in ECMAScript 5 [64].

The current design treats aspects as new native objects. Only the installer of an aspect has a

chance to store a reference to it; aspects are otherwise invisible. An alternate design could attach

aspects as properties of the advised functions, but this might break JS code that enumerates the

properties of those functions.

All pointcuts presented are constructed to select exactly one target via callee or within; the

parallel p||p construction permits specifying multiple pointcuts per advice. However, many aspect

systems admit more free-ranging pointcuts, either with wildcards, catchalls, or arbitrary pointcut-

designator functions, that select an arbitrary number of targets. In the web-extension context, this

flexibility is unused, either because it is truly unneeded or because no extant JS idiom can express

it. In the twenty examples I examined in depth (see Section 4.6.2), each wrapper was uniquely

applied to a single function, as was nearly every monkey-patch. The few exceptions were either

applied a fixed number of times—essentially p||p—or applied, one at a time, to an ad-hoc array of

functions: it is unclear from the extensions’ code what broader pointcut the developer might have

intended that would select precisely those targets and no others.

Missing from the set of pointcuts is caller, which inlines code at call sites rather than within

the callee. There are technical and pragmatic reasons for this. The technical reason stems from

the dynamic nature of JS: one cannot know until runtime when a particular function is about to

98

be called—at which point, the caller has already been compiled, at which point it is too late to

inline the advice at the call site. To overcome this, a weaver would have to insert conditional tests

at every function call site, which would introduce significant overhead to the common, unadvised

case. Pragmatically, I have not seen advice-like idioms that try to emulate a caller pointcut. In

the code I have examined, those few usages that do pick out particular call sites (i.e., equivalent

to advice that uses a stack filter) modify the caller’s code only in ways that are better expressed

using the field pointcut.

A larger survey of extensions might indicate further pointcuts and filters. Extensions may

want to select only if statements, or only the nth occurrence of some statement, or use wildcards

to select any statement_containing(_ > 0)). Supporting these poses no inherent challenges: the

abstract-syntax matcher would need to be enhanced, but no other portion of the language de-

sign would change.

The ECMAScript 5 specification includes ways to define getter and setter functions for fields.

Once these abilities are implemented in JS engines, advising a field’s accessor functions using

callee advice might seem to subsume field advice. However, accessor functions are neither re-

quired nor implicitly defined; retaining the explicit field pointcut lets users advise fields whether

or not they have accessors.

JS is primarily hosted within the web setting, which may also inspire new constructs. With

appropriate implementation hooks, the approach presented here is already capable of advising

dom methods (e.g., Element.appendChild). New pointcuts would be required to advise event

dispatch or other moments in the lifecycle of a webpage [74]. New filters might be useful to

restrict advice to some subtree of the current page. I leave such extensions to future work.

4.5 Implementation of advice weaving

I implemented the above extensions to JS in the Microsoft Research JScript compiler[20]. This

compiler is a j it that lazily compiles target function bodies at call time, specialized for the dynamic

types of the arguments at that call-site. The compilation strategy leverages this behavior: when

calling an advised function, the function body must be j itted anyway, so I weave the advice into

the body just before j iting, which then compiles the woven result. Additionally, since weaving

happens entirely at runtime, the weaver can produce special syntactic forms that are not available

to concrete syntax: these special forms are crucial to code efficiency. Section 4.5.1 explains how

the j it compiles regular, unadvised code. Section 4.5.2 explains the changes needed to compile

aspect expressions. Section 4.5.3 explains the weaving process itself.

99

4.5.1 Compiling unadvised code

In the unadvised case, when the JS engine encounters a JS function for the first time, it must

generate intermediate code that it can then execute. Because the j it is lazy, it instead creates a

code generator, an object that encapsulates all the information eventually needed (e.g., the current

environment) to compile the source JS. The runtime representation of a closure contains a pointer

to its associated code generator.

When the JS engine encounters a function call expression f (e), it must:

1. Evaluate f to a closure c f and let cg f := c f .codeGen.

2. Ask cg f to compile f , specialized to e’s runtime type.

3. Jump to and execute the compiled code.

The specialization in step 2 is straightforward to do at runtime, and is key to efficiency. Since

j iting is expensive, code generators memoize the compiled, specialized function bodies in a table

cache : 〈list of argument types〉 → CompiledCode. Further, code generators are shared among all

closures with the same source (e.g., as with higher-order functions): all closures sharing a code

generator run identical code. The effect is to compile identical functions as few times as possible.

4.5.2 Compiling aspect expressions

Aspects rewrite their advised closures, which means they must erase the closures’ code generators’

memoized compiled code. Normal j it mechanisms will then recompile the closure when needed,

at which point I can weave the advice. To achieve this invalidation, I add a timestamp field to both

closures and code generators: if a closure’s timestamp is newer than its code generator’s, then

the memo table is out of date. To make code generators aware of aspects, I add a list of installed

aspect expressions to each closure, which can then be used during weaving. In short, when a code

generator compiles an aspect expression a, it generates code that:

4. Evaluates the pointcut p to a closure cp.

5. Adds a pointer to a into cp’s list of aspects.

6. Updates cp’s timestamp.

100

In the advised case, when the JS engine encounters a function call f (e), I change the cache

lookups in step 2 above, since it now needs to account for the installed advice. The effect must be

to change the memotable to be of type 〈list of aspects〉 → 〈list of argument types〉 → CompiledCode.

Additionally, the cache lookup must check timestamps: if the code generator is out of date, it

must clear the cache and update the timestamp. But clearing this entire cache is too coarse: other

closures may share the code generator, but may not share the same advice. The engine only needs

to clear the part of the cache keyed by the current installed aspects. To do so, the implementation

actually leaves the memotable as it was, and instead makes a new code generator for “the closure

plus current advice”. A naïve implementation of this would generate far too many code generators;

just as multiple, identical, unadvised closures shared the same code generator, it would be good

to preserve sharing when those multiple closures with identical code generators are advised by

the same aspect. To do so, introduce a second table aspectCache : aspect → CodeGenerator. The

remainder of the weaving algorithm uses this table, continuing after step 6:

6. Let cgp := cp.codeGen.

7. If cgp.aspectCache[a] 6= null, then set cp.codeGen := cgp.aspectCache[a].

8. Otherwise, set cp.codeGen := new CodeGenerator and cgp.aspectCache[a] := cp.codeGen.

To see this in action, suppose three closures cx, cy and cz share a code generator cg1. When cx is

advised by aspect a, the j it creates a new code generator cg2 for it to use; cg1 (with its cache) is

still valid for cy and cz. If cy is later advised by a, it finds cg2 = cg1.aspectCache[a], and so reuses

cg2 and its cache. Again, cz continues using cg1 and its cache.

This sequence of operations is minimally invasive on the critical path of function dispatch: in

the common case of programs with no aspects, only a single branch (comparing timestamps) is

added. Moreover, it is maximally sharing, creating the fewest number of distinct code genera-

tors. The worst case behavior involves repeatedly advising a function and calling it once, which

completely defeats any caching behavior. Even in this unrealistic, pathological example, the com-

pilation overhead is lower than that of other techniques (see Section 4.6.1).

4.5.3 Weaving advice

The weaving mechanism is essentially a function of type ASTNode × Aspect List → ASTNode,

though I make use of ASTNode types that cannot be generated via concrete syntax. These synthetic

nodes let the weaver temporarily alias function parameters to match advice parameter names or

manipulate the return address of the function without strange syntactic contortions.

101

Weaving callee advice

Consider a function f with body B, and lists~b, ~a and~r (of lengths l, m, and n) of installed before,

after, and around advice. Assume for now that each advice came from a callee(f) pointcut with

no filters. Fig. 4.4 shows a simplified resulting woven body B’. Before and around advice can

be concatenated with the body (BA). Around advice is more complicated, as it may call proceed

multiple times; I implement around advice by inlining the next around advice (Ri+1) into the

current one. Labels L and Lai mark potential targets for return statements. The net result is the

outermost R1, along with some bookkeeping described below.

Named parameters Implementing the renaming of function parameters must ensure that any

names introduced as parameters in one piece of advice must be scoped only to that advice. Rather

than rewrite advice s explicitly to substitute names, the named parameters are temporarily intro-

duced (i.e., within the advice body) as aliases for the parameters of the function. The advice is

surrounded by a pair of directives RenameParams and UnRenameParams that have no runtime effect

(in fact, they do not even appear in the compiled code), but temporarily change how the code

generator compiles those identifiers: instead of local variables, they resolve to the appropriately

positioned arguments on the stack. Assignments to these parameters via these aliases are visible to

subsequent advice and to the mainline code. The current implementation requires that the arities

of the function and advice must match; however, this is not a fundamental requirement.

Retval and exceptions Because advice is inlined into the callee, special care is needed for return

values and targets. The calling conventions dictate where a function’s return value is located; the

ast node retval (used by around or after advice) provides a mutable way to describe that loca-

tion. Advice can then change the return value by either assigning to retval or simply returning

a new value. The calling conventions also dictate that return statements branch to the function

epilogue before resuming the caller. To recapture control flow for after and around advice, the la-

bel that identifies the epilogue must be changed: the InstallReturnLabel directive does precisely

this, diverting the return label from the epilogue to the next applicable advice. The original return

label is reinstated by the UninstallReturnLabels directive.

Proceed It is possible that multiple around aspects that each call proceed multiple times could

lead to exponential code blowup. In practice this is unlikely; none of the extensions I examined

made use of such constructions. To avoid the blowup, I can compile proceed to a pair of jumps,

similar to the construction for retval.

102

Let BA =
For each Before advice bi (1 ≤ i ≤ l) in install-order

RenameParams(bi.params)
bi.body
UnRenameParams(bi.params)

InstallReturnLabel(Lam)
B
For each After advice ai (1 ≤ i ≤ m) in reverse order
Lai: InstallReturnLabel(Lai−1)

RenameParams(ai.params)
ai.body
UnRenameParams(ai.params)

Let Rn+1 = BA
For each Around advice ri (1 ≤ i ≤ n) in install-order
Let Ri =
RenameParams(ri.params)
ri.body[Let L be a fresh label in

InstallReturnLabel(L)
UnRenameParams(ri.params)
Ri+1
RenameParams(ri.params)
L

/proceed]
UnRenameParams(ri.params)

Let B’ =
R1
UninstallReturnLabels()
return retval

Figure 4.4: Weaving of callee aspects

Weaving stack filters

Implementing the design for stack filters is particularly efficient: though it appears an implemen-

tation must walk the stack when the advised function is called, it can instead achieve the same

effect using only O(1) work per function named by the filter.7 A stack filter is a simple state ma-

chine whose state must be updated as each relevant function runs. To evaluate the filter in the as-

pect at pointcut(callee(e) && stack(f1, . . . , fm)) before {s}, I need to add code to the entries

and exits of closures fi to update the state of the stack filter. Specifically, let st be a runtime rep-

resentation of a stack filter. Then for each 1 ≤ i ≤ m, evaluate at pointcut(callee(fi)) around

{ enter(st, fi); try { proceed; } finally { exit(st, fi) } }. Functions enter and exit update the

7 I am not the first to recognize that stack inspection can be achieved more efficiently; Wallach et al. [222] use a similar
technique for Java.

103

state of st to reflect how far the stack pattern matches the current call stack, based solely on the cur-

rent stack frame fi; using finally ensures that exit will run regardless of the mainline control flow.

Consider a filter stack(a, !b, c). When a is called, the filter’s state advances from “Start”

to “Expecting c”. If c is called (i.e., the stack is a::· · · ::c), the state advances to “Success” and

the enabled-filter counter is incremented. As c exits, the counter is decremented and the state

reverts to “Expecting c”. However, if b is called before c (i.e., a::· · · ::b::· · · ::c), the filter

state is “Fail” until b exits.

The remaining details elided from Fig. 4.4 support stack filters. Since aspects can have multiple

stack filters, I equip them with a counter of currently-enabled filters, maintained by the stack

advice above. Advice is surrounded with an enablement check (shown here for after advice):

Lai: if (isEnabled(ai)) {

InstallReturnLabel(Lai−1)

RenameParams(ai.params)

ai.body

UnRenameParams(ai.params)

}

The isEnabled helper checks that the current count equals the installed count. If the test passes,

the advice runs as before; otherwise, control falls through to the next installed advice. (Around

advice cannot simply fall through; I instead generate an else { proceed } branch.)

Dynamic disablement To support programs that use the aspect object to dynamically disable

an aspect (via aObj.disabled = true), the internal isEnabled function must also check that flag.

The weaving remains unchanged.

Avoiding redundant overhead If an aspect has no stack filters, or if the aspect expression is

used as a statement (and therefore the aspect object is ignored), I can simplify or eliminate the

isEnabled tests, leading to more efficient woven code (see Section 4.6.1).

Weaving wrap and statement_containing

Compiling wrap or statement_containing advice is done by preprocessing the body before apply-

ing callee advice. During preprocessing, field advice is rewritten before statement advice. Recall

that neither pointcut designates a function in which the rewriting should occur: this is specified

by the mandatory within filter which, like the callee pointcut, evaluates its argument at runtime

104

to a closure, and installs the advice onto it. Such advice is therefore somewhat of a hybrid, as it is

a syntactic (static) transformation on a runtime-specified (dynamic) closure.

The current implementation has the small limitation that it is impossible to advise global vari-

ables while in the global scope. This is a minor restriction on expressiveness, as there is relatively

little code at global scope. In practice, this has not been a stumbling block. (Resolving this would

change how I compile global code and penalize the performance of unadvised code; from my

experiences examining extension code, there does not appear to be enough interesting code in

global scope to warrant this change.)

4.6 Evaluation

The Microsoft Research JScript compiler is written entirely in C# and consists of a JS front-end

and j it code generators targeting either a specialized bytecode or the .Net Common Intermediate

Language (MSIL); the MSIL in turn is compiled by the clr jit. The modifications needed were

easily confined to the front end and the code generators; the clr jit was unchanged. Because the

backends target .Net, and because the runtime environments are implemented in .Net, the clr

jit can easily optimize JS code together with the runtime.

I evaluate the framework on performance (using the MSIL backend) and on expressiveness.

4.6.1 Performance

Recent work has seen enormous improvements in the performance of JS engines [87], so it is im-

portant that new constructs not undo this progress. The compiler is work in progress, so absolute

performance numbers are preliminary. Instead, I measure the relative performance of 1) an un-

woven base program for reference, 2) simple advice defined using aspects, along with equivalent

monkeypatched, wrapped, and manually-woven versions, and 3) advice with a stack filter de-

fined by aspects, and monkeypatched, wrapped and manually-woven versions. I pessimistically

choose a trivial baseline function and minimal advice, to maximize the ratio of weaving over-

head to useful runtime work: the aspect version of the test program is shown in Fig. 4.5. The

seemingly-extraneous function surrounding the advice is included in the manual and monkey-

patched versions too, to force them to execute the same number of closures while weaving in

advice as when executing the equivalent wrapper idiom, thereby eliminating one (large) source of

runtime differences. This hurts the non-wrapper versions equally, slowing them to the weaving

speed of wrapping, without impacting the performance of the advised code. In practice, real code

would not be written this way.

105

// Initial function, and caller (for stack-filtered advice)
square = function(v) { return v*v; };
callSquare = function(v) {
var ret = square(v);
return ret;

};

// Closure that installs the advice; other tests use monkeypatches or wrapping here
(function() {

at pointcut(callee(square) && stack(callSquare))
before(v) { v++; };

})();

for (test = 0, incr = 1; test < N; test++, incr++)
if (callSquare(test) != incr*incr)
print("Test failed for test ", test);

Figure 4.5: Test microbenchmarks, without and with stack filters (boxed), written using advice.
N is an integer literal that varies across the x-axis in Fig. 4.6.

To account for inter-run and system variability, I report the minimum time achieved for each

technique: whereas system noise can slow down a test run, the minimum time represents the

fastest time actually achieved by any approach. In this setting, measuring performance must

distinguish two levels of j iting/caching: .Net j iting the compiler and the compiler j iting the

JS program. Once the .Net cache warmed up (the first 10-20, out of 200 runs), variability was

insignificant: the averages and minima were nearly equal. Every test iteration started from a

cold cache for the compiler. The tests were run on a 2.8GHz Windows XP machine with 4GB of

memory running .Net 3.5 sp1. Despite the confounding effects of caching and j iting, no test had

a working set greater than 35MB of memory.

Results are shown in Fig. 4.6, presented as ratios of the total runtimes of each test versus that

of the unadvised code. Solid lines show the tests without stack filters; dashed lines show the

filtered ones. The x-axis counts how often the test function is called after being advised (the

loop constant N in Fig. 4.5): when N = 1, the test function is called only once and the runtime

effectively measures the overhead of the weaving process; when N � 1 the test function is called

many times and the runtime asymptotically approaches the overhead of the woven code. For some

techniques, the relative cost of weaving may be cheaper than that of the woven advice, leading to

some curves rising for larger N.

In short, the weaving mechanism runs as fast as the unfiltered manually-woven version, and 5–

27% faster than the stack-filtered manually-woven version. Contrast this with wrapping (31–61%

106

slower than the filtered manual version), or with monkey-patching (1–63% slower). Wrapping’s

performance is badly hampered by the extra function calls within the advice (recall I already ac-

counted for the extra function calls within the weaving process itself). Monkey patching generates

code identical to the manual version, but pays a large initial cost for eval. The performance parity

in the non-filtered case comes from simple optimizations that eliminate vacuous filter-enablement

checks. The performance gains in the filtered case come from implementing the stack filter inside

the runtime, rather than with state variables in JS itself. Runtime weaving as implemented here

provides higher performance and stronger semantics than existing idioms—a win-win situation.

4.6.2 Expressiveness

I designed the aspect language to support extensions, but I deliberately did not examine a large

selection of extensions in advance, to prevent over-fitting the language to awkward coding id-

ioms or legacy code. Instead, after designing the language, I thoroughly examined the scripts of

twenty other popular Firefox extensions. Note that because the engine is not embedded in Firefox,

I have not yet implemented an aspect-enabled Firefox, but rather I show that extensions could

easily be rephrased to use aspects instead. My twenty extensions were drawn from a snapshot

of the top 50 add-ons in each category from Mozilla’s http://addons.mozilla.org, as of October

2008; the versions of these twenty extensions tested here all support Firefox 3.0. The snapshot

contains 350 distinct extensions, of which roughly 10% use monkey-patching; the twenty exten-

sions were drawn from these. As such the sample may conservatively undercount the prevalence

of wrapping in extension code.

The results are summarized in Fig. 4.7. The first three columns measure the amount of JS code

in each extension, and the amount of code directly attributable to either monkeypatches or wrap-

ping. I count as a monkeypatch any lines of code that call eval and replace on code, including

the string arguments as they are the contents of the patch. It is more difficult to count the precise

number of lines of code needed in wrapping, as sometimes a function is simply wholly replaced,

rather than precisely fitting the wrapping idiom. In such cases, I choose to undercount and include

only the single line that binds the new function to the old name. In total, these twenty extensions

contain 98,700 lines of JS code (loc), of which 2,713 loc (2.8%) is a monkey-patch or wrapper.

The extensions range in size from 300–10,000 loc, and subjectively range widely in their effects

on the browser. The two are not correlated: Tree Style Tab requires far more lines of monkey-

patching code (894/6786 = 13%) than any other extension, even though it is less than half the

size of TabMixPlus and even though subjectively it modifies the browser less than SplitBrowser.

http://addons.mozilla.org

107

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Wrapping w/o filter

Monkeypatching w/o filter

Manual w/ filter

Advice w/ filter

Wrapping w/ filter

Monkeypatching w/ filter

Manual w/o filter
Advice w/o filter

Number of calls to function after being advised

O
ve

rh
ea

d:
R

at
io

of
m

in
im

um
ru

nt
im

e
to

ru
nt

im
e

of
un

ad
vi

se
d

co
de

Figure 4.6: Overhead comparison for test in Fig. 4.5, with (dashed) and without (solid) stack filters.
Lower is better.

Conversely, All-in-one Sidebar is nearly the same size overall, but has 5% the amount of patching

code, while NoScript is twice as large and profoundly impacts the browsing experience, yet needs

merely 11 lines of patches. Regardless of size, patches are key to extensions’ behavior, and so

simplifying them is helpful.

The remaining columns of the table count and categorize each hook (both monkeypatch and

wrapping) as one or more of the supported advice types, or as “other” if I could not express it

directly using the advice language. I was carefully literal-minded in these classifications: if a

patch was not precisely expressible as an aspect, even if a semantically equivalent patch could be

so expressed, I counted this patch as a failure. For example, Tree Style Tab includes seven patches

that insert a new statement after the opening brace of an if-statement. None of the existing

advice forms support this. However, in these cases the guards of the ifs are pure, and so using

before statement_containing advice that repeated the if-test would have the same semantic

effect. Despite being so stringent, the language as presented can express 621 out of 636 (97.6%)

observed hooks. Of the remaining 15: seven add a statement to the beginning of an if block; four

change the condition of an if test; one changes a statement in the middle of an if body; one

inserts a statement at the end of one case of a switch statement; one changes a while loop into a

for loop; and one is unknown and appears broken. With slight revisions of the monkey-patches

(e.g., by duplicating the condition of an if), aspects could express 12 of these 15.

108

JS
M

on
ke

yp
at

ch
W

ra
pp

in
g

Fu
nc

ti
on

Fi
el

d
St

ac
k

St
m

tc
on

t
O

th
er

N
am

e
(l

o
c

)
(l

o
c

)
(l

o
c

)
(c

ou
nt

)
(c

ou
nt

)
(c

ou
nt

)
(c

ou
nt

)
(c

ou
nt

)
Fi

ss
io

n
1
.0

3
6

7
5

5
2

Ta
bR

en
am

iz
er

0
.8

.1
1

5
3

6
3

3

C
om

pa
ct

M
en

u
2
-2

.2
.0

5
8

6
7

1
1

1
1

M
ul

ti
ro

w
Bo

ok
m

ar
ks

To
ol

ba
r

2
.9

5
8

7
5

3
2

2
2

R
ed

ir
ec

t
R

em
ov

er
2
.5

.5
9

2
6

2
0

2
2

2
1

M
ul

ti
pl

e
Ta

b
H

an
dl

er
0
.3

.2
0

0
8

1
0

1
8

0
1

2
0

4
8

8
3

5
1

0
2

3
1

1

Im
g

Li
ke

O
pe

ra
0
.6

.1
7

2
2

8
7

4
5

4
1

1
6

1

Fi
re

G
es

tu
re

s
1
.1

.5
.1

2
4

5
5

6
4

2
1

G
la

dd
er

2
.0

.3
.1

2
5

5
8

4
9

4
1

A
ll-

in
-o

ne
G

es
tu

re
s

0
.1

9
.1

4
0

5
6

4
1

Sp
lit

Br
ow

se
r

0
.5

.2
0

0
8

1
0

1
8

0
1

4
5

1
9

3
3

3
2

6
9

7
1

4
8

2
0

1
4

Se
ss

io
n

M
an

ag
er

0
.6

.2
.4

4
6

9
7

6
3

3
2

1

Ta
bK

it
0

.4
.3

5
2

3
2

6
3

1
6

1
2

Sp
ee

dD
ia

l0
.7

.2
.5

5
6

4
1

2
0

2
2

3
2

1

Tr
ee

St
yl

e
Ta

b
0

.7
.2

0
0

8
1

0
1

8
0

1
6

7
8

6
8

9
4

5
4

5
3

2
1

3
2

6
7

A
ll-

in
-o

ne
Si

de
ba

r
0
.7

.6
7

0
7

9
3

8
2

3
2

2
9

3

G
m

ar
ks

0
.9

.9
7

7
0

0
3

1
2

1

To
rB

ut
to

n
1
.2

.0
1

0
5

6
0

2
1

3
9

1
3

9

N
oS

cr
ip

t
1

.8
.3

.3
1

0
8

0
9

1
0

1
4

3

Ta
bM

ix
Pl

us
0
.3

.7
.3

1
4

2
7

8
5

5
1

3
0

9
0

2
1

5
1

2
3

5

Fi
gu

re
4
.7

:C
om

pa
ri

ng
2

0
Fi

re
fo

x
ex

te
ns

io
ns

,s
ho

w
in

g
co

de
si

ze
,p

at
ch

si
ze

,a
nd

co
un

ts
of

ho
w

m
an

y
pa

tc
he

s
by

ad
vi

ce
ty

pe
s.

109

Evident from the table is that all forms of advice are actually used: function advice is by far

the most common, but statement advice accounts for over 10% of the advice. Of the 103 stack

filters, while most filters were only one function deep, several instances used multiple patches

to manually implement two- or three-function-deep filters; these patches could all be subsumed

into a single stack filter.

4.7 Related work

Chapter 2 already discussed related work in greater detail. Here I reprise the discussion of

language-design decisions for aop languages, focusing in particular on where this design bor-

rows or deviates from previous work.

4.7.1 Aspects for object-oriented languages

AspectJ [207, 208] is probably the most well-known aspect-oriented language. AspectJ was de-

signed to support both static and load-time weaving. In Java all methods have statically known

names. Compiling AspectJ efficiently poses several challenges, particularly for cflow [12]. How-

ever, since Java does not support first-class closures, aliasing issues simply do not arise.

AspectJ employs complicated heuristics to define how pointcuts match in the presence of in-

heritance, overridden methods, and interfaces. The rules are designed so that advising a method

on some superclass will trigger that advice on all subclasses, regardless of whether they override

the method. But JS is a prototype-based object-oriented language, making heuristics designed for

class hierarchies unnatural. The design of advising closures reflects that distinction: by triggering

advice through all aliases to a closure, I ensure that all objects of a given prototype share advice

applied to the prototype. However, if a new object overrides a method from its prototype, it is a

different kind of object, and advice does not implicitly attach to it.

Some of the compelling power of aspect-oriented programming derives from its freedom to

tamper with almost any part of the code. Aldrich [6] proposed an explicit “open module” ap-

proach to curtailing that freedom. Many of these ideas may be directly applicable to aspects in

JS: for instance, functions computing trusted values (encryption, cookies, passwords, etc.) might

be sealed from advice. Indeed, the object-hardening proposals for ECMAScript 5 [64] effectively

permit sealing functions from wrapping or monkey patching; the aspect system would need to

support or integrate the same ability. Currently, this proposal focuses on expressiveness; restrict-

ing expressiveness is left to future work.

110

4.7.2 Aspects for functional languages

AspectML [50, 225] primarily focuses on the challenges in adapting an aspect system to a strongly-

typed functional language. The authors choose not to permit advising anonymous functions or

first-class functions. The design here permits advising these functions, as functions are frequently

aliased to new variables or passed as arguments to functions. The treatment of stack filters is

inspired by AspectML’s stack patterns.

AspectScheme [62] contends with the challenges of aliasing in an aspect system for a higher-

order functional language. Their aspects are fully first-class: a pointcut is simply a boolean Scheme

function on joinpoints. Additionally, they explore both static and dynamic scoping constructs for

advice; I focused solely on dynamic scoping. Their implementation depends heavily on Scheme’s

hygienic macros and continuation marks [40, 85], permitting a whole-program-transforming imple-

mentation (by redefining function application) within Scheme. While one could add continuation

marks to a JS j it [41], this approach exploits direct j it integration instead.

The handling of replacing variables with new getters and setters bears some resemblance to

the map-closure operation [197]: like that work, I provide a first-class mechanism for JS to open

closures and reveal and revise their code without disturbing their closed-over environments. The

authors note in their discussion that aspect systems and map-closure are related, though their

scopes are different: aspects are applied globally, while map-closure can be applied to a dynamic

scope. This distinction is pragmatically eliminated by dynamic filters such as stack filters.

4.7.3 Aspects within JavaScript

AOJS [226] is a recent prototype that implements weaving statically in a proxy server that mod-

ifies scripts before the browser sees them. This approach has several shortcomings, however,

largely stemming from the choice to define weaving via preprocessing, rather than within JS. It

supports two pointcuts—variable assignments and function calls, but not retrievals, callee, or

filters. Pointcuts are implemented by replacing the variable or function name with calls to wrap-

per closures that in turn execute the advice and the original expressions. The approach relies

explicitly on names and so does not avoid the aliasing problem, and it cannot handle anonymous

or runtime-created functions.

AspectScript [211] is a recent and independent project designing aspects for JS. Like this work,

they advise closures rather than variables, to avoid the aliasing problem. They also explore differ-

ent scoping strategies (similar to the within filter). However, their implementation is fundamen-

tally different: weaving is implemented at runtime by parsing and rewriting scripts from within

111

JS to wrap every potential joinpoint with a function. These “reifier” functions construct a con-

text for the joinpoint and then call the weaver which in turn executes the relevant advice and the

mainline code. All these rewritings and indirections come at cost: code is substantially larger and

slower even when no aspects are deployed. For a browser whose interface is largely written in

JS, and (despite many extensions) largely unmodified JS at that, such overhead is likely untenable.

By contrast, the weaver causes zero code bloat and minimal runtime overhead. Additionally, in-

troducing a second JS parser into a web browser is risky: it may not be bug-for-bug compatible

with the underlying JS engine, leading to potentially incorrect results. Finally, AspectScript does

not catch evaled code or code that was loaded without being processed by their rewriter library:

such code is not visible to their joinpoints and is not advisable. In this system, advice can use an

arbitrary run-time expression to identify the closure to be advised and there are no restrictions

on which closures are advisable.

4.7.4 Web extension in practice

There are currently over six thousand Firefox extensions used daily by over thirty million peo-

ple [193]. These extensions customize nearly every facet of the browser, changing tab handling,

mouse interactions, file downloading behavior, etc. Many of these extensions replace existing func-

tionality with new code, using the wrapping idiom where appropriate. Other extensions merely

modify existing code slightly, using monkey-patching. Some actually modify each other to resolve

compatibility issues. This last usage motivated the field and statement_containing pointcuts:

for example, one extension (SplitBrowser8) modified another (All-in-One Tabs9) by replacing all

accesses to a local variable with a field on a globally visible dom node, so that it could see that

interim state later as needed. Moreover, a reference to the dom node was introduced as a new

local variable for brevity. Clearly, these contortions are ad hoc and difficult to reason about without

a more structured approach.

The userscript mechanism is similarly popular: nearly 40,000 scripts exist to tweak individ-

ual applications such as Gmail, YouTube, or Facebook, remove ads on popular pages, etc. The

top five userscripts have each been installed over eleven million times. Like browser extensions,

userscripts frequently interact with the structure or style of the dom of the page, in addition

to modifying its script content. Analogously, those latter modifications are better expressed and

reasoned about using aspects.

8 https://addons.mozilla.org/en-US/firefox/addon/4287

9 https://addons.mozilla.org/en-US/firefox/addon/12

https://addons.mozilla.org/en-US/firefox/addon/4287
https://addons.mozilla.org/en-US/firefox/addon/12

112

4.8 Future work

JS aspects can also be used to good effect beyond extensions:

• Concurrent research by colleagues [155] examines using aspects to enforce security policies

along the lines of Caja [209] or ADsafe [3]. Much of the challenge in freezing objects in

Caja, for instance, requires interposing on any aliases to member functions in that object; the

approach of advising the closure directly addresses this issue.

• Libraries such as Script.aculo.us or Prototype build upon existing JS objects to provide con-

venient, common functionality for websites. Some of that functionality is fairly aspect-like;

Prototype, for instance, defines functions to extend objects with getters and setters, and ex-

plicitly thread through proceed functions to call the next installed code. Aspects can help

simplify their development while improving their performance.

The declarative nature of aspects opens up the possibility of new analyses. For example, re-

cent work has focused on staging information flow analyses in the face of dynamic composition

of scripts [39]. Precision is lost whenever code is evaled; declarative aspects present more struc-

ture than eval strings, which may improve precision. For another, web-application and browser

extensions are notoriously prone to breaking when certain other extensions are simultaneously in-

stalled, due in large part to the fragility of the code-injection idioms. Not only do aspects subsume

all the weaving complexity of extensions, but they permit identifying when multiple extensions

advise the same code and potentially conflict, which could provide useful warnings.

4.9 Summary

Web applications and browsers are growing ever more complex. Their broad, ad-hoc customiza-

tions highlight the need for an expressive mechanism by which to program them. In this work, I

have implemented the first j it for JS that supports aspects. I identified key linguistic requirements

in the web-application space and described how they differ from prior aspect systems. The aspect

proposal for JS meets these requirements, and I have shown that it offers better performance and

cleaner semantics, thereby improving the development of extensions.

113

Chapter 5

LAYOUT/MARKUP CONFLICTS

5.1 Introduction

5.1.1 An overview of overlays

We take for granted now that two different webpages need not look even remotely similar, yet both

can be rendered by the same browser. Mozilla extended this notion to the platform itself, and in

1998 introduced XUL as a novel language for constructing application uis.1 XUL is an XML language

with tags representing widgets such as buttons, scrollbars, and textboxes; Fig. 5.1a shows a “Hello

world” example written in XUL. If launched with one XUL file, the rendering engine can generate

Firefox’s ui; if launched with another, it can generate Thunderbird’s instead. This approach to

declarative ui markup is popular, and has since been revisited multiple times, most notably in

XAML, Microsoft’s markup language for Silverlight, and HTML5 itself, the emerging standard for

webapp development. Unless otherwise noted, the remainder of this chapter will use Firefox

as the archetypal Mozilla application; discussions about Firefox extensions apply equally well to

Thunderbird or other Mozilla applications.

XUL is currently unique among these languages with its support for overlays, a declarative

mechanism to inject new XUL content into existing XUL content. Overlays (informally) consist of

a selection of some element in the mainline document and a content subtree to be inserted into that

element; they are rather like “tree-shaped patches”. A simple overlay, and its composition with

the base document, is shown in Figs. 5.1b and 5.1c: the content of the 〈vbox id=“msg”/〉 in the

〈overlay/〉 is merged with the content of the tag with the same name and id in the base document.

In this manner, uis can be refactored into logical units that are composed at runtime: the overall

structure of the ui (e.g., the relative positioning of menubars and content areas and statusbars)

can be defined in the main Firefox ui file, while detailed pieces of ui (e.g., the actual menu items)

can be separated into a smaller, more focused files. Firefox (and other Mozilla applications) make

heavy use of this ability to aid code clarity.

