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Nondeterminism is one of the main reasons that parallel programming is so difficult. Bugs can 

vanish when programs are rerun or run under a debugger, thwarting attempts at their removal. 

Stress-testing is a common practice to flush out rare defects though it consumes extensive 

processing power and offers no real guarantees of discovering bugs. Deployment can similarly 

expose new issues that are difficult to reproduce. Finally, nondeterminism frustrates replicating 

multithreaded programs for fault-tolerance or performance as the replicas can diverge silently. 

Determinism eliminates these problems, making debugging and replication possible and making 

testing more valuable and efficient. 

Previous efforts at providing determinism required programs to be (re-)written in restrictive 

languages. In contrast to these language-level determinism schemes, this dissertation shows how 

execution-level determinism can be provided for arbitrary parallel programs, even programs that 

contain concurrency errors. First, we employ a hardware-based approach to provide determinism 

for unmodified binaries running on a deterministic multiprocessor system. Second, we show that 

memory consistency relaxations both enable a pure software-based implementation of execution-



 

level determinism for arbitrary programs and also admit a simpler deterministic multiprocessor 

design. Finally, we describe a hybrid mechanism that integrates execution-level and language-level 

determinism techniques to provide determinism for arbitrary programs with higher performance 

than an execution-level approach alone. 
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Chapter 1 Introduction 

Over the last several years, multicore processors have steadily displaced their single-core 

counterparts: first in server rooms, then in desktops and laptops, and most recently in phones and 

tablets as well. It is already 

impossible to buy a new machine with 

only one core in many market 

segments. Multicores’ swift invasion 

of the general-purpose processor 

market has been spurred by the need 

to meet three simultaneous 

constraints: high performance, energy 

efficiency, and limited cooling 

capacity. Increasing processor 

frequency has been one of the 

traditional approaches to improving 

single-threaded performance, but 

higher frequencies require higher 

processor voltages, driving total chip power usage up per Power = 

Capacitance×Voltage2×Frequency. Higher power usage also generates more heat that places more 

stress on cooling. Ultimately, higher power usage and limited cooling capacity defined a “power 

wall” that placed a practical limit on CPU frequency, reached in 2006 for desktop and server 

processors (Figure 1, left axis, blue filled circles). 

Multicore processors offered a solution to the power wall, as two cores running at N GHz provide 

the same aggregate performance as one core running at 2N GHz, but with substantial power and 

cooling savings over the single-core processor. These efficiencies have driven the popularity of 

multicore hardware (Figure 1, right axis, orange empty circles). Unfortunately, the spread of 

 

Figure 1: CPU frequency (blue filled circles) and core count (orange 
empty circles) of production desktop/server microprocessors from 
1971-2011. Power supply and cooling limitations imposed a ceiling 
on frequency improvements in 2006 that sparked the rapid 
transition to multicore. Data from the Stanford CPUDB project [1]. 
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parallel software has not kept pace with that of parallel hardware. Efficient use of now-ubiquitous 

multicore processors requires that software be parallelized to take advantage of extra computing 

resources. Manually parallelizing code requires substantial engineering effort, and automatic 

parallelization remains an open research challenge. 

1.1 The Challenges of Parallelism 

Like all software, parallel software must satisfy criteria like correctness, performance, usability and 

cost. Parallelism presents special challenges in terms of performance and correctness since 

parallelism inherits all of sequential programming’s difficulties and adds many new ones. The focus 

of this dissertation will be on techniques to improve the correctness of parallel programs. However, 

even if it were trivial to write correct parallel programs, many open challenges would remain in 

ensuring those programs ran efficiently. Much recent research has examined the difficulties of 

scheduling [2], automatically tuning [3] and performance debugging [4] parallel applications. The 

work presented in this dissertation strives to improve correctness while having a minimal negative 

impact on performance. 

Parallelism poses many correctness challenges, from dealing with concurrency errors like data 

races [5,6], atomicity violations [7] and ordering violations [8], to reasoning about the complexities 

of memory consistency models [9,10], to coping with the nondeterminism inherent in most parallel 

systems. Nondeterminism is orthogonal to these other challenges – a deterministic system does not 

eliminate concurrency bugs, nor does eliminating all concurrency bugs eliminate nondeterminism. 

Nevertheless, we believe that nondeterminism is a more fundamental challenge because the 

presence of nondeterminism exacerbates parallelism’s other challenges. Nondeterminism destroys 

reproducibility, introducing a host of issues throughout the software development process. Bugs 

can appear or disappear from run to run, defeating attempts to understand and remove them. 

Testing’s guarantees are weakened in the presence of nondeterminism, because a passing test says 

little about future behavior. Deployed software can similarly expose new issues that are difficult to 

reproduce. Finally, nondeterminism frustrates attempts at replicating multithreaded programs as 

the replicas can easily diverge, nullifying the reliability or availability benefits of replication. 



 

 

3 

1.2 The Benefits of Reproducibility and Determinism 

Reproducibility does not directly improve the correctness of a parallel program, but it is a key 

enabler of correctness. Figure 2 shows the benefits reproducibility brings to the process of 

developing multithreaded software, from debugging through testing and deployment. We 

distinguish between two flavors 

of reproducibility: a weak flavor 

achievable via either determinism 

or record and replay mechanisms 

that improves the debugging 

process, and a strong flavor 

possible only via determinism 

(the shaded region in Figure 2) 

that improves testing and 

deployed code as well.  

Reproducibility is crucial for improving the process of debugging parallel software. 

Nondeterminism is the source of timing-sensitive “heisenbugs” which can disappear when run 

under a debugger or manifest only infrequently when run natively. Nondeterminism also thwarts 

any use of reverse debugging [11], a technique that helps to triage bugs. In contrast, deterministic 

execution allows buggy executions to be replayed, both forwards and backwards, in the same 

straightforward manner in which single-threaded programs can be. 

Testing a multithreaded program often relies on stress testing: running a program with the same 

input many times to haphazardly exercise a variety of timing conditions, some of which might 

expose bugs. Determinism eliminates the need to perform stress testing since program execution is 

guided solely by its input. 

Determinism can amplify the power of static analysis tools like model checkers [12] by reducing the 

size of the state space they must explore. Determinism can also assist dynamic tools (e.g., data race 

 

Figure 2: The value of reproducibility throughout the software 
development cycle. The shaded region indicates benefits attainable 
only through determinism; other benefits can be achieved via 
determinism or record and replay mechanisms. 
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detectors [13,14]) that focus on verifying a single execution with lower overhead, but suffer acutely 

from nondeterminism that makes detected errors hard to reproduce and guarantees about future 

executions impossible to provide. Deterministic execution acts as a powerful lever for dynamic 

analysis, by providing repeatability, and also ensuring that once a given input has been verified as 

safe, all future executions of that input will be safe as well. Such a guarantee about future 

executions can also be leveraged to enable new forms of incremental re-verification in response to 

code changes. 

Code tested and then deployed on a deterministic platform has two significant advantages over 

code running on a nondeterministic platform. First, any tested inputs used in production are 

guaranteed to have the same behavior in both environments. This allows developers to have high 

confidence in their software; nondeterminism can no longer introduce a dramatically new set of 

behaviors once their software is deployed. Second, bugs manifesting on a machine in the field can 

be reproduced back in a development environment.  

Finally, deterministic execution makes it simple to replicate multithreaded programs for fault-

tolerance: broadcasting inputs to all replicas ensures they remain synchronized.  

Weak reproducibility makes reverse debugging possible, and allows bugs that appear during 

testing or in production to be reproduced. Determinism, however, brings the benefits of 

reproducibility full circle by 1) eliminating the need to stress test, since a parallel program always 

behaves the same way for a given input, 2) ensuring that no new behaviors for a given input are 

possible in production, increasing the assurance provided by testing, ultimately 3) making deployed 

code more reliable. The value of even weak reproducibility can be seen in the commercial support 

for tools that make single-threaded executions repeatable, such as VMWare’s replay debugger [15] 

and gdb’s recent support for reverse execution [16]. Support for multithreaded execution is less 

common; one example is Corensic’s Jinx tool [17] that offers limited amounts of reproducibility in 

testing environments. Next-generation tools that offer deterministic execution would be of even 

greater value. 
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1.3 Previous Work on Deterministic Parallelism 

Prior to our work on execution-level determinism, a language-based approach was required to 

achieve deterministic parallelism. We briefly outline the most relevant language-based work here, 

and defer a fuller discussion of other related work in deterministic parallelism to Section 2.5. 

Currently-proposed deterministic languages favor reduced expressiveness over runtime 

instrumentation. StreamIt [18] is a deterministic stream processing language that restricts 

programmers to a non-Turing-complete language without loops in exchange for static guarantees 

about the buffer sizes needed to implement a stream pipeline. NESL [19] and Deterministic Parallel 

Java (DPJ) [20] offer a similar bargain in supporting only fork-join parallelism. NESL is a purely 

functional language, and its lack of mutability avoids issues with interference – when concurrent 

threads read and write the same data. DPJ adds a sophisticated type-and-effect system to Java to 

statically prove non-interference for concurrent threads, while still supporting Java’s fully mutable 

semantics. NESL and DPJ’s static approaches provide determinism with zero runtime overhead, 

running programs as efficiently as nondeterministic languages. In addition to performance, 

deterministic languages provide strong safety guarantees in the form of sequential semantics: 

because the operations of concurrent threads have been proved non-interfering, parallelism does 

not affect the program’s outcome. Deterministic languages are a safe and performant approach to 

parallelism for programs that fit within their restrictions. 

Other approaches to deterministic parallelism have embraced existing languages but support only 

restricted programming models, such as requiring data race freedom or forbidding the use of 

complex synchronization mechanisms like locks. Task parallel frameworks like Cilk [21] (see 

Section 2.2.1) have exactly these restrictions. Writing a data race or resorting to the use of richer 

synchronization primitives can silently result in nondeterministic execution. Grace [22] is a notable 

exception: it explores support for a C/C++ nested fork-join programming model with isolation 

enforced via virtual memory protection. Isolation, plus the lack of synchronization idioms other 

than fork and join, guarantees the determinism of Grace programs. Concurrently with our initial 



 

 

6 

work on determinism, Kendo [23] proposed deterministic execution for data-race-free C/C++ 

programs that use arbitrary synchronization. Kendo exploits data race freedom to avoid the need 

for expensive thread isolation. Kendo also takes advantage of hardware performance counters to 

provide very reasonable overheads, at roughly 20% slowdown with 4 threads.  

1.4 Dissertation Goals and Contributions 

The goal of this dissertation is to evaluate the feasibility and efficiency of techniques that provide 

determinism for arbitrary parallel programs. Toward this goal we furnish three specific 

contributions, in the design and evaluation of three deterministic execution systems. The first, DMP 

or Deterministic MultiProcessor [24,25], is a pure-hardware design that leverages hardware’s 

ability to perform low-overhead speculative execution. The second, RCDC or Relaxed Consistency 

Deterministic Computer [26], proposes a hybrid hardware-software design for reduced complexity 

with equivalent performance to DMP. The final system is MELD [27], a pure-software approach for 

Merging Execution-level and Language-level Determinism that reduces the runtime overhead of 

execution-level determinism by integrating static, language-based techniques. 

Despite the variety of implementation technologies 

used in these three systems – from hardware 

transactional memory to type systems – DMP, 

RCDC and MELD share a common approach to 

providing determinism (Figure 3). Initially, each 

thread of a multithreaded program is placed in an 

isolated memory space, wherein an update to 

shared memory is visible only to the thread that 

performed the update. Effectively, the original 

multithreaded program is converted into a 

collection of single-threaded programs. Single-threaded programs naturally execute in a 

deterministic fashion; thus the determinism of the entire program is ensured. The mechanism used 

to ensure thread isolation varies depending on the deterministic execution system, from processor-

 

Figure 3: Our basic approach to determinism is 
precise control of thread communication, with 
alternating periods of isolated execution and 
deterministic merging of accumulated outputs. 
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private hardware caches to runtime instrumentation to static analysis that proves isolation at 

compile-time. 

Of course, threads must periodically communicate with one another in order for the program to 

execute correctly. Thus, inter-thread communication is allowed at regular intervals, subject to two 

restrictions. First, these communication points must arise at deterministic places in the execution. 

Second, the communication itself, i.e., merging updates that have been performed by remote 

threads, must be performed deterministically. Again, the mechanisms used to implement 

deterministic communication differ by system. Counting fixed numbers of machine or bytecode 

instructions is a persistent approach for identifying deterministic points in an execution. 

Mechanisms for merging updates deterministically range from hardware techniques for thread-

level speculation [28] to order-independent geometry rendering algorithms [29] from computer 

graphics. 

1.4.1 DMP: A Deterministic MultiProcessor 

DMP ([24] and Chapter 3) is a novel hardware architecture that runs programs deterministically, 

even if they use arbitrary synchronization constructs or contain data races. The DMP design built 

upon existing proposals for hardware transactional memory [30], a vibrant research area that has 

made the transition into shipping products from IBM [31,32] and Intel [33] (see Section 3.2.3). DMP 

divides the execution of each thread into a series of transactions and ensures that these 

transactions commit in a deterministic order. The size of transactions can be adjusted to match the 

limitations of a hardware transactional memory system, eliminating the need for unbounded 

transactions. To evaluate DMP, we built an architecture simulator demonstrating that DMP incurs 

approximately 20% overhead compared to nondeterministic execution. 

1.4.2 RCDC: A Relaxed Consistency Deterministic Computer 

To bring the benefits of deterministic execution to today’s systems, we then designed the CoreDet 

algorithm [34] for deterministic execution. The main insight behind CoreDet was that DMP’s need 

for always-on speculation could be exchanged for a non-speculative approach coupled with a more 
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relaxed memory consistency model based on Total Store Order [35,36]. This new design admitted a 

realizable software implementation of execution-level determinism. The CoreDet deterministic 

compiler [34] provides determinism for arbitrary C/C++ programs. The CoreDet compiler is open-

source and has been downloaded by researchers at over 20 institutions worldwide. Our 

experiments show that CoreDet exacts a 5x slowdown on average, but brings the benefits of 

determinism to existing programs running on today’s hardware. 

To maintain determinism, CoreDet required that synchronization operations be serialized – a clear 

scalability bottleneck for programs that use frequent synchronization. The RCDC deterministic 

execution algorithm ([26] and Chapter 4) eliminates this bottleneck via additional consistency 

relaxations coupled with a more scalable deterministic synchronization algorithm from prior work 

[23]. RCDC affords a natural hardware-software implementation, leveraging private caches to 

cheaply enforce thread isolation while leaving software in control of making updates visible. To 

show the generality of the RCDC approach, we built a hardware simulator to evaluate our hybrid 

hardware-software design and extended the CoreDet compiler to evaluate a pure-software design 

as well. Both in simulation and in software, RCDC significantly improves the performance of 

programs with fine-grained synchronization. Moreover, RCDC’s hybrid hardware-software 

implementation provides fully deterministic execution with performance comparable to that of the 

original DMP hardware proposal, without the need for always-on speculation. 

The source code of our implementations of CoreDet and RCDC, as well as the raw data presented in 

the RCDC paper, are available from http://sampa.cs.washington.edu. 

1.4.3 MELD: Merging Execution-level and Language-level Determinism 

MELD leverages both our experience building execution-level determinism systems and the rich 

and deeply complementary body of work on deterministic parallel languages. On the one hand, 

execution-level determinism enforces determinism dynamically for arbitrary programs but with 

runtime costs. On the other hand, deterministic languages enforce determinism statically without 

http://sampa.cs.washington.edu/
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runtime overhead and with sequential semantics but only support fork-join programs expressible 

in sophisticated but limiting static type systems. 

To combine the generality of dynamic determinism with the performance of static determinism, we 

designed the MELD system ([27] and Chapter 5) that merges execution-level and language-level 

determinism in a sound, i.e., determinism-preserving, manner. To maintain generality, MELD 

sacrifices the sequential semantics guarantee typical of deterministic languages, as general parallel 

programs have no natural sequential semantics. MELD uses a simple qualifier-based type system 

for Java to partition a program’s data into regions operated on by either execution-level or 

language-level determinism. MELD also supports a dynamic privatization mechanism to transition 

data from one region to the other during program execution. To evaluate MELD, we have built a 

Java-based execution-level determinism compiler and runtime system, and are working on 

integrating this with the Deterministic Parallel Java [20] language. Our initial results suggest that 

static determinism can substantially accelerate deterministic execution’s performance, while 

retaining generality for the remainder of the program.  
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1.5 Reading Guide 

Chapter 3 and Chapter 4 are updated versions of 

the DMP [24] and RCDC [26] conference papers, 

respectively. These chapters have been revised to 

include a unified nomenclature, distinguishing 

between system implementations (DMP, CoreDet 

and RCDC) and deterministic execution 

algorithms (DET-*) which are typically 

implemented both in a hardware and a software 

system. Table 1 translates from the terminology 

of the conference papers to that of this 

dissertation. We also consistently refer to 

software implementations of deterministic 

algorithms as CoreDet, though this results in a 

slight anachronism in Section 3.4.4 as the original 

DMP paper [24] proposed a compiler-based 

implementation before the term CoreDet was 

later introduced in [34]. For completeness, Table 

1’s shaded cells translate the terms used in the 

CoreDet paper [34], though the CoreDet system is not discussed at length in this dissertation. 

Section 3.2.3 includes a new discussion about using upcoming hardware transactional memory 

support to accelerate the DMP-TM proposal. 

Chapter 5 represents a more developed version of the MELD workshop paper [27]. Though the 

results presented are still preliminary, we envision a subsequent publication to include these and 

further revisions. 

Table 1: Terminology used in previous conference 
papers and in this dissertation. 

Paper Paper Term Dissertation 
Term 

DMP [24] DMP DMP 

DMP-Serial DET-SERIAL 

DMP-ShTab DET-SHTAB 

DMP-TM DET-TM 

DMP-TMFwd DET-TMFWD 

Hw-DMP DMP 

Hw-DMP-Serial DMP-SERIAL 

Hw-DMP-ShTab DMP-SHTAB 

Hw-DMP-TM DMP-TM 

Hw-DMP-TMFwd DMP-TMFWD 

Sw-DMP COREDET 

Sw-DMP-ShTab COREDET-SHTAB 

RCDC [31] RCDC RCDC 

DMP-TSO DET-TSO 

DMP-HB DET-HB 

RCDC-DMP-TSO RCDC-TSO 

RCDC-DMP-HB RCDC-HB 

CoreDet DMP-TSO COREDET-TSO 

CoreDet DMP-HB COREDET-HB 

CoreDet [34] DMP-O DET-SHTAB 

DMP-TM DET-TM 

DMP-B DET-TSO 

DMP-PB - 
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Chapter 2 Related Work 

The ideas behind execution-level determinism draw inspiration from a large body of research in 

making parallelism simpler to express and safer to use. This research ranges from automatically 

identifying and repairing concurrency defects, to enabling simpler memory consistency models, to 

providing alternative programming models for parallelism. Directly related to our work on 

determinism is previous work on managing parallelism implicitly, either via automatically 

extracting parallelism from sequential programs or via deterministic and implicitly-parallel 

languages. Also directly related are techniques for record and replay of multithreaded programs, 

and execution-level determinism systems from other researchers inspired by our systems. 

2.1 Concurrency Bug Detection and Survival 

There have been many proposals for automatically 

detecting, and in some cases avoiding, bugs in 

parallel programs. So-called concurrency bugs 

come in many different classes with overlapping 

definitions, as shown in Figure 4. Additionally, 

some classes of errors, e.g., data races and 

sequential consistency violations, have precise 

definitions and detectors can be built that will 

identify all such violations that arise during an 

execution. Richer classes of concurrency errors have also been identified, such as atomicity 

violations [7] and ordering violations [8], that do not have such precise definitions. Atomicity and 

ordering violations are not axiomatic – they are defined only with respect to some programmer-

provided specification that says what operations should be atomic or how operations should be 

ordered.  

 

Figure 4: The overlapping definitions of different 
classes of concurrency errors. 
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2.1.1 Data Races 

Data-race-freedom (DRF) has emerged as a safety 

property that can be usefully applied to general 

parallel programs. A variety of schemes have been 

proposed to verify or enforce DRF with a spectrum 

of performance/precision trade-offs. The gold 

standard for enforcing DRF is a race detector that is 

both sound (misses no races) and complete 

(reports no false races). The core algorithm for 

fully precise data race detection is the vector-clock 

algorithm [5,6,37]. Vector-clock data race detection uses the happens-before relation to order 

events within and between threads in a parallel program. The happens-before relation is a partial 

order, and thus two events from different threads may or may not be ordered with respect to one 

another: events that are not ordered are said to be concurrent. For events occurring in a single 

thread, the happens-before relation includes program order. Figure 5 gives an example of an inter-

thread happens-before edge, which arises between release and acquire operations of the same lock 

(the dashed arrow); the operations on location A are ordered by the happens-before edge (plus 

program order in each thread) while the operations on location B are not. A data race arises if two 

memory accesses from different threads are concurrent and access the same memory location in a 

conflicting way, i.e., at least one of the accesses is a write. In Figure 5, the operations on location B 

form a data race. Programs that are DRF provide three important properties. First, they execute in a 

sequentially-consistent manner [9,10]. Second, synchronization-free regions of code execute 

atomically and in isolation [38]. Third, for an access A to a variable V, the value of V cannot change 

due to remote operations within A’s interference-free region – the region of code from A’s 

immediately preceding lock acquire to A’s immediately subsequent lock release [39,40]. Taken 

together, these properties make DRF programs much easier to write and to reason about than non-

DRF programs. 

 

Figure 5: The happens-before relation. The accesses 
to location B form a data race. 
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In order to verify DRF, researchers have proposed techniques to detect data races. Many static race 

detection algorithms have been explored (e.g., [41]) though they are invariably unsound or 

incomplete due to undecidability. Dynamic race detection algorithms have been proposed as early 

as 1989 [42], and since then researchers have steadily improved the time and space performance of 

race detection while exploring the trade-offs of various soundness and completeness guarantees. 

Eraser [43] proposed lockset violation detection, an approximation of race detection which 

assumes that a consistent set of locks are used to protect each shared variable. Eraser automatically 

infers the association between locks and variables, and then checks for violations of this inferred 

locking discipline. As not all programs hold a consistent set of locks when protecting a given 

variable – e.g., the set of locks can change when a variable is privatized by different threads – Eraser 

can report spurious races where none exist, though it never misses races. HARD [44] is a hardware-

based implementation of the lockset algorithm that uses bloom-filters per cache line to encode 

which locks should be held when accessing the corresponding data. Goldilocks [14] is a lockset-

happens-before hybrid race detection algorithm that uses locksets to accelerate race detection 

while maintaining precision. Goldilocks uses sound (but incomplete) static race detectors [45,46] to 

reduce runtime overheads further, and also proposed throwing a language-level exception when a 

race is detected, an idea that would be subsequently explored in [38,47]. While the lockset 

algorithm is imprecise, it remains useful because, until recently [13], it held a significant 

performance advantage over precise forms of race detection. 

The latest advance in fully precise race detection is the FastTrack race detector [13], which reduces 

the per-shared-variable space needs of a traditional vector-clock algorithm from O(n), where n is 

the number of threads in the program, to O(1) in many cases. FastTrack leverages the observation 

that programs typically protect all accesses of a location x – both reads and writes – with a single 

lock. Thus, there is typically only 1 previous reader for a given location, and there is no need to 

store information for each of n potential readers. For correctness, FastTrack can dynamically 

transition to a O(n) representation when necessary to support more complicated sharing patterns 

from, e.g., reader-writer locks. These space savings translate into time savings as well, as race 
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checks need to examine fewer vector clock entries. The intuition behind FastTrack’s optimization is 

the same as that which motivated lockset race detectors, which assume that programs adhere to a 

one-lock-per-location invariant and report violations thereof. Lockset race detection was originally 

proposed as a faster, though incomplete, alternative to vector-clock race detection [43]. Leveraging 

lockset’s key idea allows FastTrack to provide performance comparable to that of lockset-based 

race detection, without the latter’s tendency to detect false races. However, even with FastTrack the 

cost of fully sound and complete race detection remains high, incurring a roughly 8x runtime 

overhead. 

Other researchers have improved the performance of data race detection via sampling: turning data 

race detection off for most of the program to avoid its runtime overheads. In theory, a sampling-

based approach can miss arbitrary numbers of races, completely invalidating soundness 

guarantees. In practice, principled approaches to sampling can perform quite well. LiteRace [48] 

proposes detecting races based on the frequency with which code paths execute: hot code paths are 

rarely subject to analysis while cold paths are regularly analyzed. Since the race detection analysis 

is expensive, but run infrequently, overall performance overhead is around 50%. The consequence 

is that on average only 70% of races are detected. PACER [49] proposes a different sampling 

strategy that guarantees that races will be detected in proportion to the sampling rate. PACER 

divides an execution into time windows, and performs race detection within these windows at a 

specified rate. To uphold the probabilistic detection guarantee, a limited form of race detection is 

enabled during non-sampled windows, catching all races where one of the racing accesses is inside 

a sample and the other access is outside. For a 1% sampling rate, PACER adds runtime overhead of 

around 50%, and PACER’s sampling strategy allows space and time overheads, as well as detection 

probabilities, to scale up and down with the sampling rate. 

While DRF is a useful safety property for multithreaded programs, techniques to fully enforce DRF 

are too expensive for production use. Sampling strategies decrease runtime overhead substantially, 

at the cost of reducing DRF to a bug-finding heuristic, instead of a safety property a programmer 

can rely upon. 
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2.1.2 Atomicity Violations 

Atomicity violations were first described in [7], where they were called “high-level data races” and 

defined as the following situation: two threads access a 

shared variable, and while the accesses should have been 

performed atomically one of the threads performs a series 

of non-atomic accesses to the shared variables due to 

programmer error. Figure 6 illustrates an atomicity 

violation: the load-increment-store operations on V should 

occur atomically but due to a lack of synchronization each 

thread performs them non-atomically. This results in T0’s 

update being lost, so that after both threads attempt to increment V only one increment is recorded. 

One important property of atomicity violations is that they violate an atomicity specification that 

states which accesses need to be performed atomically. This atomicity specification is, 

unfortunately, often unavailable and is only implicitly represented by the program’s code. While 

there is no way to know for certain what accesses should be performed atomically in the absence of 

the actual specification, a number of useful heuristics have been identified. These heuristics 

inevitably entail both false positives, when an atomicity violation is detected but the program is in 

fact abiding by its (missing) atomicity specification, and false negatives, when the program’s 

(missing) atomicity specification is deviated from but no atomicity violation is detected. 

[7] also generalizes the definition of atomicity violations to accesses of a set of shared variables. 

This has resulted in two sub-classes of atomicity violations: single-variable atomicity violations and 

multi-variable atomicity violations. Figure 6 shows an example of a single-variable atomicity 

violation involving just the shared variable V. A multi-variable atomicity violation arises when 

accesses to a set of variables should be performed atomically, e.g., when updating the real and 

imaginary components of a complex number, but due to a programming error the variables are not 

updated atomically. Detecting multi-variable atomicity violations is inherently more complicated as 

it requires grouping variables into meaningful sets whose atomicity can then be examined. This 

T0 T1 

load r0  V  

add r0  r0, 1 load r0  V 

store r0  V add r0  r0, 1 

 store r0  V 

Figure 6: An assembly code example of 
a single-variable atomicity violation. 
The lack of atomicity causes T0’s 
increment to be dropped. 
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grouping process is again driven by heuristics and can be another source of both false positive and 

false negative atomicity violation reports. 

Several atomicity violation detection schemes sidestep false positive/false negative issues by 

requiring the programmer to provide an atomicity specification. Atomizer [50] requires such a 

specification, and then dynamically verifies that the specification is adhered to during execution. 

Atomizer’s dynamic analysis is based on lockset race detection, and lockset’s intrinsic false 

positives make Atomizer’s atomicity analysis imprecise as well. Velodrome [51] improves upon 

Atomizer by providing sound and complete atomicity violation detection, again with respect to a 

programmer-provided specification. In the absence of a provided atomicity specification, e.g., when 

dealing with legacy programs, both Atomizer and Velodrome evaluate the implicit specification that 

assumes all functions should execute atomically. While clearly leading to false positives, both 

schemes report no more than a few dozen warnings per program, making these heuristics tractable. 

The Serializability Violation Detector [52] proposed a more sophisticated heuristic for discovering 

atomicity violations, effective enough to be used in the absence of an actual atomicity specification. 

Starting from a read access A to a shared variable, SVD infers an atomic region for subsequent 

accesses that are data- or control-dependent on A. SVD can thus discover some forms of single- and 

multi-variable atomicity violations automatically. AVIO [53] generalizes the SVD result, proposing a 

comprehensive framework for single-variable atomicity violations. Using this framework, AVIO 

uses training runs to infer the atomicity specification of the program: pairs of accesses that are 

atomic during training runs, but non-atomic during production runs, are likely atomicity violations. 

AVIO is able to automatically identify four real atomicity violation bugs in Apace and MySQL, with 

only five false positive reports on average for each program. The AtomAid system [54] 

automatically repairs atomicity violations by coupling AVIO’s techniques for identifying single-

variable atomicity violations with the BulkSC architecture [55]. BulkSC groups the dynamic 

instruction stream into chunks that execute atomically, as a low-overhead way of providing 

sequential consistency (Section 2.1.4 below). AtomAid adjusts chunk boundaries such that pairs of 
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accesses representing likely atomicity violations are placed in the same chunk, and, since chunks 

execute atomically, the atomicity violation will be repaired.  

CTrigger [56] is a system that increases the manifestation probability of atomicity violations, 

making bug detection and other testing tools more effective. CTrigger collects a set of potential 

unserializable access interleavings (based on the AVIO [53] framework) and uses dynamic analysis 

to prune away those interleavings that are unreachable due to the program’s synchronization. The 

remaining interleavings are ranked by their likelihood of being an actual bug, and small delays are 

inserted into the program’s execution to make the unserializable interleavings more likely to occur. 

Using CTrigger makes atomicity violation bugs manifest orders of magnitude more quickly than 

with regular stress testing. 

As researchers made steady progress finding and fixing single-variable atomicity violations, 

attention turned toward the more challenging problem of multi-variable atomicity violations. While 

SVD detected some kinds of multi-variable atomicity violations with its data- and control-

dependence analysis, MUVI [57] pioneered a more general analysis that learns correlations among 

sets of variables from a series of training runs, and uses these correlations to automatically detect 

multi-variable atomicity violations. MUVI was able to identify five real-world multi-variable 

atomicity violations and discovered four new such bugs in Firefox. ColorSafe [58] is another 

proposal for multi-variable atomicity bug detection and survival. ColorSafe uses memory allocation 

information to correlate variables, and then uses this information to identify and also proactively 

avoid likely multi-variable atomicity violations. 

2.1.3 General Concurrency Bug Detection 

More recent work on concurrency bug detection has focused on new classes of concurrency bugs 

such as order violations [8] and on building concurrency bug detectors that work for many classes 

of errors. Order violations arise when a program relies on two events, e.g., two critical sections, 

always occurring in a particular order when the events can occur in either order. Order violations 

are distinct from both data races and atomicity violations. Unlike data races, the two events in an 
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order violation may be individually well-synchronized. Unlike atomicity violations, which are 

inherently unordered, order violations arise due to an expected (but unenforced) ordering. Order 

violations represent a detection challenge as the presence of an order violation depends on the 

(often missing) ordering specification of a program.  

To cope with rich classes of errors like atomicity and order violations, many researchers have 

focused on properties common to all concurrency bugs and started building general concurrency 

bug detectors. These tools focus on detecting problematic patterns among communicating load and 

store instructions. For example, Bugaboo [59] records the context surrounding inter-thread 

communication events and uses the context to help differentiate correct from buggy 

communication patterns. The Interleaving-Constrained Multiprocessor [60] uses testing runs to 

learn ordering invariants among instructions. During production runs these invariants are enforced 

by the processor, automatically avoiding problematic interleavings. DefUse [61] learns invariants 

about which definition each use of a variable should read from, and reports violations of these 

invariants as errors. The errors uncovered by DefUse can be indicative of concurrency bugs and 

also sequential bugs like memory errors. Recon [62] focuses on making concurrency bug detection 

more useful to programmers by automatically identifying the root cause of a bug. Recon’s bug 

reconstructions demonstrate to the programmer not just that a likely error occurred, but also how 

the program entered the problematic state. 

2.1.4 Simplifying Memory Consistency Models 

The memory consistency models of modern languages and architectures [9,10,63] are notoriously 

complex. Despite years of scrutiny, subtle errors have been found in both the Java Memory Model 

and its JVM implementations [64]. Even assuming the correctness of the model and its 

implementation, the sequentially consistent (SC) semantics [65] offered by these languages for DRF 

programs is often void in practice as the DRF precondition is not verified (see Section 2.1.1). Thus, 

programmers cannot rely on SC behavior. Furthermore, others have noted that DRF implies much 

stronger properties than SC, e.g., interference-freedom [40]. The resulting “gap” between SC and 

DRF can be exploited to provide SC much more cheaply than DRF. Motivated by the high overheads 
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of fully sound and complete race detection, researchers have proposed variations on race detection 

that enforce SC or detect SC violations. These SC-based schemes have proven to be substantially 

more performant than full data race detection. 

Many have proposed using speculation to increase the scope for memory reordering [66–70]. We 

focus on contemporary approaches, which support relaxing all instruction reorderings across a 

wider window than previous work. BulkSC [55] and ASO [71] are pioneering architectures that 

provide high-performance sequential consistency instead of the weaker consistency models 

common in modern multiprocessors. BulkSC extends the Bulk [72] architecture to provide 

sequential consistency. The original Bulk architecture offered a mechanism to atomically execute 

chunks of thousands of instructions, using Bloom filter-based [73] signatures to efficiently encode 

read and write sets. Bulk’s chunk mechanism was used to implement both transactional memory 

(also called TM, see Section 2.2.2) and thread-level speculation (also called TLS, see Section 2.3) in a 

unified way. Building on Bulk, BulkSC groups a program’s entire dynamic instruction stream, 

instead of just TM or TLS accesses, into chunks. Speculative execution of each chunk allows 

processors to execute chunks in parallel for high performance, and the ability to aggressively 

reorder instructions within a chunk eliminates many potential consistency-related processor stalls. 

Pipelined chunk execution reduces the latency of cross-chunk consistency stalls as well so that 

BulkSC incurs negligible overhead despite providing strong memory ordering. The Atomic 

Sequence Ordering (ASO) processor [71] also performs memory ordering speculation at coarse 

granularity, using a scalable FIFO store buffer to guarantee memory ordering and to enable 

speculation across a large window of instructions. Much like BulkSC, ASO breaks up execution into a 

series of atomic sequences and guarantees memory ordering only across, not within, sequences. 

Speculative state is buffered in the L1 cache, avoiding the need for associative search during store-

load forwarding. Pristine store values are held in the FIFO store buffer and are accessed only during 

infrequent commit operations or rarer abort operations. Similarly to BulkSC, ASO provides SC yet 

outperforms a conventional relaxed-consistency RMO [35] machine. Finally, InvisiFence [74] 

provides high-performance sequential consistency in the context of a conventional multiprocessor, 
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unlike BulkSC’s dependence on the Bulk architecture, and without the need for a large FIFO store 

buffer as in ASO. InvisiFence uses the L1 cache for speculative state, and the L2 cache for pristine 

state, and ensures fast, atomic commit/abort operations via flash-clearing speculative/valid bits, 

respectively, in the L1 cache. As with BulkSC and ASO, InvisiFence provides SC memory ordering 

with better performance than a conventional RMO machine. 

Subsequent work has looked at exporting sequential consistency farther up the programming stack. 

Conflict Exceptions [38] verifies the atomicity and isolation of all synchronization-free regions, a 

weaker property than DRF but one that can be enforced more cheaply using a simplified version of 

unbounded hardware transactional memory. Conflict Exceptions guarantees both SC and that all 

synchronization-free regions execute serializably; otherwise an eponymous “conflict exception” is 

thrown that terminates the program. 

DRFx [47,75] weakens Conflict Exceptions’ guarantee in exchange for reduced hardware 

requirements and better performance. DRFx verifies atomicity and isolation of short compiler-

defined regions that are guaranteed not to exceed the resources of a best-effort hardware TM 

system. Similarly to Conflict Exceptions, DRFx verifies that these regions execute serializably or 

raises a runtime exception. By allowing only intra-region compiler reorderings, an exception-free 

DRFx execution is guaranteed to be sequentially consistent. However, the boundaries of these 

smaller regions are completely governed by the compiler, providing no source-level atomicity 

guarantees to the programmer. 