The key enabling power of these overlays is that they are not restricted to just Firefox-authored

files: any developer can write an overlay, and have it merge with existing content at runtime. This is

1 http://www-archive.mozilla.org/xpfe/languageSpec.html

http://www-archive.mozilla.org/xpfe/languageSpec.html

114

〈window xmlns=“http://www.mozilla.org/
keymaster/gatekeeper/there.is.only.
xul”〉
〈vbox id=“msg”〉
〈spacer/〉
〈description〉Hello, XUL〈/description〉
〈spacer/〉
〈/vbox〉
〈/window〉

(a) “Hello, XUL” base document

〈overlay xmlns=“http://www.mozilla.org/
keymaster/gatekeeper/there.is.only.
xul”〉
〈vbox id=“msg”〉
〈button〉Overlay!〈/button〉
〈spacer/〉

〈/vbox〉
〈/overlay〉

(b) Overlaying the 〈vbox/〉 in “Hello, XUL”

〈window xmlns=“http://www.mozilla.org/keymaster/
gatekeeper/there.is.only.xul”〉
〈vbox id=“msg”〉
〈spacer/〉
〈description〉Hello, XUL〈/description〉
〈spacer/〉
〈button〉Overlay!〈/button〉
〈spacer/〉
〈/vbox〉
〈/window〉

(c) Composition of base with overlay

Figure 5.1: Simple example of XUL, overlay, and composite result

http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul
http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul
http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul
http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul
http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul
http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul
http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul
http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul

115

the foundation of extensions as found in Firefox. Nothing about overlays is inherently restricted

to XUL, however: with some care, overlays are just as easily defined in HTML.

5.1.2 Challenges of supporting multiple overlays

As with other forms of composition, a working system must define carefully the intended forms

of interactions among multiple overlays, and then filter out any interactions with problematic

consequences. Doing so for overlays must distinguish two sorts of problems: those that arise

from the semantics of the markup language itself, and those that stem from the precise design

choices of overlay expressiveness.

Intuitively, extensions conflict due to language semantics if they behave in different and unantic-

ipated ways when installed together as when installed separately, either in their overlay structure

or in their styles. Not all differences are bad. For example, in Firefox, two extensions can declare

menu items to be added to existing menus, possibly to the same menu. In the latter case, as long

as both menu items appear on the menu, the extensions probably do not care about the precise

order in which they appear, so these differences are minor and unimportant. However, extensions

can also define hotkeys declaratively in XUL, possibly defining the same hotkey—but pressing the

hotkey can trigger only one behavior. Here, the order matters: the behavior of the hotkey de-

pends on which extension runs “first”, while the “second” extension gets no hotkey support. But

it isn’t merely that “order matters for hotkeys”: if two extensions define different hotkeys, then

their installation order is irrelevant.

Additionally, extensions’ CSS style definitions may (intentionally or not) apply to other exten-

sions’ overlays. These too may be benign or conflicting.

Beyond these semantic constraints, there are several independent choices for overlay design,

summarized in Fig. 5.2, whose interactions influence the complexity of the conflict-detection prob-

lem. First, an overlay system may vary precisely what actions overlays may perform. Permitting

only insertions of new content into a tree is the simplest action, as it ensures the tree grows mono-

tonically: whatever existed before an overlay was applied will continue to exist afterward. Modify-

ing existing content by changing attributes is often not more complicated, because those attributes

typically do not participate in overlays’ selection mechanism. The final ability, to remove existing

content, substantially raises the complexity of overlays, but it is the most symmetric: any action

taken by one overlay can be undone by another overlay. Said another way, overlays with all three

abilities are closed under inverses, which may be very useful for the conflict-detection algorithm.

Second, an overlay system may vary the expressiveness of the selection mechanism. Firefox’s

116

overlays are limited to selecting just a single element by its id and tag name,2 but there is no fun-

damental reason why they must be so limited. A more general design would permit additional

overlay idioms to be expressed declaratively that otherwise must be constructed imperatively us-

ing scripts. In particular, the system presented here will permit selectors to select elements using

arbitrary CSS selectors; this generality obviates many scripted construction tasks. However, this

flexibility significantly complicates the conflict-detection problem. As explained later, a necessary

but insufficient component of such an analysis will be detecting potential overlap between different

CSS selectors; a full solution will also require tracking the actual effects of CSS universal selectors

and modeling how selectors should change in response to the presence of other extensions.

Third, an overlay system can vary the composition time when overlays are applied. While seem-

ingly straightforward, subtleties of HTML semantics make this much murkier than it ought to be.

Fourth, an overlay system must choose whether overlays can apply to each other—i.e., to content

produced by other overlays—or not. Such an ability yields more powerful extensions, but interac-

tions with more expressive selectors badly complicate conflict detection: such a system now must

consider dependencies between overlays, and unsatisfiable dependency chains lead to conflicts.

5.1.3 Detecting overlay conflicts

I present several variants of conflict detection algorithms, required by different choices for the

options in Fig. 5.2, that build toward the most general case presented. All variants will ignore

precisely choosing a composition time; I defer that discussion to Section 5.9.

Section 5.4, Node insertion only, by id only, base document only: This strawman scenario is

weaker than Firefox’s overlay mechanism, but introduces intra-overlay conflicts that are detectable

regardless of other extensions. Conflicts here are defined to be duplicate ids or missing targets.

Section 5.5, Node insertion and attribute modification, by id only, overlay can see injected

content: This scenario is much closer to Firefox’s mechanism, and suffices for the sample of ex-

tensions I have analyzed. This analysis abstracts overlays as document-state transformers that can

require or define targets (nodes with ids) in the document. This abstraction leads to a dependency

analysis that detects many true errors in the analyzed extensions with few false positives. Con-

flicts from here through the end of the chapter also include resource-type specific conflicts (e.g.,

duplicate hotkeys), and incompatibilities between overlay-specified “guards”.

2 In the ideal case of well formed documents, the unique id suffices and the tagname is redundant; unfortunately not all
documents are well formed, so using both provides a pragmatic “safety net”.

117

Overlay abilities
Node insertion only Ensures the tree grows monotonically, yielding the

simplest conflict detection
Node insertion and attribute

modification
Equivalent to Firefox (in practice), this does not greatly

affect the conflict-detection algorithm
Node insertion, attribute

modification and node
deletion

Equivalent to Firefox, this is the most general, and
symmetric, case, but makes conflict detection very
difficult

Selector expressiveness
By id Equivalent to Firefox, this choice yields the simplest

conflict detection
CSS selectors using only

descendant and sibling
combinators

Assuming no node deletion, this yields a trickier but still
tractable conflict-detection algorithm that can compute
a clean loading order efficiently

Arbitrary CSS selectors Even without node deletion, this yields a complicated
conflict-detection algorithm

Composition time
During parsing This requires detailed coupling of the overlay mechanism

to the parser, to check whether the selectors are satisfied
As subtrees are inserted Precise details of the HTML parsing algorithm make this

poorly defined without detailed parser support
When the parser completes Inline scripts may have run, and seen inconsistent views

of the document
Just before the
onReadyStateChange event

A pragmatic compromise that sacrifices some consistency
for a well-defined execution moment

During runtime execution as
nodes are inserted

Not mutually-exclusive with the options above, this
requires only a simple conflict-detection algorithm

Higher-order behavior
Overlays see only the base

document
Overlays have no effect on each other, leading to the

simplest conflict-detection algorithm
Overlays can see

overlay-injected content
Equivalent to Firefox, this is the most powerful case, and

requires the most complicated conflict analysis

Figure 5.2: Key design choices in an overlay system

118

Section 5.7, Node insertion and attribute modification, selectors using only descendant and

sibling combinators, overlay can see injected content: This scenario is more general than Fire-

fox’s mechanism, as it broadens the selectors used to pick targets. It can be handled by suitably

generalizing the preceding algorithm, using a notion of the intersection of two CSS selectors.

Section 5.8, Arbitrary actions, arbitrary selectors, overlays can see injected content: I demon-

strate by example why the preceding algorithm cannot suffice, and sketch future work that may

handle this case. It treats overlays as patches, and develops an algebra describing how patches

commute and conflict with one another.

5.1.4 Chapter overview

The remainder of this chapter is organized as follows. Section 5.2 defines the CSS selector language,

then defines and proves properties of that language that are used in subsequent sections. Readers

familiar with CSS can skim this section and refer back to it as needed. Section 5.3 defines the syntax

of the overlay language as an extension to HTML, along with some examples of its use. Section 5.4

presents the strawman scenario above, and develops a conflict-detection algorithm that checks for

unsatisfied dependencies in overlays. Section 5.5 presents the second, nearly-Firefox-equivalent

scenario, and develops the machinery needed to analyze overlays with these capabilities. In a

change of pace, Section 5.6 uses these results to analyze a sample of Firefox extensions in detail.

Section 5.7 presents the first generalization of Firefox extensions, defines the intersection algorithm

for CSS selectors, and shows how to use that algorithm in the preceding conflict-detection analysis

to (partially) handle the new expressive power, positioning the remaining problems as future work.

Section 5.8 explains why selectors were limited in the preceding case, and sketches an approach to

handling these overlays as future work. Finally, Section 5.9 returns to the issue of precisely when

overlays should be applied to a base document. Section 5.10 summarizes the contributions of this

chapter. Proofs of the claims in this chapter are presented in Appendix A.

5.2 CSS selector language

5.2.1 CSS syntax and meaning

CSS3 defines a grammar for its selector language,3 which is paraphrased here in Fig. 5.3. (The

paraphrasing ignores negation, functional pseudo-classes and namespaces, as they obscure the

essential details without changing the results.) For typographical clarity, I write a b instead of

3 http://www.w3.org/TR/css3-selectors/#grammar

http://www.w3.org/TR/css3-selectors/#grammar

119

Selector ::= SimpleSelector[Combinator SimpleSelector]∗

Combinator ::= +
∣∣ > ∣∣ ~ ∣∣

S impleSelector ::= [TypeSel|UniversalSel][Id|Class|Attrib|Pseudo]∗∣∣ [Id|Class|Attrib|Pseudo]+

Id ::= #〈name〉
Class ::= .〈name〉

Attrib ::= [〈name〉 [[~= | |= | ^= | $= | *= | =] "〈string〉"]?]
Pseudo ::= :〈name〉

TypeSel ::= 〈element name〉
UniversalSel ::= *

Figure 5.3: CSS Syntax paraphrased from the CSS3 specification

a b to denote the descendant selector. In full CSS stylesheets, each style rule permits combining

multiple selectors by commas, indicating the disjunction of the component selectors; this is a

shorthand for duplicating the rule body once per disjunct, rather than a combinator in the selector

language itself. I present the grammar first, describe its meaning informally, and then provide a

formal denotational semantics for it in terms of paths of elements within document trees.

TypeSel picks elements by their tag name (e.g., 〈div/〉, 〈p/〉), while UniversalSel matches any

element (i.e., *). Additionally, atomic selectors can be filtered by whether they have the correct

id (Id), class (Class), attributes (Attrib, whose various operators describe string-matching require-

ments on the attribute), or positional attributes (Pseudo). This grammar adheres to the concrete

syntax of CSS selectors, and includes a commonly-used shorthand: the second production of

SimpleSelector implicitly assumes a leading UniversalSel. Additionally, the grammar specifies noth-

ing about precedence or associativity among the combinators.

By design, SimpleSelectors match elements in isolation: while some selectors may match multi-

ple elements in a document (e.g., *.foo matches all elements with class “foo”), they do so without

examining any other elements. The remaining combinators connect a group of simple selectors,

each applying to one element in isolation, into some path through a tree applying to multiple

elements in combination. Ultimately, this path is the meaning assigned to the selector. Browsers

then simplify this and treat CSS selector matching as a function that takes a tree and a selector and

returns just the leaf-most element of each path in the tree matching the selector. Fig. 5.4 shows a

tree and the results of matching several CSS selectors against it.

Formally, let Tree be the set of all valid HTML trees. A tree consists of a set of elements e, where

120

body

div

div

span.Xspan

p

spanemspan.X

p.X

span

(a) Base HTML tree

body

div

div

span.Xspan

p

spanemspan.X

p.X

span

(b) Selecting *.X — node name does not matter

body

div

div

span.Xspan

p

spanemspan.X

p.X

span

(c) Selecting div > span — only immediate chil-
dren are selected

body

div

div

span.Xspan

p

spanemspan.X

p.X

span

(d) Selecting div *.X — as shown, paths are
greedily matched from leaf to root

body

div

div

span.Xspan

p

spanemspan.X

p.X

span

(e) Selecting span ~ span — intervening siblings
are ignored

body

div

div

span.Xspan

p

spanemspan.X

p.X

span

(f) Selecting *.X ~ div * + span

Figure 5.4: Simple HTML tree, and nodes matched by various CSS selectors. Red nodes are the
results. Blue edges are examined by the selectors during matching; blue nodes match simple-
selector components of the selector.

121

every element has a pointer to its parent (e.parent) and to its previous sibling (e.prevSibling), when

they exist, or null otherwise. (This formalism ignores the text nodes present in HTML trees, as they

are not accessible via CSS selectors.) Elements also have pointers to their next sibling (e.nextSibling)

and first child (e.firstChild), defined in the obvious way. Write e1.parent = e2 when e2 is e1’s parent,

and e1.parent+ = e2 when e2 is e1’s ancestor, and similarly for siblings. Elements have tag names

e.tagName, identifiers e.id, classes e.class, and may have arbitrary attributes e.attr as well. Then, let

Path be the set of all paths through the tree. A path p consists of a sequence of distinct elements

[p1, . . . pk] such that pi+1 is reachable from pi by an arbitrary, non-empty sequence of only parent

or previous-sibling pointers: i.e., pi+1 = pi.parent+ or pi+1 = pi.prevSibling+. (Note that this

definition explicitly lets paths skip nodes in the tree; paths intuitively include only “landmarks”

along a route through the tree, rather than every single step.) By construction, paths are acyclic and

finite, since they point “upward and leftward” in well-formed trees. Let |p| = k be the length of the

sequence. The first element, p1, is the leaf-most element, and the one which browsers consider as

having been matched by the selector. For notational convenience, let plast always indicate the last

element pk of a sequence, whatever its length. Let p++ q be the concatenation of two sequences

[p1, . . . , pi, q1, . . . qj]. Fig. 5.5 defines a browser’s interpretations of a selector (“What nodes match

selector sel in tree t?” and “Does element elem match selector sel in tree t?”), and the underlying

path-based meaning of a selector.

5.2.2 CSS syntax with operator precedence

In the application that follows, I will want to specify parsing precedences among combinators. The

grammar in Fig. 5.6 refactors the original CSS grammar (Fig. 5.3) to include precedence rankings

among the combinators, and explicitly left-associates combinators of the same type. It is trivial to

transform a selector from one form to the other.

Such a transformation is valid: the two grammars are semantically equivalent and so selectors

may be freely re-associated with arbitrary precedence. In particular, if any selector sel as parsed by

this second grammar has the same meaning as the corresponding left-associated selector parsed

using the first grammar, the algorithms below can choose whichever associativity is needed. The

associativity of CSS selectors falls out from the associativity of path concatenation as used in the

path-based semantics. For example, in Fig. 5.4f, it makes no difference to select “span nodes that

are adjacent to (any node descending from div nodes with at least one sibling with class X)” versus

“(span nodes that are adjacent to any node) descending from (div nodes with at least one sibling

with class X)” — both versions compute the blue paths highlighted in the figure.

122

Element-based meaning: matches(·)· : Selector→ Tree→ 2Element

matches(sel)t def
= {p1

∣∣ p ∈ [[sel]]t}
Selector-based meaning: ·· (·) : Selector→ Tree→ Element→ Boolean

selt(elem)
def
= ∃p ∈ [[sel]]t, elem = p1

Path-based meaning: [[·]]· : Selector→ Tree→ 2Path

Simple selectors

[[*]]t
def
= {[n]

∣∣ n ∈ t}

[[tag]]t def
= {[n]

∣∣ n ∈ t, n.tagName = tag}

[[A#〈name〉]]t def
= {p

∣∣ p ∈ [[A]]t, p1.id = 〈name〉}

[[A.〈name〉]]t def
= {p

∣∣ p ∈ [[A]]t, p1.class contains 〈name〉}

[[A[〈name〉]]]t def
= {p

∣∣ p ∈ [[A]]t, p1.〈name〉 exists}

[[A[〈name〉=val]]]t def
= {p

∣∣ p ∈ [[A]]t, p1.〈name〉 = val}

[[A[〈name〉^=val]]]t def
= {p

∣∣ p ∈ [[A]]t, p1.〈name〉 starts with val}

[[A[〈name〉$=val]]]t def
= {p

∣∣ p ∈ [[A]]t, p1.〈name〉 ends with val}

[[A[〈name〉|=val]]]t def
= {p

∣∣ p ∈ [[A]]t, p1.〈name〉 = val ∨
p1.〈name〉 starts with (val + "-")}

[[A[〈name〉~=val]]]t def
= {p

∣∣ p ∈ [[A]]t, val 6= "" ∧
val does not contain whitespace ∧
(" "+ p1.〈name〉+ " ") contains (" "+ val + " ")}

Combinators

[[A + B]]t def
= {q++ p

∣∣ q ∈ [[B]]t, p ∈ [[A]]t, qlast.prevSibling = p1}

[[A ~ B]]t def
= {q++ p

∣∣ q ∈ [[B]]t, p ∈ [[A]]t, qlast.prevSibling+ = p1}

[[A > B]]t def
= {q++ p

∣∣ q ∈ [[B]]t, p ∈ [[A]]t, qlast.parent = p1}

[[A B]]t def
= {q++ p

∣∣ q ∈ [[B]]t, p ∈ [[A]]t, qlast.parent+ = p1}

Figure 5.5: CSS selector semantics

123

a ∈ Atomic ::= TypeSel
∣∣ UniversalSel

simple ∈ S impleSelector ::= a
∣∣ simple[Attrib|Id|Class|Pseudo]

adj ∈ AdjacentS ibling ::= simple
∣∣ adj + simple

sib ∈ S ibling ::= adj
∣∣ sib ~ adj

kid ∈ Child ::= sib
∣∣ kid > sib

desc ∈ Descendant ::= kid
∣∣ desc kid

sel ∈ Selector ::= desc

Figure 5.6: CSS grammar with combinator precedence

Lemma 1. Let S be a concrete-syntax CSS selector. Let sel1 be the parsed representation of S according to

the original grammar, and let sel2 be the parsed representation of S according to the precedence-inducing

grammar. Then [[sel1]] = [[sel2]].

5.3 C3 Overlays

I now present the overlay language and its semantics as developed for C3. The goal here is to

define the overlay weaving algorithm concisely and crisply, to prepare for clean definitions of

overlay conflicts in the following sections.

Fig. 5.7 presents C3’s concrete overlay language. The syntax is familiar HTML, though the tag

names are new—indeed, as was pointed out in Chapter 3, in fact I implement the parsing of

overlays using a C3 HTML-parser extension (see Section 3.3.1). The abstract syntax is presented in

Fig. 5.8; the translation between the two is straightforward. (The current implementation does not

include concrete syntax for compositions; this is straightforward to add.) Later sections will con-

sider sub-languages of this abstract syntax and develop appropriate conflict-detection algorithms

to handle their various features.

Similar to XUL overlays (Fig. 5.1b), the language in Fig. 5.7 uses 〈overlay/〉 as the root element

of an overlay. Its children define the individual actions to perform. There are two fundamental

actions to take: an extension can 〈insert/〉 new content into the tree, either before or after nodes

targeted by some CSS selector; or it can 〈replace/〉 some subtree targeted by a selector with new

content. When replacing a node, it may need to reference the node itself so it can modify its

attributes: the 〈self/〉 node provides such a reference. Within a 〈self/〉 node, an extension may

also want to reference the existing 〈contents/〉. Together, these actions cover all the choices of

overlay abilities in Fig. 5.2, with the benefit that each ability is syntactically distinct from the others.

124

Base constructions:
〈overlay/〉

• Description: Root node of extension document
• Children: 〈insert/〉, 〈replace/〉, 〈before/〉, 〈after/〉, 〈modify/〉, 〈guard/〉
• Attributes: None

〈guard/〉
• Description: Used within 〈overlay/〉, add guards that restrict when the overlay successfully

applies
• Children: None
• Attributes:

• resource=“res”: The resource being guarded
• type=“require|reject|first|last”: The overlay requires the resource to exist, to not exist,

to not yet be overlaid, or to never again be overlaid
〈insert/〉

• Description: Inserts new content (its children) into base document
• Children: Any HTML
• Attributes:

• selector=“sel”: Selects target location(s) in the base document
• where=“before|after|start|end”: Inserts content either before or after the selected tar-

gets, or at the start or end of the targets’ contents
• dynamic=“true|false”: If true, insertion will trigger for nodes dynamically created, as

well as for nodes created during parsing
〈replace/〉

• Description: Replaces existing subtrees with new content
• Children: Any HTML, 〈self/〉
• Attributes: selector and dynamic, as in 〈insert/〉

〈self/〉
• Description: Used within 〈replace/〉, refers to node being replaced
• Children: Any HTML, 〈contents/〉
• Attributes: When present, attributes are added to (or replace) those on the targeted node

〈contents/〉
• Description: Used within 〈self/〉, refers to the existing contents of the targeted node
• Children: None
• Attributes: None

Syntactic sugar
〈before . . . /〉 = 〈insert where=“before” . . . /〉
〈after . . . /〉 = 〈insert where=“after” . . . /〉

〈modify selector=“sel”
where=“before”〉
〈self new attributes〉

new content
〈/self〉
〈/modify〉

=

〈replace selector=“sel”〉
〈self new attributes〉

new content
〈contents/〉
〈/self〉
〈/replace〉

Figure 5.7: The concrete overlay language for C3. The bottom set of tags are syntactic sugar. A
similar desugaring for 〈modify where=“after”/〉 swaps 〈contents/〉 with new content.

125

Given these abilities, it may seem that “insert content X after nodes matching Y” is equivalent

to “replace content Y.parent with itself, its children and new content X”. However, there is no

way to express Y.parent in CSS and so these two actions are in fact distinct. In practice, these

primitives are too low-level, so the overlay language defines convenient syntactic sugar to make

inserting content 〈before/〉 and 〈after/〉 existing nodes easier, and similarly to 〈modify/〉 existing

nodes’ attributes and contents.

Example: While developing C3, the renderer reached a stage where it could support text posi-

tioning and layout, but not yet support bulleted lists. The following overlay simulates bulleted

lists, by inserting a 〈span/〉 just before every list item, and by inserting a 〈style/〉 node into the

head of the document to color the bullets:

〈overlay〉
〈modify selector=“head” where=“after”〉
〈self〉
〈style〉
li > span { margin-right: 1em; color: blue; }
〈/style〉
〈/self〉
〈/modify〉
〈modify selector=“li” where=“before”〉
〈self〉〈span〉•〈/span〉〈/self〉
〈/modify〉
〈/overlay〉

5.3.1 Applying overlays to a base HTML document

The full algorithm for overlay weaving is shown in Figs. 5.9 and 5.10. Note that procedure Apply

mutates the target node p, and through it the document d. Consequently, the algorithm permits

overlays to overlay one another: once overlay o1 is applied to the document, a subsequent overlay

o2 cannot distinguish o1-contributed nodes from ones that previously existed, and so o2 may over-

lay those newly-added nodes as well. Moreover, the composite document that results depends on

the order in which extensions were composed. This ability for overlays to apply to each other is an

essential part of their power, but also makes dependency checking that much more important.

In the next section I first consider a trivial case where overlays cannot see overlay-injected con-

tent. This changes the weaving algorithm only slightly: instead of applying overlays in the inner-

most loops, the insertionPoints sets are saved, and overlays are all applied after the insertionPoints

are fully computed.

126

c ∈ Comp ::= g∣∣ c ; c –sequential composition∣∣ c ! c –exclusive composition∣∣ c? –optional composition
g ∈ Guard ::= o∣∣ Require(~r, g) –g requires r be defined∣∣ Reject(~r, g) –g requires r be undefined∣∣ First(~r, g) –r must not be overlaid before g∣∣ Last(~r, g) –r must not be overlaid after g
o ∈ Overlay ::= Overlay(~a)
a ∈ Action ::= Insert(s, w, d, h)∣∣ Replace(s, d, rep)
r ∈ Resource = Selector(s)] Id(i)]Key(k)] Selected(h)] · · ·–various resource types
s ∈ Selector –to be determined later

w ∈ Where ::= before
∣∣ after

∣∣ start
∣∣ end

d ∈ Dynamic ::= true
∣∣ false

rep ∈ Replaced ::= h
∣∣ Self (~t, con)

con ∈ Contents ::= h
∣∣ Contents

h ∈ HTML

i ∈ Ident

k ∈ Key

t ∈ Attribs ::= (name, value)

Figure 5.8: The complete abstract syntax for the overlay language of C3. Following sections will
consider sub-languages of this definition.

127

Before firing the readyStateChanged event on document d, WeaveDoc(d)
When a node n is inserted for the first time into a document, WeaveNode(Document n)
procedure WeaveDoc(d)

for all e← each extension to be loaded do
for all o ← e.Overlays do

for all a← o.Actions do
insertionPoints← d.QuerySelectorAll(a.Selector)
for all p← insertionPoints do

Apply(a, p) . This mutates p, and therefore the containing document d
end for

end for
end for

end for
end procedure
procedure WeaveNode(Node n)

for all e← InstalledExtensions do
for all o ← e.Overlays do

for all a← o.Actions do
if a.Dynamic = true then

Apply(o, n)
insertionPoints← n.QuerySelectorAll(a.Selector)
for all p← insertionPoints do

Apply(a, p)
end for

end if
end for

end for
end for

end procedure

Figure 5.9: Static and dynamic weaving of overlays into HTML documents

128

procedure Apply(Action a, Node n)
if a.type = Insert then

Create a document fragment f in n’s document
Deep-clone all children of a into f
if a.where = Before then

Insert f before n.
else if a.where = After then

Insert f before n’s next sibling.
end if

else if a.type = Replace then
if a contains a 〈self/〉 node s then

Copy attributes from s to n
Copy all children of s that precede a 〈content/〉 node before n’s first child
Copy all children of s that follow a 〈content/〉 node after n’s last child

else
Create a document fragment f in n’s document
Deep-clone all children of a into f
Remove all of n’s children
Insert f into n

end if
end if

end procedure

Figure 5.10: Weaving an overlay into a target node

129

o ∈ Overlay ::= Overlay(a1, . . . , an)

a ∈ Action ::= Insert(s, w, h)
s ∈ Selector ::= tagName#id

w ∈ Where ::= start
∣∣ end

h ∈ HTML

Figure 5.11: Abstract overlay language with only strawman abilities

5.4 Overlay conflict detection: Naïve overlays

This section examines the limited overlay language of Fig. 5.11, which limits overlays to using

only the 〈insert/〉 tag (no modifications or removals) where the selector is always of the form

tagName#id. Additionally, overlay composition is defined to target the base document only. In

this limited case, inter-overlay interactions are nearly impossible, hence inter-overlay conflicts

are similarly rare.

5.4.1 Motivating examples

Hello, world: Consider the simple HTML document “hello-world template” below:

〈p id=“greeting”〉

〈span id=“opening”〉Hello,〈/span〉

〈/p〉

Suppose two extension authors wanted to complete the greeting by supplying the subject:

• OV1: Overlay(Insert(p#greeting, end, 〈span id=“subject”〉stranger.〈/span〉))

• OV2: Overlay(Insert(p#greeting, end, 〈span id=“subject”〉friend.〈/span〉))

And suppose another extension author wanted to embellish the greeting:

• OV3: Overlay(Insert(p#greeting, end, 〈span id=“modifier”〉and good day,〈/span〉))

If a user applied both OV1 and OV2, the result would be a non-sensical sentence—“Hello,

stranger. friend.” or “Hello, friend. stranger.” [sic]—depending on the order of insertion. While

this English-level conflict is certainly out of scope of overlay conflict detection, an automated sys-

tem can detect that the composite HTML document is not well-formed, because two 〈span/〉 ele-

ments exist with the same id “subject”.

130

On the other hand, if the user applied OV1 and OV3 (or OV2 and OV3), the result would be

a well-formed HTML document, since no duplicate ids would be present. Note that the sentence

might still be non-sensical English—“Hello, stranger. and good day,” [sic]— due to insertion order.

However, this is not a conflict between the extensions, since they merely claim to be inserted at

the end of existing content; they make no mention of their order relative to other extensions. I

will return to conflicts of this sort later.

Hotkey responses: The XUL hotkey scenario from Section 5.1.2 also occurs in HTML5, and can

be expressed using the overlay language above. Application-wide hotkeys are defined in HTML5

using 〈command/〉 elements.4 Assume the base document defines a tag 〈div id=“keys”/〉, within

which it chooses to place its 〈command/〉 elements. Then define three extensions:

• OV4: Overlay(Insert(div#keys, end, 〈command accesskey=“F” onclick=“alert("1")”/〉))

• OV5: Overlay(Insert(div#keys, end, 〈command accesskey=“F” onclick=“alert("2")”/〉))

• OV6: Overlay(Insert(div#keys, end, 〈command accesskey=“G” onclick=“alert("3")”/〉))

This presents a different challenge than the previous example: the composite document is

well-formed, but the intended semantics of hotkeys are not satisfied. A conflict-detection system

should detect that OV4 and OV5 are in conflict with each other, as they both are triggered by the

hotkey “F”, but that neither one conflicts with OV6.

5.4.2 Approach

For a single overlay to succeed, it must be the case that the nodes selected by each 〈insert/〉 action

exist in the base document. Additionally, the well-formedness property of HTML requires that the

overlay does not insert any new content with an id that is already defined in the base document.

Formally, let defs(d) ∈ TagNames× Ids be the set of pairs of tagnames and ids for all nodes with

ids in the base document d. Let

defs(Insert(tagName#id, _, _, h)) = defs(h)

reqs(Insert(tagName#id, _, _, _)) = {(tagName, id)}

4 There are several other ways to define “command concepts”, and several other ways to define hotkeys. The scope and
behavior of these alternate methods are not yet fully defined, so for now I focus solely on 〈command/〉 elements not
contained within a 〈menu/〉; these seem intended to be globally-scoped.

131

Let ids(s) = {id
∣∣ ∃t.(t, id) ∈ s} project just the id component of tagname/id pairs. Finally for an

overlay o = Overlay(a1, . . . , an) let defs(o) =
⋃

i defs(ai) and reqs(o) =
⋃

i reqs(ai) be the union of

the defs and reqs of their children actions, respectively. Assuming both o and d are well-formed,

and each contain no duplicated ids, then o successfully applies to d exactly when

reqs(o) ⊆ defs(d) ∧ ids(defs(o)) ∩ ids(defs(d)) = ∅. (5.1)

For multiple overlays to succeed, all overlays must succeed individually. This simple statement

relies on the restriction that overlays do not overlay each other: either the necessary targets are

present in the base document or an overlay fails; no work is needed to ensure any dependencies

between overlays are satisfied.

Moreover, no overlay can define an id that another overlay also defines:

ids(defs(o1)) ∩ ids(defs(o2)) = ∅. (5.2)

If there are other uniqueness requirements (as with hotkey support), they can be handled similarly

to ids, ensuring that multiple overlays do not provide duplicate definitions.

These two conditions are sufficient for a conflict-detection algorithm for these limited overlays.

If Eq. (5.1) is not satisfied by some overlay, then that overlay is faulty, and the ids causing the

problem are readily identified. If Eq. (5.2) fails for some pair of distinct overlays, then they conflict

with each other, and the ids causing the conflict are again readily identified. Otherwise, all the

overlays are successfully applicable to the base document, and in any order.

5.4.3 Examples, revisited

Looking at the hello-world example, the earlier definitions will yield

defs(OV1) = {(span, subject)}

reqs(OV1) = {(p, greeting)}

defs(OV2) = {(span, subject)}

reqs(OV2) = {(p, greeting)}

defs(OV3) = {(span, modifier)}

reqs(OV3) = {(p, greeting)}

defs(doc) = {(p, greeting), (span, opening)}

132

c ∈ Comp ::= g
∣∣ c ; c

∣∣ c ! c
∣∣ c?

g ∈ Guard ::= o∣∣ Require(~r, g)∣∣ Reject(~r, g)∣∣ First(~r, g)∣∣ Last(~r, g)
o ∈ Overlay ::= Overlay(~a)
a ∈ Action ::= Insert(s, w,~h)∣∣ Modify(s,~t)
r ∈ Resource = Selector] Id] Key] Selected] · · ·
s ∈ Selector ::= tagName#id

w ∈ Where ::= start
∣∣ end

h ∈ HTML

t ∈ Attribs ::= (name, value)

Figure 5.12: Abstract overlay language with insertion, attribute modification and composition

Note that reqs(OV1) ⊆ defs(doc), and that ids(defs(OV1)) ∩ ids(defs(doc)) = ∅, and likewise for

OV2 and OV3, so Eq. (5.1) is satisfied. However, Eq. (5.2) fails: ids(defs(OV1))∩ ids(defs(OV2)) 6=

∅, which shows that OV1 and OV2 conflict with each other, as anticipated.

The hotkey example, however, does not present any conflicts under the algorithm as defined

so far: OV4, OV5 and OV6 do not define any elements with ids, so they certainly do not define

any elements with the same id. However, with the slight generalization alluded to above, defs can

be expanded to include the hotkeys defined by 〈command/〉s, as follows:

defs(OV4) = {(command, Key(F))}

defs(OV5) = {(command, Key(F))}

defs(OV6) = {(command, Key(G))}

where Key(F) is a tagged value that is “not the same” as any regular ids. Then, as before, Eq. (5.2)

fails: ids(defs(OV4)) ∩ ids(defs(OV5)) 6= ∅, which gives the desired conflict.

5.5 Overlay conflict detection: Firefox-like overlays

This section examines the slightly generalized language in Fig. 5.12. It introduces a new action,

Modify, that permits editing the attributes that are defined on an existing node. (For simplicity,

133

the overlay language presented here does not expose actions to remove existing attributes or to

concatenate to existing values. These would be straightforward to add, but clutter the presenta-

tion needlessly.) Additionally, overlays are now permitted to “see” each other’s injected content,

which raises the possibility of overlays depending upon one another. Consequently, not only must

the system detect conflicts among extensions, but it must also compute a feasible composition

order if one exists.