The primary use of the sequential-consistency-else-exception guarantees of Conflict Exceptions and 

DRFx is simplifying the memory models of modern languages like Java [9] and C++ [10]. In the 

absence of these hardware mechanisms, a sequential consistency guarantee is obtainable only for 

programs that satisfy the stringent DRF requirement, and in conventional systems there is no 

checking of whether programs have in fact satisfied it. The stronger atomicity and isolation 

guarantees of Conflict Exceptions may be useful to compiler writers or even application 

programmers, though the performance implications of the need to support unbounded 
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synchronization-free regions have not been clearly evaluated. A recent in-depth performance 

evaluation of the DRFx architecture [75] found that its runtime overheads were quite modest – less 

than 25% for a simulated 16-core machine – showing that supporting SC throughout the execution 

stack can be done affordably. 

Other work on memory consistency has focused on extracting maximum performance from weak 

consistency models. The Conditional Memory Ordering (CMO) system [76], which observes that the 

fence semantics offered by modern processors are frequently stronger than is needed to correctly 

implement language memory models like the JMM. CMO elides memory fences at runtime when 

they are dynamically unnecessary, and a pure-software implementation of CMO improved the 

performance of many Java applications by 5-10%. In a similar vein, [39] exploits the full flexibility 

of the C++ memory model [10] to expand the scope for compiler optimizations across lock acquires 

and releases (see Section 2.1.1). The extra flexibility allows the compiler to elide many memory 

instructions that a conventional compiler cannot, and though the resulting performance impact is 

negligible many optimization opportunities remain unexplored. The RCDC system (Chapter 4) takes 

similar advantage of language memory models’ relaxations to reduce the cost of deterministic 

memory ordering, which is even more expensive than its nondeterministic counterpart. RCDC’s 

consistency optimizations in particular are modeled heavily on CMO’s design. 

2.2 Programming Models for Parallelism 

Parallel programming models have a long history both in theory and in practice, dating back nearly 

as long as computing itself. This section examines select recent developments in parallel 

programming models that are most relevant for understanding the deterministic systems described 

in Chapters 3-5. 

2.2.1 Task Parallel Frameworks 

Tasks are an increasingly popular programming abstraction for parallel architectures. Many major 

hardware and software vendors have produced task parallelism frameworks, from Intel’s Cilk [21] 

and Threading Building Blocks [77] to Apple’s Grand Central Dispatch [78], Microsoft’s Task 
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Parallel Library [79] and Java’s ForkJoin framework [80]. These task parallel frameworks abstract 

away notions of processors and threads, requiring programmers to think only in terms of tasks and 

the dependences between tasks. Task dependences are often specified via control flow, instead of 

via locks and shared memory, resulting in a simplified programming model. The runtime system 

manages the scheduling of tasks onto actual processing resources, honoring dependences and 

preventing the hardware from being over- or underutilized.  

Task systems answer many of parallel computing’s performance challenges, but their correctness 

benefits are less clear. Data races are still possible if a programmer specifies task dependences 

incorrectly. The Cell Superscalar (CellSs) task system [81] offers the potential for increased safety 

by requiring that inter-task communication occur only via function arguments, instead of shared 

memory. Such a limited interface is likely amenable to automatic dependence verification. Many 

task systems additionally have very strong repeatability guarantees, providing sequential 

semantics for race-free programs [21,81]. That is, if a program uses data-race-free task parallelism, 

it can be debugged and replayed in exactly the same manner as a single-threaded program. 

However, data races can introduce nondeterminism that voids this guarantee [82]. Overall, current 

task systems focus on providing performance portability and provide no significant safety benefits 

over parallel programming with general-purpose languages. 

Tasks are also the primary parallelism construct in GPU programming models such as CUDA [83], 

OpenCL [84] and DirectCompute [85]. Historically, GPUs were programmed for computer graphics 

in a fork-join style where communication between concurrently-executing tasks was impossible to 

express in the programming model. More recently, GPUs have begun supporting atomic operations 

that allow communication between concurrent tasks. These atomic operations can be used to build 

mutexes, allowing arbitrary parallelism constructs to be expressed [86]. As GPUs adopt more of 

CPUs’ generality, they also inherit the latter’s programmability challenges. GPU architecture 

researchers have adopted many CPU techniques to cope with these challenges, such as race 

detectors [87,88] and transactional memory [89] (see Section 2.2.2 below). 
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2.2.2 Transactional Memory 

Transactional memory (TM) is similar in spirit to, and borrows its name from, database 

transactions [90], though TM was first proposed as a hardware accelerator for lock-free data 

structures [30]. In the original TM proposal, a processor speculatively executes a transaction – a 

series of updates to shared memory that execute atomically and in isolation. The updates are 

buffered in the processor’s L1 cache and so are invisible to remote processors. Cache coherence is 

used to detect conflicting operations by remote processors. If the local transaction completes 

without any conflicts, the operation is committed to memory by allowing the buffered cache lines to 

become globally visible. If a conflict is encountered, the local transaction can be rolled back and the 

original data fetched again from elsewhere in the memory hierarchy. Transactions, as first 

proposed, provide an elegant and performant mechanism for implementing multiword CAS 

operations which simplify many lock-free algorithms. 

After this initial hardware TM (or HTM) proposal, the idea of using transactions more broadly as a 

synchronization mechanism gained tremendous momentum [91]. Transactions offer a compelling 

alternative to lock-based synchronization, as transactions are 1) a simple, declarative 

synchronization primitive, 2) amenable to a highly-concurrent implementation whose complexity 

can be hidden from the programmer, and 3) inherently deadlock-free.1 Researchers have 

investigated many aspects of TM, such as support for transactions that overflow the resources of 

the L1 cache [92], the semantics of transactions and non-transactional code [93], different buffering 

and conflict detection strategies [94], partial transaction commit to avoid wasted work [95], partial 

re-execution to avoid the need to perform rollback on conflicts [96], and hybrid hardware-software 

support for transactions [97]. HTM techniques have also been repurposed to accelerate lock-based 

critical sections by speculatively eliding lock acquisition [70], to sandbox speculative compiler 

optimizations [98], and to protect against atomicity violations [99]. 

                                                             
1 Application-level progress is not guaranteed, however, as conflicting transactions may continually trigger 
rollbacks. 
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Many software TM (or STM) systems have been built as well, in academia [100,101] and also by 

Microsoft [102], Intel [103], and the GCC team [104]. STM systems have brought to the surface 

many real-world implementation issues such as interoperating with legacy, lock-based code and 

handling I/O operations that cannot be rolled back [105]. HTM support was also integrated into 

some production microprocessors, starting with Azul’s formerly-available Vega 3 chip [106] that 

offered a form of speculative lock elision [70]. Today, IBM’s BlueGene/Q processor [32] and 

zEnterprise EC12 mainframe [31] offer HTM support, and Intel will integrate TM support into the 

x86 ISA starting with the 2013 Haswell architecture [33]. 

Transactional memory plays an important role in the design of the Deterministic MultiProcessor 

architecture (Chapter 3). DMP divides the execution of an arbitrary parallel program into a series of 

transactions. Building on TM’s serializable execution semantics, DMP then ensures that the 

transactions logically execute in a fixed serial order. The underlying TM facility ensures that 

transactions execute in parallel to recover performance. 

2.3 Thread-level Speculation 

Thread-level speculation (TLS) [28] is a set of techniques to extract parallelism from legacy 

sequential programs automatically. TLS was originally proposed as a hardware design analogous to 

out-of-order execution, but at coarser granularity: entire loop iterations or function calls are 

speculatively executed out-of-order on multiple CPU cores. Sophisticated hardware tracks memory 

dependences to ensure equivalence to the sequential semantics of the original program. 

Knight [107] first proposed hardware support for speculative parallelization of LISP programs. The 

mostly-functional nature of LISP dramatically simplifies dependence tracking between tasks. Later, 

Multiscalar [28] proposed the first recognizable TLS system, which extracted parallelism from 

sequential, imperative code running on a conventional microprocessor. Multiscalar inspired a 

number of subsequent proposals [108–112]. While the initial TLS proposals required hardware 

support, they inspired many software-only approaches as well. Speculation and dependence 

tracking are implemented in software, typically via compiler instrumentation. However, despite a 
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large amount of research, practical TLS techniques to extract parallelism from sequential programs 

remain elusive. Recently, impressive results have been obtained from using sophisticated profile-

driven compilation and programmer-provided annotations to parallelize sequential integer codes 

across multiple cores [113] and even nodes in a cluster [114]. This semi-automated parallelization 

approach seems a promising path going forward. 

TLS techniques have inspired many of the techniques used in the DMP system (Chapter 3), though 

to an opposite end. While TLS seeks to parallelize a sequential program, DMP imposes determinism 

by serializing a (nondeterministic) parallel program to obtain determinism. DMP exploits the TLS 

observation that the execution of a program can be parallel even if serial semantics are required. 

Starting from a parallel program, as DMP does, allows speculative parallelization to be more 

effective than it has been in the context of sequential programs. 

2.4 Multithreaded Record and Replay 

Record and replay systems can be used to replay an execution for debugging or forensic purposes. 

Record and replay systems have strong repeatability properties but have not as yet been extended 

to improve safety. The central design trade-off in record and replay systems is between the amount 

of execution information logged (which impacts runtime overhead and log size) and the extent to 

which an execution can be replayed. In particular, we divide record and replay schemes into those 

that can replay executions with data races and those that cannot. There has also been steady 

progress in lossless recording techniques, mostly in hardware but recently in software-based 

systems as well, that has reduced time and space overheads without sacrificing repeatability. 

2.4.1 Hardware Record and Replay 

Logging the values returned by each memory read is sufficient to replay any multithreaded 

execution [115,116], but incurs high time and space overhead. Recording just the order of accesses 

to a global shared cache [117], with the help of hardware support, also suffices. A better approach, 

however, is to record just the points of communication between threads; Netzer [118] showed how 

to transitively reduce this communication to produce an optimally small log. 
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A number of architecture proposals have built on and extended Netzer’s transitive-reduction idea. 

The Flight Data Recorder (FDR) system [119] tags cache lines with the instruction count of their 

last accessor processor. By transferring these counters on coherence events the inter-processor 

communication graph can be built. FDR uses transitivity to avoid logging redundant edges in this 

graph, though since accessor information in restricted to the cache, cache misses must be 

conservatively logged. BugNet [120] proposes record and replay for user-space events only, using 

processor-local logs for the values returned by all loads (as in the very first record and replay 

systems) and an FDR-like mechanism for recording synchronization events between processors. 

The Regulated Transitive Reduction (RTR) system [121] improves the communication graph 

recording of FDR by hallucinating inter-processor edges that increase the effectiveness of Netzer’s 

transitive reduction beyond what is possible with the program’s true edges alone. RTR is also the 

first record and replay scheme to support non-sequentially-consistent hardware, by recording the 

values of loads that potentially violate SC. Overall, RTR reduces log sizes by about 20x compared to 

FDR. Concurrently proposed with RTR, Strata [122] divides an execution into periods free of inter-

processor communication, each of which is called a “stratum”.2 Strata simply logs the number of 

memory references performed by each processor during a stratum, requiring much simpler 

hardware than FDR or RTR. Since multithreaded programs do not communicate constantly, an 

individual stratum can cover many thousands of instructions, and log sizes are about 5x smaller 

than FDR. 

ReRun [123] and DeLorean [124] both exploit Strata’s insight about communication-free periods of 

execution. ReRun [123] achieves log sizes on par with RTR and hardware requirements on par with 

Strata by tracking communication-free periods (called “episodes”) on a per-processor basis instead 

of on a global basis. Tracking per-processor episodes results in longer episodes and yields more 

scalable hardware. Logging 1) the size of each episode (in number of memory references performed 

within it) and 2) a Lamport timestamp [37] ordering each episode with those of other processors 

are sufficient to subsequently reproduce an execution. Rerun uses small hardware signatures [72] 

                                                             
2 NB: We use the term Strata (capital S) for the research proposal, and the term stratum (lower-case s) for the 
region of execution logged in the Strata proposal. 
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to discover inter-processor communication, instead of FDR/RTR’s per-cache line accessor 

information. While ReRun ends an episode whenever communication occurs between concurrent 

episodes, Timetraveler [125] observes that only cyclic communication between episodes requires 

an episode boundary. If the communication is entirely from episode A (on P0) to episode B (on P1), 

even if there are multiple communicating loads and stores in each episode, the execution can be 

reproduced by ordering episode A before B during replay. If communication from episode B to 

episode A occurs, an episode boundary must be inserted to maintain an acyclic episode graph. 

Timetraveler allows for longer episodes which result in log sizes 90% smaller than ReRun’s. Karma 

[126] also extends ReRun to support parallel replay. Karma replaces ReRun’s Lamport timestamps 

with a DAG encoding that identifies which processors’ episodes immediately precede and succeed 

the current processor’s episode. During replay, a processor may replay an episode as soon as all of 

its predecessor episodes have replayed; parallelism in the DAG accelerates the replay process to 

within 30% of recording speed, unlike ReRun’s completely sequential replay. 

DeLorean [124] divides execution into “chunks” of instructions that are executed atomically and in 

isolation. A chunk from each processor updates shared state via a commit process, potentially 

triggering re-execution if two chunks’ updates conflict. By constraining execution to commit chunks 

in a fixed order and to mostly produce chunks of constant size (though overflowing cache capacity 

may nondeterministically cause smaller chunks to form), DeLorean reduces logging requirements 

by two orders of magnitude over previous proposals. 

More recently, researchers have proposed record-and-replay designs that leverage a global clock 

for smaller log sizes and simpler hardware designs. LReplay [127] uses the global clock to divide 

execution into fixed periods of time, e.g., 1024 cycles, without needing to assign a logical timestamp 

to each period. Communicating memory operations that execute in non-concurrent periods are 

naturally ordered by the global clock, while those that execute in concurrent periods are recorded 

in a separate log. LReplay handles consistency models as relaxed as TSO by detecting potential SC 

violations and logging them. Relying on a global clock allows the LReplay design to avoid modifying 

the caches or cache coherence protocol, which is a common feature of previous record-and-replay 
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approaches. CoreRacer [128] adopts a similar approach to LReplay, but in the context of an Intel 

multicore design. CoreRacer has a similar minimally-invasive design based around Intel’s 

TimeStamp Counter (TSC) register, a synchronous global clock visible to all cores that was 

introduced in the Nehalem architecture. 

The idea of modifying execution to reduce logging requirements, as used by RTR and DeLorean, is a 

direct influence on the design of DMP. DMP takes this idea to its logical conclusion: using complete 

control over the execution to replace logging with a pre-determined scheduling policy. 

Deterministic execution shows that logging is not intrinsically necessary to provide reproducibility. 

However, recent record-and-replay schemes [127,128] maintain an advantage over deterministic 

execution in that they require less invasive hardware support. 

2.4.2 Software Record and Replay Techniques  

Recent advances in pure-software record and replay systems provide acceptable runtime 

overheads without sacrificing replayability in the presence of data races. The LEAP [129] system 

provides full replayability by using the log-all-reads idea [116] in conjunction with static analysis to 

prune the amount of logging required. LEAP’s overheads range from 10% to 7x on a range of Java 

benchmarks. DoublePlay [130] is a pure-software scheme inspired by the idea of constrained 

execution first espoused in hardware proposals like RTR and DeLorean. DoublePlay uses multiple 

executions of the same program to parallelize recording. One version of the program “runs ahead” 

at nearly full speed, logging only synchronization operations, and separating the dynamic execution 

into windows called “epochs.” Each epoch is then re-executed on a single processor (so that only 

scheduling decisions need be logged) guided by the synchronization log. If epoch execution 

diverges from the run-ahead process’ state, execution is rolled back and restarted from the end of 

the problematic epoch. Otherwise, sufficient information has been recorded to replay that epoch 

precisely. DoublePlay achieves low recording overhead – typically less than 50% – by speculating 

that epochs will not diverge under re-execution and parallelizing re-execution across extra cores. 
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Many software-only record and replay systems sacrifice replayability for performance. RecPlay 

[131] was among the first to do this, logging only synchronization operations, which is sufficient to 

replay execution up until the first data race. PRES [132] and ODR [133] extend this idea by 

recording a configurable subset of the information required for full replay, e.g., system calls, 

synchronization, or function calls. During replay, these schemes use the recorded log and a data-

race detector to search for a desired execution that, e.g., triggers a bug. PRES and ODR incur 

runtime overheads similar to those of DoublePlay, but without using extra compute resources 

during recording. However, these schemes sometimes require thousands of replay attempts to 

reproduce an execution. 

2.5 Deterministic Parallelism 

Deterministic parallelism systems deliver the benefits of repeatability without any logging 

requirements by eliminating nondeterministic interactions among threads. Determinism’s 

constrained execution is the key to bringing the benefits of repeatability to the entire software 

development cycle (Figure 2, page 3). 

2.5.1 Determinism Verification 

There have been several proposals to verify the determinism of a computation at runtime. 

Sadowski et al. [134] showed with SingleTrack that determinism can be thought of as a stronger 

safety property than race detection, defining nondeterminism as a “race” on a lock object. Due to its 

expanded notion of a data race, SingleTrack’s evaluation was limited to programs that use 

deterministic synchronization primitives, though “race-free” locking is permitted in principle. 

SingleTrack has the same overhead as vector clock race detection, but provides repeatability by 

raising an exception at the first sign of nondeterminism. 

Burnim et al. [135] advocate using programmer-specified determinism specifications to verify 

executions as “semantically deterministic.” The DETERMIN system [136] can automatically infer 

these specifications, though such high-level notions of correctness will likely require human 

verification. Semantic determinism allows insignificant low-level details (e.g., the order of elements 
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in a set implemented via a linked-list) to be glossed over in favor of verifying the determinism of a 

higher-level property (e.g., the contents of the set). However, semantic determinism offers no real 

safety guarantees, as it permits data races and non-sequentially-consistent behavior, and offers no 

repeatability when determinism specifications are violated. 

2.5.2 Deterministic Parallel Languages 

Deterministic parallel languages trade reduced expressiveness in exchange for strong safety and 

programmability guarantees. Earlier languages built on functional languages [19] or required 

runtime checking to support imperative language features [137], but more recent efforts [20] have 

employed rich type systems capable of statically verifying determinism even in the presence of 

mutability. 

Jade [137] is an implicitly parallel language based on C. A Jade programmer decomposes a serial C 

program into a nested task hierarchy, each task having a programmer-specified access specification 

that states what data structures the task will read or write. Using the access specification, the Jade 

runtime will opportunistically execute non-interfering tasks in parallel, preserving the sequential 

semantics of the program while attaining greater performance. Tasks that violate their access 

specification trigger runtime errors. 

Similar to Jade, Prometheus [138] is an extension to C++ that dynamically tracks object ownership 

and uses ownership to collect operations on each object into serialization sets. The operations on a 

given serialization set are performed serially, ensuring determinism while allowing parallel 

operations on distinct objects. Programmers are responsible for partitioning objects into 

serialization sets and incorrect specifications, such as putting the same object into two distinct sets, 

trigger a runtime error. 

StreamIt [18] is a deterministic stream processing language that restricts programmers to a loop-

free language to define the nodes in a stream processing graph. Determinism is enforced by 

allowing communication only along the edges of the stream graph.  The language restrictions allow 

the StreamIt compiler to statically size the buffers needed between nodes in the stream graph. 
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NESL [19] is a purely functional language with support for nested data parallelism. NESL’s 

functional features ensure determinism in the face of parallelism without the need for runtime 

checks. NESL has also heavily influenced the design of Data Parallel Haskell [139], which 

implements many of NESL’s language constructs in the lazy, purely functional language Haskell. 

Deterministic Parallel Java (DPJ) [20] is a set of extensions to Java to provide statically-checked 

deterministic fork-join parallelism in the context of a modern object-oriented language. DPJ adds a 

sophisticated type-and-effect system to Java to statically prove non-interference among parallel 

tasks. DPJ programs incur zero runtime overhead, running as efficiently as nondeterministic code. A 

subsequent extension to DPJ has added support for interfering parallel tasks, using a STM system to 

ensure serializable, but potentially nondeterministic, execution [140]. Other extensions have added 

support for effect inference [141] and more expressive parallelism such as pipelines [142] and non-

nested parallel tasks [143]. DPJ, a core component of the MELD system, is described more fully in 

Section 5.2. 

Besides performance, another major benefit of many deterministic languages is that they provide 

strong safety guarantees in the form of sequential semantics: every execution of a program written 

in Jade, Prometheus, NESL, DPH or DPJ is exactly equivalent to a sequential execution of that 

program. This allows executions to be replayed and replicated without any further machinery. This 

is the same guarantee provided by many task parallel systems (e.g., Cilk [21]) but crucially – and 

unlike currently-proposed task systems – deterministic languages actually enforce the non-

interference properties required for sequential semantics to hold. 

2.5.3 Execution-level Determinism Systems 

In contrast with language-level approaches to determinism, execution-level determinism is 

characterized by dynamic instrumentation to enforce determinism on a more general class of 

programs. Different systems have explored the costs of supporting different programming models 

and different memory consistency models. 
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2.5.3.1 Execution-Level Determinism for Arbitrary Programs 

DMP’s ([24] and Chapter 3) execution-level determinism contrasted sharply with previous 

language-based approaches to determinism with its support for arbitrary programs, including 

programs with data races. CoreDet ([34] and Section 4.1.1) is a compiler-based implementation of 

execution-level determinism that supports the TSO memory consistency model, instead of the 

stronger SC model as with DMP. This relaxation of consistency allows CoreDet to achieve good 

scalability without resorting to the complexities of speculation that DMP requires. RCDC ([26] and 

Chapter 4) continues CoreDet’s use of store buffering but relaxes consistency to the furthest extent 

permissible by modern language memory models [9,10]. Combining relaxed consistency with a 

synchronization scheduling algorithm adapted from Kendo [23], RCDC delivers performance 

comparable to the original DMP proposal but with much simpler non-speculative hardware. 

Calvin [144] is a hardware version of CoreDet that offers two modes of execution. In bounded 

mode, Calvin behaves like DMP and RCDC, generating quantum boundaries due to 1) hitting a fixed 

instruction count, 2) executing an atomic instruction, or 3) deterministically overflowing a 

hardware resource like an L1-backed store buffer. In unbounded mode, Calvin virtualizes the size of 

hardware resources with software. In exchange for reduced performance, Calvin’s unbounded 

mode ends quanta only due to ISA-visible events, providing portability across different hardware 

implementations. 

dOS [145] is an extension to Linux that provides DMP-style deterministic execution as an OS 

service. The dOS service eliminates “internal” nondeterminism due to timer interrupts and data 

races, and uses a shim layer to allow user-level control of “external” nondeterminism such as I/O. 

dOS uses page protection to enforce isolation between threads, which incurs much higher 

overheads than previous hardware and compiler proposals but works for arbitrary binaries, sans 

recompilation or hardware support. 

Dthreads [146] is a pure-software deterministic runtime provides works for arbitrary programs 

using copy-on-write paging for isolation coupled with the TSO-based consistency model from 
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CoreDet [34]. Instead of counting instructions to define quanta, Dthreads counts synchronization 

operations. Using a source-level event as the marker of logical time means that deterministic 

program execution cannot be perturbed by small code changes, e.g., adding a single instruction, as 

is the case with DMP. While Dthreads guarantees determinism in the presence of data races, 

forward progress does not always hold for programs that use racy flag-based synchronization. 

Dthreads’ virtual memory approach to store buffering is generally faster than CoreDet’s hash-table-

based implementation. 

The Tern [147] and Peregrine [148] systems propose a broader notion of determinism by steering 

program execution onto the same schedules across a range of inputs. A set of schedules are 

accumulated during testing and, during production, these memoized schedules are reused 

whenever possible. In contrast with the traditional notion of determinism that makes execution 

repeatable only for a single input but can allow distinct inputs to diverge widely, Tern and 

Peregrine force different inputs to execute in a similar fashion. Reusing schedules helps avoid bugs 

by adhering to well-tested schedules, and can reduce the cost of multithreaded record-and-replay 

and replication as well. 

2.5.3.2 Execution-Level Determinism with Restrictions 

Kendo [23] provides deterministic execution for race-free programs via a library of deterministic 

synchronization primitives. Because Kendo assumes a race-free program, it has no need for 

expensive store buffering mechanisms found in other execution-level determinism systems. Kendo 

makes synchronization events deterministic by using threads’ instruction counts to govern when 

lock acquires can occur (see Section 4.3.4.2); instruction counts are tracked efficiently via hardware 

performance counters. With its lightweight approach, Kendo’s overheads on real hardware are 

quite reasonable, at roughly 20% with 4 threads. 

Grace [22] (the predecessor to Dthreads [146]) and Determinator [149] explore support for a 

nested fork-join programming model with isolation enforced via virtual memory protection. 

Isolation, plus a limitation to deterministic synchronization idioms only, guarantees the 
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determinism of Grace and Determinator programs. Grace supports C/C++ programs written in a 

fork/join style, while Determinator provides new OS primitives for fork/join programming. Both 

Grace and Determinator observe that data races are eliminated via a combination of their 

programming model restrictions and dynamic checks. Legacy programs that use threads and locks 

can be mapped, somewhat inefficiently, onto Determinator’s primitives using a CoreDet-like 

scheme. 

The Concurrent Revisions [150] system offers determinism for task-parallel programs, where tasks 

execute in isolation from one another, modifying private copies of memory. Each task operates on a 

revision of memory and, when tasks join, their revisions are merged together via programmer-

specified deterministic merge functions. The shared state that is modified and merged across 

revisions must be annotated by the programmer, and missing annotations can result in 

nondeterministic results. However, the judicious use of buffering only where necessary allows 

revisions to have low performance overhead: just a 5% increase in runtime over sequential 

execution for a 3D gaming workload. Subsequent extensions [151] showed that the Concurrent 

Revisions programming model is a natural fit for incremental computation, as isolation between 

tasks simplifies determining which tasks to reexecute when inputs change. 
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Chapter 3 A Deterministic MultiProcessor Architecture 

This chapter describes the design and evaluation of a fully Deterministic MultiProcessing (DMP) 

shared memory computer architecture. We show that, with hardware support, arbitrary shared 

memory parallel programs can be executed deterministically with modest performance cost. 

We define a deterministic shared memory multiprocessor system as a computer system that: (1) 

executes multiple threads that communicate via shared memory, and (2) will produce the same 

program output if given the same program input. This definition implies that a parallel program 

running on a DMP system is as deterministic as a single-threaded program. 

The most direct way to guarantee deterministic behavior is to preserve the same global 

interleaving of instructions in every execution of a parallel program. However, several aspects of 

this interleaving are irrelevant for ensuring deterministic behavior. It is not important which global 

interleaving is chosen, as long as it is always the same. Also, if two instructions do not communicate, 

their order can be swapped with no observable effect on program behavior. The key to 

deterministic execution is that all communication between threads must be precisely the same for 

every execution. This guarantees that the program always behaves the same way if given the same 

input. 

Guaranteeing deterministic inter-thread 

communication requires that each dynamic 

instance of an instruction (consumer) read data 

produced from the same dynamic instance of 

another instruction (producer). Producer and 

consumer need not be in the same thread, so this 

communication happens via shared memory. 

Interestingly, there are multiple global 

 

Figure 7: A parallel execution (a) and two of its 
multiple communication-equivalent interleavings 
(b). Solid markers represent communicating 
instructions, hollow markers represent instructions 
that do not communicate. 
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interleavings that lead to the same communication between instructions, they are called 

communication-equivalent interleavings (Figure 7). In summary, any communication-equivalent 

interleaving will yield the same program behavior. To guarantee deterministic behavior, then, we 

need to carefully control only the behavior of load and store operations that cause communication 

between threads. This insight is key to efficient deterministic execution. 

3.1 Enforcing Deterministic Shared Memory Multiprocessing 

This section describes how to build a deterministic multiprocessor system. We focus on the key 

mechanisms and defer discussion of specific implementations to Section 3.2. For explanatory 

purposes we begin with a naïve approach that serializes all threads, and then refine this simple 

technique into progressively more efficient organizations. 

3.1.1 Basic Idea – DET-SERIAL 

As seen earlier, making multiprocessors deterministic depends upon ensuring that the 

communication between threads is deterministic. The easiest way to accomplish this is to allow 

only one processor at a time to access memory in a 

deterministic order. This process can be thought of 

as a “memory access token” being deterministically 

passed among the processors. We call this 

deterministic serialization of a parallel execution 

(Figure 8b). Deterministic serialization guarantees 

that inter-thread communication is deterministic 

by preserving all pairs of communicating memory 

instructions. 

The simplest way to implement such serialization is to have each processor obtain the memory 

access token (henceforth called deterministic token) and, when the memory operation is 

completed, pass it to the next processor in the deterministic order. A processor blocks whenever it 

needs to access memory but does not have the deterministic token. 

 
Figure 8: Deterministic serialization of memory 
operations. Dots are memory operations and 
dashed arrows are happens-before 
synchronization. 
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Waiting for the token at every memory operation is likely to be expensive and will cause significant 

performance degradation compared to the original parallel execution (Figure 8a). Performance 

degradation stems from overhead introduced by waiting and passing the deterministic token and 

from the serialization itself, which removes the benefits of parallel execution. Synchronization 

overhead can be mitigated by synchronizing at a coarser granularity (Figure 8c), allowing each 

processor to execute a finite, deterministic number of instructions, a quantum, before passing the 

token to the next processor. We refer to a system with serialization at the granularity of quanta as 

DET-SERIAL. The process of dividing the execution into quanta is called quantum building: the 

simplest way to build a quantum is to break execution up into fixed instruction counts, on the order 

of tens of thousands of instructions. We call this simple quantum building policy QB-COUNT. 

3.1.2 Handling Application-Level Synchronization 

Note that this deterministic serialization does not interfere (e.g., introduce deadlocks or violate 

memory ordering requirements) with application-level synchronization. This serialized execution 

is a valid execution schedule in any traditional nondeterministic system. Moreover, the 

deterministic execution systems we propose provide sequential consistency [65] if full memory 

fences are inserted at quantum boundaries (Section 3.2). Hence, the extra synchronization imposed 

by DET-SERIAL (and the other deterministic execution variants) resides below application-level 

synchronization and the two do not impact one another’s correctness. Awareness of application-

level synchronization can, however, improve performance (Section 3.1.4). 

3.1.3 Recovering Parallelism 

Reducing the impact of serialization requires enabling parallel execution while preserving the same 

execution behavior as deterministic serialization. We propose two techniques to recover 

parallelism. The first technique exploits the fact that threads do not communicate all the time, 

allowing concurrent execution of communication-free periods. The second technique uses 

speculation to allow parallel execution of quanta from different processors, re-executing quanta 

when determinism might have been violated. 
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3.1.3.1 Leveraging Communication-Free Execution – DET-SHTAB 

The performance of deterministic parallel execution can be improved by leveraging the observation 

that threads do not communicate all the time. Periods of the execution that do not communicate can 

execute in parallel with other threads. Thread communication, however, must happen 

deterministically. With DET-SHTAB, we achieve this by falling back to deterministic serialization 

only while threads communicate. Each quantum is broken into two parts: a communication-free 

prefix that executes in parallel with other quanta, and a suffix, from the first point of 

communication onwards, that executes serially. The execution of the serial suffix is deterministic 

because each thread runs serially in an order determined by the deterministic token, just as in DET-

SERIAL. The transition from parallel execution to serial execution is deterministic because it occurs 

only when all threads are blocked – each thread will block either at its first point of inter-thread 

communication or, if it does not communicate with other threads, at the end of its current quantum. 

Thus, each thread blocks during each of its quanta (though possibly not until the end), and each 

thread blocks at a deterministic point within each quantum because communication is detected 

deterministically (described later). 

Inter-thread communication occurs when a 

thread writes to shared (i.e., non-private) pieces 

of data. In this case, the system must guarantee 

that all threads observe such writes at a 

deterministic point in their execution. Figure 9 

illustrates how this is enforced in DET-SHTAB. 

There are two important cases: (1) reading data 

held private by a remote processor, and (2) 

writing to shared data (privatizing it). Case (1) is shown in Figure 9a: when quantum 2 attempts to 

read data that is held private by a remote processor P0, it must first wait for the deterministic token 

and for all other threads to be blocked waiting for the deterministic token. In this example, the read 

cannot execute until quantum 1 finishes executing. This is necessary to guarantee that quantum 2 

 
Figure 9: Recovering parallelism by overlapping 
communication-free execution. 
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always gets the same data, since quantum 1 might still write to A before it completes executing. 

Case (2) is shown in Figure 9b: when quantum 1, which already holds the deterministic token, 

attempts to write to a piece of shared data, it must also wait for all other threads to be blocked 

waiting for the deterministic token. In this example, the store cannot execute until quantum 2 

finishes executing. This is necessary to guarantee that all processors observe the change of the state 

of A (from shared to privately held by a remote processor) at a deterministic point in their 

execution. Note that each thread waits to receive 

the token when it reaches the end of a quantum 

before starting its next quantum. This periodically 

(and deterministically) allows a thread waiting for 

all other threads to be blocked to make progress. 

To detect writes that cause communication, DET-

SHTAB needs a global data-structure to keep track 

of the sharing state of memory positions. A sharing 

table is a conceptual data structure that contains 

sharing information for each memory position; it 

can be kept at different granularities, e.g., line or 

page. Figure 10 shows a flowchart of how the sharing table is used. Some accesses can freely 

proceed in parallel: a thread can access its own private data without holding the deterministic 

token (1) and it can also read shared data without holding the token (2). However, in order to write 

to shared data or read data regarded as private by another thread, a thread needs to wait for its 

turn in the deterministic total order, when it holds the token and all other threads are blocked also 

waiting for the token (3). This guarantees that the sharing information is kept consistent and its 

state transitions are deterministic. When a thread writes to a piece of data, it becomes the owner of 

the data (4). Similarly, when a thread reads data not yet read by any thread, it becomes the owner 

of the data. Finally, when a thread reads data owned by another thread, the data becomes shared 

 
Figure 10: Deterministic serialization of shared 
memory communication only. 
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(5). Other deterministic policies to govern sharing are possible, but this policy, modeled on MESI 

cache coherence protocols, works well for applications with locality. 

In summary, DET-SHTAB lets threads run concurrently as long as they are not communicating. As 

soon as they attempt to communicate, DET-SHTAB deterministically serializes communication and 

updates the sharing table to exploit locality. 

3.1.3.2 Leveraging Support for Transactional Memory – DET-TM and DET-TMFWD 

Executing quanta atomically and in isolation in a deterministic total order is equivalent to 

deterministic serialization. To see why, consider a quantum executed atomically and in isolation as 

a single instruction in the deterministic total order, which is the same as DET-SERIAL. Transactional 

Memory [30] can be leveraged to make quanta appear to execute atomically and in isolation. This, 

coupled with a deterministic commit order, makes execution equivalent to deterministic 

serialization while recovering parallelism. 

We use TM support by encapsulating each quantum 

inside a transaction, making it appear to execute 

atomically and in isolation. In addition, we need a 

mechanism to form quanta deterministically and 

another to enforce a deterministic commit order. 

As Figure 11a illustrates, speculation allows a 

quantum to run concurrently with other quanta in 

the system as long as there are no overlapping 

memory accesses that would violate the original 

deterministic serialization of memory operations. In case of conflict, the quantum later in the 

deterministic total order gets squashed and re-executed (2). We enforce a deterministic commit 

order by requiring a processor to hold the deterministic token in order to commit. Once a processor 

is done committing, it passes the token to the next processor in the deterministic order. Note that 

 
Figure 11: Recovering parallelism by executing 
quanta as memory transactions (a). Avoiding 
unnecessary squashes with un-committed data 
forwarding (b). 
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the deterministic total order of quantum commits is a key component in guaranteeing deterministic 

serialization of memory operations. We call this system DET-TM. 

Having a deterministic commit order also allows isolation to be selectively relaxed, further 

improving performance by allowing uncommitted (or speculative) data to be forwarded between 

quanta. This can potentially save a large number of squashes in applications that have more inter-

thread communication. To do so, we allow a quantum to fetch speculative data from another 

uncommitted quantum earlier in the deterministic order. This is illustrated in Figure 11b, where 

quantum 2 fetches an uncommitted version of A from quantum 1. Note that without support for 

forwarding, quantum 2 would have been squashed. To guarantee correctness, if a quantum that 

provided data to other quanta is squashed, all subsequent quanta must also be squashed since they 

might have consumed incorrect data. We call a DMP system that leverages support for TM with 

forwarding DET-TMFWD. 

Another interesting effect of pre-defined commit ordering is that memory renaming, analogous to 

register renaming in out-of-order processors, can be employed to avoid squashes on write-after-

write and write-after-read conflicts. For example, in Figure 11a, if quanta 3 and 4 execute 

concurrently, the store to A in (3) need not squash quantum 4 despite their write-after-write 

conflict. 