5.5.1 Motivating examples

Load-order dependencies: It is common for Firefox extensions to add new submenus to the

Firefox “Tools” menu. For example, the Session Manager extension adds a submenu with menu

items to save currently open tabs as a “session”, to load a previously-saved session, and to delete

saved sessions:

• OV7: Overlay(Insert(menu#tools-menu, end,

〈submenu id=“sessionManagerMenu”〉

〈menu〉Load session. . . 〈/menu〉

〈menu〉Save session. . . 〈/menu〉

〈menu〉Delete session. . . 〈/menu〉

〈/submenu〉))

A common use-case for Session Manager is to use sessions as “temporary bookmarks”, where

the session is used once and then discarded. A second extension might make this available as

its own menu item:

• OV8: Overlay(Insert(submenu#sessionManagerMenu, start,

〈menu〉Load and discard session. . . 〈/menu〉))

These two extensions are not in conflict, but OV8 depends upon OV7 being loaded first: other-

wise, OV8’s target node does not yet exist.

Modifying attributes Consider an application with a several choices in an option list:

〈select id=“myOpts”〉

〈option id=“optA”〉A〈/option〉

〈option id=“optB” selected=“selected”〉B〈/option〉

〈option id=“optC”〉C〈/option〉

〈option id=“optD”〉D〈/option〉

〈/select〉

134

Suppose an extension tries to contribute a new option “E”, and make that option selected by

default. Not only will it need to Insert the new 〈option/〉, but it will have to Modify the cur-

rently selected one:

• OV9: Overlay(Insert(select#myOpts, end,

〈option id=“optE” selected=“selected”〉E〈/option〉),

Modify(option#optB, (selected, “”)))

Such modifications are useful only occasionally, but when they are, they are indispensable.

Remark: The portion of the language for attribute modifications does not include removing at-

tributes or concatenating new values to existing ones. One natural use for concatenation might

be to append new CSS classes to an element’s class attribute, so as to enhance its style. However,

the overlay’s selector—which already found this element successfully, by its id—can just as easily

be used by CSS style rules. In the language variants explored below, the selector language will be

more flexible still, so again such usage is unneeded.

5.5.2 Guarded overlays and compositions

The preceding examples highlight several distinct types of conflicts that must all be properly ac-

counted for by a conflict detection algorithm. The hotkey example requires knowing that each key

must be unique within a document. The options list example must include the HTML semantics

that at most one option be selected within a group. And the hello-world example shows that even

if all uniqueness constraints are known and modeled, an analysis may potentially still miss higher-

level conflicts that are not expressible within the markup language. To support all of these kinds

of conflicts in a single system, in a uniform, declarative way, all future analyses will be defined

in terms of an abstract set of resources, which may include pieces of the overlay itself (e.g., ids,

keys, selectors), and guards, which may be automatically inferred or may be assertions manually

provided by the overlay author to help further constrain when the overlay applies successfully.

The language of Fig. 5.12 includes two new constructions, guards and compositions, that permit

expressing the constraints that were hard-coded in the previous section. I illustrate their behavior

by revisiting the earlier examples.

“Hello, world”, revisited: In the strawman language of Section 5.4, there was no way for OV3 to

require that it be loaded before OV1 or OV2, because there was no way for one overlay to mention

135

content provided by another overlay. Now that overlays can “see” each other, it is possible for OV1

and OV2 to assert that they load after OV3 does, by attempting to overlay it but do nothing to it:

• OV1*: Overlay(Insert(p#greeting, end, 〈span id=“subject”〉stranger.〈/span〉),

Modify(span#modifier))

Such an overlay has the desired effect of adding span#modifier to reqs(OV1*), but there are

three fundamental problems with this approach. First, OV1 does not actually modify the 〈span/〉

produced by OV3, so OV1* should not claim to modify it. Second, this approach is non-local: it

is OV3’s responsibility to impose ordering constraints on itself, not OV1’s and OV2’s to accom-

modate OV3. Third, and most important, OV1* will not successfully apply if OV3 is not present,

a behavior that differs from OV1.

Instead, a better approach would be to assert some extra guards in the definition of OV3, so

that it can express the constraint that it must not apply when OV1 or OV2 is present:

• OV3’: Reject(Id(subject),

Overlay(Insert(p#greeting, end,

〈span id=“modifier”〉 and good day,〈/span〉)))

Read this as “OV3’ applies successfully to documents in which the Overlay successfully applies,

but not those documents that match the Id”. The four guard types behave as follows:

• Require(~r, g): When g succeeds and all resources in r are present in the document

• Reject(~r, g): When g succeeds and all resources in r are not present in the document

• First(~r, g): When g succeeds and no resources in r have been overlaid by some prior overlay

• Last(~r, g): When g succeeds and no resources in r will be overlaid by some future overlay

Hotkey responses, revisited: Rather than hard-code knowledge of the markup language’s se-

mantics into the conflict-resolution algorithm, constraints can be encoded using additional guards.

For example, uniqueness constraints can be expressed using Last guards: OV4 and OV5, which

must be the last key to use the letter “F”, can be written as

• OV4’: Last(Key(F),

Overlay(Insert(div#keys, end, 〈command accesskey=“F” onclick=“alert("1")”/〉)))

136

• OV5’: Last(Key(F),

Overlay(Insert(div#keys, end, 〈command accesskey=“F” onclick=“alert("2")”/〉)))

Now the presence of both OV4’ and OV5’ will trigger a conflict due to these general-purpose Last

guards, rather than due to an algorithm finely tuned to HTML5’s idiosyncrasies.

Of course, it would be tedious to require that overlay authors write these Last guards every time

they use a 〈command/〉 element: such guards are mechanically derivable from the markup. For-

tunately, such idiosyncrasies can be encoded during the parsing of concrete-syntax overlays into

the abstract overlay language. (Similarly, a parser for concrete-syntax XUL overlays could encode

XUL-specific idiosyncrasies.) This leaves the underlying conflict-detection algorithm agnostic to the

initial input language, but also relieves authors from the tedium of writing “obvious” guards.

Another representation of uniqueness

A slightly different approach might use First guards to encode uniqueness, and at first glance

the two approaches seem nearly identical: after all, two overlays can’t both be the first to overlay

something, so only one of them can do so, and therefore also be the last to overlay it. But the

converse is not actually true. Consider again the example at the start of this chapter, where Firefox

ui is split into a base document and several overlays for purposes of code clarity. It may be

reasonable for an extension to wish to be the only extension to overlay some resource. It would be

overly brittle for the extension to be the First to overlay some resource, as such a constraint makes

the extension incompatible when Firefox refactors that resource into an overlay. By contrast, the

extension still can be the Last to access the resource; Firefox could refactor “beneath” the overlay

and not affect its behavior.

Experimentally, it appears that Firefox handles keybindings using something akin to Last: if a

key is defined by Firefox, it can be overridden by an overlay (i.e., the overlay takes precedence),

but if two overlays try to define the same key, the behavior is undefined. Such behavior can be

accommodated in the XUL overlay-to-guarded overlay translator, and if future versions of Firefox

change their behavior, only this translator need be updated.

Composing overlays within one extension

So far, overlays are “all-or-nothing”: they either apply successfully or not at all. Extension authors

may reasonably want to control how their overlays are applied in a more fine-grained fashion.

To support such intents, the overlay language includes three types of composition: sequencing,

optional components, and one-of-several targeting.

137

Sequencing helps modularize overlay code: the extension author can separate overlays into

logically-distinct pieces, and ensure that they are applied to the base document in the desired order.

The composition c1 ; c2 succeeds for documents D whenever c1 succeeds in D and c2 succeeds in

the document resulting from applying c1 to D. Sequencing is associative: composing c1 ;(c2 ; c3)

with D results in the same document as composing (c1 ; c2) ; c3 with D.

One-of-several targeting is useful for the common case where extensions are written that may

apply to multiple, “similar” applications. For example, an extension may add a command to the

“Tools” menu of both Firefox and Thunderbird. In Firefox, that menu is 〈menu id=“tools-menu”/〉,

but in Thunderbird it is 〈menu id=“tasksMenu”/〉. Currently, extension authors simply write

Overlay(Insert(menu#tools-menu, end, new content), Insert(menu#tasksMenu, end, new content))

This implicitly relies on a quirk of Gecko that individual overlays with missing targets are silently

dropped. This often works in practice, but it is subtly wrong: if another extension happens to

insert an 〈menu id=“tasksMenu”/〉 element into Firefox, the result would be to insert new content

twice, with potentially bizarre results. In the overlay language, the one-of-several composition

allows extension authors to indicate mutually exclusive overlays. A composition c1 ! c2 succeeds in

a document D if either of c1 or c2 can apply successfully to D, but ultimately only one will be

applied. Like sequencing, one-of-many is associative: “one of (one of a or b) or c” means the same

thing as “one of a or (one of b or c)”.

Finally, extensions often deliberately include optional behaviors that are installed only when

other extensions are installed as well. Once again Firefox extensions rely on Gecko’s silent drop-

ping of unmatched overlays to implement these optional features, and this works successfully.

The unfortunate consequence, though, is that Gecko cannot distinguish optional components (to

be ignored) from typos (to be surfaced as errors). In the overlay language, components must be

marked explicitly as c? for the composition and conflict-detection algorithms to consider them

optional; everything else must succeed or fail as a unit.

5.5.3 Overlays as document transformers

The examples above should give a flavor of the analysis needed here: a precise conflict-detection

algorithm must keep track of resources and must keep track of four kinds of constraints on those

resources. Moreover, as OV7 and OV8 show, it must record how those constraints and available

resources change as a consequence of sequentially applying extensions’ compositions overlays, so

that later compositions can see the effects of preceding ones. Ultimately, it must compute, given

a base document d and a set of extensions ~e that define compositions ~c, some permutation of

138

the extensions that yields a feasible loading order (i.e., the composition d ; cπ(1) ; · · · ; cπ(n), for

some permutation π, is valid according to the analysis), or else demonstrate some subset of the

overlays that are conflicting.

To model how resources change as a consequence of a single overlay, the analysis will view an

overlay as a document transformer that takes an input document and produces a modified document

as a result; the analysis is then concerned with tracking resources as they are manipulated within

successive documents. Model the state of the document by a record {Def , Undef , Clean, Frozen}

of sets of resources describing the set of requirements that must be defined, that must not be de-

fined, that have not yet been overlaid and that must not be overlaid in order for the overlay to

succeed. These sets assert that resources exist in the input, or guarantee that they exist in the

output; they convey no information about resources that are not mentioned. An empty input

Def set does not assert that the input document is empty, but rather that nothing is known to

be defined in it. For an input and output state pair, there are consequently eight sets: of these,

the output Def and Undef sets are uniquely determined from the overlay itself and its input Def

and Undef sets. Additionally, the input Frozen and the output Clean sets are redundant: anything

that was Clean before some overlay applied, and that was unused by that overlay, will remain

Clean; similarly, an overlay need only check the output Frozen set of the preceding overlay, and

not vice versa. The remaining four sets can be specified or extended independently, using the

four guard types above. The analysis can model the “interface” of an overlay, an abstract rep-

resentation of its effects on a document, as this pair of states (Si, So), which can be thought of

as the weakest precondition and strongest postcondition of the overlay; an example is shown be-

low. Computing this interface is purely structural, and does not encode any language-specific

constraints (e.g., hotkey uniqueness).

Next, lift this notion of interface from overlays to guarded overlays, by folding into the input

and output sets the resources mentioned by guards. This step incorporates the language-specific

constraints introduced by translating from the concrete to the abstract overlay language. Finally,

lift the interface notion once more, from guarded overlays to compositions. This step handles any

explicit composition operators used by extension authors, and also lets the analysis treat any ex-

tension that defines multiple, independent overlays as one that instead defines a single sequential

composition. Indeed, the algorithm uses essentially the same composition rules to combine multi-

ple guarded overlays from a single extension as are needed to detect valid composition of guarded

overlays from multiple extensions. The rest of this section illustrates the algorithm only through

examples that convey the main ideas without distracting details; see Section 5.6 for evaluation,

and Appendix B for more details.

139

The interface of “Hello, world”: Recall the definitions of OV1 and OV3’:

• OV1: Overlay(Insert(p#greeting, end, 〈span id=“subject”〉stranger.〈/span〉))

• OV3’: Reject(Id(subject),

Overlay(Insert(p#greeting, end,

〈span id=“modifier”〉 and good day,〈/span〉)))

Including the constraints that ensure ids are unique, the meaning of OV1 in words is “for any

document containing a node p#greeting and not containing nodes matching span#subject or any

node with id subject, OV1 will produce a document that contains p#greeting, span#subject and

a node with id subject”. In symbols, this becomes the state pair (S1
i , S1

o):

S1
i =

Def = {Selector(p#greeting)}

Undef = {Selector(span#subject), Id(subject)}

Clean = ∅

Frozen = ∅

S1
o =

Def = {Selector(p#greeting), Selector(span#subject), Id(subject)}

Undef = ∅

Clean = ∅

Frozen = ∅

The Selector resources are used to describe the structural changes to the document, so that com-

positions can detect if their targets exist. The Id resources are used for the unique-id analysis.

Similarly including the unique-id constraints along with the Reject constraint, the effect of OV3’

in words is “for any document containing a node matching p#greeting and not containing nodes

matching span#modifier or any node with id modifier or any node with id subject, OV3’ will

produce a document that contains p#greeting, span#modifier and a node with id modifier and

still does not contain any node with id subject”. In symbols, this is the state pair (S3
i , S3

o):

S3
i =

Def = {Selector(p#greeting)}

Undef = {Selector(span#modifier), Id(modifier), Id(subject)}

Clean = ∅

Frozen = ∅

140

S3
o =

Def = {Selector(p#greeting), Selector(span#modifier), Id(modifier)}

Undef = {Id(subject)}

Clean = ∅

Frozen = ∅

The Reject constraint is added to the input Undef set by the assertion that the specified resource not

exist, and to the output Undef set because OV3’ does not itself cause that resource to be defined.

In summary, any concrete overlay can be represented as an abstract overlay, decorated with

its language-specific attendant guards, and modeled as a document state-pair. These state pairs

are used to define the composition of multiple (concrete) overlays, and thereby determine a fea-

sible composition order.

5.5.4 Determining overlay composition order: the conflict graph

Consider just the two overlays OV3’ and OV1. Can OV3’ be composed with OV1, and if so in

what order? Suppose the system tried OV1 ; OV3’, applying OV1 first. Then the input state of OV3’

must be compatible with the output state of OV1. However, it is clear that S1
o .Def ∩ S3

i .Undef =

{Id(subject)} 6= ∅. In words, something which OV3’ requires to be undefined is guaranteed to be

defined by OV1. This one contradiction suffices to prohibit the ordering OV1 ; OV3’.

On the other hand, suppose the system tried the other order, OV3’ ; OV1. This time, the in-

tersection test above succeeds, as well as several others. In general, for OV3’ to precede OV1

the system must check:

S3
o .Def ∩ S1

i .Undef = ∅ (5.3)

S3
o .Def ∩ defs(OV1) = ∅ (5.4)

S3
o .Frozen∩ used(OV1) = ∅ (5.5)

reqs(OV3’) ∩ S1
i .Clean = ∅ (5.6)

These equations assert that OV3’ must not define anything OV1 requires as undefined, nor any-

thing that OV1 itself defines; it also must not freeze anything that OV1 later uses, or overlay

anything that OV1 asserts to be clean. These four equations indeed hold for OV3’ and OV1, and

hence OV3’ ; OV1 is a feasible composition order for the two overlays.

The resulting composition itself can be represented by a state-pair interface (S3,1
i , S3,1

o) that is

141

computable from S1
i , S3

i , S1
o and S3

o . The interface should mean “in a document satisfying the

combined requirements of OV3’ and OV1, as described by S3,1
i , the composition OV3’ ; OV1 will

result in a document satisfying their combined guarantees, as described by S3,1
o ”. Consequently,

the input state S3,1
i must be a combination of the Def and Undef sets of S3

i with those of S1
i . To do

otherwise would effectively enforce that OV3’ define everything needed by OV1, which is not

the intended semantics:

S3,1
i =

Def = {Selector(p#greeting)}
Undef = {Selector(span#modifier), Id(modifier),

Selector(span#subject), Id(subject)}
Clean = ∅

Frozen = ∅

S3,1
o =

Def = {Selector(p#greeting),

Selector(span#subject), Id(subject),

Selector(span#modifier), Id(modifier)}
Undef = ∅

Clean = ∅

Frozen = ∅

In words, this says that “for any document containing a node matching p#greeting and not con-

taining nodes matching span#modifier or span#subject or any nodes with id subject or modifier,

the composition (OV3’ ; OV1) will produce a document containing p#greeting, span#modifier,

span#subject, and nodes with id subject or modifier”.

Unfortunately, this pairwise approach will not scale beyond a small number of overlays: be-

cause the system needs to track the effects of all preceding overlays to determine if the next overlay

will succeed, it would need to test all n! permutations of n overlays, which is exponentially too

much work to be feasible.

The approach Eqs. (5.3) to (5.6) above define when one overlay may feasibly follow another. If,

however, any equation is unsatisfied (as when applying OV1 before OV3’), the analysis knows

such an ordering is infeasible: in the example above, OV3’ must not follow OV1. The analysis

records such observations in a directed graph, whose nodes are overlays, and whose edges are the

pairwise must-not-follow relation. For diagnostic purposes later, it annotates the edges with which

of the four equations above were unsatisfied. This is the conflict graph for a set of extensions.

142

Note that it is possible that extension X must-not-follow extension Y according to Eqs. (5.3)

to (5.6), and Y must-not-follow extension Z, but that X may feasibly follow Z:

• X: Overlay(Insert(p#w, 〈p id=“x”/〉))

• Y: Overlay(Insert(p#x, 〈p id=“y”/〉))

• Z: Overlay(Insert(p#y, 〈p id=“z”/〉))

X must-not-follow Y because Y uses something that X defines; similarly for Y and Z. But X and

Z are independent of each other, and can be applied in either order. However, when all three

extensions are loaded together, the conflict graph shows that Z transitively must-not-follow X

because of a path of pairwise must-not-follow edges.

The edges in the conflict graph record ordering dependencies between pairs of extensions.

Just as informative, though, are the missing edges: if two overlays in the conflict graph are not

connected by a directed path, then they can be applied to base document in either order—they

commute with one another, at least with respect to all the constraints they define. In this way, the

must-not-follow analysis defined here is a commutativity analysis in disguise.

Recall that, given some base document d and a set of extensions ~e, the analysis must compute

either a feasible composition order, if one exists, or else a set of conflicting extensions. It can

resolve both questions simply by computing whether the conflict graph is acyclic. If the graph

contains a cycle, then there exist extensions e1, . . . en such that ei must not follow ei+1, and en

must not follow e1. Transitively, each extension must not follow itself, which is problematic: there

cannot exist a loading order for which all of these constraints are satisfied, and so extensions

e1, . . . , en are in conflict. Moreover, the annotations on each edge of the cycle permit informing

the user precisely why the extensions conflict. In the current example, this analysis can inform

the user that OV1 defines something, namely Id(subject), that OV3’ requires as undefined, and

therefore cannot precede OV3’.

However, if the conflict graph is acyclic, then any topological sort of the graph will yield a

potentially valid loading order that respects all extension dependencies. It remains to check whether

the base document in fact satisfies the input requirements of the resulting composition: that is,

does the actual target document D satisfy S3,1
i ? Additionally, the analysis must check that the

composition does not define anything which the document already defines. In fact, it must check

precisely the same four conditions as it did for sequencing of two compositions.

143

To resolve these remaining questions, in practice the analysis actually represents the base doc-

ument itself by its interface, as if it too were an overlay. The interface for a base document begins

with the empty input state, and produces an output state containing everything defined in the base

document. Adding this interface as a node to the conflict graph obtains the needed sequencing

checks “for free”. The final algorithm for computing conflicts and loading order is:

1. For each extension Ei and its corresponding composition ci, compute its interface Ii.

2. For the base document D, compute its interface ID.

3. Construct the conflict graph, with nodes Ii and ID, and edges I → J if and only if I must-

not-follow J using the four conflict rules above.

4. If the graph is acyclic, and ID is traversed first in a topological sort of the graph, then the

extensions Ei are compatible with each other. Further,

1. If the ultimate input state is compatible with the empty world, i.e., Si.Def = ∅, then

the extensions are compatible with the base document D, and may be loaded in the

topologically-sorted order.

2. Otherwise, the extensions are incompatible with the base document, and some required

resources are missing, which are then reported to the user.

5. If the graph is acyclic, but ID is not traversed first, then somehow an extension defines

something that D relies upon. This cannot happen with the current overlay language (but

see Section 5.7 where it may occur).

6. Else the graph is cyclic, and so report the extensions contributing to a cycle as conflicting.

This algorithm assumes that all semantic constraints have been encoded appropriately as

guards on the relevant overlays. If any constraints are not so encoded, some topologically-sorted

orderings may be “bad” while others are “good”, though nothing in the conflict graph distin-

guishes them. In the limit, this may cause false negatives: the algorithm will claim the conflict

graph is acyclic and hence some extensions are compatible, but when all semantic constraints

are properly modeled, the conflict graph becomes cyclic and the extensions in fact are conflicting.

The modeling will automatically handle several sorts of semantic constraints (i.e., the Key, Id, and

Selected constraints seen before), but any other constraints are beyond the scope of this analysis,

144

and require user annotations. Note that the default behavior in Firefox, for example, is to include

no guards, and implicitly permit any ordering among extensions.

5.5.5 Heuristics for determining optional composition order

The conflict-graph algorithm above takes guarded overlays as input. These have the simple prop-

erty that they either successfully apply or fail. However, extension authors define compositions,

not merely guarded overlays, and compositions may contain optional (or one-of-several) compo-

nents that can “successfully apply” by silently doing nothing. As we’ve seen, optional and one-

of-several components are useful for expressing higher-level structural design constraints on the

guarded overlays within an extension. Supporting such constructions, however, complicates the

definition of when two guarded overlays conflict: an optional component can always succeed by

doing nothing!

Extension authors would not write an optional component and expect it always to do noth-

ing; the intent is for it to apply whenever possible, but not to fail if it cannot do so. The goal

must therefore be to compute a maximal set of optional components from source extensions that,

when combined with the extensions’ non-optional components and when treated as non-optional

themselves, succeed in finding a compatible loading order. Unfortunately, this task is substan-

tially harder than before: with n optional components, there are 2n subsets to try, to see whether

they can be loaded compatibly.

In fact, it is straightforward to prove that selecting such a subset is at least NP-hard. In par-

ticular, rephrase it as a decision problem:

Theorem 1. Given a set of compositions {c1, . . . , cn} that may contain optional (?) or one-of-several (!)

clauses, determining whether there exists a compatible loading order cπ(1), . . . , cπ(n) (for some permutation

π) is NP-hard.

Proof sketch. It is reasonably straightforward encode a 3-CNF-SAT instance as a set of optional com-

positions and guarded overlays. One composition is non-optional, and encodes the 3-CNF-SAT

formula to be solved. It will only successfully apply if some subset of the optional compositions

can be loaded compatibly; this subset induces a solution to the original 3-CNF-SAT problem.

Since an exact solution is inefficient in the general case, any effective heuristic algorithm is

appropriate instead. (Note that current data indicates that the average user installs five extensions,

with non-negligible numbers of users installing ten or more [194]. Even for ten extensions, testing

a worst case of over one thousand subsets is unreasonably slow.) The current approach uses a

145

greedy algorithm, starting with all optional components and removing one arbitrary, conflicted

component at a time until a compatible loading order is found. If it removes all optional com-

ponents and still has not found a valid loading order, it reports this as an error. (Note that this

may be a false positive, as in the 3-CNF-SAT reduction above. But this is a pathological case not

likely to occur in practice.)

5.6 Case study: Firefox extension conflicts

I applied the analysis defined in the previous section to a corpus of 350 Firefox extensions. As

noted above, the analysis must support several idiosyncrasies of XUL and Firefox’s implementation

to model Firefox’s behavior faithfully. Not handling these quirks lead to unacceptably many false

positives in the analysis: too many extensions were claimed to conflict when in fact they were

compatible. Note that there may be false negatives in the analysis (i.e., extensions are claimed

to be compatible when in fact they conflict) only if it neglects to model some semantic constraint

on resources. For example, the algorithm guarantees no false negatives with regard to Key and

Id constraints. I first describe briefly the structure of a Firefox extension, then summarize the

results, and finally explain two of these quirks in detail, as they illustrate the benefits of a cleanly-

specified overlay language.

5.6.1 Firefox extension structure

A Firefox extension consists of

• An install file containing metadata about the extension, such as Firefox version compatibility

• A subdirectory containing the overlays, scripts, styles, and other resources used by the ex-

tension

• A manifest describing which overlays apply to which target Firefox files, with optional ver-

sioning information.

All extensions in my case study claimed compatibility with Firefox 3.0, so could all conceivably be

installed simultaneously. Many extensions also claimed compatibility with other Mozilla products,

and so included overlays that were not intended for Firefox. Interpreting the manifest correctly is

therefore required for a precise model of Firefox extensions.

146

Firefox itself is packaged similarly, with its own manifests and overlays, and this too must be

modeled precisely, or else the analysis may have incomplete information on what is truly defined

by Firefox and available to extension.

5.6.2 Results

Detected conflicts: My analysis proceeds by processing each Firefox source file independently,

examining all the overlays that are declared to target it. For example, of the 350 extensions I ex-

amined, 261 of them declare 331 overlays targeting chrome://browser/content/browser.xul, the

main Firefox browser window. If any conflicts appear in this analysis, I report them. I analyze the

target files independently because Firefox gives no guarantee that extensions are loaded atomically;

instead, overlays are applied on demand, when the target files are parsed and displayed to the user.

Of the 350 extensions, with 5360 individual manifest entries, 1121 entries define overlay targets,

of which I found 18 entries that purport to overlay some target file with a non-existent overlay, or

that overlay a non-existing target file. Because extensions may target multiple Mozilla applications,

I scanned the other applications’ manifests (Thunderbird, SeaMonkey, Sunbird and Songbird) to

eliminate false positives. Any remaining conflicts are true positives: even when accounting for

other applications, these extensions still have missing targets. Note that by design, no individual

Mozilla application can detect these conflicts (because no Mozilla application is bundled with

information about the structure of all the other Mozilla applications).

Once mistaken manifest entries were accommodated, and other quirks accounted for, I found

several problematic extensions:

• For chrome://browser/content/browser.xul (the main browser ui):

– Sage and Sage Too, two versions of the same extension, conflict.

– CaptureIt 1.0 and CaptureIt 2.5, two versions of the same extension, conflict.

– ForecastFox 0.9.7.7 and ForecastFox_l10n 0.7, two versions of the same extension, con-

flict.

– TabPopup and TabPreview conflict with each other over a tooltip.

– All-in-one Sidebar defines two elements with the same id.

– Locator overlaid a non-existent tagname: instead of the correctly-named 〈popup/〉 tag,

it targeted 〈popupid id=“contentAreaContextMenu”/〉.

– MrTech Toolkit and the Nightly Tester Tools conflict over a toolbar button that enables

nightly tester-tools functionality.

chrome://browser/content/browser.xul
chrome://browser/content/browser.xul

147

– TabClicking Options overlays a resource that is not present in Firefox, though it used to

be present in earlier versions of other Mozilla products.

– Footiefox mistakenly overlaid a non-existent tag 〈popup id=“mainPopupSet”/〉 instead

of the correctly-named 〈popupset/〉 tag.

– Firefox, MiniMap Sidebar and Toolbar Buttons participate in one pairwise conflict and

one three-way cycle. Both Minimap Sidebar and Toolbar Buttons define an element

with id google, placing them directly in conflict. Additionally, Toolbar Buttons de-

fines a 〈menuitem/〉 with id bookmarksShowAll that Firefox itself defines, placing it

in conflict with Firefox. Finally, Firefox must load before Minimap Sidebar, because

the latter overlays content defined by Firefox. (Note that the redundant definition of

bookmarksShowAll is not as easily handled by the “idiosyncrasies” described later, so I

count this as a true conflict.)

• For chrome://mozapps/content/extensions/extensions.xul (the extension-manager win-

dow ui):

– MrTech Toolkit and the Nightly Tester Tools conflict over nightly tester-tools functional-

ity for enabling/disabling apps, and localized strings common to both.

– DownloadSort and DownloadStatusbar conflict over creating a donations spacer and

hotkey to remove the donations bar.

Four points immediately jump out from these results. First, the algorithm correctly detects

the three pairs of differently-versioned extensions (Sage/Sage Too, CaptureIt 1.0 and 2.5, and

ForecastFox 0.9.7.7 and ForecastFox_l10n 0.7) as conflicting with each other. This is a valuable

sanity check that the algorithm is properly computing intersections.

Second, there are only twelve conflicting pairs of extensions, out of nearly 35,000 possible

conflicting pairs. This may reveal a heavy selection bias in my sample: I examined the top 350 most

popular extensions; it is quite possible that, had these extensions been conflicting or buggy, they

would not have become the most popular. Unfortunately, it is not easy to obtain a fair sampling

of the heavy tail of the infrequently-used extensions.

Third, the algorithm can detect simple typos that would otherwise be silently ignored by Fire-

fox (as in the case of Footiefox), or targets that are no longer defined (as in TabClicking Options).

These are ignored by design, because they might be correct for other Mozilla applications or other

versions, but this design choice prevents extension authors from detecting simple but subtle bugs

chrome://mozapps/content/extensions/extensions.xul

148

in their code. To be sure, warnings about typos could likely be detected by a much simpler system;

the analysis presented here incorporates them while providing additional benefit.

Finally, and most importantly, the algorithm must model the effects of previous extensions, be-

cause extensions do extend each other. This is crucial in both directions: There exist true conflicts

due to cycles of length greater than two (as in the case of Firefox, MiniMap Sidebar and Tool-

bar Buttons) that would not be detected by any pairwise analysis. Likewise the algorithm must

correctly ignore true negatives: if asked to analyze a set of extensions including both Firebug

and FireCookie, no warning should be raised. But if Firebug were missing, the algorithm must

properly warn that FireCookie has missing dependencies.

The potential for false positives is highlighted by a trio of non-conflicting extensions. For

chrome://firebug/content/firebugOverlay.xul (the main Firebug panel ui), both YSlow and

FireCookie extend Firebug’s main toolbar with an additional item. However, due to a quirk of

Firefox’s overlay loader (described further in Appendix B, particularly Appendix B.2), the precise

syntax they use for their overlays makes it appear (to an analysis that strictly enforces XUL overlay

semantics) that both YSlow and FireCookie actually define a node (with id "fbToolbarInner") that

Firebug itself defines, when in fact Firefox treats that node as an overlay target. Further, because of

how Firebug factored its code, it would appear (to that same strict analysis) that "fbToolbarInner"

is not even defined! Without a sufficiently precise accounting of all three extensions, and a suf-

ficient encoding of Firefox’s quirks, the analysis might detect two distinct problems, neither of

which in fact exist.

Performance: The stress test of the algorithm runs on all 264 overlays applicable to the main

Firefox ui file; this is by far the largest target document and an order of magnitude more overlays

than the typical user will have installed. The analysis completed in under four minutes, with 1.2GB

of peak memory usage. While these numbers are too large to be practical for end-users casually

installing extensions, several facts and simple optimizations make this much more plausible:

• The implementation has not been highly optimized yet; in particular, many expensive set-

intersection tests can be memoized or optimized away.

• The algorithm is inherently cubic: for all pairs of extensions, it computes a potential edge in

the conflict graph by examining each overlay’s interface. A 10-fold reduction in the number

of installed extensions (from 264 to 26) will result in roughly a 1000-fold speedup, bringing

the runtime down to a few seconds and a few dozen megabytes of peak memory usage.

chrome://firebug/content/firebugOverlay.xul

149

• The results of the compatibility analysis need not be repeated unless the set of installed

extensions changes; they can be cached easily and compactly the rest of the time. Therefore,

very few times the browser is launched will result in an expensive compatibility check.

• It is highly likely that most users download their extensions from addons.mozilla.org. The

compatibility check can be done on demand by Mozilla, and the results cached for all users,

amortizing the cost to practically nothing.

• A four-minute analysis is well within the realm of plausibility for extension developers to use

regularly as a tool to ensure their work is compatible with many common extensions.

In short, the performance of the analysis is sufficiently decent for a prototype, and several obvious

optimizations should improve it further.

5.6.3 Handling XUL idiosyncrasies

The intuitive understanding of XUL overlays is easily representable in the overlay language. A

concrete XUL overlay

〈overlay〉

〈tag1 id=“id1” attrs〉

content1

〈/tag1〉

more actions

〈/overlay〉

might be modeled by the abstract overlay

Overlay(Insert(tag1#id1, end, content1), Modify(tag1#id1, attrs), more actions)

Unfortunately, the actual implementation of XUL overlays does not match this simple intuition.

To ensure that the analysis detects as many feasible targets as possible, but no false positives, I

manually pre-processed the extensions’ XUL overlays to remove some behaviors that are challeng-

ing to model. First, I eliminated “self-overlays” (where nodes in an overlay apply to other nodes

in that same overlay) and “recursive overlays” (that apply to other overlays rather than a base

document), two emergent properties of overlays as they happen to be loaded by Firefox that are

not implied by the documentation for overlays [166]. The first causes many false-positive reports

among every extension that defines a keybinding, while the second causes false positives claim-

ing that targets are missing. Second, because the implementation uses CSS selectors instead of

addons.mozilla.org

150

simple (tagName, id) pairs (in anticipation of the generalized analysis in Section 5.7), an additional

pre-processing step is needed for all nodes lacking an id to eliminate false positives.

Self-overlays:

Firefox permits defining self-overlays, which must be handled to avoid false positives. One example

is found in Update Notifier (DownloadManagers/33-update_notifier). In XUL, 〈key/〉 elements

define hotkeys similar to HTML5’s 〈command/〉 elements, and must be grouped within 〈keyset/〉

elements. Additionally, 〈key/〉 elements are permitted to omit the “key” attribute; in this case

the 〈key/〉 represents a “catch-all” that responds to any keypress. Therefore, the intent of the

following overlay (with seemingly invalid XUL):

〈keyset id=“mainKeyset”〉

〈key id=“stylish-open-manage”/〉

〈/keyset〉

〈key id=“stylish-open-manage” more attrs. . . /〉

is to produce

〈keyset id=“mainKeyset”〉

〈key id=“stylish-open-manage” more attrs. . . /〉

〈/keyset〉

as opposed to two separate key handlers, one of which is a catch-all. Were the analysis to ig-

nore this self-overlaying behavior, it would report the catch-all 〈key/〉 as conflicting with every

other 〈key/〉 defined by every other extension, which clearly does not match Firefox’s observed

behavior.