3.1.4 Exploiting the Critical Path – QB-SYNCFOLLOW, QB-SHARING and QB-SYNCSHARING 

The most basic quantum building policy, QB-COUNT, produces quanta based on counting 

instructions and breaking a quantum when a deterministic, target number of instructions is 

reached. However, instruction-count based quantum building does not capture the fact that threads 

execute instructions at different rates, and this can lead to idle time at quantum boundaries. It also 

does not capture the fact that multi-threaded programs have a critical path. Intuitively, the critical 

thread changes as threads communicate with each other via synchronization operations and data 

sharing. 
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We now describe how to exploit typical program behavior to adapt the size of quanta and lead to 

more efficient progress on the critical path of execution. We devised three heuristics to do so. The 

first heuristic, called QB-SYNCFOLLOW, simply ends a 

quantum when an unlock operation is performed. 

As Figure 12 shows, the rationale is that when a 

thread releases a lock (P0), other threads might be 

spinning waiting for that lock (P1), so the 

deterministic token should be sent forward as early 

as possible to allow the waiting thread to make 

progress. In addition, QB-SYNCFOLLOW passes the 

token forward immediately if a thread starts 

spinning on a lock. 

The second heuristic relies on information about 

data sharing to identify when a thread has potentially completed work on shared data, and 

consequently ends a quantum at that time. It does so by determining when a thread hasn’t issued 

memory operations to shared locations in some time, e.g., in the last 30 memory operations. The 

rationale is that when a thread is working on shared data, it is expected that other threads will 

access that data soon. By ending a quantum early and passing the deterministic token, the 

consumer thread potentially consumes the data earlier than if the quantum in the producer thread 

ran longer. This not only has an effect on performance in all DMP techniques, but also reduces the 

amount of work wasted by squashes in DET-TM and DET-TMFWD. We call this quantum building 

heuristic QB-SHARING. 

In addition, we explore a combination of QB-SYNCFOLLOW and QB-SHARING, which we refer to as QB-

SYNCSHARING. This quantum building strategy monitors synchronization events and sharing 

behavior. QB-SYNCSHARING determines the end of a quantum whenever either of the other two 

techniques would have decided to do so. 

 
Figure 12: Example of a situation when better 
quantum breaking policies lead to better 
performance. 
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3.2 Implementation Issues 

As seen in the previous section, implementing an execution-level determinism system requires a 

mechanism to deterministically break the execution into quanta and mechanisms to guarantee the 

properties of deterministic serialization. A system could have all these mechanisms completely in 

hardware, completely in software or even as a mix of hardware and software components. The 

trade-off is one of complexity versus performance. A hardware-only implementation offers better 

performance but requires changes to the multiprocessor hardware. Conversely, a software-only 

implementation performs worse but does not require special hardware. This section discusses the 

relevant points in each implementation. 

3.2.1 Hardware-Only Implementation 

Quantum Building: The simplest quantum building policy, QB-COUNT, is implemented by counting 

dynamic instructions as they retire and placing a quantum boundary when the desired quantum 

size is reached. QB-SYNCFOLLOW requires access to information about synchronization, which can be 

obtained by a compiler or annotations in the synchronization libraries. On a weakly ordered 

consistency model, synchronization can be inferred from the fence instructions present in a binary, 

but with stronger models like TSO lock releases are not readily distinguishable from regular stores. 

QB-SHARING requires monitoring memory accesses and determining whether they are to shared 

data or not, which is done using the sharing table (Section 3.1.3.1), discussed later in this section. 

Finally, QB-SYNCSHARING is exactly a logical OR of the decision made by QB-SYNCFOLLOW and QB-

SHARING. Regardless of the quantum building policy used, depending upon the consistency model of 

the underlying hardware, threads must perform a memory fence at the edge of a quantum, which is 

where inter-thread communication occurs. 

We now describe the hardware implementations of DET-SERIAL, DET-SHTAB, DET-TM and DET-

TMFWD, which we label with a “DMP-” prefix to distinguish them from software implementations 

discussed in Section 3.3.2. 
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DMP-SERIAL: DET-SERIAL is implemented in hardware with a token that is passed between 

processors in the deterministic order. The hardware supports multiple tokens, allowing multiple 

deterministic processes at the same time – each process has its own token. 

DMP-SHTAB: The sharing table data-structure used by DET-SHTAB keeps track of the sharing state of 

data in memory. Our hardware implementation of the sharing table leverages the cache line state 

maintained by a MESI cache coherence protocol. A line in exclusive or modified state is considered 

private by the local processor so, as the flowchart in Figure 10 shows, it can be freely read or 

written by its owner thread without holding the deterministic token. The same applies for a read 

operation on a line in shared state. Conversely, a thread needs to acquire the deterministic token 

before writing to a line in shared state, and moreover, all other threads must be at a deterministic 

point in their execution, e.g., blocked. The state of the entries in the sharing table corresponding to 

lines that are not cached by any processor is kept in memory and managed by the memory 

controller, much like a directory in directory-based cache coherence. Note, however, that we do not 

require directory-based coherence per se. This state is transferred when cache misses are serviced. 

Nevertheless, directory-based systems can simplify the implementation of DMP-SHTAB even 

further. 

We now address how the state changes of the sharing table happen deterministically. There are 

three requirements: (1) speculative instructions cannot change the state of the sharing table; (2) a 

coherence request that changes the state of a cache line can only be performed during the serial 

suffix of a quantum when the issuer holds the deterministic token; and (3) all nodes need to know 

when the other nodes are blocked waiting for the deterministic token – this is necessary to 

implement step 3 in Figure 10. To guarantee (1), speculative instructions that need to change the 

sharing table can only do so when they are not speculative anymore. To guarantee (2), for all 

coherence requests performed during the parallel prefix of a quantum, the servicing node nacks any 

request that implies a change in a line’s coherence state, e.g., a downgrade, otherwise the node 

processes the request as usual. Finally, (3) is guaranteed by having all processors broadcast when 

they block or when they unblock. 
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Alternatively, sharing table implementations can use memory tagging, where the tags represent the 

sharing information. Moreover, our evaluation (Section 3.4) shows that tracking sharing 

information at page granularity does not suffer from excessive false sharing. This suggests a page-

level implementation, which is simpler than a line-level implementation. 

DMP-TM and DMP-TMFWD: On top of standard TM support, a hardware implementation of DET-TM 

needs a mechanism to enforce a specific transaction commit order – the deterministic commit order 

of quanta encapsulated inside transactions. DMP-TM does that by allowing a transaction to commit 

only when the processor receives the deterministic token. After a single commit, the processor 

passes the token to the next processor in the deterministic order. DET-TMFWD requires more 

elaborate TM support to allow speculative data to flow from uncommitted quanta earlier in the 

deterministic order. This is implemented by making the coherence protocol aware of the data 

version of quanta, very similarly to versioning protocols used in Thread-Level Speculation (TLS) 

systems [152]. One interesting aspect of DMP-TM is that, if a transaction overflow event is made 

deterministic, it can be used as a quantum boundary, making a bounded TM implementation 

perfectly suitable for a DMP-TM system. Making transaction overflow deterministic requires 

making sure that updates to the speculative state of cache lines happen strictly as a function of 

memory instruction retirement, i.e., updates from speculative instructions cannot be permitted. In 

addition, it also requires all non-speculative lines to be displaced before an overflow is triggered, 

i.e., the state of non-speculative lines cannot affect the overflow decision. 

The implementation choices in a hardware-only DMP system also have performance versus 

complexity trade-offs. DMP-TMFWD offers better performance but requires mechanisms for 

speculative execution, conflict detection and memory versioning, whereas DMP-SHTAB performs a 

little worse but does not require speculation. 

3.2.2 Software-Only Implementation 

A deterministic system can also be implemented using a compiler or a binary rewriting 

infrastructure. The implementation details are largely similar to the hardware implementations. 



 

 

46 

The compiler builds quanta by sparsely inserting code to track dynamic instruction count in the 

control-flow-graph – quanta need not be of uniform size as long as the size is deterministic. This is 

done at the beginning and end of function calls, and at the tail end of CFG back edges. The inserted 

code tracks quantum size and, when the target size has been reached or exceeded, it calls back to a 

runtime system, which implements the various determinism techniques. DET-SERIAL is supported in 

software by implementing the deterministic token as a queuing lock. For DET-SHTAB, the compiler 

instruments every load and store to call back to the runtime system, the runtime system 

implements the logic shown in Figure 12, and the sharing table itself is kept in memory. 

It is also possible to implement a deterministic system using software transactional memory (STM), 

but, as discussed in [34], the assumptions made by STM systems do not mesh well with DET-TM’s 

requirements. First, STM systems assume that most code executes non-transactionally, contrary to 

DET-TM’s transactions-all-the-time approach. With DET-TM, the overhead of running software 

transactions cannot be amortized by executing non-transactional code. Second, transactions in DET-

TM are not lexically scoped at the source language level. Supporting un-scoped transactions 

requires an STM system that can roll back the call stack arbitrarily, which in turn requires 

instrumenting all stack reads and writes – a significant runtime cost.  

3.2.3 Leveraging Commercial Hardware Transactional Memory 

Implementing DMP-TM on top of commercially available hardware TM systems [31–33] is also 

possible. These systems do not offer the ability to modify cache eviction policies, or control the 

speculative forwarding of values between concurrent transactions. The biggest obstacle, however, 

is ensuring transactions commit in a deterministic order. On Intel’s upcoming Haswell architecture 

[33], for example, there is no way to perform non-transactional accesses from within a transaction. 

Such accesses could be used to implement a spin-loop at the end of a transaction to ensure it did not 

commit out of order. In the absence of such an out-of-band communication channel, deterministic 

transaction commit cannot be enforced directly because any bidirectional communication between 

transactions will cause one of the transactions to roll back. 
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However, a mechanism can be built that will detect out-of-order transaction commits by injecting 

synthetic data dependences between quanta. Say we have three threads T0, T1 and T2 executing 

three quanta A, B and C, respectively, and the deterministic commit order is A, then B, then C. At the 

end of quantum A, T0 writes a sentinel value to location A’. At the end of quantum B, T1 reads A’ 

and, if the sentinel value is not present, rolls back its transaction for quantum B. If the sentinel is 

present T1 writes a sentinel value to location B’. At the end of quantum C, T2 then reads B’, 

checking for the sentinel, etc. The data dependences verify that a quantum is serialized in the 

appropriate order, otherwise it (and all quanta ordered after it) will be rolled back. 

This order-violation detection mechanism is likely to trigger many needless rollbacks in practice. 

Optimizing quantum formation to suit the limitations of HTM systems is another interesting open 

question. While these and other issues will prove challenging, we are optimistic that upcoming HTM 

support will accelerate the performance of determinism on real systems. 

3.3 Experimental Setup 

We evaluate both hardware and software implementations of a DMP system. We use the SPLASH2 

[153] and PARSEC [154] benchmark suites and run the benchmarks to completion. Some 

benchmarks were not included due to infrastructure problems such as out of memory errors and 

other system issues such as lack of 64-bit compatibility. Note that the input sizes for the software 

implementation experiments are typically larger than the ones used in the simulation runs due to 

simulation time constraints. We ran our native experiments on a machine with dual Intel Xeon 

quad-core 64-bit processors (8 cores total) clocked at 2.8 GHz, with 8GB of memory running Linux 

2.6.24. In the sections below we describe the evaluation environment for each implementation 

category. 
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3.3.1 Hardware Implementation 

We assess the performance trade-offs of the different hardware implementations of DMP systems 

with a simulator written using PIN [155]. The model includes the effects of serialized execution,3 

quantum building, memory conflicts, speculative execution squashes and buffering for a single 

outstanding transaction per thread in DMP-TM. Note that even if execution behavior is 

deterministic, simulated performance is not deterministic because it relies on traces generated 

(nondeterministically) from Pin. Therefore we run our simulator multiple times, average the results 

and provide error bars showing the 90% confidence interval for the mean. While the model 

simplifies some microarchitectural details, the specifics of the various DMP system 

implementations are modeled in detail. To reduce simulation time, our model assumes that the IPCs 

(including squashed instructions) of all the different DMP modes are the same. This reasonable 

assumption allows us to compare performance between different DMP schemes using our 

infrastructure. Note that the comparison baseline (nondeterministic parallel execution) also runs 

on our simulator. 

3.3.2 Software Implementation 

We evaluate the performance impact of a software-based determinism system (CoreDet4) by using 

a compiler pass written for LLVM v2.2 [156]. Its main transformations are described in Section 

3.2.2. The pass is executed after all other compiler optimizations. Once the object files are linked to 

the runtime environment, LLVM does another complete link-time optimization pass to inline the 

runtime library with the main object code. 

The runtime system provides a custom pthreads-compatible thread management and 

synchronization API. Finally, the runtime system allows the user to control the maximum quantum 

size and the granularity of entries in the sharing table. We configured these parameters on a per-

application basis, with quantum sizes varying from 10,000 to 200,000 instructions, and sharing 

table entries from 64B to 4KB. Our CoreDet experiments run on real hardware, so we took multiple 

                                                             
3 Note that the simulation actually serializes quanta execution functionally, which affects how the system 
executes the program. This accurately models the effects of quanta serialization on application behavior. 
4 This use of the term CoreDet is anachronistic. See Section 1.5 for details. 
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runs, averaged their running time and provided error bars in the performance plot showing the 

90% confidence interval for the mean. The focus of this chapter is on the deterministic algorithms 

and their hardware implementations, so we omit a detailed description and evaluation of our 

software-only implementation. 

3.4 Evaluation 

We first show the scalability of our hardware proposals: in the best case, DMP-SHTAB has negligible 

overhead compared to nondeterministic parallel execution with 16 threads, while the more 

aggressive DMP-TMFWD reduces DMP-SHTAB’s overheads by 20% on average. We then examine the 

sensitivity of our hardware proposals to changes in quantum size, conflict detection granularity, 

and quantum building strategy. Finally, we show the scalability of our software-only COREDET-

SHTAB proposal and demonstrate that it does not unduly limit performance scalability. We believe 

that DMP-SHTAB represents a good trade-off between performance and complexity, and that 

COREDET-SHTAB is fast enough to be useful for debugging and, depending on the application, 

deployment purposes. 

3.4.1 Performance and Scalability 

Figure 13 shows the scalability of our techniques compared to the nondeterministic, parallel 

baseline. We ran each benchmark with 4, 8 and 16 threads, and QB-SYNCSHARING producing 1,000-

instruction quanta. As one would expect, DMP-SERIAL exhibits slowdown nearly linear with the 

number of threads. The degradation can be sub-linear because DMP affects only the parallel 

 
Figure 13: Runtime overheads with 4, 8 and 16 threads. (P) indicates page-level conflict detection; otherwise 
line-level detection is used. 
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behavior of an application’s execution. DMP-SHTAB has 38% overhead on average with 16 threads, 

and in the few cases where DMP-SHTAB has larger overheads (e.g., lu-nc), DMP-TM provides much 

better performance. For an additional cost in hardware complexity, DMP-TMFWD, with an average 

overhead of only 21%, provides a consistent performance improvement over DMP-TM. DMP-SHTAB 

and the TM-based schemes all scale sub-linearly with the number of processors. The overhead for 

TM-based schemes is flat for most benchmarks, suggesting that a TM-based system would be ideal 

for larger DMP systems. Thus, with the right hardware support, the performance of deterministic 

execution can be very competitive with nondeterministic parallel execution. 

3.4.2 Sensitivity Analysis 

Figure 14 shows the effects of changing the 

maximum number of instructions included in a 

quantum. Again, we use the QB-SYNCSHARING 

scheme, with line-granularity conflict detection. 

Increasing the size of quanta consistently degrades 

performance for the TM-based schemes, as larger 

quanta increase the likelihood and cost of aborts since more work is lost. The ability of DMP-

TMFWD to avoid conflicts helps increasingly as the quanta size gets larger. With DMP-SHTAB, the 

effect is more application dependent: most applications (e.g., vlrend) do worse with larger quanta, 

since each quantum holds the deterministic token for longer, potentially excluding other threads 

from making progress. For lu-nc, however, the effect is reversed: lu-nc has relatively large 

communication-free regions per quantum, allowing the token-passing overhead to be amortized 

better. On average, however, DMP-SERIAL is less affected by quantum size. 

 
Figure 14: Performance of 2,000 (2), 10,000 (X) and 
100,000 (C) instruction quanta, relative to 1,000 
instruction quanta. 
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Figure 15 compares conflict detection at cache line 

(32-byte) and page (4096-byte) granularity. 

Increasing the conflict detection granularity 

decreases the performance of the TM-based 

schemes, as they suffer more (likely false) conflicts. 

The gap between DMP-TMFWD and DMP-TM grows 

as the former can avoid some of the conflicts by 

forwarding values. DMP-SERIAL is unaffected, because it does no conflict detection. With DMP-

SHTAB, a coarser granularity can lead to more blocking (e.g., lu-nc and streamcluster) but can also, 

surprisingly, improve performance by taking advantage of spatial locality (e.g., radix, ocean-c). This 

suggests a pro-active privatization/sharing mechanism to improve the performance of DMP-SHTAB. 

On average, our results show that exploiting existing virtual memory support to implement DMP-

SHTAB could be quite effective. 

Figure 16 shows the performance effect of different 

quantum building strategies. Smarter quantum 

builders generally do not improve performance 

much over the QB-COUNT 1,000-instruction 

baseline, as QB-COUNT produces such small quanta 

that heuristic breaking cannot substantially 

accelerate progress along the application’s critical 

path. With 10,000-instruction quanta (Figure 17), 

the effects of the different quantum builders are 

more pronounced. In general, the quantum builders 

that take program synchronization into account 

(QB-SYNCFOLLOW and QB-SYNCSHARING) outperform 

those that do not. DMP-SERIAL and DMP-SHTAB 

perform better with smarter quantum building, 

 

Figure 15: Performance of page-granularity conflict 
detection, relative to line-granularity. 

 

Figure 16: Performance of QB-SHARING (s), QB-
SYNCFOLLOW (sf) and QB-SYNCSHARING (ss) quantum 
builders, relative to QB-COUNT, with 1,000-insn 
quanta. 

 

Figure 17: Performance of quantum building 
schemes, relative to QB-COUNT, with 10,000-insn 
quanta. 
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while the TM-based schemes are less affected, as TM-based schemes recover more parallelism. QB-

SHARING works well with DMP-SHTAB and PARSEC, and works synergistically with synchronization-

aware quantum building: QB-SYNCSHARING often outperforms QB-SYNCFOLLOW (as with barnes). 