If the analysis follows the “intuitive” translation given above, it actually produces a seemingly

correct abstract overlay:

Overlay(Insert(keyset#mainKeyset, end, 〈key id=“stylish-open-manage”/〉),

Modify(keyset#mainKeyset), Insert(key#stylish-open-manage, end),

Modify(key#stylish-open-manage, more attrs))

However, this overlay produces an incorrect interface, according to the rules for abstracting over-

lays to their interfaces. The interface requires key#stylish-open-manage to be defined (for the

latter two actions to succeed), but itself defines key#stylish-open-manage (in the first action).

One attempt to resolve this modeling mistake might try representing XUL overlays as sequential

compositions of overlays:

Overlay(Insert(keyset#mainKeyset, end, 〈key id=“stylish-open-manage”/〉)) ;

151

Overlay(Modify(keyset#mainKeyset)) ;

Overlay(Insert(key#stylish-open-manage, end)) ;

Overlay(Modify(key#stylish-open-manage, more attrs))

However, this does not actually match Firefox’s behavior: the order of elements within a XUL

overlay is irrelevant, even when there are dependencies among them. (From inspection of the

Firefox source code, overlay merging appears to be a fixpoint-style computation, where all over-

lay actions are placed in a pool, and applied in any order they can be until no further actions

apply. No ordering guarantees are given; the contents of a single 〈overlay/〉 might not even be

applied consecutively.) Therefore translating a XUL overlay to a sequential composition may in-

troduce the wrong sequencing. Instead, a better approach to modeling this self-overlay process is

to compute the following

for all child c = 〈tag id=“id”/〉 of the root 〈overlay/〉 tag do

for all descendants d of the 〈overlay/〉 tag where d 6= c, d.tagName = tag and d.id = id do

Append a deep clone of c’s children to d, and copy all of c’s content attributes to d.

Remove c from the 〈overlay/〉.

end for

end for

This effectively “inlines” any self-overlays, and transforms the original example into its net effect,

which normalizes the overlay for use with the subsequent algorithms.

Recursive overlay weaving

Firefox appears to support “recursive” overlay semantics, where nodes deep in the overlay are

also considered as overlay actions rather than node definitions. While the intended behavior is to

use only the children of the 〈overlay/〉 as actions:

for all children c of the root 〈overlay/〉 tag do

Let es← {e
∣∣ e in the base document, e.tagName = c.tagName, e.id = c.id}

Assert |es| = 1, and let e be the unique member of es.

Append a clone of the children of c to e.

end for

the actual behavior appears to involve descendants, looking for their ids in the base document:

for all children c of the root 〈overlay/〉 tag do

Let es← {e
∣∣ e in the base document, e.tagName = c.tagName, e.id = c.id}

Assert |es| = 1, and let e be the unique member of es.

152

for all children d of c do

if a child f of e exists where f .tagName = d.tagName and f .id = d.id then

“Merge” a clone of d with f

else

Append a clone of d to e

end if

end for

end for

It is unclear from examining the Firefox code whether the “merge” step is in fact a full, deeply-

recursive overlay operation or whether it is a single, shallow merge. (In either case, the observed

behavior does not match the documentation.)

This behavior makes the detection of conflicts prone to false positives. For example, the Speed-

Dial extension (Appearance/06-speeddial) contains the following excerpt, which deals with new

popup menu items:

〈overlay〉

〈popupset id=“mainPopupSet”〉

〈popup id=“contentAreaContextMenu”〉

. . . actual overlay code. . .

〈/popup〉

〈popup id=“speedDialButtonMenu”. . . 〉

. . . new code. . .

〈/popup〉

〈/popupset〉

〈/overlay〉

In the base Firefox document, the 〈popupset id=“mainPopupSet”/〉 element already contains a

〈popup id=“contentAreaContextMenu”/〉 child, and the intent is clearly to overlay that popup

with additional menu items. However, the following 〈popup id=“speedDialButtonMenu”/〉 is a

new popup menu, and is intended to overlay the 〈popupset id=“mainPopupSet”/〉. The desired

outcome ought to determine that 〈popup id=“speedDialButtonMenu”/〉 does not conflict with

anything else, so an abstraction of this overlay should ensure popup#speedDialButtonMenu is un-

defined. But syntactically there is no way to distinguish this from popup#contentAreaContextMenu,

which in fact should exist and so should have different behavior. The “correct” overlays to achieve

these two behaviors should in fact be

〈overlay〉

153

〈popup id=“contentAreaContextMenu”〉

. . . actual overlay code. . .

〈/popup〉

〈popupset id=“mainPopupSet”〉

〈popup id=“speedDialButtonMenu”. . . 〉

. . . new code. . .

〈/popup〉

〈/popupset〉

〈/overlay〉

where now it is always the case that children of the node-to-be-overlaid must not previously ex-

ist. Note that repairing this error will introduce new constraints into the dependency graph (the

analysis now models each child element separately with its own constraint, rather than produc-

ing just one constraint for the erroneous parent element), but these are desired constraints which

previously had been masked.

In my dataset, I see this pattern repeatedly. Twenty-seven extensions made this mistake 40

times, detectable merely by looking at the overlays themselves in the absence of a base document.

If I include the base document in the analysis, another 21 mistakes appear.

CookieSafe (Webdev/38-cookiesafe) is slightly different, including two overlays

〈overlay〉

〈window id=“main-window”〉

〈popupset id=“mainPopupSet”/〉

〈/window〉

〈window id=“messengerWindow”〉

〈popupset id=“mainPopupSet”/〉

〈/window〉

〈/overlay〉

designed to ensure that the popupset exists before proceeding to overlay that popupset in the

next piece of the overlay. The two versions are intended to apply equally well to either Firefox

or SeaMonkey. This code is better served by writing it as an explicit one-of-many composition,

rather than with an apparently required and redundant overlay. NoScript (WebDev/01-noscript)

includes the same redundant overlay, with an explicit comment indicating it is used for SeaMon-

key compatibility.

It is difficult to assign blame when multiple extensions have the same false positive-inducing

error. But to estimate the severity of the problem, note that removing the last instance of the

154

c ∈ Comp ::= g
∣∣ c ; c

∣∣ c ! c
∣∣ c?

g ∈ Guard ::= o
∣∣ Require(~r, g)

∣∣ Reject(~r, g)
∣∣ First(~r, g)

∣∣ Last(~r, g)
o ∈ Overlay ::= Overlay(~a)
a ∈ Action ::= Insert(s, w,~h)∣∣ Modify(s,~t)
r ∈ Resource = Selector] Id] Key] Selected] · · ·
s ∈ Selector ::= SimpleSelector

∣∣ s s
∣∣ s ~ s

w ∈ Where ::= start
∣∣ end

h ∈ HTML

t ∈ Attribs ::= (name, value)

Figure 5.13: Extending the overlay language in Fig. 5.12 with CSS simple selectors and some (but
not all) combinators

〈popupset id=“mainPopupSet”/〉 error removed 34 reported extension conflicts, properly han-

dling self-overlaid nodes removed 70 reported conflicts, and the total number of conflicts dropped

from 304 to 12 — precisely the twelve conflicts reported earlier.

Elements without IDs

Firefox overlays only match based on element names and identifiers. If an element has no identifier,

then it cannot participate in the overlay process, and should not contribute to any conflicts. For

example, the presence of a simple 〈menuitem/〉with no identifier should not conflict with any con-

tributed 〈menuitem id=“someId”/〉 that does have an identifier. The naïve approach to translating

nodes into selectors, however, would render the former as somePath > menuitem and the latter as

somePath > menuitem#someId, and these two selectors might indeed refer to the same element.

To handle this, the translation of the base documents must assign a nonce identifier to all nodes

that lack them, so that they cannot be confused with any other nodes. This step is automatic and

straightforward, and eliminates many hundreds of false positives. (Again, the precise number

is difficult to measure, because these errors compound with the false positives in the previous

section to yield even more problems.)

5.7 Overlay conflict detection: Generalizing selectors

This section presents the first variant of the overlay language, shown in Fig. 5.13, that goes beyond

the expressive power of Firefox extensions. The additional expressiveness of the selector language

155

lets overlays apply to multiple targets, and is motivated by two examples, one simplified from real-

world extension idioms and one that highlights why such flexibility is distinctly different from

the versions of this language examined above.

The ability for selectors to match multiple nodes introduces a new and difficult problem: nodes

can match several different selectors, rather than just the sole selector determined by the tagname

and id of the node. Said another way, it is possible for two distinct selectors to intersect, such that

there exist nodes matching them both. Consequently, it is possible for two overlays with different

selectors to in fact apply to the same targets, and hence potentially conflict with one another. There-

fore, after motivating the benefits of these expressive selectors, I define an intersection algorithm that

computes a description of precisely which nodes may match two selectors simultaneously.

With this new tool, the conflict-graph analysis defined above can be adapted to provide partial

support for these new selectors. The use of the intersection algorithm complicates the mainte-

nance of the Undef sets of the analysis; additionally, the CSS universal selector must be handled

differently than others. I explain the adaptation of the analysis, and then explain these two caveats.

Fully adapting the analysis to remove these problems remains as future work.

5.7.1 Motivating examples

Refactoring a single extension: Consider an extension (simplified from real examples) that adds

a submenu of actions to the “Tools” menu of some application, and adds an identical submenu

to the application’s context menu. One way to write the extension might be to duplicate the

submenu’s contents in two overlays (written here using XUL):

• OV7*: Overlay(Insert(menu#tools-menu, end,

〈submenu id=“aMenu”〉〈menuitem〉Hi〈/menuitem〉〈/submenu〉))

• OV8*: Overlay(Insert(menu#context-menu, end,

〈submenu id=“aMenu”〉〈menuitem〉Hi〈/menuitem〉〈/submenu〉))

However, such copy-and-paste duplication easily leads to divergences between the two ver-

sions. An alternate approach might simply be to permit extensions to specify a set of selectors:

Overlay(Insert({menu#tools-menu, menu#context-menu}, . . .))

Such an overlay would apply to all nodes matching any element in that set. However, this is a

fairly limited improvement, as the extension author must enumerate all targets explicitly, which

may not always be possible, as the next example will show. A better approach (and, indeed, one

taken by some Firefox extensions), is to refactor the common code (in this case, the 〈menuitem/〉)

into a third overlay:

156

• OV7**: Overlay(Insert(menu#tools-menu, end, 〈submenu id=“myMenu”/〉))

• OV8**: Overlay(Insert(menu#context-menu, end, 〈submenu id=“myMenu”/〉))

• OV9*: Overlay(Insert(submenu#myMenu, end, 〈menuitem〉Hi〈/menuitem〉))

Here, overlays OV7** and OV8** create stubs that can be filled in by OV9*. As written, how-

ever, these overlays violate the well-formedness property of the combined document, since two

〈submenu/〉 items with the same id will be created. The best approach, then, is to use a property

other than ids for OV9*:

• OV7: Overlay(Insert(menu#tools-menu, end, 〈submenu class=“myMenu”/〉))

• OV8: Overlay(Insert(menu#context-menu, end, 〈submenu class=“myMenu”/〉))

• OV9: Overlay(Insert(submenu.myMenu, end, 〈menuitem〉Hello〈/menuitem〉))

Such an approach requires more flexible selectors than we’ve permitted so far. This seemingly-

small improvement—after all, this is still merely a simple selector—provides a large expressive

jump, as such selectors can match multiple targets.

Supporting relationships between nodes: As mentioned in Section 5.3, the development of C3

reached a stage where it could render the correct positioning and layout of unordered lists, but

could not support the list-item bullets (more generally known as “generated content”). That gen-

erated content could be simulated by an overlay

Overlay(Insert(ul li, start, 〈span〉•〈/span〉))

that inserts a 〈span/〉 containing the bullet character before every list item—an a priori unbounded

number of targets, and therefore not explicitly enumerable—within an unordered list. This overlay

uses a non-simple selector (thanks to the descendant combinator), and so marks a large expressive

jump from the languages in the previous sections.

A similar, though more contrived example might choose to render lists as set notation, by sur-

rounding them with braces and inserting commas between list items. Such an overlay might

be written using

157

Overlay(Insert(ul, start, 〈span〉{〈/span〉),

Insert(ul li ~ li, before, 〈span〉, 〈/span〉),

Insert(ul, end, 〈span〉}〈/span〉))

The first and last actions insert the list braces, while the middle action inserts commas only before

those list items with at least one preceding sibling, i.e., every list item except the first.5 Again, such

an overlay could not be written with the simpler selector languages considered earlier.

(In practice, the author of this list-formatting overlay might want to apply the overlay whenever

lists are present, but gracefully do nothing when they are not. In other words, this overlay should

be optional. Such concerns are orthogonal to the effect an overlay has on the document. Recall that

the composition language includes the ? combinator for exactly this purpose, and that extension

authors actually provide compositions of guarded overlays, and not merely bare overlays. The

remainder of this discussion focuses on the overlays and elides any composition operators.)

Note that both of these examples are broken in the presence of nested lists: they will insert

bullets or commas before list items within numbered lists that are themselves nested within an

unordered list. Correctly handling this case would need to use children selectors instead of descen-

dant selectors; however, these will cause problems that I defer addressing until Section 5.8.

5.7.2 CSS selector intersection

As noted above, nodes can be matched by several distinct selectors. The dual CSS intersection

problem asks, for a given pair of selectors, whether there could exist a tree with elements match-

ing both selectors simultaneously. Such language intersection problems are common (cf. regular

expression intersections [9, 10, 34, 206], XQuery and XPath intersection [21, 22, 38], etc.), and for

arbitrary (context-free or larger) languages these problems are undecidable [103, 173]. Fortunately,

CSS is at heart a regular language, and so the intersection problem is decidable. The CSS inter-

section problem, in particular, is of more than just academic interest; web developers encounter

this problem in practice, and though partial answers have been posed for specific cases,6 to my

knowledge no systematic, complete, or provably-correct solution has been previously published.

For a conflict analysis that uses this intersection algorithm to be of diagnostic use, it needs more

than just a Boolean response: it should demonstrate to the user or developer what the intersection

5 The HTML5-expert reader will notice that these three insertions produce a technically malformed 〈ul/〉, as the only
permissible children for lists are 〈li/〉 elements. However, since scripts can already create malformed content at runtime,
I do not view this as a cause for concern. The CSS3-expert reader will notice that these three insertions can be mimicked
by :before and :after generated content. This approach has the advantage of not cluttering the dom of the page, but
the inserted content is not selectable and does not behave as regular text.

6 http://stackoverflow.com/questions/4764712/grouping-css-selectors

http://stackoverflow.com/questions/4764712/grouping-css-selectors

158

contains, to aid in debugging or eliminating unwanted conflicts. Ideally, it needs a function Sel×

Sel → Sel that takes a pair of CSS selectors and returns a selector that matches the intersection

of the two inputs. However in general, two CSS selectors do not intersect in a single selector,

but rather in a set of them. For example, the selectors b a and c a match any a node that has

both b and c ancestors, in any order. So both b c a and c b a are in their intersection, but no

single selector can describe both of those paths. Instead, it must expect the intersection algorithm

to return a set of selectors.

Let Inter : Sel× Sel→ 2Sel be a function such that for all s, t ∈ Sel and for all T ∈ Tree, Inter is

Correct : ∀sel ∈ Inter(s, t), ∀elem ∈ T, selT(elem)→ sT(elem) ∧ tT(elem)

Total : ∀elem ∈ T, sT(elem) ∧ tT(elem)→ ∃sel ∈ Inter(s, t), selT(elem)

Sufficient : (∃elem ∈ T, sT(elem) ∧ tT(elem))→ Inter(s, t) 6= ∅

These conditions ensure that Inter produces selectors that only match elements matched by both s

and t (Correct), that every element matched by both s and t is matched by some selector from Inter

(Total), and that Inter will be non-empty as long as some element is matched by s and t (Sufficient).

Obviously, Total implies Sufficient, but not vice versa. While the conflict analyses in this chapter

only require the intersection algorithm to be sufficient, the correctness proofs for that algorithm

will be easier if it is total as well.

Fig. 5.14 defines Inter, the CSS selector intersection algorithm. It requires that its inputs be in

precedence-associated form, which by Lemma 1 (cf. Section 5.2.2) is semantically valid. In a slight

abuse of notation, it lifts CSS combinators pointwise from selectors to sets of selectors, so that e.g.,

s⊕ Inter(a, b) = {s⊕ x
∣∣ x ∈ Inter(a, b)} and Inter(a, b)⊕ Inter(c, d) = {x⊕ y

∣∣ x ∈ Inter(a, b), y ∈

Inter(c, d)}, for ⊕ a CSS combinator. It relies on three helper routines:

• Canonical takes two SimpleSelectors and returns either the empty set (when both selectors

cannot match the same node, e.g., if the tag names differ), or a singleton set (with one selector

matching all the properties of both inputs). The definition is straightforward and omitted.

• Interleavings takes either two descendant selectors or two sibling selectors, and returns all

possible ways to interleave and combine their components to produce selectors in the inter-

section of the two original inputs. This function is defined in Fig. 5.15.

• Pairings computes a similar intersection, for either a pair of descendant and child selectors

or a pair of sibling and adjacent sibling selectors. The essential difference between this and

159

the previous routine is that children and adjacent siblings are tight constraints, so fewer

interleavings are present in the intersection. This function is also defined in Fig. 5.15.

The details of Interleavings can be understood fairly intuitively by looking at Fig. 5.16. The

simple case is shown in Figs. 5.16a to 5.16d. Here, the base tree contains all interleaved orderings

of a and b with x and y, ending in a node d. All the d nodes match both a b d and x y d.

However, no single selector can describe all six orderings of a, b, x and y. Instead Interleavings

must enumerate all orderings as separate selectors. Examining the six “strands” of these trees in

order shows a recursive structure: all interleavings of a b with x y either

• begin with a and continue with all interleavings of b and x y, or

• begin with x and continue with all interleavings of y and a b.

This leads to the first half of the definition for Interleavings.

The remaining clause of the definition is illustrated by Figs. 5.16e to 5.16h. In these trees, the

left two “strands” are similar to the previous tree (indeed, the other four orders could be present as

well; they are elided for space). The right three strands, however, are structurally different: unlike

in the preceding example, here it is possible for a single node (e.g., x.b) to match clauses from

both input selectors (here, *.b and x), and in fact it is sometimes necessary. Thus in the definition

of Interleavings, the final clause picks a single clause from each input selector and intersects them.

This splits both selectors into two pieces, which must in turn be interleaved. As the choice of

which clauses to choose was arbitrary, the definition in fact unions all such choices together.

The details of Pairings are similar: here, the central observation is that a child is a descendant

(or an adjacent sibling is a sibling), but not vice versa. Therefore, given selectors d1 d2 · · · dM

c1 > c2 > · · · > cN , the algorithm may pair off and intersect clauses dM, dM−1, . . . with ci1 , ci2 , . . . for

N ≥ i1 > i2 > · · · ≥ 1, being careful to preserve both the adjacency of the ci clauses as well as

the relative order of the dj clauses. This accounts for the first clauses of PairOff ; the remainder

simply prepend the remaining dj clauses before c1.

Theorem 2. Inter is Correct and Total.

Proof sketch. The crux of the proof relies on how the different CSS combinators affect the path of

a composite selector. Intuitively, (~) and (+) describe horizontal segments of the path, by defining

some requirements on the leftward siblings of the target node. Therefore intersecting selectors

using only these combinators will produce results that also use only these combinators.

160

Inter(simple1, simple2)
def
= Canonical(simple1, simple2)

Inter(adj1 + simple1, simple2)
def
= {adj1 + s

∣∣ s ∈ Inter(simple1, simple2)}

Inter(adj1 + simple1, adj2 + simple2)
def
= {a + s

∣∣ a ∈ Inter(adj1, adj2), s ∈ Inter(simple1, simple2)}

Inter(sib1 ~ adj1, simple2)
def
= {sib1 ~ s

∣∣ s ∈ Inter(adj1, simple2)}

Inter(sib1 ~ adj1, adj2 + simple2)
def
= Pairings(~),(+)(sib1 ~ adj1, adj2 + simple2)

Inter(sib1 ~ adj1, sib2 ~ adj2)
def
= Interleavings(~)(sib1 ~ adj1, sib2 ~ adj2)

Inter(kid1 > sib1, simple2)
def
= {kid1 > s

∣∣ s ∈ Inter(sib1, simple2)}

Inter(kid1 > sib1, adj2 + simple2)
def
= {kid1 > adj2 + s

∣∣ s ∈ Inter(sib1, simple2)}

Inter(kid1 > sib1, sib2 ~ adj2)
def
= {kid1 > sib2 ~ a

∣∣ a ∈ Inter(sib1, adj2)}

Inter(kid1 > sib1, kid2 > sib2)
def
= {k > s

∣∣ k ∈ Inter(kid1, kid2), s ∈ Inter(sib1, sib2)}

Inter(desc1 kid1, simple2)
def
= {desc1 k

∣∣ k ∈ Inter(kid1, simple2)}

Inter(desc1 kid1, adj2 + simple2)
def
= {desc1 adj2 + k

∣∣ k ∈ Inter(kid1, simple2)}

Inter(desc1 kid1, sib2 ~ adj2)
def
= {desc1 sib2 ~ k

∣∣ k ∈ Inter(kid1, adj2)}

Inter(desc1 kid1, kid2 > sib2)
def
= Pairings(),(>)(desc1 kid1, kid2 > sib2)

Inter(desc1 kid1, desc2 kid2)
def
= Interleavings()(desc1 kid1, desc2 kid2)

Inter(x, y)
def
= Inter(y, x) for all other combinations

Figure 5.14: CSS selector intersection algorithm

161

Interleavings⊕(s1 ⊕ · · · ⊕ sN , t1 ⊕ · · · ⊕ tM)
def
= s1 ⊕ Interleavings⊕(s2 ⊕ · · · ⊕ sN , t1 ⊕ · · · ⊕ tM)

∪ t1 ⊕ Interleavings⊕(s1 ⊕ · · · ⊕ sN , t2 ⊕ · · · ⊕ tM)

∪ {x⊕ y
∣∣

1 ≤ i < N, 1 ≤ j < M,
x ∈ Interleavings⊕(s1 ⊕ · · · ⊕ si, t1 ⊕ · · · ⊕ tj),

y ∈ Interleavings⊕(si+1 ⊕ · · · ⊕ sN , tj+1 ⊕ · · · ⊕ tM)}

Interleavings⊕(s1 ⊕ · · · ⊕ sN , t) def
= Inter(s1 ⊕ · · · ⊕ sN , t)

Interleavings⊕(s, t1 ⊕ · · · ⊕ tM)
def
= Inter(s, t1 ⊕ · · · ⊕ tM)

Pairings⊕,⊗(s1 ⊕ · · · ⊕ sN , t1 ⊗ · · · ⊗ tM)
def
= (PairOff⊕,⊗(s1 ⊕ · · · ⊕ sN−1, t1 ⊗ · · · ⊗ tM−1)

⊗ Inter(sN , tM))

PairOff⊕,⊗(s1 ⊕ · · · ⊕ sN , t1 ⊗ · · · ⊗ tM)
def
= PairOff⊕,⊗(s1 ⊕ · · · ⊕ sN , t1 ⊗ · · · ⊗ tM−1)⊗ tM

∪ (PairOff⊕,⊗(s1 ⊕ · · · ⊕ sN−1, t1 ⊗ · · · ⊗ tM−1)

⊗ Inter(sN , tM))

PairOff⊕,⊗(s1 ⊕ · · · ⊕ sN , t) def
= {s1 ⊕ · · · ⊕ sN ⊕ t}
∪ s1 ⊕ · · · ⊕ sN−1 ⊕ Inter(sN , t)

Figure 5.15: Interleavings combines either two descendant or two sibling selectors, and Pairings
combines either descendants with children or adjacent siblings with siblings.

Similarly, () and (>) describe vertical segments of the path, by defining some requirements on

the ancestors of the target node. Therefore intersecting selectors using only these combinators will

again produce results that also use only these combinators.

The subtlety in the overall algorithm lies in the interaction of these two types of combinators—

but these interactions can be tightly controlled by Lemma 1, which permits the re-association of the

input selectors. The input selectors now consist of “vertically-combined” sets of “horizontal-only”

selectors, for which the intersections can be computed independently.

5.7.3 Runtime analysis

The performance of Inter on arbitrary selectors can be measured in three different ways: how

large are each of the computed results, how many are there in total, and how fast can it compute

whether the result set is empty or not.

Theorem 3. Let s, t ∈ Selector be arbitrary, precedence-associated selectors. Then

162

body

x

y

a

b

d

x

a

y

b

d

x

a

b

y

d

a

x

y

b

d

a

x

b

y

d

a

b

x

y

d

(a) Base HTML tree, showing all
interleavings of a and b with
x and y

body

x

y

a

b

d

x

a

y

b

d

x

a

b

y

d

a

x

y

b

d

a

x

b

y

d

a

b

x

y

d

(b) Matching a b d: all d nodes
match, regardless of interven-
ing x and y nodes

body

x

y

a

b

d

x

a

y

b

d

x

a

b

y

d

a

x

y

b

d

a

x

b

y

d

a

b

x

y

d

(c) Matching x y d: all d nodes
match, regardless of interven-
ing a and b nodes

body

x

y

a

b

d

x

a

y

b

d

x

a

b

y

d

a

x

y

b

d

a

x

b

y

d

a

b

x

y

d

(d) Matching x a y b d: any
one selector will match only
one ordering

body

x

y

a

q.b

d

x

a

y.b

d

a

x.b

y

d

a

x

q.b

y

d

a

q.b

x

y

d

(e) Base HTML tree, to illustrate
intersection of nodes along
paths

body

x

y

a

q.b

d

x

a

y.b

d

a

x.b

y

d

a

x

q.b

y

d

a

q.b

x

y

d

(f) Matching a *.b d

body

x

y

a

q.b

d

x

a

y.b

d

a

x.b

y

d

a

x

q.b

y

d

a

q.b

x

y

d

(g) Matching x y d

body

x

y

a

q.b

d

x

a

y.b

d

a

x.b

y

d

a

x

q.b

y

d

a

q.b

x

y

d

(h) a x.b y d ∈ Inter(a *.b d, x y d):
This case involves merging x with *.b

Figure 5.16: Demonstrating the interleaving algorithm

163

• Length: ∀x ∈ Inter(s, t), |x| ≤ |s|+ |t|.

• Count: |Inter(s, t)| ∈ O(3|s|+|t|).

• Speed: Deciding whether Inter(s, t) = ∅ can be computed in time O(|s|+ |t|).

Proof sketch. Intuitively, the Length claim simply shows that if two selectors denote paths p and q

that examine m and n nodes respectively, Inter shouldn’t have to examine more than m + n nodes

to match both selectors.

The Speed claim asserts that computing just one element of Inter(s, t) can be done quickly: Inter

defers to Pairings and Interleavings, and at any point in their definitions where it “chooses” some

splitting of the input, it can always choose one such split easily.

The only challenging claim is of Count. Here, it is easy to see that Inter(s, t) ∈ Ω(2|s|+|t|): for

two sibling selectors of lengths m and n, the number of interleavings is the number of ways to

choose n positions among n + m, which is (n+m
m) ≤ 2m. A more detailed accounting proves that

Inter exceeds this bound, and the true bound has a base of 3 rather than 2.

5.7.4 Using descendant and sibling selectors

The ideas from Section 5.5 are still useful in analyzing the compatibility of the overlays in this

section, particularly the machinery of the conflict graph from Section 5.5.4. The essential change is

relaxing the intuition of “sets of resources, compared by equality” to accommodate intersections

between selectors, as defined above.

In more detail, consider a base document consisting solely of the empty node 〈a/〉, and the

following three overlays

• OV14: Overlay(Insert(a, end, 〈b class=“x y”/〉), Insert(a, end, 〈c class=“y z” id=“idC”/〉),

Reject(Selector(d.foo)))

• OV15: Overlay(Insert(b.x, . . .))

• OV16: Overlay(Insert(*.foo, . . .))

OV14’s interface should provide as much detail as possible; in this case it will include7

7 Because selectors are restricted to descendant and sibling only, they do not capture the child and adjacent-sibling
relationships between the nodes here.

164

S14
i .Def = {Selector(a)} S14

i .Undef = {Id(idC), Selector(d.foo)}

S14
o .Def = {Selector(a), S14

o .Undef = {Selector(d.foo)}

Selector(a b.x.y),

Selector(a b.x.y ~ c.y.z#idC),

Id(idC)}

This interface is the best interface that can be specified, as it defines a maximally-specific selec-

tor for every node in the document. Many other selectors are possible: some might elide b.x.y

from the last Selector, and assert c as a child of a directly; others might elide a altogether and

simply assert that three simple selectors exist with no structural relationships between them; still

others might elide class information, or id information, or both. Indeed, there are far too many

variants to list explicitly (particularly for larger overlays or documents), but it is also unnecessary

to do so. Every one of these variants provides less specific information about the document than

the selectors shown above.

Turning to OV15, note that it tries to overlay a node matching b.x. Suppose the algorithm

examines if OV15 can follow OV14. It simply asks whether there exists d ∈ S14
o .Def such that

Inter(d, b.x) 6= ∅. Sure enough, Inter(a b.x.y, b.x) = {a b.x.y} 6= ∅, so it knows such a node

exists in the document—despite not explicitly including Selector(b.x) ∈ S14
o .Def .

The key observation is that when checking sequencing of two overlays (Eqs. (5.3) to (5.6)), the

algorithm cannot directly use set operations that check implicitly for pairwise element equality.

Instead, they must use Inter to check explicitly for pairwise element intersection: for two overlays

OV1 and OV2, and their interfaces S1 and S2,

∀d2 ∈ S2
o .Def , ∀u1 ∈ S1

i .Undef , Inter(d2, u1) = ∅ (5.7)

∀d2 ∈ S2
o .Def , ∀d1 ∈ defs(OV1), Inter(d2, d1) = ∅ (5.8)

∀ f2 ∈ S2
o .Frozen, ∀u1 ∈ used(OV1), Inter(f2, u1) = ∅ (5.9)

∀r2 ∈ reqs(OV2), ∀c1 ∈ S1
i .Clean, Inter(r2, c1) = ∅ (5.10)

These equations strictly generalize Eqs. (5.3) to (5.6) (because s1 = s2 =⇒ Inter(s1, s2) 6= ∅, tak-

ing the contrapositive shows that Eq. (5.7) implies Eq. (5.3), and likewise for the other equations).

However, they introduce the potential for aliasing: CSS selectors now may produce unexpect-

edly non-empty intersections.

165

Caveat: Universal selectors: For example, overlay OV16 applies to nodes matching *.foo. Its

interface includes

S16
i .Def ⊇ {Selector(*.foo)}

S16
o .Def ⊇ {Selector(*.foo)}

(The input Def set must contain the selector being overlaid, and the output Def set should

contain at least as much as was previously defined.) Suppose the analysis tried to compose

OV14 ; OV16. Then Eq. (5.7) requires that it check S14
i .Undef against S16

o .Def . By examination,

Selector(d.foo) ∈ S14
o .Undef , and Inter(d.foo, *.foo) = {d.foo}, which implies that Eq. (5.7) fails

for OV14 ; OV16. But this clearly is wrong: OV16 might apply to any element with class foo, not

just d elements. So as long as some element existed with tagname not equal to d and with class foo,

OV14 would be satisfied and subsequently so would OV16. The problem arises because using * in

both Si and So of an interface is misleading. In Si it means “match all possible tag names”; in So it

should mean “there is some tag name that was matched”. However, using it directly in calls to Inter

implicitly uses the former meaning only. This all/any dichotomy is essentially DeMorgan’s law

applied to quantifiers. Properly handling these two distinct meanings of * would require universal

and existential selectors to the language, and is an intriguing avenue for future work. For now, I

ignore such issues and accept the consequent loss of precision.

Caveat: Undef sets: Aliasing arises at another point of the analysis, where it determines what

belongs in the output Undef set for a sequence of overlays. Recall that for a composition OV1 ; OV2,

the set So.Undef is computed from S1
o .Undef and S2

o .Undef . Intuitively, the output Undef set should

contain everything that is still known to be undefined by S2
o .Undef , and anything still known to be

undefined by S1
o .Undef except for anything defined by OV2. In standard set notation, this would

be S2
o .Undef ∪ (S1

o .Undef \ defs(OV2)). But suppose the two overlays OV1 and OV2 were such that

S1
o .Undef = {Selector(a.foo), Selector(b.foo.bar)}, S2

o .Undef = ∅, and OV2 defines Selector(a#id)

and Selector(b.foo.bar.baz). How should the intuitive definition for So.Undef be interpreted?

Using standard set operations, where elements are compared by equality, is inconsistent with

the choices above to use the selector-intersection algorithm. But if instead the intersection algo-

rithm is used, note that

Inter(a.foo, a#id) = {a.foo#id} /∈ S1
o .Undef

166

and yet

Inter(b.foo.bar, b.foo.bar.baz) = {b.foo.bar.baz} /∈ S1
o .Undef

For a elements, a proper analysis should preserve a.foo, because OV2 does not define an element

matching a.foo, despite the intersection algorithm claiming it is possible. For b elements, a proper

analysis should not preserve b.foo.bar, because OV2 defines an element matching that, despite

the intersection algorithm producing a more-specific result.

In the current implementation, I accept the inconsistency, and use standard set operations, with

pairwise element equality, to define the output Undef set for sequences of overlays. Specifically,

in the set-difference operation (S1
o .Undef \ defs(OV2)), I discard only those items in S1

o .Undef that

are exactly equal to elements in defs(OV2). In practice this works well; it remains for future work

to provide a cleaner accounting for why this is the appropriate choice.

5.8 Overlay conflict detection: Fully-general overlays

This section considers, at last, the full language originally presented in Fig. 5.8. Again I present

motivating examples to show what additional expressiveness gains come from permitting arbi-

trary Replace actions in overlays, and from broadening the selector language to full CSS selectors.

Both of these expressiveness gains cause the conflict-graph algorithm to break down, so I sketch a

potential, new analysis based on the theory of text-based patches in version control systems, which

might successfully model and analyze these last new components of the overlay language.

5.8.1 Motivating examples:

Replace actions: All previous sections of this chapter considered only insertions of new content

and modification of node attributes. A fully-general system would need to consider removing

content as well, or more conveniently, replacing existing content with new content. (Removal then

simply replaces existing content with nothing.)

Removing existing content occurs frequently. A simple ad-blocker, for instance, might define

Overlay(Replace(*[href~="some.adserver.com"]))

to remove scripts, images, objects, or anything else served from some.adserver.com. Similarly,

FlashBlock might be implemented simply by

Overlay(Replace(object[src$=".swf"]), Replace(embed[src$=".swf"]))

Restructuring existing content might also be useful. For example, visual editors such as Pow-

erPoint or Photoshop frequently add “handles” to the corners and edges of objects so they can be

167

resized and rotated. These handles are hidden until an object is selected. Emulating this behavior

via an overlay is straightforward: to add handles to all images, for example, an overlay might use

Overlay(Replace(img,

〈span class=“hidden editable”〉

〈span class=“inactive handle NW”/〉

〈span class=“inactive handle NE”/〉

〈self/〉

〈span class=“inactive handle SW”/〉

〈span class=“inactive handle SE”/〉

〈/span〉))

This uses the 〈self/〉 tag to re-parent the 〈img/〉 within the 〈span class=“hidden editable”/〉.

With appropriate styling rules, the handles can be positioned appropriately at the corners of the

〈span/〉 (which derives its size from the 〈img/〉 inside it), and hidden until selected. Similarly,

the handles can be inactive until individually selected.

(Note that this is not a foolproof approach: style rules that applied to the 〈img/〉may no longer

apply, since its parent element has changed. An extension using this approach might need to

manually manage styles to preserve the original appearance. Alternatively, a far more complicated

overlay mechanism might make the inserted outer 〈span/〉 “invisible” to the CSS rule-matching

process; this is similar in spirit to XBL [218]. Doing so, however, is beyond the scope of this work.)

The primary problem with Replace actions, however, is that they are challenging to describe

modularly using the interfaces of the conflict graph-based algorithm. Consider a base document

〈html〉

〈body〉

〈p class=“greeting para”〉Hello 〈span id=“s”〉World〈/span〉〈/p〉

〈/body〉

〈/html〉

The state-pair for this document might summarize it by saying that its Def set is

Def = {Selector(html), Selector(html > body), Selector(html > body > p.greeting.para),

Selector(html > body > p.greeting.para > span#s)}

Suppose an overlay tried to replace the paragraph with something else:

Overlay(Replace(p.para, 〈a href=“#”〉A link〈/a〉))

How should an analysis define the effect this overlay has on the document? Clearly, it requires

168

Selector(p.para) to be defined in the document, and places no restrictions on what is undefined,

clean, or frozen. But after it applies, that paragraph is no longer in the document, so the analysis

must somehow indicate that it is now undefined. This immediately poses a problem: the resource

Selector(p.para) is not explicitly part of the document’s Def set. One resolution might consider remov-

ing every selector in Def that intersects p.para, but in general the aliasing issues inherent in CSS

make this a bad choice. Additionally, a full solution must somehow know to remove all references

to span#s as well, because it was removed along with its parent. Finally, while these questions

are solvable for this particular case, because the Def set includes as much information about the

structure of the document as is possible (i.e., every node in the paths from each node to the root is

included in each selector), in general when the Def set includes “local” information obtained from

other overlays (i.e., the path information may not be complete), there may not be any good solution.

More broadly, the inclusion of Replace in the overlay language permits changes to the doc-

ument that, in terms of resources, are no longer monotonic. Because the conflict graph-based

dependency-resolution algorithm assumed that the Def and Frozen sets grew monotonically, while

the Undef and Clean sets shrank monotonically, violating these assumptions breaks the algorithm.

Child and adjacent-sibling selectors: As seen earlier, using only descendant or sibling selectors

leads to a clumsy loss of precision, and limits the utility of overlays because they cannot define

their targets sufficiently precisely. However, supporting child and adjacent-sibling selectors causes

the conflict-detection algorithm to break, and potentially claim to produce a valid extension load-

ing order that actually causes one extension to fail.

Suppose the base document is a simple tree

〈a id=“a1”〉

〈b/〉

〈c/〉

〈/a〉

and three overlays are defined:

• OV11: Overlay(Insert(a#a1 > c, after, 〈d id=“d1”/〉))

• OV12: Overlay(Insert(a#a1 > c, after, 〈e id=“e1”/〉))

• OV13: Overlay(Insert(c + d, after, 〈f id=“f1”/〉))

Examining all six possible loading orders, note that the three orders where OV13 precedes

OV11 will fail due to lack of a 〈d/〉 element. Indeed, after constructing the conflict graph for these

three extensions, the only dependency edge is that OV11 must not follow OV13. This implies that

the order (OV11 ; OV12 ; OV13) is a valid loading order, as it is a valid topological ordering of

169

the conflict graph. But stepping through the application of each overlay reveals a problem: after

OV11 applies, the merged document is

〈a id=“a1”〉

〈b/〉

〈c/〉

〈d id=“d1”/〉

〈/a〉

Both OV12 and OV13 could successfully apply to this document. However, once OV12 runs,

the document becomes

〈a id=“a1”〉

〈b/〉

〈c/〉

〈e id=“e1”/〉

〈d id=“d1”/〉

〈/a〉

OV13 can no longer apply in this document, because 〈c/〉 and 〈d/〉 are no longer adjacent. A

similar problem holds when considering child selectors and Replace actions, which can analogously

change the parent-child relationship between nodes. Note that without child or adjacent-sibling

combinators, this problem vanishes, because nothing in the overlay language permits changing

the sibling or ancestor-descendant relationships.

Again, the general overlay language permits changes to the document that, in terms of re-

sources, are no longer monotonic. And just as with the analysis of Replace actions, this non-

monotonicity can cause the conflict-detection algorithm to break down.

5.8.2 Approach: future work

Fundamentally, the implicit mistake in the example above was that while it correctly accounted for

how the document changed as a consequence of applying overlays, it failed to account for how the

targets of overlays should change as well. Recalling the analogy from the beginning of the chapter,

overlays are “tree-shaped patches”—and experience with version control systems, which routinely

handle textual patches of flat files, shows that describing the effects of one patch depends heavily

on which other patches have been applied.

I take particular inspiration from the Darcs version control system [46, 115, 151], which ele-

vates patches to the fundamental object of manipulation. In particular, Darcs defines a “theory of

170

patches”, where patches are a formal algebra equipped with a commutation relation that describes

how to commute patches past one another. Said another way, if two patches p and q produce some

combined result (p ; q), their theory defines how to compute two related patches q′ and p′ such

that q′ “does the same thing as” q, and p′ “does the same thing as” p, such that the composition

(q′ ; p′) produces the same result as (p ; q). This commutation relation is essential for computing

the merge of multiple patches onto a single base document.

The analogy between text-based patches and tree-based overlays is fairly tight, but there is one

essential difference that makes the overlay case harder. Just as overlays consist of a set of actions

that apply at certain selectors, patches consist of a set of hunks that replace text at certain locations.

A location is a pair of character offsets (start, end), describing what region of the text to excise.

A hunk then consists of a location and a pair of strings (old, new). The intent is to replace the

contents of the document between start and end—which must be old—with the new content new.

Unlike general-purpose CSS selectors, which can match multiple nodes, locations match exactly one

position in the document. But I have argued that the ability to target multiple nodes is a large

gain in expressive power; I would like not to give up that flexibility if at all possible.

Because the theory of patches relies solely on an abstract type Patch that satisfies certain alge-

braic axioms, it may be possible to adapt Darcs patch theory for describing overlays. One essential

requirement for successfully computing the commutation relation is that every patch must have

an inverse that can undo the effects of a patch. For text-based patches (start, end, old, new), the

inverse patch must replace new with old, and must fix the start and end locations appropriately:

(start, start + |new|, new, old). For overlays, the current language does not quite suffice for defining

an inverse for every operation. Certainly every Insert modification can be undone by a Replace

operation that removes the new content. But modifying attributes or parentage is not so easy, as

the Replace operation does not preserve enough information to describe the inverse.

With a suitable revision of the language to accommodate inverses, this patch-based approach

would need to consider how overlays commute past each other. In particular, it must explore how

to transform CSS selectors to include the effects of other overlays. Continuing the example above,

suppose it was known that (OV11 ; OV13 ; OV12) was a valid sequence, and the analysis tried to

commute OV13 past OV12. This would yield two new overlays OV12’ and OV13’, such that OV13’

injects the same content given (OV11 ; OV12’) as OV13 would have given only OV11. The analysis

must therefore modify OV13’s selector to account for OV12’s actions, so it might change c + d into

c + ∗ + d, to account for the newly-inserted 〈e/〉. But this does not quite preserve the meaning

of OV13, because there might exist other 〈d/〉 nodes in the document, one of which may yet be

adjacent to a 〈c/〉 node. Consider the following, slightly more complicated document:

171

〈a id=“a1”〉

〈b/〉

〈c/〉

〈a id=“a2”〉

〈c/〉

〈d id=“d2”/〉

〈/a〉

〈/a〉

(Ignore for the moment that OV13 no longer depends on OV11, since the base document matches

c + d even before being overlaid.) Supposing OV11 were applied to this document, the result is

〈a id=“a1”〉

〈b/〉

〈c/〉

〈d id=“d1”/〉

〈a id=“a2”〉

〈c/〉

〈d id=“d2”/〉

〈/a〉

〈/a〉

At this point, OV13 applies to c + d, that is, to both 〈d id=“d1”/〉 and 〈d id=“d2”/〉. If OV12

were then applied to this document, the resulting composite is

〈a id=“a1”〉

〈b/〉

〈c/〉

〈e i=“e1”/〉

〈d id=“d1”/〉

〈a id=“a2”〉

〈c/〉

〈d id=“d2”/〉

〈/a〉

〈/a〉

If OV13’s selector is left unchanged, it now will match only 〈d id=“d2”/〉. But if OV13’s selector

is modified as described above, to c + ∗ + d, it now will match only 〈d id=“d1”/〉. Neither of these

options preserves the meaning of OV13 when applied after OV11, which means neither of them

172

describe OV13’. Instead, the “correct” modification is a set of selectors that pick out both c + d

and c + ∗ + d. Computing that these are the correct selectors for OV13’ is nontrivial. Even more

complicated is the reverse: how to determine that commuting OV12’ past OV13’ results in an

OV13” such that OV13” = OV13?

It is unclear whether overlays will actually conform to the algebraic structure required by Darcs

patch theory. However, if it does, then the theory will provide a solid foundation for understand-

ing the behavior of overlays in a more principled fashion.

5.9 Runtime behavior of overlays

The analyses in the preceding sections tacitly assumed that pages were completely static: no

dynamically generated content, no scripts running during page loading, etc. Even the Firefox

case study assumed chrome://browser/content/tabbrowser.xul was static. However, real pages

are not so well-behaved, and this introduces complications in defining precisely when extensions

are applied to the base system. Both Firefox and Chrome contend with similar issues: Firefox

makes no guarantees about precisely when extensions’ overlays are applied, while Chrome per-

mits extension authors to specify one of three moments when extension scripts are evaluated [92,

run_at attribute].

In the case of overlays, such complications arise in defining when overlay weaving occurs. Ul-

timately the definitions of overlays must choose whether they are conceptually “part” of the page

and visible to script, or not. The overlays shown here are patterned upon Mozilla’s XUL, and so

overlay-provided nodes are visible to script; by contrast, XBL [218] hides its dynamically-inserted

content from script. Neither choice is inherently superior; however, my overlay design does intro-

duce consistency challenges in relation to scripts: it becomes tricky to avoid situations where one

script runs and sees the original page, while a later script runs and sees an overlaid version. There

are three reasonable possibilities for when to apply overlays, ordered by time of occurrence:

1. Overlays might be applied at the instant the document is created. Clearly overlays cannot

be applied at least until parsing is under way, as the document structure has not yet been

created, so this choice requires coupling the weaving of overlays tightly into the parser.

2. Overlays might be applied as subtrees are inserted into the document; unfortunately, the

HTML parsing algorithm makes this tricky, as some scenarios involve inserting subtrees in one

place, only to move them again immediately (the so-called “adoption-agency” algorithm [112,

chrome://browser/content/tabbrowser.xul

173

section 8.2.5.4.7]). It is technically difficult to distinguish the initial from final positions

without close communication between the dom and parser.

3. Finally, overlays might be applied all at once, when the parser finishes parsing. However,

HTML permits inline scripts to run during page parsing, which means the desired consistency

goal is violated: inline scripts will see the un-overlaid document structure, while later event-

triggered scripts will see the overlaid structure.

These possibilities all have drawbacks: either they compromise the architectural goals for C3’s

modularity (the HTML parser should not be tightly coupled to the overlay mechanism, if at all

possible), or violate consistency. However, the HTML specification provides a particular event,

readyStateChange, that signifies when a document (or other resource) has “nothing [to execute]

that delays the load event” [112, section 8.2.6]: all inline scripts have run, all critical resources

are loaded, and the document is quiescent. Said another way, prior to this event being fired, the

document is expected to be in an inconsistent state, and web developers understand this form

of inconsistency. Moreover, I expect that well-written webapps will eschew complicated inline

scripts in favor of external and event-triggered scripts: it is relatively poor practice to use them, as

they prevent speculative parsing and parallelization of resource downloads, and so slow down the

app’s perceived performance. Therefore I adopt the moment just prior to firing the readyStateChange

event to apply overlays.

Once the document has transitioned to the event-driven phase of its lifecycle, another opportu-

nity arises to apply overlays. Consider highly-dynamic but fairly-regular documents: the messages

in a auto-updating Twitter feed, or the tabs in a browser’s tab bar. Extension authors reasonably

might want to overlay that repetitive structure, but clearly the at-load-time moment defined above

will not suffice. Therefore overlays can also be applied to dynamically-constructed nodes the first

time they are inserted into the document tree. Clearly this is brittle in the face of bizarre dom ma-

nipulations, so overlay authors are required to mark their overlays explicitly: only actions with a

dynamic attribute will be applied at node-insertion time as well as at document-parsing time.

(It is worth comparing these three identified moments in the lifecycle of a page to those iden-

tified by Chrome: in fact, they are nearly identical. Because Chrome is dealing with scripts

rather than overlays, they are examining milestones in the JS heap rather than the dom tree:

document_start is item 1, modified to accommodate other Chrome extension details (such as inject-

ing stylesheets as well as scripts); document_end is essentially item 3 and occurs after parsing but

before external resources may have completed loading; and document_idle occurs at some point

174

between then and just after the onload event. The differences between these and the three above

are solely due to which properties scripts can observe. Because scripts do not trigger based on

dom subtree insertion, item 2 is irrelevant, and item 1 becomes feasible. The caveat about external

resources in document_end is necessary because the state of such resources is observable by scripts.)

5.10 Summary

This chapter has examined the problem of extending HTML markup in a declarative and analyzable

manner. Based on Firefox’s overlay approach, I have developed a newer, more general and more

systematic overlay language with clearly defined semantics. Those semantics were then used

to define a series of conflict-detection algorithms that prevent real-world problems seen in a user

study. The conflict-detection algorithms for the generalized forms of the overlay language required

formalizing a notion of the intersection of two CSS selectors, and this led to identifying a new

notion of aliasing in selectors and overlays. I identified a challenging failure mode when applying

the algorithms in this chapter to the full overlay language: the ability to remove or rearrange

existing content makes existing child or adjacent-sibling selectors no longer apply, and this non-

monotonicity breaks the compositional approach presented here. Finally, I have identified some

potentially promising avenues to address this in future work.

175

Chapter 6

CONCLUSION

We are in the middle of a transition as client-side applications and web browsing converge to a

new and still imperfectly understood “webapps” model. The preceding chapters have elaborated

several of the strengths of both approaches to engineering programs that should be preserved

by future web platforms, focusing heavily on extensibility of the platform. This dissertation has

begun to address several of the weaknesses of current extension mechanisms, but much more

remains. The following section discusses several possible lines of future work. The remaining

section summarizes and concludes this dissertation.

6.1 Future work

Each of the projects presented in this dissertation both solve existing problems and expose new

ones for consideration. This section discusses future platform-level work, new analyses enabled

by aspects for JS, and potential approaches for resolving overlay compatibility. It then looks at

more holistic properties of extensions, including their security and cross-language conflicts.

6.1.1 Platform-level future work

As discussed in Chapter 3, C3 was designed for easy experimentation with major components of

the web platform, as well as for extensive support for extensions atop the platform. That chapter

presented seven systematic extension points at key points of the execution of HTML, CSS and JS, of

which only five points have so far been implemented. The remaining two points, namely extending

the CSS language with new properties and values, and extending the layout engine with new box

types and layouts, remain for future work.

New CSS properties and values: Implementing support for new CSS properties and values is

relatively straightforward, thanks to the “large-scale” regularity of the CSS grammar, where each

style declaration is a semicolon-delimited list of colon-separated name/value pairs. The primary

challenge is engineering-related, rather than conceptual: Currently the parser uses a fixed enu-

meration to encode property names, and uses direct function calls to property-specific parsing

176

functions once the property name is recognized. An extensible version would need to add a level

of indirection, so extensions could add support for new property names and their values. This

requires changing the encoding from enumerations to something else, as C# enumerations are not

dynamically extensible—but this is not an insurmountable challenge.

Adding new property names and values via extensions, like adding new HTML tag names, re-

quires that the platform enforce compatibility among the extensions. This amounts to a uniqueness

check on each property name, which is readily handled by the same conflict-detection algorithm

used for tag name uniqueness. Checking that new values (note: the concrete syntax for the value,

not its semantics) do not conflict is slightly harder, as it is a check that two different parsers cannot

both recognize the same string. Since CSS properties are essentially matched by regular expres-

sions, and the intersection test for regular languages is decidable, this conflict check is different

only in degree, not in kind.

New layout algorithms: New layout algorithms are harder to support as extensions, because the

existing layout algorithms are very tightly-coupled. Some prior work has looked at constraint-

based layout [28, 111, 156]; while these approaches do not currently support the full breadth of

existing HTML and CSS rendering foibles, if such a milestone were achieved then extending it with

new constraints would be comparatively straightforward. It remains to be seen whether constraint-

based approaches can actually handle all the details of existing HTML layout, and if not, whether

the unsupportable corner cases are of low-enough importance that they are not relevant.

Other extension mechanisms: While C3 admits seven extension points in its current configura-

tion, certainly other more ad hoc extension points are possible. For example, it was mentioned

that as currently implemented, overlays are not truly an extension to C3, but rather require one

hard-coded hook in the page-loading sequence to trigger their weaving: If this hook were made

explicit, overlays could be entirely decoupled from C3. There is no a priori reason to have this

hook—and there are likely several such hooks waiting to be inserted.

The Gecko platform has exposed many hooks in its api, for functionality as diverse as cus-

tomizing the script loader (used by extensions such as NoScript and Firebug), enumerating addons

(used by MrTech Toolkit), adding new url protocol handlers, or even hooking into the chrome-

loading mechanism itself [171]. These hooks are interspersed with platform apis like opening

disk files, constructing special-purpose JS objects, or accessing platform preferences. It is a tedious

task to disentangle the hooks from the apis, and promote a clean split between the platform and

177

webapp levels, but there may be a commonality to the actual hooks which may inform another

systematic extension mechanism.

6.1.2 Aspects: Future work

Chapter 4 explored the semantics of aspects and aspect weaving in JS, and indicated that using

aspects obviates the need for most instances of the monkey-patch idiom. This in turn improves

the precision of practically any analyses done over JS code, particularly pointer analyses [98], since

nearly all non-trivial analyses must approximate the side-effects of eval. Additionally, by moving

more code out of eval’ed strings and into directly-parsable source, more code is available in the

direct control flow of the program for analysis.

Aspects additionally create the opportunity for a novel analysis, which may serve as the back-

bone for a conflict analysis for JS code: much as the analyses in Chapter 5 determined whether two

overlays must be composed in some strict order, or whether they could commute and still produced

the same side effects, extensions’ aspect code could be analyzed for commutativity as well to de-

termine whether their weaving order did not matter. Such an analysis relies on a pointer analysis

to determine the potential joinpoints of each aspect, which in the design here are explicit JS expres-

sions. Ideally it will be statically provable that most extensions do not advise the same functions

or, if they do, that their advice commutes. Moreover, it is probable that precisely those extensions

whose code does not commute are likely to have similar functionality, and hence truly do conflict.

It is possible for two extensions to advise disjoint sets of functions, yet still interact poorly

through side effects on the shared state of the webapp. Handling this scenario requires an

information flow analysis over the script of the program. Such analyses have been tried be-

fore [13, 39, 56, 97, 132], though they either require dynamic checks, rewriting the code, or sacri-

ficing soundness. Nearly all have trouble with the problematic eval and with constructs of the

language—but aspects largely eliminate eval as used by the extensions I have examined, and most

extension code does not use with in any significant way. Further, recent efforts to formalize the se-

mantics of JS attempt to desugar with into more primitive constructions, eliminating it as well [99].

In short, aspects may greatly improve the precision of existing analyses, and permit additional

specialization where heuristics are still required.

6.1.3 Overlays: Future work

As described in Section 5.8, the current conflict-graph analysis fails on fully-general overlays due

to both aliasing in CSS selectors and the confounding effects of non-monotonic operations like

178

removing or modifying existing content. That chapter sketched a potential avenue for future

improvement, based upon patch theory [46, 115, 151]. The essential idea is to model overlays as

mathematically invertible operations that therefore admit clean reasoning principles, rather than

to duplicate and reason about the structure of Mozilla’s overlays. More broadly, such work has

implications on how to compare tree-shaped data efficiently, which is worth pursuing beyond the

application to ui extension used here.

The description of overlays in Chapter 5 sits at an intermediate level of expressiveness between

textual patches on the one hand, and xslt (a declarative language for transforming input XML

trees into modified XML or other output forms [219]) on the other. Overlays do not contain any

explicit looping constructions, for example. It is unclear whether such power is actually necessary

here, and if it is, how to model such behavior for purposes of conflict and commutativity analysis.

6.1.4 Security: Future work

Through most of this dissertation I deliberately ignored security issues pertaining to extensions,

and assumed that the user trusted the extensions, which in turn were written by benevolent but

perhaps inept programmers who wanted to write correct and compatible code. However, in the

real web this may not be the case. There are three types of adversaries I consider here: individually

malicious extensions, colluding extensions, and confused-deputy extensions.

Proof-of-concept malicious Firefox extensions have been written that hide a keylogger within

the browser, scraping all form information and exfiltrating the data to a potentially malicious

site [80]. With minimal extra effort, such extensions could make themselves all but invisible,

hiding themselves from the list of installed extensions and having no ui. Only a determined

search through the JS heap or through the list of installed chrome files would reveal them.

Colluding extensions may be even more challenging to detect, as no one extension of the

group may be actively malicious. One extension may routinely “call home” with some packet of

seemingly innocuous information. A second may overwrite one of the data sources with secret

data, which the first will happily expose. The data flows between the two extensions may be

arbitrarily convoluted, involving side channels through the dom of the browser or web pages,

timing channels, custom event sequences, or many others. Crucially, none of these data flows

occur unless all the colluding extensions are present.

Finally, confused-deputy extensions may individually be benign, but leave some entrance point

in their code sufficiently unguarded that they can be called from untrusted code. This leaves

them open to confused-deputy attacks where malicious web sites or other extensions can extract

179

information from the victim extension or use it to execute some privileged action on their behalf.

Here the detection challenge is not so much identifying malicious data flows as it is detecting

whether all publicly visible functionality validates and sanitizes its inputs.

Addressing these types of extension requires a different mindset than the preceding conflict-

detection algorithms, and an advance over prior approaches. Information flows must be tracked

precisely through script and the dom of the browser, client web sites, and all the extensions. Some

heuristics can be used, perhaps assuming that the mainline browser functionality is immune to

confused-deputy attacks, so that attention can be focused just on those functions that are modified

by advice. Naturally, truly malicious extensions will not be so obliging as to use the more easily

analyzable aspects presented here, opting instead for the analysis-defeating effects of eval, but

assuming they do use aspects gives a limit study of the effectiveness of such security analyses in

the browser—and later webapp—setting.

6.2 Conclusions

This dissertation has examined the role of extensibility in current web browsers, and argued that

as web browsers morph into web platforms, the case for extensions is no less compelling. My

thesis is that:

• A powerful extension mechanism for the web platform is justified and desirable: users over-

whelmingly like having extensions for their browser, and as browsers and webapps merge

ever closer, the ability to customize webapps is equally attractive.

• The existing implementations of extensions on current web platforms is insufficient: exten-

sions are either too crippled in expressive power or too powerful to be stable, and can ar-

bitrarily break the browser or each other. Moreover, these implementations are not suitable

for research and experimentation, as they couple the browser with its extension mechanisms

too tightly.

• Programming languages research is an appropriate tool to help. Improving the languages

in which extensions are written will provide increased leverage in analyzing extensions for

compatibility with each other and with the underlying platform.

To that end, in my thesis I have examined the forms extensibility has taken in several other

domains, and positioned web-browser extensibility among them. I then presented three projects

which address these claims. I first presented C3, a novel web platform architecture designed to

180

support extensibility at several levels, including coarse-grained and pervasive reconfigurability,

and fine-grained extensibility of the HTML and JS components of the platform. Next I presented an

aspect-oriented extension for JS that addresses the semantic failings of common extension idioms, and

showed that this new primitive is both more efficient and more correct than existing extensions,

and have claimed that as a building block of extensions it enables higher precision in analyzing

the JS of extensions. Finally, I presented an overlay mechanism for HTML, generalizing ideas from

Firefox’s overlays, which provides a well defined semantics for how overlays apply, and which

supports conflict-detection algorithms to ensure extensions are compatible with each other. Each

of these contributions improve the stability and robustness of the extensible web platform, but

many opportunities remain for future work and improvement.

181

Appendix A

PROOFS

Proof of Theorem 1. Given a set of compositions {c1, . . . , cn} that may contain optional (?) or one-

of-several (!) clauses, determining whether there exists a compatible loading order cπ(1), . . . , cπ(n)

(for some permutation π) is NP-hard.

Proof. I show this by reduction from 3-CNF-SAT. Construct two sets of compositions that encode

an arbitrary 3-CNF-SAT instance; a compatible loading order for the compositions will imply a

satisfying assignment for the 3-CNF-SAT problem. The first set will use only optional components;

the second will use only one-of-several components.

Consider a 3-CNF-SAT formula
∧

i Ci, where Ci = (xa ∨ xb ∨ xc) is a standard clause, and xa

are literals (or their complements). First, construct a base document

〈formula id=“sat”〉〈clause id=“Ci”/〉· · · 〈clause id=“Cn”/〉〈/formula〉

Second, for each literal (and complement) xi, construct the composition

cxi =
(

Last(Selector(lit#C1xi), . . . ,Selector(lit#Cnxi),

Overlay(Insert(Selector(clause#Cp), 〈lit id=“Cpxi”/〉) , · · ·))
)

? ;(
Require(Selector(lit#Cpxi), Overlay(Insert(Selector(clause#Cp, 〈done id=“d-Cp”/〉))))? ;

· · ·
)

where the Cp range over the various clauses covered by xi. (As is necessary, note that cxi is

linear in the number of literals and the number of clauses, i.e., polynomial in the size of the

input.) If the first component of cxi applies successfully to a document, it overlays all clauses

where xi is true, and (using Last) ensures that cxi cannot successfully apply. The remaining

sequence of optional components indicates that all covered clauses Cp are satisfied by the vari-

able xi: the Require assertion enforces that xi is true (by the first component of cxi), and de-

fines 〈done id=“d-Cp”/〉 to mark Cp as covered. The success of the first component is nec-

essary for the second component to succeed, though not sufficient: multiple variables could

satisfy the same clause Cp, but defining the 〈done id=“d-Cp”/〉 tag multiple times is invalid.

Therefore these parts of the composition are optional so that each can individually succeed once

182

and fail later times without failing the entire cxi composition. Last, construct the composition

cSAT = Require(Selector(done#d-C1), . . . , Selector(done#d-Cn), Overlay()), which is also linear in the

number of clauses. Crucially, it is not optional, and it clearly depends on nodes defined by the

optional overlays. The only way for it to successfully apply to a document is for some subset of

the optional cxi overlays to successfully apply, such that the original formula is satisfied, and for

the remainder of the optional overlays to fail to apply. Since this is equivalent to determining the

variable assignment, I have reduced 3-CNF-SAT to the overlay ordering problem and thus it is

NP-hard.

A similar reduction applies with one-of-several compositions. Again consider clauses Ci and

literals xi and complements xi. For each variable xi, construct the composition

cxi = Overlay(Insert(clause#Cp, 〈lit id=“Cpxi”/〉), . . .) !

Overlay(Insert(clause#Cq, 〈lit id=“Cqxi”/〉), · · ·)

where Cp range over all clauses containing xi, and Cq range over all clauses containing xi. The

one-of-several operator ensures that I overlay either nodes corresponding to clauses containing xi

or nodes corresponding to clauses containing xi, but not both. Note that the total length of the cxi

is linear in the length of the original 3-CNF-SAT formula.

Next, for each clause Cp = (xa ∨ xb ∨ xc), define the composition

cCp = Require((Cpxa, . . .), Overlay(Insert(clause#Cp, 〈done id=“d-Cp”/〉))) !

Require((Cpxb, . . .), Overlay(Insert(clause#Cp, 〈done id=“d-Cp”/〉))) !

Require((Cpxc, . . .), Overlay(Insert(clause#Cp, 〈done id=“d-Cp”/〉)))

Now cCp can only succeed if at least one of cxa , cxc or cxb succeeded. Again, the total length of the

cCp compositions is linear in the length of the original formula.

Finally, I again define cSAT = Require(Selector(done#d-C1), . . . , Selector(done#d-Cn), Overlay()),

which asserts that all of cCp succeed. Because cSAT is not optional, the entire set of compositions

will have a compatible loading order iff there is a satisfying assignment to the 3-CNF-SAT problem.

Once again, the length of cSAT is linear in the length of the original formula. So the size of the

constructed set of compositions is polynomial in the size of the original problem, and the solutions

are equivalent, so I have reduced 3-CNF-SAT to the composition ordering problem using only one-

of-several operators.

183

Proof of Lemma 1. Let S be a concrete-syntax CSS selector. Let sel1 be the parsed representation

of S according to the original grammar, and let sel2 be the parsed representation of S according to

the precedence-inducing grammar. Then [[sel1]] = [[sel2]].

Proof. I prove this by strong induction on the number of simple selectors of sel1 (or sel2):

Case 1: |sel1| = |sel2| = 1: Both selectors are the same simple selector, so there is only one way to

parse S according to both grammars and so sel1 = sel2, and the result follows.

Case 2: |sel1| = |sel2| = 2: sel1 = sel2 = s⊕ t, where s, t ∈ SimpleSelector, ⊕ is some combinator,

and again there is only one way to parse S according to either grammar, so again sel1 = sel2 and

the result follows.

Case 3: |sel1| = |sel2| > 2: Then S = A⊕1 B⊕2 C, for some selectors A, B and C, and combinators

⊕1 and ⊕2. I show the stronger result, that for any such A, B, C, ⊕1 and ⊕2,

[[(A⊕1 B)⊕2 C]] = [[A⊕1 (B⊕2 C)]]

By definition,

[[A⊕1 B]] = {q++ p | p ∈ [[A]], q ∈ [[B]], f⊕1(qlast, p1)}

where f⊕1 depends on ⊕1 by the definition of [[·]]

and

[[B⊕2 C]] = {r ++ q | q ∈ [[B]], r ∈ [[C]], f⊕2(rlast, q1)}

where f⊕2 depends on ⊕2 by the definition of [[·]]

In particular, the f⊕ functions are:

f(+)(q, p) def
= qlast.prevSibling = p1 f(~)(q, p) def

= qlast.prevSibling+ = p1

f(>)(q, p) def
= qlast.parent = p1 f()(q, p) def

= qlast.parent+ = p1

184

Therefore, by direct calculation,

[[(A⊕1 B)⊕2 C]] = {r ++(q++ p) | r ∈ [[C]], (q++ p) ∈ [[A⊕1 B]], f⊕2(rlast, (q++ p)1)}

= {r ++(q++ p) | r ∈ [[C]], q ∈ [[B]], p ∈ [[A]], f⊕1(qlast, p1), f⊕2(rlast, (q++ p)1)}

= { r ++ q++ p | r ∈ [[C]], q ∈ [[B]], p ∈ [[A]], f⊕1(qlast, p1), f⊕2(rlast, q1)}

= {(r ++ q) ++ p | r ∈ [[C]], q ∈ [[B]], p ∈ [[A]], f⊕1((r ++ q)last, p1), f⊕2(rlast, q1)}

= {(r ++ q) ++ p | (r ++ q) ∈ [[B⊕2 C]], p ∈ [[A]], f⊕1((r ++ q)last, p1)}

= [[A⊕1 (B⊕2 C)]]

where I use obvious properties about first and last elements of paths (namely, (q++ p)1 = q1

and (r ++ q)last = qlast), and the associativity of path concatenation. (The precise predicates de-

fined by f⊕1 and f⊕2 are not important; the proof only manipulates their arguments and not their

definitions.)

This result implies the original goal, that [[sel1]] = [[sel2]], by strong induction. Given the

precedence-associated parse sel2 of S, I can transform it by repeated application of the result above:

Case 3.a: sel2 = A ⊕ B for some selectors A and B and combinator ⊕, and |B| = 1. Then

since |A| < |sel2|, by induction I can reassociate A to A′ such that A′ is left-associated and

[[A]] = [[A′]]. Then [[sel2]] = [[A′ ⊕ B]], and A′ ⊕ B is left-associated, so A′ ⊕ B = sel1

Case 3.b: sel2 = A ⊕ B for some selectors A and B, and combinator ⊕, and |B| = n > 1.

Since |A| < |sel2|, again I can reassociate A to A′ such that A′ is left-associated and [[A]] =

[[A′]]. Similarly, since |B| < |sel2|, by induction I can reassociate B to B′ such that B′ is

left-associated and [[B]] = [[B′]]. I therefore have [[A ⊕ B]] = [[A′ ⊕ B′]]. By construction, I

now know B′ = (· · · (B1 ⊕1 B2) · · · ⊕n Bn). By n applications of the result above, I obtain

[[A′⊕ (· · · (B1⊕1 B2) · · · ⊕n Bn)]] = [[(· · · ((A⊕ B1)⊕1 B2) · · · ⊕n Bn)]], which is left-associated,

and therefore equal to [[sel1]] as desired.