3.4.3 Characterization 

Table 2 provides more insight into our sensitivity results. For DMP-TM, with both line- and page-

level conflict detection, we give the average read- and write-set sizes (which show that our TM 

buffering requirements are modest), and the percentage of quanta that suffer conflicts. The 

percentage of conflicts is only roughly correlated with performance, as not all conflicts are equally 

expensive. For the DMP-SHTAB scheme, we show the amount of execution overlap of a quantum 

with other quanta (parallel prefix), as a percentage of the average quantum size. This metric is 

highly correlated with performance: the more communication-free work exists at the beginning of 

each quantum, the more progress a thread can make before needing to acquire the deterministic 

token. Finally, we give the average quantum size and the percentage of quanta breaks caused by the 

heuristic of each of the quantum builders, with a 10,000-instruction maximum quanta size. The 

average quantum size for QB-COUNT is uniformly very close to 10,000 instructions, so we omit those 

results. Since the average quantum size for QB-SYNCFOLLOW is generally larger than that for QB-

Table 2: Characterization of hardware DMP results. †Same granularity as used in Figure 13. 

Benchmark 

DMP with 1,000-insn quanta 
QB Strategy, with 10,000-insn quanta†  

TM ShTab 
Line Page Line Page SyncFollow Sharing SyncSharing 

R/W 
set size 

% 
conflicts 

R/W 
set size 

% 
conflicts 

% Q 
overlap 

% Q 
overlap 

avg Q 
size 

% sync 
breaks 

avg Q 
size 

% sharing 
breaks 

avg Q 
size 

% sync 
breaks 

barnes 27/9 37 9/2 64 47 46 5929 42 4658 67 5288 54 
cholesky 14/6 23 3/1 39 31 38 6972 30 3189 94 6788 35 

fft 22/16 25 3/4 26 19 39 9822 1 3640 62 4677 49 
fmm 30/6 51 7/1 69 33 29 8677 15 4465 65 5615 50 
lu-nc 47/33 71 6/4 77 14 16 7616 24 6822 37 6060 42 

ocean-c 46/15 28 5/2 34 5 46 5396 49 3398 73 3255 73 
radix 16/20 7 3/7 13 31 42 8808 15 3346 71 4837 57 

vlrend 27/8 38 7/1 50 41 39 7506 28 7005 45 6934 38 
water-sp 32/19 19 5/1 45 40 37 7198 5 5617 30 6336 20 

SPLASH amean 30/16 31 5/2 44 29 35 7209 27 4987 57 5363 48 
blacksch 28/9 8 14/1 10 48 48 10006 <1 9163 10 9488 7 
bodytr 11/4 16 3/2 28 39 19 7979 25 7235 31 6519 37 

fluid 41/8 76 8/2 75 43 40 871 98 2481 95 832 99 
strmcl 36/5 28 10/2 91 60 12 9893 1 1747 79 2998 77 

PARSEC amean 29/6 36 9/1 51 45 30 7228 19 5156 54 3880 64 
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SHARING, and the former outperforms the latter, we see that smaller quanta are not always better: it 

is important to choose quantum boundaries well, as QB-SYNCFOLLOW does. 

3.4.4 CoreDet5: Performance and Scalability 

Figure 18 shows the performance and scalability of 

COREDET-SHTAB compared to the parallel baseline. 

We see two classes of trends, slowdowns that 

increase with the number of threads (e.g., barnes) 

and slowdowns that don’t increase much with the 

number of threads (e.g., fft). For benchmarks in the 

latter class, adding more threads substantially 

improves raw performance. Even for benchmarks 

in the former class, while adding threads does 

decrease raw performance compared to the 

corresponding parallel baseline, the slowdown is sublinear in the number of threads. Thus, adding 

threads still results in an improvement in raw performance. In summary, this data shows that 

COREDET-SHTAB does not unduly limit performance scalability for multithreaded applications. 

3.5 Discussion 

Our evaluation of the various DMP schemes leads to several conclusions. At the highest level, the 

conclusion is that deterministic execution in a multiprocessor environment is achievable on future 

systems with little, if any, performance degradation. The simplistic DMP-SERIAL has a geometric 

mean slowdown of 6.5x on 16 threads. By orchestrating communication with DMP-SHTAB, this 

slowdown reduces to a geometric mean of 37% and often less than 15%. By using speculation with 

DMP-TM, we were able to reduce the overhead to a geometric mean of 21% and often less than 

10%. Through the addition of forwarding with DMP-TMFWD, the overhead of deterministic 

execution is less than 15% and often less than 8%. Finally, software solutions can provide 

                                                             
5 This use of the term CoreDet is anachronistic. See Section 1.5 for details. 

 

Figure 18: Runtime of COREDET-SHTAB relative to 
nondeterministic execution. 
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deterministic execution with a performance cost suitable for debugging on current generation 

hardware, and depending upon the application, deployment. 

Now that we have defined what deterministic shared memory multiprocessing is, shown how to 

build efficient hardware support for it, and demonstrated that software solutions can be built for 

current generation hardware, we discuss several additional points. These are: (1) performance, 

complexity and energy trade-offs; (2) support for debugging; (3) interaction with operating system 

and I/O nondeterminism; and (4) making deterministic execution portable for deployment. 

Implementation Trade-offs. Our evaluation showed that using speculation in the hardware-based 

implementation pays off in terms of performance. However, speculation potentially wastes energy, 

requires complex hardware and has implications in system design, since some code, such as I/O 

and parts of an operating system, cannot execute speculatively. Fortunately, DET-TM, DET-SHTAB 

and DET-SERIAL can coexist in the same system. One easy way to co-exist is to switch modes at a 

deterministic boundary in the program (e.g., the edge of a quanta). More interestingly, a DMP 

system can be designed to support multiple modes co-existing simultaneously. This allows a DMP 

system to use the most convenient approach depending on what code is running, e.g., using 

speculation (DET-TM) in user code and avoiding it (DET-SHTAB) in kernel code. 

DMP systems could also be built in a hybrid hardware-software fashion, instead of a purely 

hardware or software implementation. A hybrid DET-TM system, for example, could leverage 

modest hardware TM support while doing quantum building and deterministic ordering more 

flexibly in software with low performance cost. A hybrid DET-SHTAB system could efficiently 

implement the sharing table by leveraging modern cache coherence protocols; exposing coherence 

state transitions could enable a simple high performance hybrid DET-SHTAB implementation in the 

near future. Chapter 4 explores the idea of a hybrid hardware-software system in greater depth. 

Supporting Debugging Instrumentation. In order to enable a debugging environment in a DMP 

system, we need a way of allowing the user to instrument code for debugging while preserving the 

interleaving of the original execution. To accomplish this, implementations must support a 
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mechanism that allows a compiler to mark code as being inserted for instrumentation purposes 

only; such code will not affect quantum building, and thus preserves the original behavior. 

Dealing with nondeterminism from the OS and I/O. There are many sources of nondeterminism 

in today’s systems, from concurrently running processes to the state of hardware predictors and 

arbiters. A DMP system hides most of them, allowing many multithreaded programs to run 

deterministically. Besides hiding the nondeterminism of the microarchitecture, a DMP system also 

hides the nondeterminism of OS thread scheduling by using the deterministic token to provide low-

level deterministic thread scheduling, causing threads to run in the same order on every execution. 

Nevertheless, challenging sources of nondeterminism remain. 

One challenge is that parallel programs can use the operating system to communicate between 

threads. A DMP system needs to make that communication deterministic. One way to address the 

problem is to execute OS code deterministically, which was discussed earlier in this section. 

Alternatively, a layer between the operating system and the application can be utilized to detect 

communication and synchronization via the kernel and provide it within the application itself. This 

is the solution employed by our software implementation. 

Another challenge is that many operating system API calls allow nondeterministic outcomes. 

System calls such as read may lead to variations in program execution from run to run, as their API 

specification itself permits such variation. There are two ways to handle nondeterministic API 

specifications: ignore them – any variation in outcome could also have occurred to sequential code; 

or fix them, by providing alternative, deterministic APIs. With read, a solution is to always return 

the maximum amount of data requested until EOF. The dOS [145] deterministic OS explores issues 

of OS-nondeterminism even further, providing a deterministic process abstraction that provides 

deterministic shared memory communication and identifies other sources of nondeterminism in 

the POSIX API. dOS allows programmers to write handlers for these nondeterministic sources, 

simplifying multithreaded record-and-replay and the replication of multithreaded programs. 
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The final, and perhaps most difficult challenge is that the real world is simply nondeterministic. 

Ultimately, programs interact with remote systems and users, which are nondeterministic and can 

affect thread interleavings. With DMP, the inputs on which a program’s output depends are fewer, 

and easier to identify and control than with nondeterministic multiprocessors. Though the sources 

of these inputs may be nondeterministic, these inputs are much lower-volume than the totality of 

shared memory communication. Thus, DMP allows many multithreaded programs to execute 

completely deterministically, and allows the behavior of the remaining programs to be debugged, 

recorded and replicated more easily. 

Support for deployment. We contend that deterministic systems should not just be used for 

development, but for deployment as well. We believe systems in the field should behave like 

systems used for testing. The reason is twofold. First, developers can have higher confidence their 

programs will work correctly once deployed. Second, if the program does crash in the field, then 

deterministic execution provides a meaningful way to collect and replay crash history data. 

Supporting deterministic execution across different physical machines places additional constraints 

on the implementation. Quanta must be built the same across all systems. This means machine-

specific effects cannot be used to end quanta (e.g., micro-op count, or a full cache-set for bounded 

TM-based implementations). Furthermore, passing the deterministic token across processors must 

be the same for all systems. This suggests that DMP hardware should provide the core mechanisms, 

and leave the quanta building and scheduling control up to software. The Calvin [144] system 

explores similar issues (see Section 2.5.3.1). 

3.6 Conclusions 

This chapter made the case for fully deterministic shared memory multiprocessing. We have shown 

that the key requirement to support deterministic execution is deterministic communication via 

shared memory. Fortunately, this requirement still leaves room for efficient implementations. We 

described a range of implementation alternatives, in both hardware and software, with varying 

degrees of complexity and performance cost. Our simulations show that a hardware 

implementation of a DMP system can have negligible performance degradation over 



 

 

57 

nondeterministic systems. We also briefly described our compiler-based software-only 

deterministic system and show that while the performance impact is significant, it is quite tolerable 

for debugging. 

While the benefits for debugging are obvious, we suggest that parallel programs should always run 

deterministically. Deterministic execution in the field has the potential to increase reliability of 

parallel code, as the system in the field would behave similarly to in-house testing environments, 

and to allow a more meaningful collection of crash information. 

Perhaps contrary to popular belief, a shared memory multiprocessor system can execute programs 

deterministically with little performance cost. We believe that deterministic multiprocessor 

systems are a valuable goal, as they abstract away several difficulties in writing, debugging and 

deploying parallel code. 
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Chapter 4 Trading Strong Memory Consistency for Simpler 
Determinism 

Relaxing memory ordering has proven instrumental in improving performance and scalability in 

conventional nondeterministic shared-memory multiprocessor architectures [157,158]. While 

speculation alleviates some of the costs of strong ordering [55,67,71,159] in complex architectures, 

we still relax memory ordering to allow compiler optimizations and to simplify hardware. 

Interestingly, strong memory ordering has a much higher cost in deterministic multiprocessing 

than in nondeterministic multiprocessing. Therefore we argue that, in deterministic 

multiprocessors, it is even more important to give up strong memory ordering in favor of higher 

performance and lower complexity. 

This chapter discusses RCDC, a Relaxed Consistency Deterministic Computer system. RCDC 

improves upon the DMP design presented in Chapter 3 in two ways. First, RCDC implements a new 

deterministic execution algorithm, called DET-HB (for “happens-before”), which relaxes memory 

consistency while still supporting data-race-free-based memory models (e.g., those of Java and 

C++). This improves performance and scalability by requiring fewer costly fences, which leads to 

less serialization. DET-HB does not employ speculation and does not sacrifice determinism in the 

presence of races.  

Second, RCDC uses a lower complexity hybrid hardware/software implementation in which the 

hardware provides only two simple mechanisms, software-controlled store buffering and 

instruction counting, leaving the rest of the implementation to software. Implementing store 

buffering in hardware has the pleasant side effect of reducing the effects of false sharing. RCDC can 

be implemented on a commodity multiprocessor architecture and does not interfere with software 

(e.g., the OS) that does not choose to use it.  
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4.1 Relaxed-Consistency Deterministic Execution 

This section presents our new deterministic execution algorithm, DET-HB. For expository purposes, 

we first describe the DET-TSO deterministic execution algorithm [34], which DET-HB builds upon.  

4.1.1 DET-TSO: Store Buffering 

Isolating threads is a core component of providing deterministic execution. Store buffers are a 

common and useful mechanism for achieving this isolation. In this approach, each quantum round 

is divided into three modes, a parallel mode, a commit mode, and a serial mode. During parallel 

mode, all stores are buffered in a thread-local store buffer, giving each thread a private view of 

shared memory. After parallel mode, all threads enter a commit mode in which the local store 

buffers are published to the global memory space. This commit happens deterministically. The 

effect is a serial commit order, but the implementation uses parallelism to avoid a sequential 

bottleneck. After commit mode is a short serial mode in which threads execute in a deterministic 

serial order and operate on shared memory directly. Serial mode is used to execute atomic 

synchronization operations, as described below. 

Figure 19a illustrates one round of execution in DET-TSO. Each thread executes one quantum per 

round, where, as in DET-SERIAL, a quantum is some deterministic number of instructions. DET-TSO is 

deterministic due to four properties: (1) quantum lengths are deterministic; (2) threads are 

isolated in parallel mode, preventing nondeterministic interference from other threads; (3) commit 

mode ensures that writes to shared memory happen in a deterministic order; and (4) serial mode 

 

Figure 19: Timeline of a quantum round in DET-TSO and DET-HB, showing the division of each round into parallel, 
serial, and commit modes. DET-HB improves upon DET-TSO by allowing synchronization to happen in parallel 
mode, eliminating the need for serial mode. 
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ensures that atomic synchronization happens in a deterministic order. Note that the deterministic 

guarantee offered by DET-TSO does not depend on a race-free assumption – data races are resolved 

deterministically as a result of the isolation provided by parallel mode, combined with the 

deterministic order on writes provided by commit mode. 

Notice that execution under DET-TSO is not sequentially consistent. Stores are not globally visible 

until commit mode, effectively reordering them after loads in the same quantum. This reordering 

breaks atomic operations like compare-and-swap (CAS), as a CAS is an atomic read-write pair but 

DET-TSO will reorder the write to commit mode, breaking atomicity. This issue reveals the need for 

serial mode – during serial mode, atomic operations execute atomically and deterministically. 

Further, it reveals the need to define the semantics of a memory fence. In DET-TSO, thread T ends its 

parallel mode when it reaches a memory fence. This flushes T’s local store buffer, implementing the 

semantics of a full memory fence. Because DET-TSO does not distinguish between different types of 

memory fences, it implements the total-store-order (TSO) memory model. 

DET-TSO achieves high performance when serial mode is empty and parallel mode is balanced, 

meaning that all quanta in a round execute in the same amount of real time. Serial mode is empty 

when synchronization is rare; prior work [34] has shown how to use instruction counting to 

achieve balanced parallel modes when serial mode is empty. When synchronization does happen, it 

forces DET-TSO into serial mode, whereby every synchronization operation causes global 

coordination. Synchronization not only causes serialization but also imbalance in parallel mode, 

which results in additional lost parallelism due to excess waiting. When synchronization is 

frequent, the effects of serialization and imbalance dominate and performance suffers. 

4.1.2 DET-HB: Leveraging Data-Race-Free Memory Models 

DET-HB addresses the major weakness of DET-TSO: synchronization. Like DET-TSO, DET-HB uses 

deterministic store buffers and divides execution into quantum rounds with parallel modes and 

commit modes. However, DET-HB introduces a new approach to deterministic synchronization that 

improves on DET-TSO in two respects. First, DET-HB implements a data-race-free [157] (DRF) 
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relaxed memory model based on the happens-before relation between threads (hence “DET-HB”). 

This model requires fewer memory fences than TSO, which makes parallel mode less likely to end 

early, thus increasing parallelism. However, weakening consistency alone does not remove all 

impediments to scalability, as DET-TSO requires that synchronization execute in a globally 

serialized fashion. To remove this further bottleneck, DET-HB eliminates the need for an explicit 

serial mode by using the Kendo algorithm [23] to execute synchronization directly in parallel mode, 

while still providing determinism even for programs with data races. Overall, these optimizations 

let DET-HB execute with less serialization and less imbalance than DET-TSO, leading to improved 

parallelism as illustrated in Figure 19b. 

The key observation of DET-HB is that language-level memory models have weaker consistency 

guarantees than TSO. Specifically, Java [9] and C++ [10] define consistency models based on the 

data-race-free model [157]. From the programmer’s perspective, it does not matter that the 

execution layer (e.g., the hardware) provides TSO when other layers of the system (e.g., the 

compiler) guarantee only DRF. Further, the need to precisely control memory visibility causes 

nondeterministic processor-local fences to become global operations in deterministic systems like 

DET-TSO, which suggests that strong memory ordering has a much higher cost in deterministic 

systems than in nondeterministic systems. Both these observations imply that deterministic 

systems should relax consistency as much as possible. As DRF-based models are specified by high-

level languages, they represent the limit to which memory ordering can be relaxed. 

4.1.2.1 Synchronization in DET-HB 

As DET-TSO is a deterministic version of a TSO consistency model, DET-HB is a deterministic version 

of a DRF consistency model. DET-HB differs from DET-TSO in its approach to synchronization. The 

rest of this section presents the basic ideas of DET-HB. We describe details of the DET-HB 

synchronization algorithm along with our synchronization library in Section 4.3.4. 

Consider mutex locks in a language with a DRF-like model, such as Java or C++. In these languages, 

the visibility of stores is guaranteed only along happens-before edges, which can arise from 
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program order between consecutive operations in a thread or from synchronization operations 

across threads. When thread T acquires lock L, this creates a happens-before edge E from the 

previous releaser of L to T. The DRF model guarantees that from this point forward, T will see 

stores that transitively happen-before its acquire of L. Other stores need not be visible. Therefore, 

in DRF models, T needs a memory fence after acquiring lock L only when happens-before edge E is 

not redundant. When E is redundant, the fence can be elided. 

DET-HB exploits two happens-before redundancies: (1) thread-local edges, and (2) cross-quantum 

edges. First consider thread-local redundancies: if T was the previous releaser of L, then lock L has 

not been handed off to another thread, and we say that happens-before edge E is local to thread T. A 

fence is not needed in this case because edge E is redundant with program order. Prior work has 

had this same insight but in the context of nondeterministic systems, and furthermore has shown 

that lock locality is very common in Java programs [30, 33]. 