Proof of Theorem 2. Inter is Correct and Total.

Proof. Assume without proof that Canonical is Correct and Total for simple selectors. Correctness

and totality are proven by induction on max(|s|, |t|), by cases that introduce one combinator at a

time. Assume that the inputs are in precedence-associated form, and assume that all outputs are

implicitly reassociated to that form as well.

185

Interleavings⊕(s1 ⊕ · · · ⊕ sN , t1 ⊕ · · · ⊕ tM)
def
= s1 ⊕ Interleavings⊕(s2 ⊕ · · · ⊕ sN , t1 ⊕ · · · ⊕ tM)

∪ t1 ⊕ Interleavings⊕(s1 ⊕ · · · ⊕ sN , t2 ⊕ · · · ⊕ tM)

∪ {x⊕ y
∣∣

1 ≤ i < N, 1 ≤ j < M,
x ∈ Interleavings⊕(s1 ⊕ · · · ⊕ si, t1 ⊕ · · · ⊕ tj),

y ∈ Interleave⊕(si+1 ⊕ · · · ⊕ sN , tj+1 ⊕ · · · ⊕ tN)}

Interleavings⊕(s1 ⊕ · · · ⊕ sN , t) def
= Inter(s1 ⊕ · · · ⊕ sN , t)

Interleavings⊕(s, t1 ⊕ · · · ⊕ tM)
def
= Inter(s, t1 ⊕ · · · ⊕ tM)

Interleave⊕(s1 ⊕ · · · ⊕ sN , t1 ⊕ · · · ⊕ tM)
def
= s1 ⊕ Interleave⊕(s2 ⊕ · · · ⊕ sN , t1 ⊕ · · · ⊕ tM)

∪ t1 ⊕ Interleave⊕(s1 ⊕ · · · ⊕ sN , t2 ⊕ · · · ⊕ tM)

Interleave⊕(s1 ⊕ · · · ⊕ sN , t) def
= Inter(s1 ⊕ · · · ⊕ sN , t)

Interleave⊕(s, t1 ⊕ · · · ⊕ tM)
def
= Inter(s, t1 ⊕ · · · ⊕ tM)

Figure A.1: An optimized form of Interleavings that computes all elements in the result set with
fewer redundancies

Case 1: |s| < |t|: The definitions of Correct and Total are symmetric in s and t. Every equation

(except the last) in Fig. 5.14 recursively calls Inter on some smaller portion of its inputs, and

assumes asymmetrically that |s| ≥ |t|. The last equation prevents getting stuck when |s| < |t|,

and so I get that if Inter is correct and total when |s| ≥ |t|, then it is too when |s| < |t|. For the

remaining cases of the proof, assume that |s| ≥ |t| and so no equations get stuck.

Case 2: s and t contain no combinators: Then by the first equation in Fig. 5.14,

Inter(s, t) = Canonical(s, t)

and by assumption I am done.

Case 3: s and t contain only (+): Examine the next two equations in Fig. 5.14. Let s = s1 + · · · + sN ,

where si are simple selectors.

Case 3.a: Any elements satisfying both s and t, when t is a simple selector, must satisfy both

s and t, and their adjacent left siblings must satisfy s1 + · · · + sN−1. By construction, sN and t

186

are both simple selectors (so Inter(sN , t) is correct and total by Case 2 above). Therefore

s1 + · · · + sN−1 + Inter(sN , t)

describes exactly those nodes satisfying both s and t, and so is correct and total as well.

Case 3.b: Similarly, elements satisfying both s and t = t1 + · · · + tM (where ti are simple selec-

tors) must satisfy both sN and tM, and so must satisfy some element of Inter(sN , tM). Addi-

tionally, their adjacent left siblings must satisfy s1 + · · · + sN−1 and t1 + · · · + tM−1. By induction,

I know that Inter(s1 + · · · + sN−1, t1 + · · · + tM−1) is correct and total, and by construction and

Case 2 above Inter(sN , tM) is correct and total. Therefore

Inter(s1 + · · · + sN−1, t1 + · · · + tM−1) + Inter(sN , tM)

describes exactly those nodes satisfying both s and t, and so is correct and total as well.

Case 4: s and t contain only (+) or (~): Examine the next three equations in Fig. 5.14. Let s =

s1 ~ · · · ~ sN , where si contain only (+).

Case 4.a: The case where t is a simple selector is trivial, similar to Case 3.a.

Case 4.b: Elements satisfying both s and t = t1 + · · · + tM (where ti are simple selectors) must

satisfy both sN and tM, and so must satisfy some element of Inter(sN , tM). Additionally, they

must have adjacent siblings satisfying t1 + · · · + tN−1 and some siblings satisfying s1 ~ · · · ~ sN−1.

Each of the tj (counting down from M) may match a sibling that is also matched by one of

the si (counting sequentially down from N), or the tj may match siblings distinct from those

matched by si. There are no other possibilities.

(For example, suppose N = 4 and M = 3. I know s4 and t3 must intersect (because they

are the last items in their respective selectors). The following are then valid pairings:

s1 ~ s2 ~ s3 ~ t1 + t2 + Inter(s4, t3)

s1 ~ s2 ~ Inter(t1, s3) + t2 + Inter(s4, t3)

s1 ~ s2 ~ t1 + Inter(s3, t2) + Inter(s4, t3)

s1 ~ Inter(s2, t1) + Inter(s3, t2) + Inter(s4, t3)

187

as they all preserve the relative orderings and adjacencies of si and tj, but the following is not:

s1 ~ Inter(s2, t1) + s3 + t2 + Inter(s4, t3)

because t1 is no longer adjacent to t2.)

Examining the definition of Pairings, note that it directly computes Inter(sN , tM) as re-

quired, and then calls PairOff with the remainder of s and t. Suppose |t| > 1, then examining

the first equation for PairOff , note that it computes results both where tM intersects with sN

and where it is left alone, and ensures that tN remains adjacent to tN−1. When |t| = 1, the

second equation for PairOff shows the same intersection behavior.

There are no other possible pairings of the si with the tj that would yield selectors that

match elements that match both s and t, so the construction is total. Moreover, it is correct

by construction, since it preserves the ordering and adjacency requirements of its input argu-

ments, and uses Inter to produce results that are inductively correct and total. Therefore the

construction is correct and total as desired.

Case 4.c: The remaining case is more challenging. Elements satisfying s and t = t1 ~ · · · ~ tM

(where ti contain only (+)) must satisfy some element of Inter(sN , tM), and must have some sib-

ling satisfying s1 ~ · · · ~ sN−1 and some sibling satisfying t1 ~ · · · ~ tM−1—but nothing is known

about the relative ordering of any si with any ti: for some elements, they may match two dis-

tinct siblings (in either order), and for others they may in fact match the same sibling. This

description is correct and complete: there are no other ways for a selector to be in the inter-

section of s and t. Therefore I need only compute correct and total sets for each of these three

options, and I will have shown correctness and totality for the full intersection, as needed.

Looking at the definition of Interleavings in Fig. 5.15, there are precisely these three options.

The base cases ensure that I intersect sN and tM, and by induction I know that such cases are

correct and total. In the recursive case, the first two recursive calls permit s1 and t1 to appear

in either order in the final result. again, these two calls are inductively correct and total, so

they compute the correct and total intersection when s1 (or t1) comes first.

The remaining component splits s and t into two parts:

s =
(
(s1 ~ · · · ~ si−1) ~ si

)
~
(
(si+1 ~ · · · ~ sN−1) ~ sN

)
t =

(
(t1 ~ · · · ~ tj−1) ~ tj

)
~
(
(tj+1 ~ · · · ~ tM−1) ~ tM

)
By induction, I know that the intersections Inter(((s1 ~ · · · ~ si−1) ~ si), ((t1 ~ · · · ~ tj−1) ~ tj)) and

188

Inter(((si+1 ~ · · · ~ sN−1) ~ sN), ((tj+1 ~ · · · ~ tM−1) ~ tM)) are both correct and total. And since

they ensure that their results intersect the last elements of their arguments, I get the intersec-

tion of si with tj, as asserted. Therefore combining them via (~) gives the correct and total

intersection of s and t for elements with a sibling matching the intersection of si and ti. Taking their

union for all 1 ≤ i < N and 1 ≤ j < M yields the correct and total intersection of s and t for

elements with at least one sibling matching the intersection of some si and tj.

Since I have computed correct and total results for all possible forms of the intersection, I

have shown Inter is correct and total for this case, as needed.

Case 5: s and t contain only (+), (~) or (>): Examine the next four cases of Fig. 5.14. Let s =

s1 > · · · > sN where si contain only (+) or (~).

Case 5.a: The case where t is a simple selector is again trivial.

Case 5.b: Elements satisfying both s and t = t1 + · · · + tM (where ti are simple selectors)

must satisfy both sN and tM. Additionally, they must have an adjacent sibling satisfying

t1 + · · · + tM−1, and a parent satisfying s1 > · · · > sN−1: there is no way for these selectors to de-

scribe the same nodes in the tree, so I do not need to intersect them. Instead, the only possible

results are (s1 > · · · > sN−1) >(t1 + · · · + tM−1) + Inter(sN , tM). By induction I know Inter(sN , tM)

is correct and total, and therefore so is the combined result.

Case 5.c: The case where t = t1 ~ · · · ~ tM follows identical reasoning.

Case 5.d: Elements satisfying both s and t = t1 > · · · > tM (where ti contain only (+) or (~))

must satisfy both sN and tM. Additionally, their parents must satisfy both s1 > · · · > sN−1 and

t1 > · · · > tM−1. By induction, Inter(s1 > · · · > sN−1, t1 > · · · > tM−1) is correct and total. Therefore

Inter(s1 > · · · > sN−1, t1 > · · · > tM−1) > Inter(sN , tM)

describes exactly those nodes satisfying both s and t and so is correct and total as well.

Case 6: s and t contain any combinators: Examine the remaining five cases of Fig. 5.14. Let

s = s1 · · · sN , where sI contain only (+), (~) or (>).

Case 6.a: The case where t is a simple selector is again trivial.

Case 6.b: The cases where t = t1 + · · · + tM or t = t1 ~ · · · ~ tM follow reasoning identical to the

corresponding cases for s = s1 > · · · > sN .

189

Case 6.c: The cases where t = t1 > · · · > tM (where ti contain only (+) or (~)) follows reasoning

identical to the case for s = s1 ~ · · · ~ sN , t = t1 + · · · + tM.

Case 6.d: The case where t = t1 · · · tM (where ti contain only (+), (~) or (>)) follows

reasoning identical to the case for s = s1 ~ · · · ~ sN , t = t1 ~ · · · ~ tM.

Proof of Theorem 3. Let s, t ∈ Selector be arbitrary, precedence-associated selectors. Then

• Length: ∀x ∈ Inter(s, t), |x| ≤ |s|+ |t|.

• Count: |Inter(s, t)| ∈ O(3|s|+|t|).

• Speed: Deciding whether Inter(s, t) = ∅ can be computed in time O(|s|+ |t|).

Proof sketch. I give an informal overview of proofs for each of these claims. As written, the

Interleavings function is hard to analyze, so I define a more complicated but optimized version

that computes the result set with fewer redundancies. The optimized verion is defined in Fig. A.1.

(Ironically, it is possible to fully optimize the function so it computes every result exactly once, but

that function is again hard to analyze for its precise running time.)

Length: It is intuitive that for all x ∈ Inter(s, t), |x| ≤ |s|+ |t|: looking at the definitions of Inter,

note that the output either includes every simple selector in s and t, or combines some pairs of

them into a single simple selector, but never creates new simple selectors from nothing.

Count: Certainly the potential size of Inter(s, t) itself is exponential in the size of its arguments,

due to Interleavings computing at least 2(|s|+|t|) possibilities: the number of ways to interleave l

items between m others is the number of ways to choose l slots out of l + m positions, or (l+m
l).

When l = m, this simplifies to (2l
l) ∈ O(22l). To show that the performance is at least the claimed

O(3|s|+|t|), in the worst cases:

Case 1: s, t ∈ SimpleSelector: Since two simple selectors either can describe the same element or

cannot, |Inter(s, t)| ≤ 1.

Case 2: s, t ∈ AdjacentSibling: Since there are no degrees of freedom to reorder the simple selectors,

I must match up and intersect each corresponding simple selector, yielding |Inter(s, t)| ≤ 1.

190

Case 3: s ∈ SiblingSelector, t ∈ AdjacentSibling: Let s = s1 ~ · · · ~ sl and t = t1 + · · · + tm, and let

n = l + m. Let TAP(l, m) = |Pairings(s, t)| be the size of the result set of Pairings, and TPO(l, m) =

|PairOff (s, t)| similarly be the size of the result of PairOff . Examining the definition of Pairings

note that TAP and TPO must obey the recurrences

TAP(l, m) = TPO(l − 1, m− 1)|Inter(sl , tm)|

TPO(l, m) = TPO(l, m− 1) + TPO(l − 1, m− 1)|Inter(sl , tm)|

TPO(l, 1) = 1 + |Inter(sl , t)|

By construction, I know that tm (or t in the last equation) is a simple selector, so by the previous

cases, |Inter(sl , tm)| ≤ 1. Simplifying yields

TAP(l, m) ≤ TPO(l − 1, m− 1)

TPO(l, m) ≤ TPO(l, m− 1) + TPO(l − 1, m− 1)

TPO(l, 1) ≤ 2

Since m decreases by 1 in every recursive call to TPO and there are two distinct calls to TPO

(they have unequal arguments), this has the simple solution TPO ∈ O(2m). I therefore deduce

|Inter(s, t)| = TAP(|s|, |t|) ∈ O(2|t|) ∈ O(2(|s|+|t|)).

Case 4: s, t ∈ SiblingSelector: Let s = s1 ~ · · · ~ sl and t = t1 ~ · · · ~ tm. Again define a function

TAI(l, m) = |Interleavings(~)(s, t)| to be the size of the result set of Interleavings(~), and TI(l, m) =

|Interleave(~)(s, t)| to be the size of the result set of Interleave(~). Examining its definition, note that

TAI and TI must obey the recurrences

TAI(l, m) = TAI(l − 1, m) + TAI(l, m− 1) +
l−1

∑
i=1

m−1

∑
j=1

TAI(i, j)TI(l − i, m− j)

TAI(l, 1) = |Inter(s, t)|

TAI(1, m) = |Inter(s, t)|

TI(l, m) = TI(l − 1, m) + TI(l, m− 1)

TI(l, 1) = |Inter(s, t)|

TI(1, m) = |Inter(s, t)|

By construction, I know that each call Inter is being called with at least one adjacent-sibling selector,

191

so I can simplify the base cases to

TAI(l, 1) ∈ O(2|t|)

TAI(1, m) ∈ O(2|s|)

TI(l, 1) ≤ 1

TI(1, m) ≤ 1

I solve the recurrence for TI to get TI(l, m) ∈ Θ((l+m−2
l−1)) using the substitution method: For the

inductive case I must show that TI(l, m) = (l+m−2
l−1), and substituting into the recurrence yields

TI(l, m) ≤
(

l + m− 3
l − 2

)
+

(
l + m− 3

m− 2

)
=

(l + m− 3)!
(l − 2)!(m− 1)!

+
(l + m− 3)!

(l − 1)!(m− 2)!

=
l − 1
l − 1

(l + m− 3)!
(l − 2)!(m− 1)!

+
m− 1
m− 1

(l + m− 3)!
(l − 1)!(m− 2)!

=
(l − 1)(l + m− 3)!
(l − 1)!(m− 1)!

+
(m− 1)(l + m− 3)!
(l − 1)!(m− 1)!

=
(l + m− 2)(l + m− 3)!

(l − 1)!(m− 1)!

=

(
l + m− 2

l − 1

)

For the base cases, consider when |s| = |t| = 1. Then TI(1, 1) = |Inter(s, t)| = 1 = (1+1−2
1−1) as

desired.

An aside: for X 6= 2,

n−1

∑
i=1

(
2
X

)n−i
=

n−1

∑
i=1

(
2
X

)i
=

2
X− 2

[
1−

(
2
X

)n−1
]

(A.1)

which can be verified by induction:

n

∑
i=1

(
2
X

)i
=

n−1

∑
i=1

(
2
X

)i
+

(
2
X

)n

{by induction}

=
2

X− 2

[
1−

(
2
X

)n−1
]
+

(
2
X

)n

192

=
2

X− 2

[
1−

(
2
X

)n−1
]
+

(
2
X

)n (X− 2
2

)(
2

X− 2

)

=
2

X− 2

[
1−

(
2
X

)n−1
+

(
2
X

)n (X− 2
2

)]
{expanding X−2

2 and simplifying}

=
2

X− 2

[
1−

(
2
X

)n−1
+

(
2
X

)n−1
−
(

2
X

)n
]

=
2

X− 2

[
1−

(
2
X

)n]

Checking the base cases, n = 1 is vacuously true, and case n = 2 simplifies to

2−1

∑
i=1

(
2
X

)i
=

(
2
X

)1
=

(
2
X

)(
2

X− 2

)(
X− 2

2

)
=

2
X− 2

[
2
X

X− 2
2

]
=

2
X− 2

[
1− 2

X

]

I use this formula below.

I also know that

(
n
m

)
≤
(

n
n/2

)
≤ 3(2n(n + 1)−1/2) (A.2)

(In fact, the factor of 3 is an over-approximation; the formula is asymptotically tight with a constant

of
√

2. I only need the looser result here.)

With this, I can check that the hypothesis T(l, m) ∈ O(3l+m) satisfies the recurrence, again

using the substitution method:

TAI(l, m) = TAI(l − 1, m) + TAI(l, m− 1) +
l−1

∑
i=1

m−1

∑
j=1

TAI(i, j)TI(l − i, m− j)

≤ c3l−1+m + c3l+m−1 +
l−1

∑
i=1

m−1

∑
j=1

c3i+j
(

l − i + m− j− 2
l − i− 1

)

= 2c3l+m−1 +
l−1

∑
i=1

m−1

∑
j=1

c3i+j (l − i + m− j− 2)!
(l − i− 1)!(m− j− 1)!

By Eq. (A.2)

≤ 2c3l+m−1 +
l−1

∑
i=1

m−1

∑
j=1

c3i+j+1 2l−i+m−j−2√
1 + (l − i + m− j− 2)/2

193

Changing i→ l − i and j→ m− j,

= 2c3l+m−1 +
l−1

∑
i=1

m−1

∑
j=1

c3l−i+m−j+1 2i+j−2√
1 + (i + j− 2)/2

(
3
2

)i+j−2 (2
3

)i+j−2

= 2c3l+m−1 +
l−1

∑
i=1

m−1

∑
j=1

c
4

3l+m−1 1√
1 + (i + j− 2)/2

(
2
3

)i+j

= 2c3l+m−1 +
c
4

3l+m−1
l−1

∑
i=1

m−1

∑
j=1

1√
1 + (i + j− 2)/2

(
2
3

)i+j

≤ 2c3l+m−1 +
c
4

3l+m−1
l−1

∑
i=1

m−1

∑
j=1

(
2
3

)i+j

= 2c3l+m−1 +
c
4

3l+m−1

(
l−1

∑
i=1

(
2
3

)i
)(

m−1

∑
j=1

(
2
3

)j
)

Using Eq. (A.1), with X = 3,

= 2c3l+m−1 +
c
4

3l+m−1

[
2

3− 2

(
1−

(
2
3

)l−1
)] [

2
3− 2

(
1−

(
2
3

)m−1
)]

The parenthetical terms stay between 0 and 1, so the bracketed terms are each less than 2, so

≤ 2c3l+m−1 + 4
c
4

3l+m−1

≤ 2c3l+m−1 + c3l+m−1

= c3l+m

The base cases follow, since O(2n) ∈ O(3n) for any positive n. So |Inter(s, t)| ∈ O(3|s|+|t|), as

desired.

Case 5: s, t ∈ ChildSelector: Since there are no degrees of freedom to reorder the sibling selectors, I

must match up and intersect each corresponding sibling selector, yielding |Inter(s, t)| ∈ O(3|s|+|t|)

by the previous case.

Case 6: s, t ∈ DescendantSelector: The same analysis as for sibling selectors applies, only this time, I

have O(3n) ways to match up each child selector (with sibling selectors inside). However, the pres-

ence of sibling selectors cuts down on the number of descendant selectors available at a given total

194

length. The worst case behavior occurs when s = s1 · · · sm/2 sm/2+1 ~ · · · ~ sm and t similarly.

Both portions behave as O(3n/2), with a product that remains O(3n). So |Inter(s, t)| ∈ O(3|s|+|t|).

The worst case behavior, therefore is |Inter(s, t)| ∈ O(3|s|+|t|).

Speed: In practice, I only need to know whether Inter(s, t) 6= ∅. Here the performance is much

faster: in fact, it is O(|s|+ |t|). I must show two things: first, I need only demonstrate a single

element in the intersection to know that it is non-empty, and that can be done quickly. Second, I

must be able to return the empty set without the exponential blowup incurred in some cases of

the algorithm.

For quickly demonstrating a single element when one exists, at each point in the algorithm

where there is a choice (e.g., calls to Interleavings), I simply pick the easiest choice available (e.g.,

the non-interleaved sib1 ~ adj2 + Inter(adj1, simple2)). Every clause for Inter makes a recursive call

to a smaller-sized input, and the base case returns at most one argument. So every call is constant-

time, and there are at most as many calls as there are combinators in the inputs, yielding the

claimed runtime.

For quickly demonstrating emptiness, note that the easiest choice mentioned above is also the

least-constrained, in that it avoids any unnecessary calls to Inter: the only recursive calls left are

those in the child, adjacent-sibling, and simple-selector cases which are hard constraints on the

intersection. Said another way, if any choice of interleavings or pairings would lead to a feasible

selector in the intersection, these easiest choices will find some feasible selector, and if they fail,

then the intersection truly is empty. Because the easiest choice suffices, I can ignore all calls to

Interleavings and Pairings, yielding a simple, linear algorithm as claimed.

195

Appendix B

OVERLAY DETAILS

B.1 Firefox-like overlays: algorithmic details

Defining the conflict graph-algorithm formally requires defining the abstraction process from con-

crete overlays through to compositions and guarded overlays and then to state-pair interfaces. The

conflict-graph algorithm then falls out naturally from the rules for compositions.

Concrete overlays to guarded overlays: The first step is to compile a concrete overlay into a

guarded overlay. (Modelling Firefox-level extensions will not need to construct any compositions

explicitly; so the rules for compositions are deferred for now.) This process is shown in Fig. B.3.

It uses four helper functions, reqs∗, rejs∗, first∗ and last∗, that collect any explicit 〈guard/〉s into

abstract guards and use them to surround an Overlay. The Overlay in turn contains Insert and

Modify actions for each 〈insert/〉 or 〈modify/〉 tag in the source 〈overlay/〉. One additional

helper function, defs∗, is used that encompasses the HTML-specific (or XUL-specific) knowledge the

analysis needs. Here, it detects and defines Key, Id, and Selected resources to describe additional

semantic constraints that should be enforced on HTML overlays.

The remainder of Fig. B.3 defines two “structural” helper functions, reqs and defs, that are

used to bootstrap the translation from abstract guarded overlays to state-pair interfaces as shown

in Fig. B.2. These functions record only the generic structure of the content being inserted by the

overlay, and are then lifted from overlays to guarded overlays. Rule Overlay -Interface asserts

that “if everything required by o is present, and everything defined is o be absent in the input,

then o guarantees that everything it uses is defined in the output”.

Guarded overlays to state-pair interfaces: The next step moves up one layer in the language,

to define state-pair interfaces for guarded overlays, and this computation is performed by the

judgment [[Si]] g [[So]]. Note the few asymmetries: if you Require a particular requirement be

defined as a precondition, it remains defined as a postcondition, but if you Reject a particular

requirement as defined in the precondition, it may become defined in the postcondition. These

asymmetries result from the postcondition’s Def and Undef sets being determined by the overlay

and the precondition, as mentioned earlier. Additionally, freezing a particular requirement in the

196

ElemSel : Element→ Bool→ Resource

ElemSel(e, useNonce) def
=

Selector(e.tagName#e.id.e.class) e.id 6= ""

Selector(e.tagName#nonce.e.class) e.id = ""∧ useNonce
Selector(e.tagName.e.class) e.id = ""∧ ¬useNonce

CompleteSubtreeSels : Element→ Bool→ Resource

CompleteSubtreeeSels(e) def
= CompleteSubtreeSels(e, ElemSel(e, true))

CompleteSubtreeSels(e, sel) def
= {Selector(sel)}
∪ CompleteSubtreeSels(e.firstChild, sel >ElemSel(e.firstChild, true))
∪ CompleteSubtreeSels(e.nextSibling, sel +ElemSel(e.nextSibling, true))

PartialSubtreesSels : Element→ Bool→ Resource

PartialSubtreeeSels(e) def
= CompleteSubtreeSels(e, ElemSel(e))

PartialSubtreeSels(e, sel) def
= {Selector(sel)}
∪
⋃
{PartialSubtreeSels(c, sel >ElemSel(c, false))

∣∣
c.parent = e, c.id 6= ""}

∪
⋃
{PartialSubtreeSels(c, sel ElemSel(c, false))

∣∣
c.parent+ = e, c.id = "",

(¬∃p.c.parent+ = p ∧ p.parent+ = e ∧ p.id 6= "")}

Figure B.1: Helper routines for extracting selectors from trees

pre- or post-condition does not require it frozen on the other side; an overlay may wish to be the

first or last to overlay a requirement, but not necessarily both first and last. Note too that the

grammar permits self-inconsistent overlays, where Def ∩Undef 6= ∅.

Compositions to state-pair interfaces: At the top level of the language are compositions, in

which multiple guarded overlays can be composed together in various ways. One of the essential

parts of the semantics of overlays is that elements whose identifiers do not match anything defined

in the document will silently fail to overlay. This is modelled with an optional ? constructor,

indicating that part of the composition may fail without failing the entire composition. However,

this implies that to compute the state-transformation effects of a composition, one must know

what is defined in the document. Therefore the judgment will look like S ` [[Si]] c [[So]], indicating

that when the document is in state S, composition c requires state Si and produces state So.

The rules here are somewhat subtle. S-Sequence deals with sequencing two compositions.

It assumes that both succeed (and relegates dealing with failed optional compositions to another

197

S ∈ State ::= {Def =~r, –currently defined in document
Undef =~r, –currently undefined in document
Clean =~r, –has not yet been overlaid
Frozen =~r } –must never again be overlaid

Requirements and definitions for guarded overlays: reqs, defs, used : Guard→ 2Resource

reqs(Require(~r, g)) def
= reqs(g) defs(Require(~r, g)) def

= defs(g)

reqs(Reject(~r, g)) def
= reqs(g) defs(Reject(~r, g)) def

= defs(g)

reqs(First(~r, g)) def
= reqs(g) defs(First(~r, g)) def

= defs(g)

reqs(Last(~r, g)) def
= reqs(g) defs(Last(~r, g)) def

= defs(g)

used(g) def
= reqs(g) ∪ defs(g)

Overlay -Interface

Si =

Def = reqs(o)

Undef = defs(o)
Clean = ∅

Frozen = ∅

 So =

Def = used(o)

Undef = ∅
Clean = ∅

Frozen = ∅

[[o]] = (Si, So)

Figure B.2: Abstracting overlays into document-state interfaces

rule), and requires that the input requirements of the second composition (c2) are compatible

with the output guarantees of the first (c1). Specifically, c2 cannot require as undefined anything

guaranteed to be defined by c1, nor can it define anything already defined by c1. Additionally, c2

must respect the Frozen demands of c1, and c1 must preserve c2’s Clean requirements. Propagating

the correct values to Si and So is routine; the only surprising point is that no effort is made to

compute Si.Frozen or So.Clean, since these are never needed.

The rules for optional compositions are trickier. The only components of the document state

that are needed are Def and Frozen — the former summarizes what is known to be defined at this

point in the document, while the latter summarizes any effects prior compositions have had on

freezing portions of the document. S-Opt -Succeed therefore checks that its argument is valid (i.e.,

any internal compositions succeed with respect to each other), that its Def and Undef requirements

are compatible with the document, and that it doesn’t affect anything already Frozen. S-Opt -Fail,

on the other hand, checks that its argument could succeed in some hypothetical document state,

198

HTML-to-guarded overlay: [[·]] : HTML→ Guard

[[〈overlay〉acts〈/overlay〉]] = Require(
⋃{reqs∗(a)

∣∣ a ∈ acts},
Reject(

⋃{defs∗(a) ∪ rejs∗(a)
∣∣ a ∈ acts},

First(
⋃{first∗(a)

∣∣ a ∈ acts},
Last(

⋃{last∗(a)
∣∣ a ∈ acts},

Overlay({[[a]]
∣∣ a ∈ acts})))))

[[〈insert〉ins〈/insert〉]] = Insert(a.selector, a.where, a.kids)
[[〈modify〉〈self attrs/〉〈/modify〉]] = Modify(a.selector, attrs)

defs∗(h) = {Key(k)
∣∣ matches(command[accesskey=k])hi 6= ∅,

hi.parent+ = h}
∪ {Id(id)

∣∣ matches(*[id=id])hi 6= ∅, hi.parent+ = h}
∪ {Selected(s)

∣∣
matches(select > option[selected=selected])hi 6= ∅,

hi.parent+ = h}
reqs∗(〈guard type=“require”/〉) = {g.resource}

rejs∗(〈guard type=“reject”/〉) = {g.resource}
first∗(〈guard type=“require”/〉) = {g.resource}
last∗(〈guard type=“require”/〉) = {g.resource}

Requirements and definitions for abstract overlays: reqs, defs, used : Overlay→ 2Resource

reqs(Overlay(~a)) def
=
⋃
{reqs(ai)

∣∣ ai ∈~a}
reqs(Insert(s, _, _)) = {Selector(s)}
reqs(Modify(s, _)) = {Selector(s)}

defs(Overlay(~a)) def
=
⋃
{defs(ai)

∣∣ ai ∈~a} ∪ defs∗(〈overlay〉ai〈/overlay〉)

defs(Insert(s, _,~h)) =
⋃
{CompleteSubtreeSels(hi, s)

∣∣ hi ∈~h}
defs(Modify(_, _)) = ∅

used(o) def
= reqs(o) ∪ defs(o)

Figure B.3: Compiling HTML to guarded overlays

199

[[Si]] g [[So]]

G-Overlay

[[o]] = (Si, So)

[[Si]] o [[So]]

G-Require

[[Si]] g [[So]]
S′i = Si ∪ {Def =~r}
S′o = So ∪ {Def =~r}
[[S′i]] Require(~r, g) [[S′o]]

G-Reject

[[Si]] g [[So]]
S′i = Si ∪ {Undef =~r}

S′o = So ∪ {Undef =~r \ So.Def}
[[S′i]] Reject(~r, g) [[S′o]]

G-F irst

[[Si]] g [[So]]
S′i = Si ∪ {Clean =~r}
[[S′i]] First(~r, g) [[So]]

G-Last

[[Si]] g [[So]]
S′o = So ∪ {Frozen =~r}
[[Si]] Last(~r, g) [[S′o]]

Figure B.4: Semantics of guarded overlays

but that any such state is incompatible with the current one. If so, the failed composition has

no requirements or effects.

These two rules together conveniently give the idempotence property that c?? will have the

same effects as c?. (Specifically, if S ` [[Si]] c? [[So]] is derivable using S-Opt -Fail, then S `

[[Si]] c?? [[So]] is derivable using either S-Opt -Succeed or S-Opt -Fail, but all three derivations

will return the same empty effects for Si and So.) Additionally, to make the sequencing of optional

compositions more precise, in S-Sequence c2 is checked under document state S′ = {S.Def ∪

S1
o .Def , ∅, ∅, S1

o .Frozen}, rather than just S — this ensures that if c1 defines something which c2

requires, c1 ;(c2?) can succeed. A sequence of compositions successfully applies in order to a

document if the sequence is self-consistent, and the cumulative preconditions are satisfied by the

document. The inference rules presented so far take the convention that a base document merely

guarantees a set of resources, but does not prohibit anything from being futher overlaid. (In

particular, to accommodate an idiosyncracy of Firefox, this convention ensures that by choosing

to not include any declared keybindings from the guaranteed set, those keybindings are free for

future overlays, so extensions get a clean slate to begin with.)

B.1.1 Motivating examples, revisited

Recall the example “Hello, world” overlays, with requirements added. I write them here using

concrete syntax, to illustrate the entire pipeline:

200

reqs(S, g) def
= reqs(g) defs(S, g) def

= defs(g) reqs(S, c1 ; c2)
def
= reqs(S, c1) ∪

reqs(S, c2)

defs(S, c1 ; c2)
def
=defs(S, c1) ∪

defs(S, c2)

S ` [[Si]] c? [[So]]

reqs(S, c?) def
= reqs(S, c) ∩ Si.Def

S ` [[Si]] c? [[So]]

defs(S, c?) def
= defs(S, c) ∩ So.Def

S ` [[Si]] c1 ! c2 [[So]]

defs(S, c1 ! c2)
def
= (defs(S, c1) ∪ defs(S, c2)) ∩ So.Def

S ` [[Si]] c1 ! c2 [[So]]

reqs(S, c1 ! c2)
def
= (reqs(S, c1) ∪ reqs(S, c2)) ∩ Si.Def

used(S, c) def
= reqs(S, c) ∪ defs(S, c)

S ` [[Si]] c [[So]]

S-Guard

[[Si]] g [[So]]

S ` [[Si]] g [[So]]

S-Unique -1

S ` [[Si]] p1 [[So]]

S ` [[Si]] p1 ! p2 [[So]]

S-Unique -2

S ` [[Si]] p2 [[So]]

S ` [[Si]] p1 ! p2 [[So]]

S-Opt -Succeed

S ` [[Si]] c [[So]]
Si.Def ⊆ S.Def

Si.Undef ∩ S.Def = ∅
used(S, c) ∩ S.Frozen = ∅

S ` [[Si]] c? [[So]]

S-Opt -Fail

S′′ ` [[Si]] c? [[So]]
(Si.Def \ S.Def 6= ∅) ∨

(Si.Undef ∩ S.Def 6= ∅) ∨
(used(S′′, c?) ∩ S.Frozen 6= ∅)

S′ = {∅, ∅, ∅, ∅}
S ` [[S′]] c? [[S′]]

S-Sequence

S ` [[S1
i]] c1 [[S1

o]] S′ =

Def = S.Def ∪ S1

o .Def
Undef = ∅
Clean = ∅

Frozen = S1
o .Frozen

 S′ ` [[S2
i]] c2 [[S2

o]]

S′.Def ∩ S2
i .Undef = ∅ S′.Def ∩ defs(S′, c2) = ∅ S′.Frozen∩ used(S′, c2) = ∅

S2
i .Clean∩ reqs(S, c1) = ∅ Si =

Def = S1

i .Def ∪ (S2
i .Def \ defs(S, c1))

Undef = S1
i .Undef ∪ S2

i .Undef
Clean = S1

i .Clean∪ S2
i .Clean

Frozen = ∅

So =

Def = S1

o .Def ∪ S2
o .Def

Undef = S2
o .Undef ∪ (S1

o .Undef \ defs(S1
o , c2))

Clean = ∅
Frozen = S1

o .Frozen∪ S2
o .Frozen

S ` [[Si]] c1 ; c2 [[So]]

Figure B.5: Semantics of sequencing

201

D ∈ Doc ::= h
∣∣ D[c] –overlay sequence

` d : [[So]]

D-Base

So =

Def = defs∗(h)
∪ CompleteSubtreeSels(h)

Undef = ∅
Clean = defs∗(h)

∪ CompleteSubtreeSels(h)
Frozen = ∅

` h : [[So]]

D-Compose

` d : [[Sd]] Sd ` [[Ss
i]] s [[Ss

o]]
Sd.Def ⊇ Ss

i .Def
Sd.Def ∩ Ss

i .Undef = ∅
Sd.Clean ⊇ Ss

i .Clean
Sd.Frozen∩ used(Sd, s) = ∅

So =

Def = Sd.Def ∪ Ss

o.Def
Undef = ∅
Clean = (Sd.Clean \ reqs(Sd, s))

∪ defs(Sd, s)
Frozen = Sd.Frozen∪ Ss

o.Frozen

` d[s] : [[So]]

` D : ok
D-Ok

π : {1, . . . , n} → {1, . . . , n} ` h[cπ(1)] · · · [cπ(n)] : [[So]]

` h[c1] · · · [cn] : ok

Figure B.6: Semantics of Overlays

〈overlay id=“OV1”〉

〈insert id=“i1” selector=“p#greeting” where=“end”〉

〈span id=“subject”〉stranger.〈/span〉

〈/insert〉

〈/overlay〉

〈overlay id=“OV3’”〉

〈guard id=“g” type=“reject” resource=“Id(subject)”/〉

〈insert id=“i3” selector=“p#greeting” where=“end”〉

〈span id=“modifier”〉 and good day,〈/span〉

〈/insert〉

〈/overlay〉

The first step is to compile OV1 to an abstract guarded overlay, as in Fig. B.3:

g1 = [[OV1]] = Require(reqs∗(i1),

Reject(defs∗(i1) ∪ rejs∗(i1),

First(first∗(i1), Last(last∗(i1),

Overlay([[i1]])))))

202

reqs∗(i1) = ∅

defs∗(i1) = {Id(subject)}

rejs∗(i1) = ∅

first∗(i1) = ∅

last∗(i1) = ∅

ov1 = [[i1]] = Insert(p#greeting, end, 〈span id=“subject”〉stranger.〈/span〉)

Substituting in, and leaving out empty sets, yields:

g1 = [[OV1]] = Reject({Id(subject)},

Overlay(Insert(p#greeting, end,

〈span id=“subject”〉stranger.〈/span〉)))

This is nearly identical to the hand-written OV1; the only difference is that defs∗ has success-

fully extracted the unique-id constraint without having to hard-code it into the conflict-detection

algorithm and without the overlay author having to specify it.

Turning to OV3’, the derivation continues by compiling OV3’ to an abstract guarded over-

lay, following Fig. B.3:

g2 = [[OV3’]] = Require(reqs∗(i3) ∪ reqs∗(g),

Reject(defs∗(i3) ∪ rejs∗(i3) ∪ defs∗(g) ∪ rejs∗(g),

First(first∗(i1) ∪ first∗(g), Last(last∗(i1) ∪ last∗(g),

Overlay([[i3]] ∪ [[g]])))))

reqs∗(i3) = ∅

defs∗(i3) = {Id(modifier)}

rejs∗(i3) = ∅

first∗(i3) = ∅

last∗(i3) = ∅

reqs∗(g) = ∅

defs∗(g) = ∅

rejs∗(g) = {Id(subject)}

first∗(g) = ∅

203

last∗(g) = ∅

ov3 = [[i3]] = {Insert(p#greeting, end, 〈span id=“modifier”〉 and good day,〈/span〉)}

[[g]] = ∅

Substituting in, and leaving out empty sets, yields:

g3 = [[OV3’]] = Reject({Id(modifier), Selector(span#subject)},

Overlay(Insert(p#greeting, end,

〈span id=“modifier”〉 and good day,〈/span〉)))

Again, this is nearly identical to OV3’, differing only in the automatic addition of the unique-id

constraint on Id(modifier).

Next, these results are abstracted into state-pair interfaces, starting by collecting the state in-

formation for OV1:

reqs(ov1) = {Selector(p#greeting)}

defs(ov1) = {Selector(p#greeting > span#subject), Id(subject)}

used(ov1) = {Selector(p#greeting), Selector(p#greeting > span#subject), Id(subject)}

By Overlay -Interface,

S′i =

Def = reqs(ov1)

Undef = defs(ov1)

Clean = ∅

Frozen = ∅

=

Def = {Selector(p#greeting)}
Undef = {Selector(p#greeting > span#subject),

Id(subject)}
Clean = ∅

Frozen = ∅

S′o =

Def = used(ov1)

Undef = ∅

Clean = ∅

Frozen = ∅

=

Def = {Selector(p#greeting),

Selector(p#greeting > span#subject),

Id(subject)}
Undef = ∅

Clean = ∅

Frozen = ∅

204

By G-Overlay,

[[ov1]] = (S′i , S′o)

By G-Reject,

S1
i = S′i ∪ {Undef = {Id(subject)}}

=

Def = {Selector(p#greeting)}

Undef = {Selector(p#greeting > span#subject), Id(subject)}
Clean = ∅

Frozen = ∅

S1

o = S′o ∪
{

Undef =
({

Id(subject)
}
\{

Selector(p#subject), Selector(p#greeting > span#subject),

Id(subject)
})}

=

Def = {Selector(p#greeting), Id(subject),

Selector(p#greeting > span#subject)}
Undef = ∅

Clean = ∅

Frozen = ∅

In words, the effect of OV1 is “for any document containing p#greeting and not containing

p#greeting > span#subject or any node with id subject, OV1 will produce a document that

contains p#greeting, p#greeting > span#subject and a node with id subject”. Notice that the

Id(subject) resources have been added correctly and entirely automatically, thanks to defs∗ en-

coding of HTML-specific constraints.

Repeating this process with OV3’ results in a very similar derivation:

reqs(ov3) = {Selector(p#greeting)}

defs(ov3) = {Selector(p#greeting > span#modifier), Id(modifier)}

used(ov3) = {Selector(p#greeting), Selector(p#greeting > span#modifier), Id(modifier)}

205

By Overlay -Interface,

S′i =

Def = reqs(ov3)

Undef = defs(ov3)

Clean = ∅

Frozen = ∅

=

Def = {Selector(p#greeting)}
Undef = {Selector(p#greeting > span#modifier),

Id(modifier)}
Clean = ∅

Frozen = ∅

S′o =

Def = used(ov3)

Undef = ∅

Clean = ∅

Frozen = ∅

=

Def = {Selector(p#greeting),

Selector(p#greeting > span#modifier),

Id(modifier)}
Undef = ∅

Clean = ∅

Frozen = ∅

By G-Overlay,

[[ov3]] = (S′i , S′o)

By G-Reject,

S3
i = S′i ∪ {Undef = {Id(modifier, Id(subject))}}

=

Def = {Selector(p#greeting)}

Undef = {Selector(p#greeting > span#modifier), Id(modifier), Id(subject)}
Clean = ∅

Frozen = ∅

S3

o = S′o ∪
{

Undef =
({

Id(modifier), Id(subject)
}
\{

Selector(p#modifier), Selector(p#greeting > span#modifier),

Id(modifier)
})}

=

Def = {Selector(p#greeting), Id(modifier),

Selector(p#greeting > span#modifier)}
Undef = {Id(subject)}
Clean = ∅

Frozen = ∅

206

Comparing this to the prior versions obtained informally in Section 5.5.3, these are more infor-

mative in giving the full selectors for all nodes, e.g., p#greeting > span#modifier rather than

just the span#modifier piece.

To compose (S1
i , S1

o) sequentially with (S3
i , S3

o), use rule S-Guard to lift these state pairs into

the judgement on compositions, then use S-Sequence to compose them. Looking at the premises

of the latter, observe that S′ is unneeded (since S-Guard does not use it). The remaining four

guards of S-Sequence are precisely Eqs. (5.3) to (5.6). The conclusions from before carry over,

and therefore S′.Def ∩ S3
i .Undef = S3

i .Def ∩ S3
i .Undef = {Id(subject)} 6= ∅, so OV1 and OV3’

cannot be composed in that order. In the reverse order, the four tests succeed, thereby yielding

the same, correct (S3,1
i , S3,1

o) as before.

(The attentive reader might notice that no conflict is computed between the overlays over the

resource Selector(p#greeting > span#subject), even though this resource goes hand-in-hand with

Id(subject). The system described here does not include “resource inference”, which constructs

“similar” resources for the ones given. Such heuristics are largely unnecessary, work poorly in

the face of CSS selector intersection, and can be added if experience shows they are truly needed

in some circumstances.)

B.2 Manually Resolved Overlay False-positives

Each of the following selectors a#b > c#d represents a XUL overlay excerpt of the form

〈a id=“b”〉

. . . new code overlaying a#b. . .

〈c id=“d”〉

. . . new code overlaying c#d. . .

〈/c〉

〈/a〉

that must be rewritten to the more explicit and more correct form

〈a id=“b”〉

. . . new code overlaying a#b. . .

〈/a〉

〈c id=“d”〉

. . . new code overlaying c#d. . .

〈/c〉

207

The following list contains all mistakes of this form that can be detected without even looking

at the base Firefox document:

Appearance/06-speeddial: popupset#mainPopupSet > popup#contentAreaContextMenu

Appearance/29-tab_popup: window#main-window > popupset#mainPopupSet

Bookmarks/20-taboo: toolbox#navigator-toolbox > toolbarpalette#BrowserToolbarPalette

Bookmarks/43-wired_marker: hbox#browser > vbox#appContent

Bookmarks/44-google_bookmarks_button: window#main-window > stringbundleset#stringbundleset

DownloadManagers/07-download_statusbar: window#main-window > stringbundleset#stringbundleset,

window#main-window > keyset#mainKeyset, window#main-window > vbox#browser-bottombox,

window#main-window > vbox#browser-bottombox > statusbar#status-bar,

window#extensionsManager > stringbundleset#extensionsSet,

window#extensionsManager > keyset#extensionsKeys

DownloadManagers/21-mr_tech_toolkit: window#extensionsManager > keyset#extensionsKeys,

commandset#mainCommandSet > command#Tools:Sanitize

DownloadManagers/32-custom_download_manager: window#main-window > commandset#mainCommandSet,

window#main-window > broadcasterset#mainBroadcasterSet

DownloadManagers/35-download_sort: window#extensionsManager > keyset#extensionsKeys

Feeds/09-blogrovr: window#main-window > broadcasterset#mainBroadcasterSet

Feeds/16-shareaholic: toolbox#navigator-toolbox > toolbarpalette#BrowserToolbarPalette

Feeds/20-sage: toolbox#navigator-toolbox > toolbarpalette#BrowserToolbarPalette

Feeds/41-digg_toolbar: window#main-window > stringbundleset#stringbundleset,

window#main-window > toolbox#navigtor-toolbox

LanguageSupport/05-translator:

toolbox#navigator-toolbox > toolbarpalette#BrowserToolbarPalette

Other/45-wmlbrowser: toolbox#navigator-toolbox > toolbarpalette#BrowserToolbarPalette

Photos/08-fire.fm: window#main-window > stringbundleset#stringbundleset,

window#main-window > popupset#mainPopupSet,

window#main-window > popupset#mainPopupSet > popup#contentAreaContextMenu,

window#main-window > toolbox#navigator-toolbox

Privacy/33-procon_latte: popupset#mainPopupSet > popup#contentAreaContextMenu

Search/10-facebook_toolbar: toolbox#navigator-toolbox > toolbarpalette#BrowserToolbarPalette

Tabs/24-tab_sidebar: hbox#browser > vbox#appContent

Tabs/28-tab_preview: window#main-window > popupset#mainPopupSet

Tabs/33-tab_splitter: hbox#browser > vbox#appContent,

popupset#mainPopupSet > popup#contentAreaContextMenu,

window#main-window > toolbox#navigator-toolbox, window#main-window > hbox#browser,

window#main-window > vbox#browser-bottombox

Webdev/24-colorzilla: statusbar#status-bar > keyset#mainKeyset

208

Webdev/26-extended_statusbar: window#main-window > vbox#browser-bottombox

Webdev/33-picnik: menu#tools_menu > menupopup#menu_ToolsPopup

Webdev/42-redirect_remover: popupset#mainPopupSet > popup#contentAreaContextMenu

Appearance/39-compact-menu: Note that in this extension, the menupopup#bookmarksMenuPopup is being

re-parented, as well as overlaid. menu#bookmarksMenu > menupopup#bookmarksMenuPopup,

menupopup#bookmarksMenuPopup > menu#bookmarksToolbarFolderMenu

menu#bookmarksToolbarFolderMenu > menupopup#bookmarksToolbarFolderPopup

Bookmarks/17-toolbar_buttons:

toolbarbutton#bookmarks-menu-buton > menupopup#menu_BookmarksPopup (Note that the menupopup

is declared as 〈menupopup d=“menu_BookmarksPopup”/〉 [sic], with a typo on the id attribute.)

The following list contains all mistakes of this form that are noticeable only when comparing

against the base document:

DownloadManagers/34-pdfescape: toolbox#navigator-toolbox > toolbar#nav-bar

Bookmarks/43-wired-marker: menubar#main-menubar > menu#tools-menu,

menubar#main-menubar > menu#tools-menu > menupopup#menu_ToolsPopup

DownloadManagers/06-all-in-one-sidebar: popupset#mainPopupSet > popup#toolbar-context-menu,

hbox#browser > vbox#sidebox-box,

broadcasterset#mainBroadcasterSet > broadcaster#viewBookmarksSidebar,

broadcasterset#mainBroadcasterSet > broadcaster#viewHistorySidebar,

broadcasterset#mainBroadcasterSet > broadcaster#viewWebPanelsSidebar,

toolbarpalette#BrowserToolbarPalette > toolbarbutton#bookmarks-button,

toolbarpalette#BrowserToolbarPalette > toolbarbutton#history-button,

toolbarpalette#BrowserToolbarPalette > toolbarbutton#downloads-button

Appearance/46-no_squint: commandset#mainCommandSet > command#cmd_fullZoomEnlarge,

commandset#mainCommandSet > command#cmd_fullZoomReduce,

commandset#mainCommandSet > command#cmd_fullZoomReset

DownloadManagers/32-custom_download_manager:

cinnabdset#mainCommandSet > command#Tools:Downloads

Tabs/02-tab_mix_plus: menu#historyUndoMenu > menupopup#historyUndoPopup

Webdev/26-extended_statusbar: statusbar#status-bar > statusbarpanel#statusbar-display

Privacy/16-glubble_family_edition: commandset#mainCommandSet > command#cmd_close,

commandset#mainCommandSet > command#cmd_closeWindow,

toolbarpalette#BrowserToolbarPalette!>!toolbaritem#urlbar-container,

Feeds/04-cooliris_previews: window#main-window > popupset#mainPopupSet

209

BIBLIOGRAPHY

[1] M. Abadi and L. Lamport. Open systems in TLA. In ACM Symposium on Principles of

Distributed Computing (PODC), 1994.

[2] M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on Programming

Languages and Systems (TOPLAS), 17(3):507–535, 1995.

[3] ADsafe. Retrieved Nov. 2009. http://www.adsafe.org/.

[4] I. Aktug and K. Naliuka. ConSpec – a formal language for policy specification. Electronic

Notes in Theoretical Computer Science, 197(1):45–58, 2008. Proceedings of the First International

Workshop on Run Time Enforcement for Mobile and Distributed Systems (REM 2007).

[5] M. Al-Mansari, S. Hanenberg, and R. Unland. On to formal semantics for path expression

pointcuts. In ACM Symposium on Applied Computing (SAC), 2008.

[6] J. Aldrich. Open modules: Modular reasoning about advice. In European Conference on Object-

Oriented Programming (ECOOP), volume 3586 of Lecture Notes in Computer Science, 2005.

[7] B. Alpern and F. B. Schneider. Recognizing safety and liveness. Distributed Computing, 2(3):

117–126, Sept. 1987.

[8] T. Anderson. The case for application-specific operating systems. In IEEE Workshop on

Workstation Operating Systems, 1992.

[9] V. Antimirov. Partial derivatives of regular expressions and finite automaton constructions.

Theoretical Computer Science, 155:291–319, Mar. 1996.

[10] V. M. Antimirov and P. D. Mosses. Rewriting extended regular expressions. Theoretical

Computer Science, 143(1):51 – 72, 1995.

[11] E. Artiaga, A. Serra, and M. Gil. Porting multithreading libraries to an exokernel system. In

ACM SIGOPS European workshop: beyond the PC: new challenges for the operating system, 2000.

[12] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhoták, O. Lhoták, O. de Moor,

D. Sereni, G. Sittampalam, and J. Tibble. Optimising AspectJ. In ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI), 2005.

http://www.adsafe.org/

210

[13] S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett. VEX: vetting browser exten-

sions for security vulnerabilities. In USENIX Security Symposium, Aug. 2010.

[14] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview.

Construction and Analysis of Safe, Secure, and Interoperable Smart Devices (CASSIS), 3362:49–69,

2005.

[15] A. Barth, J. Weinberger, and D. Song. Cross-origin JavaScript capability leaks: Detection,

exploitation, and defense. In USENIX Security Symposium, Aug. 2009.

[16] A. Barth, A. P. Felt, P. Saxena, and A. Boodman. Protecting browsers from extension

vulnerabilities. In Network and Distributed System Security Symposium (NDSS), 2010.

[17] L. Bauer, J. Ligatti, and D. Walker. Types and effects for non-interfering program monitors.

In M. Okada, B. C. Pierce, A. Scedrov, H. Tokuda, and A. Yonezawa, editors, International

Symposium on Software Security, volume 2609 of Lecture Notes in Computer Science, 2002.

[18] L. Bauer, J. Ligatti, and D. Walker. Types and effects for non-interfering program monitors.

Software Security — Theories and Systems, 2609:253–264, 2003.

[19] L. Bauer, J. Ligatti, and D. Walker. Composing security policies with polymer. In ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2005.

[20] M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo, W. Schulte, N. Tillmann, and H. Venter.

SPUR: A trace-based JIT compiler for CIL. In ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA), Oct. 2010.

[21] M. Benedikt and C. Koch. XPath leashed. ACM Computing Surveys (CSUR), 41:3:1–3:54,

Jan. 2009.

[22] M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of DTDs. Journal of

the ACM (JACM), 55(2):1–79, 2008.

[23] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D. Becker, C. Chambers,

and S. J. Eggers. Extensibility safety and performance in the SPIN operating system. In

ACM Symposium on Operating Systems Principles (SOSP), 1995.

[24] K. Bierhoff and C. Hawblitzel. Checking the hardware-software interface in Spec#. In ACM

SIGOPS Workshop on Programming Languages and Operating Systems (PLOS), 2007.

211

[25] J. Bisbal and B. H. C. Cheng. Resource-based approach to feature interaction in adaptive

software. In ACM SIGSOFT Workshop on Self-Managed Systems, 2004.

[26] L. Blair, T. Jones, and S. Reiff-Marganiec. A feature manager approach to the analysis of

component-interactions. In IFIP International Conference on Formal Methods for Open Object-

Based Distributed Systems (FMOODS), 2002.

[27] A. Bolour. Notes on the eclipse plug-in architecture. Written July 2003. http://www.

eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html.

[28] A. Borning, R. Lin, and K. Marriott. Constraints for the web. In ACM International Conference

on Multimedia, 1997.

[29] T. Bowen, F. Dworack, C. Chow, N. Griffeth, G. Herman, and Y.-J. Lin. The feature in-

teraction problem in telecommunications systems. In International Conference on Software

Engineering for Telecommunication Switching Systems (SETSS), July 1989.

[30] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Kaplan, C. Coleman,

F. Adeputra, and J. J. LaViola, Jr. Code bubbles: rethinking the user interface paradigm

of integrated development environments. In ACM/IEEE International Conference on Software

Engineering (ICSE), 2010.

[31] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan, C. Coleman,

F. Adeputra, and J. J. LaViola, Jr. Code bubbles: a working set-based interface for code

understanding and maintenance. In ACM Conference on Human Factors in Computing Systems

(CHI), 2010.

[32] C. Breuel and F. Reverbel. Join point selectors. In ACM Workshop on Software Engineering

Properties of Languages and Aspect Technologies (SPLAT), 2007.

[33] G. Bruns and P. Godefroid. Generalized model checking: Reasoning about partial state

spaces. In International Conference on Concurrency Theory (CONCUR), 2000.

[34] J. A. Brzozowski. Derivatives of regular expressions. Journal of the ACM (JACM), 11:481–494,

Oct. 1964.

[35] M. Cain. Managing run-time interactions between call-processing features [intelligent net-

works]. IEEE Communications Magazine, 30(2):44–50, Feb. 1992.

http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html

212

[36] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec. Feature interaction: a critical

review and considered forecast. Computer Networks, 41(1):115 – 141, 2003.

[37] M. Chechik, S. Easterbrook, and B. Devereux. Model checking with multi-valued temporal

logics. IEEE International Symposium on Multiple-Valued Logic (ISMVL), 0:187–192, 2001.

[38] J. Cheney. Satisfiability algorithms for conjunctive queries over trees. In International Confer-

ence on Database Theory (ICDT), 2011.

[39] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged information flow for JavaScript. In

ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2009.

[40] J. Clements. Portable and high-level access to the stack with Continuation Marks. PhD thesis,

Northeastern University, 2005.

[41] J. Clements, A. Sundaram, and D. Herman. Implementing continuation marks in JavaScript.

In Scheme and Functional Programming Workshop, 2008.

[42] C. Clifton and G. T. Leavens. Observers and assistants: A proposal for modular aspect-

oriented reasoning. In Workshop on Foundations of Aspect Languages (FOAL), 2002.

[43] T. Colcombet and P. Fradet. Enforcing trace properties by program transformation. In ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), 2000.

[44] P. Costanza. Dynamically scoped functions as the essence of AOP. SIGPLAN Notices, 38(8):

29–36, 2003.

[45] R. S. Cox, S. D. Gribble, H. M. Levy, and J. G. Hansen. A safety-oriented platform for web

applications. In IEEE Symposium on Security and Privacy (Oakland), 2006.

[46] J. Dagit. Type-correct changes — a safe approach to version control implementation. Mas-

ter’s thesis, Oregon State University, June 2009. http://blog.codersbase.com/2009/03/

type-correct-changes-safe-approach-to.html.

[47] K. Dangoor, I. Awad, A. Berlin, A. Breitkreuz, D. Friesen, W. Garland, K. Kowal, D. Lan-

dolt, P. Michaux, G. Moschovitis, M. O’Brien, T. Robinson, H. Wallnoefer, M. Wilson,

O. Zara, C. Zumbrunn, and K. Zyp. CommonJS. Retrieved June 2011. http:

//www.commonjs.org/.

[48] D. S. Dantas and D. Walker. Harmless advice. In ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL), Jan. 11–13 2006.

http://blog.codersbase.com/2009/03/type-correct-changes-safe-approach-to.html
http://blog.codersbase.com/2009/03/type-correct-changes-safe-approach-to.html
http://www.commonjs.org/
http://www.commonjs.org/

213

[49] D. S. Dantas, D. Walker, G. Washburn, and S. Weirich. PolyAML: a polymorphic aspect-

oriented functional programming language. In ACM SIGPLAN International Conference on

Functional Programming (ICFP), Sept. 2005.

[50] D. S. Dantas, D. Walker, G. Washburn, and S. Weirich. AspectML: A polymorphic aspect-

oriented functional programming language. ACM Transactions on Programming Languages

and Systems (TOPLAS), 30(3):1–60, 2008.

[51] B. De Fraine, M. Südholt, and V. Jonckers. StrongAspectJ: flexible and safe pointcut/advice

bindings. In International Conference on Aspect-Oriented Software Development (AOSD), 2008.

[52] A. S. de Oliveira. Rewriting-based access control policies. Electronic Notes in Theoretical Com-

puter Science, 171(4):59–72, 2007. Workshop on Security and Rewriting Techniques (SecReT

2006).

[53] A. S. de Oliveira, E. K. Wang, C. Kirchner, and H. Kirchner. Weaving rewrite-based access

control policies. In ACM Workshop on Formal Methods in Security Engineering, 2007.

[54] G. Denys, F. Piessens, and F. Matthijs. A survey of customizability in operating systems

research. ACM Computing Surveys (CSUR), 34(4):450–468, 2002.

[55] J. DeTreville. Making system configuration more declarative. In Hot Topics in Operating

Systems (HotOS), 2005.

[56] M. Dhawan and V. Ganapathy. Analyzing information flow in JavaScript-based browser

extensions. In Annual Computer Security Applications Conference (ACSAC), 2009.

[57] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch. Leveraging legacy code to deploy desktop

applications on the web. In R. Draves and R. van Renesse, editors, USENIX Symposium on

Operating Systems Design and Implementation (OSDI), 2008.

[58] R. Douence, O. Motelet, and M. Südholt. A formal definition of crosscuts. In International

Conference on Metalevel Architectures and Separation of Crosscutting Concerns (REFLECTION),

2001.

[59] R. Douence, P. Fradet, and M. Südholt. A framework for the detection and resolution of

aspect interactions. In ACM SIGPLAN-SIGSOFT Conference on Generative Programming and

Component Engineering, 2002.

214

[60] R. Douence, P. Fradet, and M. Südholt. Composition, reuse and interaction analysis of

stateful aspects. In International Conference on Aspect-Oriented Software Development (AOSD),

2004.

[61] L. du Bousquet, F. Ouabdesselam, J. L. Richier, and N. Zuanon. Feature interaction detection

using a synchronous approach and testing. Computer Networks, 32(4):419 – 431, 2000.

[62] C. Dutchyn, D. B. Tucker, and S. Krishnamurthi. Semantics and scoping of aspects in

higher-order languages. Science of Computer Programming, 63(3):207–239, 2006.

[63] R. Echahed and F. Prost. Security policy in a declarative style. In ACM SIGPLAN Conference

on Principles and Practice of Declarative Programming (PPDP), 2005.

[64] ECMA International. ECMAScript language specification, 5
th edition. Written June 2011.

http://www.ecmascript.org/.

[65] A. Edwards and G. Heiser. Components + security = OS extensibility. In Australasian

Conference on Computer Systems Architecture (ACSAC), 2001.

[66] B. Eich, C. Jones, M. Shaver, and A. Gal. B2g. Retrieved Aug. 3, 2011. https://wiki.

mozilla.org/B2G.

[67] E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited: on branching

versus linear time temporal logic. Journal of the ACM (JACM), 33(1):151–178, 1986.

[68] D. R. Engler and M. F. Kaashoek. Exterminate all operating system abstractions. In Hot

Topics in Operating Systems (HotOS), 1995.

[69] D. R. Engler, M. F. Kaashoek, and J. O. Jr. Exokernel: an operating system architecture for

application-level resource management. In ACM Symposium on Operating Systems Principles

(SOSP), 1995.

[70] Ú. Erlingsson. The inlined reference monitor approach to security policy enforcement. PhD the-

sis, Cornell University, Ithaca, NY, USA, 2004. http://portal.acm.org/citation.cfm?id=

997617.

[71] Ú. Erlingsson and F. B. Schneider. SASI enforcement of security policies: a retrospective. In

New Security Paradigms Workshop (NSPW), 2000.

[72] Ú. Erlingsson and F. B. Schneider. IRM enforcement of Java stack inspection. In IEEE

Symposium on Security and Privacy (Oakland), 2000.

http://www.ecmascript.org/
https://wiki.mozilla.org/B2G
https://wiki.mozilla.org/B2G
http://portal.acm.org/citation.cfm?id=997617
http://portal.acm.org/citation.cfm?id=997617

215

[73] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula. XFI: Software guards for

system address spaces. In USENIX Symposium on Operating Systems Design and Implementa-

tion (OSDI), 2006.

[74] Ú. Erlingsson, B. Livshits, and Y. Xie. End-to-end web application security. In Hot Topics in

Operating Systems (HotOS), 2007.

[75] D. Evans. Policy-Drected Code Safety. PhD thesis, Massachusetts Institute of Technology, 1999.

http://www.cs.virginia.edu/~evans/phd-thesis/abstract.html.

[76] D. Evans and A. Twyman. Flexible policy-directed code safety. In IEEE Symposium on

Security and Privacy (Oakland), 1999.

[77] A. Faaborg. Introducing operator. Written Dec. 2006. http://labs.mozilla.com/2006/12/

introducing-operator/.

[78] M. Fähndrich, M. Barnett, and F. Logozzo. Embedded contract languages. In ACM Sympo-

sium on Applied Computing (SAC), 2010.

[79] A. P. Felty and K. S. Namjoshi. Feature specification and automated conflict detection.

ACM Transactions on Software Engineering and Methodology (TOSEM), 12(1):3–27, 2003.

[80] FFsniFF (Firefox sniffer). Written 2008. http://azurit.elbiahosting.sk/ffsniff/.

[81] R. E. Filman and D. P. Friedman. Aspect-oriented programming is quantification and

obliviousness. Technical report, Research Institude for Advanced Computer Science, 2000.

[82] M. Finkle, B. King, N. Ponomarev, J. Resig, P. Ringnalda, and R. Sayre. FUEL. Retrieved

July 2011. https://wiki.mozilla.org/FUEL.

[83] M. E. Fiuczynski, R. Grimm, Y. Coady, and D. Walker. patch (1) considered harmful. In

Hot Topics in Operating Systems (HotOS), 2005.

[84] M. Flatt, R. B. Findler, S. Krishnamurthi, and M. Felleisen. Programming languages as

operating systems (or revenge of the son of the lisp machine). In ACM SIGPLAN International

Conference on Functional Programming (ICFP), 1999.

[85] M. Flatt, G. Yu, R. B. Findler, and M. Felleisen. Adding delimited and composable control

to a production programming environment. In ACM SIGPLAN International Conference on

Functional Programming (ICFP), 2007.

http://www.cs.virginia.edu/~evans/phd-thesis/abstract.html
http://labs.mozilla.com/2006/12/introducing-operator/
http://labs.mozilla.com/2006/12/introducing-operator/
http://azurit.elbiahosting.sk/ffsniff/
https://wiki.mozilla.org/FUEL

216

[86] M. Fredrikson and B. Livshits. RePriv: Re-envisioning in-browser privacy. Technical re-

port, Microsoft Research, Aug. 2010. http://research.microsoft.com/apps/pubs/default.

aspx?id=137038.

[87] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat, B. Kaplan, G. Hoare,

B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith, R. Reitmaier, M. Bebenita, M. Chang,

and M. Franz. Trace-based just-in-time type specialization for dynamic languages. In ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2009.

[88] G. R. Ganger, D. R. Engler, M. F. Kaashoek, H. M. Briceño, R. Hunt, and T. Pinckney.

Fast and flexible application-level networking on exokernel systems. ACM Transactions on

Computer Systems (TOCS), 20(1):49–83, Feb. 2002.

[89] D. Glazkov. Component model: Landing experimental shadow DOM API in WebKit. Writ-

ten June 2011. http://lists.w3.org/Archives/Public/public-webapps/2011AprJun/1345.

html.

[90] D. Glazkov. What the heck is Shadow DOM? Written Jan. 2011. http://glazkov.com/

2011/01/14/what-the-heck-is-shadow-dom/.

[91] D. Glazman. Search – webchunks. Retrieved Nov. 2009. http://www.glazman.org/weblog/

dotclear/index.php?q=webchunks.

[92] Google. Content scripts. Retrieved July 6, 2011. http://code.google.com/chrome/

extensions/content_scripts.html.

[93] Google. PPAPI: Pepper plugin API. Retrieved July 8, 2001. http://code.google.com/p/

ppapi/.

[94] Google. GmailGreasemonkey10API: API reference for version 1.0 of the experimen-

tal Gmail Greasemonkey API. Written Feb. 2010. http://code.google.com/p/gmail-

greasemonkey/wiki/GmailGreasemonkey10API.

[95] Google. Chrome web store: Extensions. Retrieved June 29, 2011. https://chrome.google.

com/webstore?category=ext.

[96] R. Grimm and B. N. Bershad. Separating access control policy, enforcement, and func-

tionality in extensible systems. ACM Transactions on Computer Systems (TOCS), 19(1):36–70,

2001.

http://research.microsoft.com/apps/pubs/default.aspx?id=137038
http://research.microsoft.com/apps/pubs/default.aspx?id=137038
http://lists.w3.org/Archives/Public/public-webapps/2011AprJun/1345.html
http://lists.w3.org/Archives/Public/public-webapps/2011AprJun/1345.html
http://glazkov.com/2011/01/14/what-the-heck-is-shadow-dom/
http://glazkov.com/2011/01/14/what-the-heck-is-shadow-dom/
http://www.glazman.org/weblog/dotclear/index.php?q=webchunks
http://www.glazman.org/weblog/dotclear/index.php?q=webchunks
http://code.google.com/chrome/extensions/content_scripts.html
http://code.google.com/chrome/extensions/content_scripts.html
http://code.google.com/p/ppapi/
http://code.google.com/p/ppapi/
http://code.google.com/p/gmail-greasemonkey/wiki/GmailGreasemonkey10API
http://code.google.com/p/gmail-greasemonkey/wiki/GmailGreasemonkey10API
https://chrome.google.com/webstore?category=ext
https://chrome.google.com/webstore?category=ext

217

[97] S. Guarnieri and B. Livshits. GATEKEEPER: Mostly static enforcement of security and

reliability policies for JavaScript code. In USENIX Security Symposium, Aug. 2009.