Cross-quantum redundancies are more interesting. They follow from the observation that all 

quanta in round N are connected to all quanta in round N + 1 by implicit happens-before edges. 

These implicit edges arise from the bulk-synchronous style of execution used by DET-HB, illustrated 

in Figure 19b. The important result is that an explicit fence is not necessary when synchronization 

is separated by a quantum boundary. Thus, by matching quantum length with the frequency of 

synchronization, DET-HB can eliminate many unnecessary fences, increasing performance and 

scalability. 
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Figure 20b demonstrates both the above redundancies. An example of a redundant cross-quantum 

edge is shown when thread T0 acquires lock B in quantum 2: this creates a happens-before edge 

with the release of lock B by thread T1 in quantum 1. Because this edge crosses a quantum 

boundary (i.e., it crosses a commit mode), T0 does not need to execute an explicit fence when 

acquiring lock B. In contrast, note that under DET-TSO, T0 must execute a fence, i.e., end its 

quantum, before acquiring lock B. 

An example of a thread-local redundancy is also shown in quantum 2, where T0 reacquires lock B. 

As T0’s updates are automatically visible to itself, there is no need for a fence. The extra 

serialization necessary to enforce the stronger TSO memory model is illustrated in Figure 20a. 

Further, Figure 20b shows that DET-HB does not require a serial mode, in contrast to DET-TSO, 

which executes all lock acquires in serial mode. Even with the weaker DRF memory model, 

serializing all synchronization eliminates the ability to exploit thread-local redundant fences. Recall 

that DET-TSO uses a serial mode to guarantee both atomicity and a deterministic order of 

synchronization. For correctness and determinism, DET-HB must make these same two guarantees. 

Our solution is to use the Kendo algorithm [26] to impose a deterministic total order on all 

synchronization within a single quantum round. This algorithm allows synchronization to operate 

directly on the global memory space, bypassing the store buffer so the operation happens 

atomically. We describe this algorithm along with our synchronization library in Section 4.3.4. 

 

Figure 20: A comparison of execution under DET-HB with execution under DET-TSO, showing how DET-HB extracts 
more parallelism from programs with frequent synchronization. 
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4.1.2.2 Language Memory Models 

Even though DRF does not specify the semantics of races, DET-HB’s deterministic guarantees hold 

even for programs with data races. DET-HB’s DRF memory model naturally matches the C++ 

memory model; however, the Java memory model specifies some behavior for data races, e.g., to 

prevent “out-of-thin-air” values. DET-HB does not itself introduce any potential “out-of-thin-air” 

values because it does not employ any form of speculation. A Java compiler must (still) ensure that 

its optimizations do not violate the Java memory model and also must ensure that proper 

synchronization and fences are inserted. Therefore, compiling Java code for DET-HB’s memory 

model is no more complex than compiling for other weakly ordered architectures. 

4.2 RCDC System Overview 

RCDC provides an efficient 

implementation of DET-HB 

through a combination of 

hardware and software 

mechanisms, as summarized 

in Figure 21. The four main 

components of RCDC are (1) a 

precise instruction-count mechanism to divide each thread’s instruction stream into balanced 

quanta efficiently, (2) a store-buffer mechanism that allows threads to execute in isolation from 

other threads, (3) a deterministic commit mechanism that concludes each quantum round, and (4) 

a custom synchronization library that implements a pthreads interface while enforcing DET-HB’s 

memory-consistency model. These components are implemented as a combination of hardware and 

software designed for maximal flexibility and minimal hardware complexity. 

Quantum formation is an ideal use case for hardware, as counting instructions involves nearly 

zero overhead in hardware but causes substantial slowdown in software. The hardware 

instruction-counting mechanism simply counts instructions as they retire, triggering a user-level 

 

Figure 21: RCDC system overview, showing the division of responsibility 
between hardware and software. The shaded boxes show RCDC’s 
additions. 
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QuantumReached trap when a pre-defined total is reached. This trap is responsible for actually 

starting the commit process that makes buffered data visible. 

Our synchronization library requires the ability to disable and enable instruction counting for the 

local processor, and also to read the current instruction counts of remote processors. For this 

purpose the instruction-count mechanism can be controlled and queried via the StopInsnCount, 

StartInsnCount, and ReadInsnCount instructions. 

Deterministic quantum formation beyond simply counting instructions is also possible. Section 

4.3.1 describes a more advanced strategy that uses opcodes and store buffer hit/miss information 

to construct quanta with better balance. 

The store buffer mechanism is also a natural fit for hardware, where processor-private caches can 

isolate an executing thread from other threads in the system (like in hardware transactional 

memory, but without an abort mechanism) with additional bits of cache line state. We rely on 

simple compiler modifications or binary rewriting to replace existing store instructions with our 

new BufferedStore instruction. With more sophisticated analysis, ordinary non-buffered store 

instructions can, without any loss of determinism, replace buffered stores to locations that are 

provably thread-private. This increases the effective capacity of the store buffer without additional 

hardware resources. 

The deterministic commit mechanism is triggered by software, via a new Commit instruction. The 

actual commit process is implemented in hardware, as described in Section 4.3.3. The commit 

process is invoked by software in response to QuantumReached and BufferFull traps, as well 

as to enforce the memory consistency requirements of DET-HB. Hardware triggers a BufferFull 

trap immediately when a store buffer overflows. Note that our cache replacement policy, described 

in Section 4.3.2.1, is designed to ensure that store buffer overflows happen deterministically. 

Finally, our custom synchronization library acts as a drop-in replacement for pthreads. It uses the 

instructions described above to enforce DET-HB’s consistency model. Because the decision of when 
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to commit is left to software, our synchronization library can easily be modified to implement other 

consistency models, e.g., DET-TSO. 

4.3 Implementation 

We now discuss implementation details for the major hardware and software components 

described in Section 4.2. 

4.3.1 Quantum Formation 

For quantum formation, the hardware does instruction counting and sets a trap after a software-

defined quantum budget is exhausted. This mechanism is initialized by system software when a 

process is created. This code registers a user-level trap that is invoked whenever the quantum size 

is reached, establishes the size of quanta, and executes the StartInsnCount instruction. 

Thus far, we have discussed quantum formation in terms of counting instructions. However, it is 

possible to provide better quantum balance by giving instructions non-uniform weights, e.g., based 

on opcode. One useful optimization leverages the deterministic contents of the store buffer. 

Memory accesses deterministically either hit in the store buffer (i.e., hit to a written cache line) or 

miss the store buffer (which means either hitting to an unwritten cache line or missing to the next-

level cache or beyond). Knowing whether the memory operation is a load or a store lets us, in many 

cases, accurately assess the latency of that operation deterministically. Loads that miss the store 

buffer are often hits to a clean line, so we assign them a low weight. But stores that miss in the store 

buffer tend to be cache misses, and thus have high latency. Assigning higher weights to such stores 

results in better quantum balance since the weight assigned to each instruction better 

approximates its actual latency. Finally, we add to the sum of instruction weights as instructions 

retire, allowing access to hit/miss information, and also avoiding any issues with wrong-path 

instructions. 
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4.3.2 Buffering 

RCDC’s hardware provides support for buffering data, while software (i.e., the compiler) controls 

what data is buffered via the BufferedStore instruction. This section details how buffering 

support is implemented as an extension to the cache hardware. 

Cache-based data buffering imposes a few system requirements: (1) buffered lines cannot be 

provided to remote requests; (2) the commit protocol, which makes buffered data available to all 

processors, needs to be deterministic; and (3) the system needs to support context switches. RCDC 

provides this functionality on top of a conventional directory-based MOESI cache coherence 

protocol and implements buffering in private caches, while still naturally supporting shared caches. 

For simplicity of explanation, we consider only a single private L1 cache per processor in the 

discussion below. 

4.3.2.1 Cache Extensions for Store Buffering 

Each L1 cache line is extended with a write-mask, which has as many bits as bytes in the cache line. 

When a BufferedStore instruction is executed, the corresponding write-mask bits are set. 

Consequently, lines with non-null write-masks contain buffered data. 

To ensure that store buffer capacity is exhausted deterministically, we modify the cache eviction 

policy to always preferentially evict unwritten cache lines from a set. This ensures determinism 

while maximizing the amount of progress a processor can make before running out of store buffer 

capacity. When all lines of a cache set are buffered and an eviction needs to happen, RCDC triggers a 

BufferFull trap and the runtime system ends the quantum. 

Non-buffered stores to cache lines in the non-buffered state proceed normally, following the 

conventional MOESI protocol. Non-buffered stores to cache lines in the buffered state are treated 

like BufferedStores. Note that buffering data from a non-buffered store is valid with respect to 

the instruction semantics as it is always correct to buffer private data – it just will not bring any 

benefit. If a non-buffered store necessarily cannot be buffered because of program semantics, then 

software needs to guarantee that this does not happen (e.g., using careful memory layout). 
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4.3.2.2 Coherence Operations 

We augment the transitions in a conventional MOESI protocol to handle our new BufferedStore 

instruction. This requires three changes to a conventional MOESI protocol. First, if an L1 cache 

receives a request for a line whose write-mask is non-null, the request is nacked. The requester 

then goes to a shared cache (or memory) to fulfill its request. This is necessary to guarantee that 

buffered data is never provided to remote requests. Second, a line must be in the Shared state 

before it can be written by a BufferedStore instruction. Finally, our commit protocol (Section 

4.3.3) moves lines to the Owned state after they have been published. As a consequence of these last 

two changes, moving a line to the Shared state to satisfy a BufferedStore may require a write-

back operation (e.g., because that line may have been buffered in the previous round). 

Interestingly, isolating each thread’s updates into separate store buffers also yields a solution to 

false sharing, by allowing threads to perform updates to the same cache line within a quantum 

round without any serialization via the coherence protocol. The line becomes temporarily 

incoherent, but the updates are merged deterministically at the end of the round. If threads’ 

updates are in conflict (i.e., two threads update the same bytes), there is a data race in the user 

program – data-race free programs can never observe this relaxation of coherence. This approach is 

similar to delayed consistency [160] for nondeterministic multiprocessors. 

4.3.2.3 Context Switches 

The kernel can context switch away from and back to a thread at any time, even during parallel 

mode, as long as it invokes the SaveBufferedLines and RestoreBufferedLines 

instructions to save and restore a thread’s current store buffer. 

These instructions make use of a per-thread, in-memory data structure called the Buffered Data 

Table (BDT), which contains the saved store buffer contents for a given thread. A BDT has a row for 

each cache line in a processor’s store buffer, with one column for the line’s data, another for the 

line’s write-mask, and a third for a “next” pointer whose use is described below. A row in the BDT is 

considered valid if its write-mask is non-null. The SaveBufferedLines instruction simply 
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flushes all buffered lines from the cache to the BDT. As it does so, it clears the write-masks of all 

buffered lines in the L1 cache and transitions them to the Invalid state, making them available for 

the next thread to be switched in. The RestoreBufferedLines instruction iterates over all 

buffered lines in a given BDT, restoring them into the L1 cache. After a line is restored from the BDT 

to the L1 cache, its write-mask is cleared in the BDT to signify that the line is no longer saved in-

memory. 

These two instructions additionally maintain a separate, per-process table called the Buffered 

Address Map (BAM). The BAM is a table of pointers mapping each line address to a linked list of 

BDT entries storing the in-memory versions of that line. The pointer in each BDT entry points to the 

next thread’s BDT entry in the list. Each BDT entry represents the saved state of one buffered 

version of the given cache line. By walking the list, the BAM table can be used to enumerate all in-

memory versions of a buffered line. BAMs are used during the commit process as described in the 

following section. 

We highlight that these instructions can be expensive, not only on their own, but also because of the 

extra work they impose on the commit process. In Section 4.4 we describe a few kernel scheduling 

optimizations that make these instructions infrequent. 

4.3.3 Committing Buffered Data 

In DET-HB, the transition to commit mode is controlled by software, which uses the Commit 

instruction to initiate the actual commit process in hardware. The RCDC software runtime executes 

the following pseudocode for each thread when it reaches its quantum boundary, e.g., when its 

quantum budget has been exhausted: 

1 end_quantum() { 
2   global_barrier() 
3   Commit 
4   global_barrier() 
5 } 
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The first barrier represents the transition from parallel mode to commit mode; the Commit 

instruction represents commit mode; and the second barrier represents the transition back to 

parallel mode to start the next quantum (see Figure 19b). The first barrier ensures that all threads 

are ready to commit, while the second barrier ensures that all threads have finished publishing the 

contents of their store buffers. 

The goal of the commit process is to merge buffered data deterministically and publish it globally. If 

a line has no buffered data in any cache, commit has no effect on that line. When a line has buffered 

data in one or more caches, the commit process deterministically merges all buffered data and then 

publishes this data to the rest of the system by moving the merged line to the Owned state. 

A processor executes the commit instruction by iterating over all lines in its cache that have 

buffered data, i.e., those lines with non-null write-masks. For each of those lines, the processor 

executes the commit protocol. The commit protocol coordinates with the directory and with other 

processors, collects all buffered versions of a line, and then deterministically merges them. Once the 

commit protocol has been executed for all of the processor’s buffered lines, the Commit instruction 

retires. At this point, the processor’s entire store buffer has been globally published. 

The commit protocol needs to handle two cases: committing when all buffered versions of a line are 

in-cache; and committing when at least one buffered version of a line is out-of-cache (i.e., because 

the thread was context-switched out). We describe both cases in detail below. 

4.3.3.1 In-cache Commit (all threads running) 

The processor issues a commit message for the given line to the directory; the directory replies 

with an acknowledgment for commit and a list of sharers for that line. The processor sends a 

commit message to each sharer. Upon receipt of a commit message, each sharer returns a reply 

indicating if it has the line, and if so, it includes the write-mask and the data for the requested line, 

as well as its deterministic order id; it then clears its write-mask and moves the line to Invalid state. 

When the committing processor receives a reply, it merges the other processor’s data into its own 
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line. Once the processor has collected replies from all sharers, it clears the line’s write-mask and 

moves the line to the Owned state, making the line visible to all processors. 

The merge algorithm takes lines from two processors, P0 and P1, and computes the result of P0’s 

writes happening before P1, where P0 has the smaller order id. This algorithm is straightforward 

and has been described by prior work [34]. 

Note that if the directory nacks the request for commit of a given line, this implies that some other 

processor has already started the commit for that line; the requester then waits until it receives a 

commit request for the line from another processor. Also note that while the commit process can 

actually happen in any order, the final state is guaranteed to be deterministic because the merge 

process is deterministic. Moreover, when the sharers list includes only the committing processor, 

no merge is necessary; the processor simply clears the line’s write-mask and moves the line to the 

Owned state. 

Figure 22 illustrates how RCDC deals with multiple caches trying to commit to the same line A. 

Processors P0, P1, and P2 all have buffered copies of line A. First, P0 and P2 send concurrent 

commit requests for line A to the directory (1a, 2a). P0’s message arrives first, and the directory 

responds to P0 with an acknowledgment message (1b), including the list of sharers, allowing P0 to 

proceed with committing line A. Since commit has started for line A, the directory responds to P2 

with a negative acknowledgment (2b) and P2 waits for a commit request (which it is bound to get 

 
Figure 22: RCDC commit process when all application threads are scheduled. Shaded areas are RCDC additions. 
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since it is guaranteed that another processor is committing A). P0 continues by sending commit 

messages to all sharers of A (3a, 3b). P1 and P2 respond with a message containing their data, write 

mask, and deterministic order (4a, 4b) and then invalidate their copy of the line. Upon receiving the 

acks, P0 deterministically merges the data with its own (5) and notifies the directory that line A has 

been committed (6). 

4.3.3.2 Out-of-cache Commit (at least one thread is switched out) 

We now describe the more general case where at least one sharer has been switched out. RCDC 

supports this case with a simple extension to the directory: each directory entry, in addition to the 

sharers, also includes a single bit called the in-memory bit, which indicates if the line has data in an 

in-memory Buffered Data Table. This in-memory bit is set by the SaveBufferedLines 

instruction. 

When a committing processor issues a commit message for a line to the directory, the directory 

replies with an acknowledgment and a list of sharers as before, and the processor communicates 

with the sharers as before. However, the directory also replies with the state of the in-memory bit. 

If the in-memory bit is set, the committing processor walks rows in Buffered Data Tables via the 

Buffered Address Map table to enumerate all in-memory versions of the line being committed. The 

processor merges these versions into its own line using the same algorithm as before, and then 

sends a commit-complete message to the directory. At this point the directory can clear the in-

memory bit. 
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Note that commit still proceeds correctly even if the only thread that has a given line buffered is 

switched out, since that thread will invoke the Commit instruction when it is eventually switched 

in. (The barrier on line 4 of end_quantum ensures this.) Also, note that the directory serves as a 

serialization point for the cache line operations performed by the Commit, SaveBufferedLines, 

and RestoreBufferedLines instructions; this prevents races between the commit process and 

context switches, making it safe for the kernel to switch out a thread at any time without sacrificing 

determinism (note especially that a thread can be safely switched out between lines 2 and 3 of 

end_quantum). 

Figure 23 illustrates how RCDC commits line A when a thread that has buffered line A has been 

switched out. P0, P1, and P2 all had buffered copies of line A. The thread on P2 is ready for commit 

but was switched out just before the commit process starts. The buffered data is saved in P2’s 

Buffered Data Table in memory, and the in-memory bit set in the directory. P0 sends a commit 

message (1a) to the directory for line A. The directory replies with an acknowledgment (1b), 

including the list of sharers and the in-memory bit. P0 then sends a commit message for line A to P1 

(2a), which replies with an acknowledgment (2b) before invalidating the copy of the line. At the 

same time, P0 accesses the Buffered Address Map to enumerate the list of in-memory lines, and 

notices that P2’s BDT contains a copy of line A (3a). P2’s saved line is found and returned to P0 (3b), 

and then removed from the Buffered Data Table. Next, P0 merges both received versions of line A 

 

Figure 23: RCDC commit process when an application thread is switched out. 
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with its own version (4) and clears the write mask. Finally, P0 notifies the directory that the commit 

for line A is complete (5), and the directory resets line A’s in-memory bit. 

4.3.4 Synchronization Library 

Our synchronization library is implemented 

using two basic building blocks: conditional 

memory fences and deterministic serialization. 

Conditional memory fences enforce DET-HB’s 

memory model. A mechanism for deterministic 

serialization based on the Kendo algorithm [26] 

is used to execute synchronization during 

parallel mode of DET-HB. 

Figure 24 shows our implementation of 

deterministic mutex locks. The 

sync_acquire and sync_release 

functions represent conditional memory fences, 

while wait_for_turn represents 

deterministic serialization. Other 

synchronization objects such as barriers, 

condition variables, and even lock-free data 

structures can be built from these same building blocks. 