[98] S. Guarnieri and B. Livshits. GULFSTREAM: staged static analysis for streaming javascript

applications. In USENIX Conference on Web Application Development (WebApps), 2010.

[99] A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of JavaScript. In European Conference

on Object-Oriented Programming (ECOOP), 2010.

[100] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy. Verified security for browser extensions.

In IEEE Symposium on Security and Privacy (Oakland), May 2011.

[101] K. W. Hamlen and M. Jones. Aspect-oriented in-lined reference monitors. In ACM SIGPLAN

Workshop on Programming Languages and Analysis for Security (PLAS), 2008.

[102] P. B. Hansen. The nucleus of a multiprogramming system. Communications of the ACM

(CACM), 13(4):238–241, 1970.

[103] M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley Longman Publish-

ing Co., Inc., Boston, MA, USA, 1st edition, 1978.

[104] W. Havinga, I. Nagy, L. Bergmans, and M. Aksit. A graph-based approach to modeling

and detecting composition conflicts related to introductions. In International Conference on

Aspect-Oriented Software Development (AOSD), 2007.

[105] J. D. Hay and J. M. Atlee. Composing features and resolving interactions. SIGSOFT Software

Engineering Notes, 25(6):110–119, 2000.

[106] C. Hofer and K. Ostermann. On the relation of aspects and monads. In Workshop on

Foundations of Aspect-Oriented Languages (FOAL), 2007.

[107] P. Hui and J. Riely. Typing for a minimal aspect language: preliminary report. In Workshop

on Foundations of Aspect-Oriented Languages (FOAL), 2007.

[108] G. Hunt, M. Aiken, M. Fähndrich, C. Hawblitzel, O. Hodson, J. Larus, S. Levi, B. Steensgaard,

D. Tarditi, and T. Wobber. Sealing OS processes to improve dependability and safety. In

ACM SIGOPS-EuroSys European Conference on Computer Systems (EuroSys), 2007.

[109] G. C. Hunt and J. R. Larus. Singularity: rethinking the software stack. ACM SIGOPS

Operating Systems Review (OSR), 41(2):37–49, 2007.

218

[110] G. C. Hunt, J. R. Larus, D. Tarditi, and T. Wobber. Broad new OS research: challenges and

opportunities. In Hot Topics in Operating Systems (HotOS), 2005.

[111] N. Hurst, K. Marriott, and P. Moulder. Cobweb: a constraint-based WEB browser. In

Australasian Computer Science Conference (ACSC), 2003.

[112] E. Ian Hickson. HTML5: A vocabulary and associated APIs for HTML and XHTML. Re-

trieved July 6, 2011. http://dev.w3.org/html5/spec/Overview.html.

[113] A. Igarashi and N. Kobayashi. Resource usage analysis. In ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages (POPL), 2002.

[114] C. Jackson and A. Barth. Beware of finer-grained origins. In In Web 2.0 Security and Privacy

(W2SP 2008), 2008.

[115] J. Jacobson. A formalization of darcs patch theory using inverse semigroups. Technical

Report (09-83), UCLA Computational and Applied Mathematics, Oct. 2009. http://www.

math.ucla.edu/~jjacobson/patch-theory/.

[116] F. Jacquemard, M. Rusinowitch, and L. Vigneron. Compiling and verifying security proto-

cols. Logic for Programming and Automated Reasoning, 1955:535–554, 2000.

[117] R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of untyped aspect-oriented programs. In

European Conference on Object-Oriented Programming (ECOOP), 2003.

[118] R. Jagadeesan, C. Pitcher, and J. Riely. Open bisimulation for aspects. In International

Conference on Aspect-Oriented Software Development (AOSD), 2007.

[119] C. G. Jones, R. Liu, L. Meyerovich, K. Asanovic, and R. Bodík. Parallelizing the Web Browser.

In Hot Topics in Parallelism (HotPar), Mar. 2009.

[120] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. Briceño, R. Hunt, D. Mazières, T. Pinck-

ney, R. Grimm, J. Jannotti, and K. Mackenzie. Application performance and flexibility on

exokernel systems. In ACM Symposium on Operating Systems Principles (SOSP), 1997.

[121] E. Katz and S. Katz. Incremental analysis of interference among aspects. In Workshop on

Foundations of Aspect-Oriented Languages (FOAL), 2008.

[122] D. O. Keck and P. J. Kuehn. The feature and service interaction problem in telecommunica-

tions systems: A survey. IEEE Transactions on Software Engineering, 24(10):779–796, 1998.

http://dev.w3.org/html5/spec/Overview.html
http://www.math.ucla.edu/~jjacobson/patch-theory/
http://www.math.ucla.edu/~jjacobson/patch-theory/

219

[123] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview

of AspectJ. In European Conference on Object-Oriented Programming (ECOOP), 2001.

[124] J. Kim. Activities and WebSlices in Internet Explorer 8. Written Mar. 2008. http://blogs.

msdn.com/ie/archive/2008/03/06/activities-and-webslices-in-internet-explorer-

8.aspx.

[125] D. E. Knuth. The TeXbook. Addison-Wesley, 1984.

[126] D. E. Knuth and M. F. Plass. Breaking paragraphs into lines. Software: Practice and Experience,

11(11):1119–1184, 1981.

[127] S. Kojarski and D. H. Lorenz. Pluggable AOP: designing aspect mechanisms for third-

party composition. In ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA), 2005.

[128] S. Kojarski and D. H. Lorenz. Identifying feature interactions in multi-language aspect-

oriented frameworks. In ACM/IEEE International Conference on Software Engineering (ICSE),

2007.

[129] S. Kojarski, D. H. Lorenz, S. Kojarski, and D. H. Lorenz. Awesome: an aspect co-weaving

system for composing multiple aspect-oriented extensions. In ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2007.

[130] M. Labs. Personas. Retrieved July 2011. http://mozillalabs.com/personas/.

[131] M. Labs. Firefox Sync. Written Mar. 2011. https://addons.mozilla.org/en-US/firefox/

addon/firefox-sync/.

[132] M. S. Lam, M. Martin, B. Livshits, and J. Whaley. Securing web applications with static and

dynamic information flow tracking. In ACM SIGPLAN Symposium on Partial Evaluation and

Semantics-Based Program Manipulation (PEPM), 2008.

[133] L. Lamport. The temporal logic of actions. ACM Transactions on Programming Languages and

Systems (TOPLAS), 16(3):872–923, 1994.

[134] L. Lamport. LaTeX: A document preparation system, user’s guide and manual. Addison-Wesley

Professional, 2nd edition, 1994.

[135] B. Lampson. On reliable and extendible operating systems. In NATO Conference on Tech-

niques in Software Engineering, 1971.

http://blogs.msdn.com/ie/archive/2008/03/06/activities-and-webslices-in-internet-explorer-8.aspx
http://blogs.msdn.com/ie/archive/2008/03/06/activities-and-webslices-in-internet-explorer-8.aspx
http://blogs.msdn.com/ie/archive/2008/03/06/activities-and-webslices-in-internet-explorer-8.aspx
http://mozillalabs.com/personas/
https://addons.mozilla.org/en-US/firefox/addon/firefox-sync/
https://addons.mozilla.org/en-US/firefox/addon/firefox-sync/

220

[136] B. S. Lerner and D. Grossman. Language support for extensible web browsers. In ACM

Analysis and Programming Languages for Web Applications and Cloud Applications (APLWACA),

2010.

[137] B. S. Lerner, H. Venter, and D. Grossman. Supporting dynamic, third-party code cus-

tomizations in JavaScript using aspects. In ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA), Oct. 2010.

[138] B. S. Lerner, B. Burg, H. Venter, and W. Schulte. C3: An experimental, extensible, recon-

figurable platform for html-based applications. In USENIX Conference on Web Application

Development (WebApps), June 2011.

[139] T. Leschke. Achieving speed and flexibility by separating management from protection:

embracing the exokernel operating system. ACM SIGOPS Operating Systems Review (OSR),

38(4):5–19, 2004.

[140] N. Lesiecki. AOP@Work: Enhance design patterns with AspectJ, part 1. Written May 2005.

http://www.ibm.com/developerworks/java/library/j-aopwork5/index.html.

[141] H. Li, S. Krishnamurthi, and K. Fisler. Verifying cross-cutting features as open systems. In

ACM SIGSOFT Symposium on Foundations of Software Engineering, 2002.

[142] H. C. Li, S. Krishnamurthi, and K. Fisler. Modular verification of open features using

three-valued model checking. Automated Software Engineering (ASE), 12(3):349–382, 2005.

[143] J. Liedtke. On micro-kernel construction. In ACM Symposium on Operating Systems Principles

(SOSP), 1995.

[144] J. Liedtke. Toward real microkernels. Communications of the ACM (CACM), 39(9):70–77, 1996.

[145] J. Ligatti, L. Bauer, and D. Walker. Edit automata: enforcement mechanisms for run-time

security policies. International Journal of Information Security, 4(1-2):2–16, Feb. 2005.

[146] J. Ligatti, L. Bauer, and D. Walker. Enforcing non-safety security policies with program

monitors. In European Symposium on Research in Computer Security (ESORICS), volume 3679

of Lecture Notes in Computer Science, Sept. 2005.

[147] J. Ligatti, D. Walker, and S. Zdancewic. A type-theoretic interpretation of pointcuts and

advice. Science of Computer Programming, 63(3):240–266, 2006.

http://www.ibm.com/developerworks/java/library/j-aopwork5/index.html

221

[148] J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement of nonsafety policies. ACM

Transactions on Information and System Security (TISSEC), 12(3):1–41, 2009.

[149] D. Lohmann, J. Streicher, W. Hofer, O. Spinczyk, and W. Schröder-Preikschat. Configurable

memory protection by aspects. In ACM SIGOPS Workshop on Programming Languages and

Operating Systems (PLOS), 2007.

[150] P. A. Loscocco and S. D. Smalley. Meeting critical security objectives with security-enhanced

linux. In Ottawa Linux Symposium, 2001.

[151] I. Lynagh. Darcs patch theory (more or less). Originally posted to darcs-users mailing list,

Sept. 2008. http://lists.osuosl.org/pipermail/darcs-users/2008-August/013040.html.

[152] G. Maone. Dear AdBlock Plus and NoScript users, dear Mozilla community. Written

May 2009. http://hackademix.net/2009/05/04/dear-adblock-plus-and-noscript-

users-dear-mozilla-community/.

[153] H. Masuhara, H. Tatsuzawa, and A. Yonezawa. Aspectual Caml: an aspect-oriented func-

tional language. In ACM SIGPLAN International Conference on Functional Programming (ICFP),

Sept. 2005.

[154] A. Metzger. Feature interactions in embedded control systems. Computer Networks, 45(5):

625–644, 2004.

[155] L. Meyerovich and B. Livshits. ConScript: Specifying and enforcing fine-grained security

policies for Javascript in the browser. In IEEE Symposium on Security and Privacy, May 2010.

[156] L. A. Meyerovich and R. Bodik. Fast and parallel webpage layout. In International Conference

on the World Wide Web (WWW), 2010.

[157] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg, A. Bromfield, and S. Kr-

ishnamurthi. Flapjax: a programming language for ajax applications. In ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),

2009.

[158] Microsoft. Add-ons gallery. Retrieved 2009. http://www.ieaddons.com/en/.

[159] Microsoft. Trees in WPF. Retrieved July 2011. http://msdn.microsoft.com/en-us/

library/ms753391.aspx.

http://lists.osuosl.org/pipermail/darcs-users/2008-August/013040.html
http://hackademix.net/2009/05/04/dear-adblock-plus-and-noscript-users-dear-mozilla-community/
http://hackademix.net/2009/05/04/dear-adblock-plus-and-noscript-users-dear-mozilla-community/
http://www.ieaddons.com/en/
http://msdn.microsoft.com/en-us/library/ms753391.aspx
http://msdn.microsoft.com/en-us/library/ms753391.aspx

222

[160] Microsoft. Developing Visual Studio extensions. Written 2011. http://msdn.microsoft.

com/en-us/library/dd885119.aspx.

[161] Microsoft. VSPackage essentials. Written 2011. http://msdn.microsoft.com/en-us/

library/bb165754.aspx.

[162] Microsoft Developer Network. Browser extensions. Retrieved Mar. 2009. http://msdn.

microsoft.com/en-us/library/aa753587(VS.85).aspx.

[163] F. Mittelbach, M. Goossens, J. Braams, D. Carlisle, and C. Rowley. The LaTeX Companion.

Addison-Wesley Professional, 2nd edition, 2004.

[164] A. Mohta. Get IE8 accelerator in Firefox: Select n go. Written Feb. 2009. http://www.

technospot.net/blogs/get-ie-8-accelerators-in-firefox/.

[165] Mozilla. Add-on SDK: Add-on development made easy. Retrieved July 2011. https:

//addons.mozilla.org/en-US/developers/docs/sdk/1.0/.

[166] Mozilla. XUL overlays. Written Jan. 2010. https://developer.mozilla.org/en/XUL_

Overlays.

[167] Mozilla. Mozilla Firefox: Add-ons. Retrieved June 29, 2011. https://addons.mozilla.

org/en-US/firefox.

[168] Mozilla. Mozilla Firefox: Extensions. Retrieved June 29, 2011. https://addons.mozilla.

org/en-US/firefox/extensions/.

[169] Mozilla. Mozilla Labs: Chromeless browser. Retrieved June 29, 2011. https:

//mozillalabs.com/chromeless/.

[170] Mozilla. Mozilla Firefox: Extensions. Retrieved June 29, 2011. http://prism.mozillalabs.

com/.

[171] mozillaZine. Dev : Extending the chrome protocol. Retrieved July 2011. http://kb.

mozillazine.org/Dev_:_Extending_the_Chrome_Protocol.

[172] G. Muller, Y. Padioleau, J. L. Lawall, and R. R. Hansen. Semantic patches considered helpful.

ACM SIGOPS Operating Systems Review (OSR), 40(3):90–92, 2006.

[173] M.-J. Nederhof and G. Satta. The language intersection problem for non-recursive context-

free grammars. Information and Computation, 192(2):172 – 184, 2004.

http://msdn.microsoft.com/en-us/library/dd885119.aspx
http://msdn.microsoft.com/en-us/library/dd885119.aspx
http://msdn.microsoft.com/en-us/library/bb165754.aspx
http://msdn.microsoft.com/en-us/library/bb165754.aspx
http://msdn.microsoft.com/en-us/library/aa753587(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa753587(VS.85).aspx
http://www.technospot.net/blogs/get-ie-8-accelerators-in-firefox/
http://www.technospot.net/blogs/get-ie-8-accelerators-in-firefox/
https://addons.mozilla.org/en-US/developers/docs/sdk/1.0/
https://addons.mozilla.org/en-US/developers/docs/sdk/1.0/
https://developer.mozilla.org/en/XUL_Overlays
https://developer.mozilla.org/en/XUL_Overlays
https://addons.mozilla.org/en-US/firefox
https://addons.mozilla.org/en-US/firefox
https://addons.mozilla.org/en-US/firefox/extensions/
https://addons.mozilla.org/en-US/firefox/extensions/
https://mozillalabs.com/chromeless/
https://mozillalabs.com/chromeless/
http://prism.mozillalabs.com/
http://prism.mozillalabs.com/
http://kb.mozillazine.org/Dev_:_Extending_the_Chrome_Protocol
http://kb.mozillazine.org/Dev_:_Extending_the_Chrome_Protocol

223

[174] N. Ongkingco, P. Avgustinov, J. Tibble, L. Hendren, O. de Moor, and G. Sittampalam.

Adding open modules to AspectJ. In International Conference on Aspect-Oriented Software

Development (AOSD), 2006.

[175] W. Palant. Attention NoScript users. Written May 2009. http://adblockplus.org/blog/

attention-noscript-users.

[176] M. Plath and M. Ryan. Feature integration using a feature construct. Science of Computer

Programming, 41(1):53–84, 2001.

[177] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL), 1989.

[178] A. Raskin. My dream way to write a Firefox extension. Written Mar. 2009. http://www.

azarask.in/blog/post/my-dream-way-to-write-a-firefox-extension/.

[179] A. Raskin and the Jetpack development team. Announcing the Jetpack SDK: First mile-

stone release. Written Mar. 2010. http://mozillalabs.com/jetpack/2010/03/09/

announcing-the-jetpack-sdk/.

[180] A. Raskin, A. Varma, N. Nguyen, and the Jetpack development team. Introducing Jet-

pack, call for participation. Written May 2009. http://mozillalabs.com/blog/2009/05/

introducing-jetpack-call-for-participation/.

[181] C. Reis. Web Browsers as Operating Systems: Supporting Robust and Secure Web Programs.

PhD thesis, University of Washington, 2009. http://www.charlesreis.com/research/

publications/creis-thesis.pdf.

[182] C. Reis and S. D. Gribble. Isolating web programs in modern browser architectures. In

ACM SIGOPS-EuroSys European Conference on Computer Systems (EuroSys), 2009.

[183] C. Reis, S. D. Gribble, and H. M. Levy. Architectural principles for safe web programs. In

Hot Topics in Networks (HotNets), Nov. 2007.

[184] A. Reynolds, M. E. Fiuczynski, and R. Grimm. On the feasibility of an AOSD approach to

linux kernel extensions. In AOSD Workshop on Aspects, Components, and Patterns for Infras-

tructure Software (ACP4IS), 2008.

[185] D. Richardson and S. D. Gribble. Maverick: Providing web applications with safe and flexi-

ble access to local devices. In USENIX Conference on Web Application Development (WebApps),

June 2011.

http://adblockplus.org/blog/attention-noscript-users
http://adblockplus.org/blog/attention-noscript-users
http://www.azarask.in/blog/post/my-dream-way-to-write-a-firefox-extension/
http://www.azarask.in/blog/post/my-dream-way-to-write-a-firefox-extension/
http://mozillalabs.com/jetpack/2010/03/09/announcing-the-jetpack-sdk/
http://mozillalabs.com/jetpack/2010/03/09/announcing-the-jetpack-sdk/
http://mozillalabs.com/blog/2009/05/introducing-jetpack-call-for-participation/
http://mozillalabs.com/blog/2009/05/introducing-jetpack-call-for-participation/
http://www.charlesreis.com/research/publications/creis-thesis.pdf
http://www.charlesreis.com/research/publications/creis-thesis.pdf

224

[186] M. Rinard, A. Salcianu, and S. Bugrara. A classification system and analysis for aspect-

oriented programs. SIGSOFT Software Engineering Notes, 29(6):147–158, 2004.

[187] C. Rippert. Protection in flexible operating system architectures. ACM SIGOPS Operating

Systems Review (OSR), 37(4):8–18, 2003.

[188] J. Ruderman. Same origin policy for JavaScript. Written Oct. 2010. https://developer.

mozilla.org/En/Same_origin_policy_for_JavaScript.

[189] Y. Saito and B. Bershad. A transactional memory service in an extensible operating system.

In USENIX Annual Technical Conference (USENIX ATC), 1998.

[190] S. B. Sanjabi and C.-H. L. Ong. Fully abstract semantics of additive aspects by translation.

In International Conference on Aspect-Oriented Software Development (AOSD), 2007.

[191] S. Savage and B. N. Bershad. Issues in the design of an extensible operating system. In

USENIX Symposium on Operating Systems Design and Implementation (OSDI), 1994.

[192] F. B. Schneider. Enforceable security policies. ACM Transactions on Information and System

Security (TISSEC), 3(1):30–50, 2000.

[193] J. Scott. How many Firefox users use add-ons? Written Aug. 2009. http://blog.mozilla.

com/addons/2009/08/11/how-many-firefox-users-use-add-ons/.

[194] J. Scott. How many Firefox users have add-ons installed? 85%! Written June 2011. http:

//blog.mozilla.com/addons/2011/06/21/firefox-4-add-on-users/.

[195] D. Sereni and O. de Moor. Static analysis of aspects. In International Conference on Aspect-

Oriented Software Development (AOSD), 2003.

[196] S. Siddiqi and J. M. Atlee. A hybrid model for specifying features and detecting interactions.

Computer Networks, 32(4):471–485, 2000.

[197] J. M. Siskind and B. A. Pearlmutter. First-class nonstandard interpretations by opening

closures. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL), Jan. 17–19 2006.

[198] H. Sivonen. Speculative HTML5 parsing landed. Written Nov. 2009. http://hsivonen.iki.

fi/speculative-html5-parsing/.

[199] C. Skalka and S. Smith. Static enforcement of security with types. In ACM SIGPLAN

International Conference on Functional Programming (ICFP), 2000.

https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript
https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript
http://blog.mozilla.com/addons/2009/08/11/how-many-firefox-users-use-add-ons/
http://blog.mozilla.com/addons/2009/08/11/how-many-firefox-users-use-add-ons/
http://blog.mozilla.com/addons/2011/06/21/firefox-4-add-on-users/
http://blog.mozilla.com/addons/2011/06/21/firefox-4-add-on-users/
http://hsivonen.iki.fi/speculative-html5-parsing/
http://hsivonen.iki.fi/speculative-html5-parsing/

225

[200] C. Small and M. Seltzer. A comparison of OS extension technologies. In USENIX Annual

Technical Conference (USENIX ATC), 1996.

[201] D. R. Smith. Requirement enforcement by transformation automata. In Workshop on

Foundations of Aspect-Oriented Languages (FOAL), 2007.

[202] K. Sons, F. Klein, D. Rubinstein, S. Byelozyorov, and P. Slusallek. XML3D: interactive 3d

graphics for the web. In International Conference on Web 3D Technology, 2010.

[203] M. F. Spear, T. Roeder, O. Hodson, G. C. Hunt, and S. Levi. Solving the starting problem:

device drivers as self-describing artifacts. In ACM SIGOPS-EuroSys European Conference on

Computer Systems (EuroSys), 2006.

[204] R. M. Stallman. EMACS the extensible, customizable self-documenting display editor. In

ACM SIGPLAN SIGOA Symposium on Text Manipulation, 1981.

[205] StumbleUpon. Stumbleupon. Written Mar. 2010. http://www.stumbleupon.com/sublog/

su_chrome_extension/.

[206] M. Sulzmann. Playing with regular expressions: Intersection. Written Nov. 2008. http:

//sulzmann.blogspot.com/2008/11/playing-with-regular-expressions.html.

[207] The AspectJ Team. The AspectJ programming guide. Written 2003. http://www.eclipse.

org/aspectj/doc/released/progguide/index.html.

[208] The AspectJ Team. The AspectJ 5 development kit developer’s notebook. Written 2005.

http://www.eclipse.org/aspectj/doc/next/adk15notebook/.

[209] The Caja Team. Caja. Written Nov. 2009. http://code.google.com/p/google-caja/.

[210] P. Thiemann. A type safe DOM API. Database Programming Languages, 3774:169–183, 2005.

[211] R. Toledo, P. Leger, and E. Tanter. AspectScript: expressive aspects for the web. In Interna-

tional Conference on Aspect-Oriented Software Development (AOSD), 2010.

[212] D. Townsend. Why do Firefox updates break add-ons? Written June 2011. http://www.

oxymoronical.com/blog/2011/06/Why-do-Firefox-updates-break-add-ons.

[213] D. Townsend. Bootstrapped extensions. Retrieved July 8, 2011. https://developer.

mozilla.org/en/Extensions/Bootstrapped_extensions.

http://www.stumbleupon.com/sublog/su_chrome_extension/
http://www.stumbleupon.com/sublog/su_chrome_extension/
http://sulzmann.blogspot.com/2008/11/playing-with-regular-expressions.html
http://sulzmann.blogspot.com/2008/11/playing-with-regular-expressions.html
http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/aspectj/doc/next/adk15notebook/
http://code.google.com/p/google-caja/
http://www.oxymoronical.com/blog/2011/06/Why-do-Firefox-updates-break-add-ons
http://www.oxymoronical.com/blog/2011/06/Why-do-Firefox-updates-break-add-ons
https://developer.mozilla.org/en/Extensions/Bootstrapped_extensions
https://developer.mozilla.org/en/Extensions/Bootstrapped_extensions

226

[214] D. Townsend. Unloading JS modules. Written July 2011. http://www.oxymoronical.com/

blog/2011/07/Unloading-JS-modules.

[215] D. B. Tucker and S. Krishnamurthi. Pointcuts and advice in higher-order languages. In

International Conference on Aspect-Oriented Software Development (AOSD), 2003.

[216] M. Vardi. Sometimes and not never re-revisited: on branching versus linear time. Concur-

rency Theory (CONCUR), 1466:1–17, 1998.

[217] M. Viswanathan. Foundations for the run-time analysis of software systems. PhD thesis, Univer-

sity of Pennsylvania, Philadelphia, PA, USA, 2000.

[218] W3C. XML binding language (XBL) 2.0: Candidate recommendation. Written Mar. 2007.

http://www.w3.org/TR/xbl/.

[219] W3C. XSL transformations (XSLT) version 2.0. Written Jan. 2007. http://www.w3.org/TR/

xslt20/.

[220] G. Wagner, A. Gal, C. Wimmer, B. Eich, and M. Franz. Compartmental memory management

in a modern web browser. In ACM International Symposium on Memory Management (ISMM),

June 2011.

[221] D. Walker, S. Zdancewic, and J. Ligatti. A theory of aspects. In ACM SIGPLAN International

Conference on Functional Programming (ICFP), 2003.

[222] D. S. Wallach, A. W. Appel, and E. W. Felten. SAFKASI: a security mechanism for language-

based systems. ACM Transactions on Software Engineering and Methodology (TOSEM), 9(4):

341–378, 2000.

[223] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, and H. Venter. The multi-

principal OS construction of the gazelle web browser. In USENIX Security Symposium,

Aug. 2009.

[224] M. Wang, K. Chen, and S.-C. Khoo. Type-directed weaving of aspects for higher-order

functional languages. In ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based

Program Manipulation (PEPM), 2006.

[225] G. Washburn and S. Weirich. Good advice for type-directed programming: aspect-oriented

programming and extensible generic functions. In ACM SIGPLAN Workshop on Generic

Programming, 2006.

http://www.oxymoronical.com/blog/2011/07/Unloading-JS-modules
http://www.oxymoronical.com/blog/2011/07/Unloading-JS-modules
http://www.w3.org/TR/xbl/
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xslt20/

227

[226] H. Washizaki, A. Kubo, T. Mizumachi, K. Eguchi, Y. Fukazawa, N. Yoshioka, H. Kanuka,

T. Kodaka, N. Sugimoto, Y. Nagai, and R. Yamamoto. AOJS: Aspect-oriented JavaScript

programming framework for web development. In Aspects, Components, and Patterns for

Infrastructure Software (ACP4IS), 2009.

[227] D. Wendlandt, D. G. Andersen, and A. Perrig. Perspectives: Improving SSH-style host

authentication with multi-path probing. In USENIX Annual Technical Conference (USENIX

ATC), June 2008.

[228] WHATWG. Component model use cases. Retrieved July 13, 2011. http://wiki.whatwg.

org/wiki/Component_Model_Use_Cases.

[229] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack. HYDRA:

the kernel of a multiprocessor operating system. Communications of the ACM (CACM), 17(6):

337–345, 1974.

[230] B. Yee, D. Sehr, G. Dardyk, J. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula, and

N. Fullagar. Native client: A sandbox for portable, untrusted x86 native code. In IEEE

Symposium on Security and Privacy (Oakland), May 2009.

http://wiki.whatwg.org/wiki/Component_Model_Use_Cases
http://wiki.whatwg.org/wiki/Component_Model_Use_Cases

228

VITA

Benjamin Lerner was born and raised in New York City. He completed his undergraduate

studies at Yale University, where in 2004 he received a Bachelor of Science in Computer Sci-

ence and Mathematics. After working for one year at Microsoft on Windows Vista, he began

his graduate work at the University of Washington, focusing on programming languages, web de-

velopment, and systems. After a fruitful collaboration with Microsoft Research, he completed

his Ph.D. in 2011.

	Designing for Extensibility and Planning for Conflict: Experiments in Web-Browser Design
	Abstract
	Table of Contents
	List of Figures
	Acknowledgments
	Dedication
	Chapter 1: Introduction
	1.1 From browsers to platforms
	1.2 Positioning extensions
	1.2.1 The case for extensions
	1.2.2 Designing for power, flexibility and stability

	1.3 Contrasting two extension models
	1.3.1 Extending the user interface
	1.3.2 Extending the functionality

	1.4 Proposed support for improving extensions
	1.4.1 Necessary platform support
	1.4.2 Code extension via aspects
	1.4.3 UI extension via semantic overlays
	1.4.4 Enforcing security policies

	1.5 Summary

	Chapter 2: Defining an extension model
	2.1 Defining extensibility
	2.2 Extensibility in web platforms
	2.2.1 The extension development model
	2.2.2 The platform level
	2.2.3 The webapp level

	2.3 Extension mechanisms in existing browsers
	2.4 Defining extension models
	2.5 Aspect-oriented programming
	2.5.1 Language design
	2.5.2 Safe AOP idioms
	2.5.3 Conflict detection among aspects

	2.6 Operating systems and other platforms
	2.6.1 Static OS extensions: Aspects and code management
	2.6.2 The Exokernel approach: Composable, pervasive but coarse
	2.6.3 The SPIN approach: fine-grained and wide
	2.6.4 The Singularity approach: Fine-grained, not too wide or narrow
	2.6.5 Other platforms

	2.7 Feature specification
	2.7.1 Logic choice
	2.7.2 Termination conditions
	2.7.3 Modular checking
	2.7.4 Reified features

	2.8 Security monitors
	2.8.1 Theoretical results
	2.8.2 Safety properties and beyond

	2.9 Contrasting the web platform with related work
	2.10 Summary

	Chapter 3: Browser architecture choices for extensibility
	3.1 Introduction
	3.1.1 Addressing a broader need
	3.1.2 Contributions

	3.2 C3 architecture and design choices
	3.2.1 Pieces of an HTML platform
	3.2.2 Modularity
	3.2.3 Implementing JS objects
	3.2.4 DOM implementation
	3.2.5 The HTML parser
	3.2.6 Computing visual structure
	3.2.7 The browser kernel and window proxies
	3.2.8 Accommodating privileged UI
	3.2.9 Threading architecture
	The DOM/JS thread(s)
	The layout thread(s)
	The UI thread

	3.3 C3 Extension points
	3.3.1 HTML parsing/document construction
	3.3.2 JS execution
	3.3.3 CSS and layout

	3.4 Evaluation
	3.4.1 Performance
	3.4.2 Expressiveness
	XML3D: Extending HTML, CSS and layout
	Maverick: Extensions to the global scope
	RePriv: Extensions hosting extensions

	3.4.3 Other extension models
	Shadow DOMs
	Extensions to application UI
	Extensions to scripts

	3.4.4 Security considerations

	3.5 Future work
	3.6 Summary

	Chapter 4: JS aspects
	4.1 Introduction
	4.1.1 Aspects for JavaScript
	4.1.2 Outline

	4.2 Extensible Web-Programming Examples
	4.2.1 Reformatting messages in Gmail
	4.2.2 SpeedDial: Customizing new tabs in Firefox
	4.2.3 Discussion

	4.3 Using aspects for extensions
	4.3.1 Key aspect-oriented concepts
	4.3.2 Advice surrounding functions
	4.3.3 Advice within functions

	4.4 Aspects as a new JS primitive
	4.4.1 Key features of an aspect primitive
	4.4.2 Aspects cannot be implemented as a library
	4.4.3 Language semantics
	Advising functions: at pointcut(callee(e))
	Stack Filters
	Advising multiple functions simultaneously
	Advising within function bodies
	Discussion

	4.5 Implementation of advice weaving
	4.5.1 Compiling unadvised code
	4.5.2 Compiling aspect expressions
	4.5.3 Weaving advice
	Weaving callee advice
	Weaving stack filters
	Weaving wrap and statement_containing

	4.6 Evaluation
	4.6.1 Performance
	4.6.2 Expressiveness

	4.7 Related work
	4.7.1 Aspects for object-oriented languages
	4.7.2 Aspects for functional languages
	4.7.3 Aspects within JavaScript
	4.7.4 Web extension in practice

	4.8 Future work
	4.9 Summary

	Chapter 5: Layout/markup conflicts
	5.1 Introduction
	5.1.1 An overview of overlays
	5.1.2 Challenges of supporting multiple overlays
	5.1.3 Detecting overlay conflicts
	5.1.4 Chapter overview

	5.2 CSS selector language
	5.2.1 CSS syntax and meaning
	5.2.2 CSS syntax with operator precedence

	5.3 C3 Overlays
	5.3.1 Applying overlays to a base HTML document

	5.4 Overlay conflict detection: Naïve overlays
	5.4.1 Motivating examples
	5.4.2 Approach
	5.4.3 Examples, revisited

	5.5 Overlay conflict detection: Firefox-like overlays
	5.5.1 Motivating examples
	5.5.2 Guarded overlays and compositions
	Another representation of uniqueness
	Composing overlays within one extension

	5.5.3 Overlays as document transformers
	5.5.4 Determining overlay composition order: the conflict graph
	5.5.5 Heuristics for determining optional composition order

	5.6 Case study: Firefox extension conflicts
	5.6.1 Firefox extension structure
	5.6.2 Results
	5.6.3 Handling XUL idiosyncrasies
	Self-overlays:
	Recursive overlay weaving
	Elements without IDs

	5.7 Overlay conflict detection: Generalizing selectors
	5.7.1 Motivating examples
	5.7.2 CSS selector intersection
	5.7.3 Runtime analysis
	5.7.4 Using descendant and sibling selectors

	5.8 Overlay conflict detection: Fully-general overlays
	5.8.1 Motivating examples:
	5.8.2 Approach: future work

	5.9 Runtime behavior of overlays
	5.10 Summary

	Chapter 6: Conclusion
	6.1 Future work
	6.1.1 Platform-level future work
	6.1.2 Aspects: Future work
	6.1.3 Overlays: Future work
	6.1.4 Security: Future work

	6.2 Conclusions

	Appendix A: Proofs
	Appendix B: Overlay details
	B.1 Firefox-like overlays: algorithmic details
	B.1.1 Motivating examples, revisited

	B.2 Manually Resolved Overlay False-positives

	Bibliography
	Vita