4.3.4.1 Conditional Memory Fences 

We use the functions sync_acquire and sync_release to implement deterministic lock and 

unlock just as traditional nondeterministic implementations of lock and unlock use acquire and 

release fences [158]. The key difference is the conditional on lines 2-3 of sync_acquire: when 

this conditional is true, the release-to-acquire happens-before edge is redundant and a fence can be 

elided. When this conditional is false, a fence is necessary: end_quantum is invoked, which 

1 sync_acquire(o: SyncObject) { 
2   if (o.quantum < curr_quantum || 
3       o.releaser == self) { 
4     return // fence not necessary 
5   } 
6   end_quantum() 
7 } 
8  
9 deterministic_lock(l: Lock) { 
10   StopInsnCount 
11   while (true) { 
12     wait_for_turn() 
13     if (CAS(l.locked, 0, 1))) { 
14       sync_acquire(l) 
15       StartInsnCount 
16       return 
17     } 
18     end_quantum() 
19   } 
20 } 
21  
22 sync_release(o: SyncObject) { 
23   o.quantum  = curr_quantum 
24   o.releaser = self 
25 } 
26  
27 deterministic_unlock(l: Lock) { 
28   StopInsnCount 
29   wait_for_turn() 
30   sync_release(l) 
31   l.locked = 0 
32   StartInsnCount 
33 } 

Figure 24: Deterministic locking for DET-HB 
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executes the Commit instruction. This conditional implements the observation noted earlier in 

Section 4.1.2.1: a fence is not necessary when the happens-before edge is local to a thread (line 3) 

or crosses a quantum boundary (line 2). Note also that when lines 2-5 are removed, 

sync_acquire is a full fence, and so the remaining algorithm implements a consistency model 

equivalent to TSO. 

4.3.4.2 Deterministic Synchronization 

We use the Kendo algorithm [26] to serialize synchronization deterministically. The basic idea is as 

follows: before performing synchronization, a thread T must wait for its turn, meaning it must wait 

until it has the global minimum instruction count (ties are broken by thread ID). While waiting for 

its turn, T must disable instruction counting by invoking StopInsnCount; this ensures 

deterministic instruction counting since T may have to wait a nondeterministic amount of time 

before its turn arrives. After synchronization is complete, T invokes StartInsnCount. The 

wait_for_turn function can be implemented by polling other threads’ instruction counts via the 

ReadInsnCount instruction.6 

Note that lines 13-14 and lines 30-31 execute atomically: wait_for_turn designates the 

beginning of an atomic region that is ended by StartInsnCount.7 It is within these regions that 

the lock object is updated. For these updates to appear atomically, they must apply directly to the 

global memory space; i.e., all reads and updates of lock objects must bypass the store buffer. To 

ensure that lock objects are never buffered, lock objects can never exist on the same cache line as 

ordinary data; this introduces a partition of shared memory into lock objects and ordinary data. 

4.4 System Issues 

This section describes some of the issues that would be encountered when integrating RCDC with 

operating systems and legacy software. 

                                                             
6 Alternatively, we could implement wait_for_turn via interprocessor interrupts rather than polling. 
7 Atomicity for the lock release is necessary to guarantee that concurrent releases of the same lock (e.g., due 
to programmer error) still result in a deterministic outcome. 
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4.4.1 Support for nondeterministic execution 

The use of store buffers is a software choice. Therefore, programs can choose to execute 

nondeterministically. Kernel code, for example, would not need to be executed deterministically. 

One caveat is that our eviction policy risks monopolizing the cache. Recall that buffered lines are 

pinned in the cache; if a cache set fills with buffered lines, it cannot be reused until the store buffer 

has committed. This can accidentally prevent important systems code (e.g., context switch code) 

from running. We have two solutions. The first is to reserve a small victim buffer for non-buffered 

cache lines; and the second is to reserve just N-1 lines of a set for buffered data, where the cache 

uses N-way sets. 

4.4.2 Processes 

In RCDC, each process is by default its own determinism domain; in other words, threads within a 

process behave deterministically with respect to each other. Deterministic processes can run 

alongside nondeterministic processes. Moreover, if multiple processes share memory pages, the 

processes can be aggregated into a single determinism domain, much like the deterministic process 

group abstraction in dOS [145]. As long as different determinism domains do not share memory 

pages, the boundary of determinism domains can be defined completely by software without any 

extra hardware support. 

4.4.3 Context Switches 

To maintain determinism, RCDC requires that a thread’s current instruction count and the contents 

of its store buffer be saved and restored across context switches. To reduce the amount of state that 

must be saved and restored, the OS kernel can be modified in two ways, described below. 

First, the kernel can be modified to context switch away from a deterministic thread only at a 

quantum boundary, i.e., just after line 4 of end_quantum (Section 4.3.3). This eliminates the need 

to save and restore the contents of store buffers, since store buffers are always empty at a quantum 

boundary. 
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Additionally, if there are N CPUs but more than N threads in a given determinism domain, the 

kernel can schedule threads in groups of N per quanta, much like gang scheduling [161]. This 

considerably reduces the need to save and restore the contents of store buffers. It also can improve 

quantum balance, by eliminating the underutilization that occurs when N+1 threads must be 

scheduled per round, yet there are only N processors available. 

4.4.4 Paging 

It is important to make sure that none of the pages that have buffered data are paged out. The 

simplest way to provide this guarantee is to restrict paging so it happens only at the end of commit 

mode. In addition, the runtime system can provide the kernel with a list of pages that are provably 

unshared; these can be paged out at any time. 

4.4.5 Memory Errors 

As discussed in Section 4.3.4, lock objects must be partitioned from ordinary data. If this partition is 

broken by some memory operation, e.g., due to a memory error in a type unsafe language like C++, 

then that memory operation is a potential source of nondeterminism. For example, an errant read 

that happens to address a lock object will return a nondeterministic value, since that read can race 

with some other thread performing a lock acquire. 

4.4.6 Store Buffer Parameters and Determinism 

The parameters of the store buffer (i.e., the cache geometry) can affect quantum boundaries 

because buffer overflows cause a quantum to end. Thus, RCDC cannot guarantee the same 

deterministic execution will arise on two machines with different cache/store buffer 

configurations. One can address this potential issue by restricting store buffer usage such that its 

effective size is the same across different machines. The number of threads a program uses, and the 

parameters used to build quanta (e.g., size) are also implicit inputs that must be replicated to 

ensure repeatability. 
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4.5 Evaluation 

The goals of our evaluation are to understand the effects of memory ordering relaxation on 

deterministic execution and to understand how RCDC’s mechanisms behave dynamically. To these 

ends, we evaluate RCDC in two basic ways: (1) a hardware simulator of the DET-HB mechanisms 

called RCDC-HB, and (2) a software-only implementation of DET-HB using a compiler and runtime 

system called COREDET-HB. To measure the effectiveness of our consistency model optimizations 

we also implemented a TSO version of RCDC (termed RCDC-TSO) and used the TSO version of 

CoreDet from [34] (termed COREDET-TSO). 

We built a hardware simulation infrastructure using the Intel Pin [155] binary instrumentation 

tool. The model focuses on the first order effects and includes RCDC’s major components, including 

store buffering in private caches, quantum formation, committing, and consistency models for both 

DET-TSO and DET-HB. For the memory system, private 8-way 32KB L1 and private 8-way 256KB L2 

caches for each core, with a 16-way 8MB shared L3. All caches have 64B lines. Instructions take 1 

cycle to execute, and it takes an additional 1, 10, 35 and 120 cycles to access the L1, L2, L3 and main 

memory, respectively. We modeled 2, 4, 8 and 16 processor systems. With the exception of Figure 

28, all workloads are run with a target quantum size of 50,000 instructions, except for ferret (25k), 

fluidanimate (1k) and streamcluster (1k). We determined these parameters by finding the best 

performance of our workloads, at 16 processors, for each quantum size in the range shown in 

Figure 28. Quantum commit costs 100 cycles. Error bars indicate the 95% confidence interval for 

the mean of 10 runs. 

Our hardware simulations use version 2.1 of the PARSEC [154] benchmark suite. We used the 

simsmall input set for each workload. Due to excessive memory usage, we were not able to run the 

freqmine, raytrace and facesim workloads. Due to a lack of support for reader-writer locks and 

lock-free synchronization in our runtime system, we were not able to run the bodytrack and 

canneal workloads, respectively. 



 

 

79 

Our software-only implementation was built on top of the CoreDet [34] compiler and runtime 

system infrastructure. The source code for our simulator, modifications to CoreDet, and 

experimental data are available from http://sampa.cs.washington.edu. 

4.5.1 Performance and Scalability 

We start with a performance comparison of RCDC and the nondeterministic baseline (NONDET), as 

measured using our hardware simulator. Figure 25 plots performance of RCDC-HB for 2, 4, 8, and 

16 processors normalized to NONDET with the same number of processors. Most applications suffer 

little performance degradation, but the overheads are still just over 60% in the worst case with 16 

threads. Broadly, the performance costs in RCDC come from imbalance (periodic barriers at the end 

of parallel mode), extra stalls due to costly fences in synchronization operations, and the cost of 

committing buffered data. We characterize these costs more precisely below. Overall, RCDC 

provides fully deterministic execution for a modest runtime cost for many of our workloads. 

From Figure 25 we can also see how RCDC’s performance scales with additional cores. In a minority 

of cases (e.g., ferret), RCDC does not scale as well as NONDET. Most of the time, however, RCDC scales 

just as well as NONDET does, as evidenced by a consistent slowdown despite increasing core counts. 

Sometimes (e.g., vips) RCDC even closes the performance gap at higher core counts because the 

underlying benchmark does not scale well even with NONDET. Some of RCDC’s overheads, like 

reduced cache capacity due to store buffering, can take advantage of additional parallel resources 

even when the underlying application cannot. 

 
Figure 25: Performance of RCDC normalized to NONDET for 2, 4, 8 and 16 processors. 
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We also implemented a version of DET-TSO on top 

of RCDC (called RCDC-TSO) to assess the benefit of 

the extra memory reordering relaxation offered by 

DET-HB. Figure 26 compares the performance of 

RCDC-HB and RCDC-TSO, normalized to NONDET 

with the same number of processors. We include 

only the benchmarks ferret, fluidanimate, and vips; 

other benchmarks have less frequent 

synchronization, so the performance of RCDC-HB and RCDC-TSO is essentially identical. For these 

three benchmarks, RCDC-HB yields markedly better performance compared to RCDC-TSO, which 

comes from the fact that RCDC-HB is able to elide many costly fences (i.e., quantum boundaries) 

that RCDC-TSO cannot elide. 

4.5.2 Characterization 

To better understand RCDC’s behavior, Figure 27 

breaks down the reasons for quantum boundaries. 

The three reasons a quantum can end are: 

instruction count, which is simply when a quantum 

has reached its maximum size; store buffer 

overflows, when the store buffer overflows and the 

thread cannot continue until its buffered data is committed; and fences, when a synchronization 

operation needs a memory fence to ensure the consistency model is upheld. 

Note that RCDC-HB has many fewer commits due to fences (the top segment of each bar) than 

RCDC-TSO. This quantifies the effect discussed in Section 4.1.2 (Figure 20), which is the essence of 

why RCDC-HB offers significantly better performance than RCDC-TSO. 

Store buffer overflows are a frequent source of quantum imbalance for several workloads. While 

RCDC-HB is effective at reducing the number of fences, some of the premature quantum ends that 

 

Figure 26: Performance of RCDC-HB and RCDC-TSO 
normalized to NONDET for 4, 8 and 16 processors. 

 

Figure 27: Reasons why quanta end for RCDC-HB 
and RCDC-TSO, for 16 processors. 
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would have been a fence with RCDC-TSO are then replaced with store buffer overflows, which still 

result in quantum imbalance. 

4.5.3 Sensitivity to Quantum Size 

We end our RCDC evaluation with a 

characterization of how maximum quantum size 

affects performance. Figure 28 shows performance 

of ferret on a 16-processor RCDC system. The 

relationship between performance and quantum 

size can be highly non-linear: for ferret, larger 

quanta help smooth the effects of frequent quantum rounds, but beyond 25k instructions the extra 

imbalance of large quanta hurts performance. This effect was noticeable with both RCDC-HB and 

RCDC-TSO. 

4.5.4 Compiler-Runtime Implementation 

In addition to the above hardware simulation, we 

implemented DET-HB in the CoreDet deterministic 

compiler and runtime system [34]. This 

implementation required changes only to CoreDet’s 

synchronization library; the compiler and other 

parts of the runtime system were unmodified. We 

evaluated our CoreDet implementation using the 

PARSEC and SPLASH2 benchmark suites, and include a comparison of the performance of COREDET-

HB with the performance of COREDET-TSO. For this evaluation, we enabled all of CoreDet’s compiler 

optimizations. 

Figure 29 summarizes this evaluation. The performance of COREDET-HB is largely the same as that 

of COREDET-TSO, with two exceptions: fluidanimate and fmm. Both these benchmarks have a 

relatively high frequency of synchronization. COREDET-HB’s improved handling of synchronization 

 

Figure 28: Performance of ferret with 16 processors 
using different quantum sizes. 

 

Figure 29: Performance of COREDET -HB and 
COREDET-TSO normalized to NONDET for 2, 4, and 8 
threads. 
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allows it to increase performance by about 20%: from 5x to 4x overhead for fluidanimate and from 

4.5x to 3.5x overhead for fmm. This shows that the benefits of relaxed consistency determinism are 

not limited to hardware. 

4.6 Conclusions 

We have presented RCDC, a new deterministic multiprocessing architecture that leverages memory 

ordering relaxation to improve performance. We propose a new deterministic execution algorithm 

that combines deterministic synchronization with weak memory ordering to improve performance 

by reducing unnecessary stalls when enforcing determinism for arbitrary multithreaded programs. 

We also propose a hybrid hardware/software design that requires the hardware to provide only 

software-controlled store buffering and precise instruction counting, thereby reducing hardware 

complexity. Our results show that RCDC is competitive with nondeterministic multiprocessors, in 

terms of both absolute performance and scalability, without employing speculation. Moreover, our 

HW/SW approach allows precise control of when determinism should be enforced, providing 

flexibility to system software. 

We believe this work is an important step toward realistic systems for the deterministic execution 

of arbitrary programs. Relaxed memory ordering aids performance by avoiding global barriers for 

synchronization operations while our HW/SW approach provides simplicity and flexibility. 
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Chapter 5 Merging Execution-level and Language-level Determinism 

As discussed in Section 2.5, the proposals for ensuring determinism for parallel programs largely 

fall into two camps: execution-level determinism and language-level determinism. Execution-level 

techniques [22–24,26,34,145,146,149] enforce a deterministic, but still parallel, interleaving of 

memory operations at runtime. This necessitates some runtime overhead in exchange for 

determinism – providing determinism for arbitrary, potentially-racy programs can exact up to a 

10x slowdown [34]. Language-level techniques [18–20,137] eschew runtime overheads by 

adopting a more restrictive programming model, such as pipeline [18] or fork-join [20] parallelism. 

For code that fits into such paradigms, determinism can be enforced by construction or via a static 

type system, which results in no runtime overhead. 

Programmers wishing for the benefits of determinism are thus faced with a difficult trade-off: 

accepting the runtime overheads of execution-level determinism or rewriting their programs (if 

possible) to fit into a deterministic language’s model. This chapter proposes a system called MELD 

that merges execution-level and language-level determinism. MELD employs execution-level 

determinism by default – to support arbitrary existing code – with a targeted application of 

deterministic language mechanisms to make the performance-critical part of an application fast. 

5.1 Pitfalls of Integrating Execution-Level and Language-Level Determinism 

MELD ensures the deterministic integration of deterministic languages within an execution-level 

determinism system. MELD uses runtime checks and a lightweight data-centric qualifier system for 

Java that allows a program’s data to be partitioned at fine-grain between static and dynamic 

determinism enforcement schemes. Initially, one might think that to integrate a deterministic 

language into an execution-level determinism system it would suffice to call functions whose code 

was written in a deterministic language. The code of these functions would be verified by the 

deterministic language’s machinery, which would take the place of the runtime instrumentation 
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used by the execution-level system. There are unfortunately several fundamental reasons why this 

simple approach would not work: 

• It violates the deterministic language’s assumptions: Deterministic languages make assumptions 

about aliasing and concurrency that do not hold if threads can make arbitrary simultaneous calls 

with arbitrary data into code written in a deterministic language. 

• It violates the deterministic execution system’s assumptions: To preserve determinism, returning 

from the deterministic-language call must happen at a deterministic point with respect to other 

threads. Doing so in a scalable way requires that we still instrument the code executing under 

language-level determinism (see Section 5.3.2). 

• It does not support real programs: If the deterministic-language code can only access completely 

disjoint data from the deterministic execution code, then we cannot support the access patterns of 

many real programs. But it is crucial to distinguish data that is only accessed by a deterministic 

language as this is the key way that we improve performance. 

Identifying and overcoming the problems with this naive approach is the motivation for the 

language design we describe. We present the key invariants necessary for using a deterministic 

language within a deterministic execution system while preserving determinism and improving 

performance. To the best of our knowledge, our work is the first to enable incorporating a 

deterministic language within a deterministic execution system. 

5.2 Background 

To evaluate the MELD system, we are building a prototype compiler that augments programs with a 

deterministic execution runtime system, and allows the integration of code written in a 

deterministic language. There are many possible choices for these two components, and we believe 

our approach generalizes to other combinations of execution-level and language-level determinism 

systems. We have based our Java compiler on the CoreDet deterministic compiler for C/C++ ([34] 

and Section 4.1.1) because of our familiarity with its code and because it provides execution-level 
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determinism for arbitrary parallel programs. We chose Deterministic Parallel Java [20] as the 

deterministic language because it is also open-source and provides statically-enforced determinism 

for Java. 

MELD’s execution-level determinism system is built on the CoreDet compiler and runtime 

system [34]. We described CoreDet more fully in Section 4.1.1 and include a brief recapitulation 

here for convenience. We build upon the RCDC version of CoreDet ([26] and Chapter 4) that extends 

the original work with additional memory consistency optimizations. CoreDet enforces 

determinism by isolating each program thread with its own private copy of memory, effectively 

turning a multithreaded program into a series of single-threaded programs (the “parallel mode” of 

Figure 19). The chunk of instructions executed by each thread is called a quantum; determinism 

follows from having quanta of a deterministic size (typically constant). Building quanta in this way 

requires instrumenting a program to count instructions; CoreDet counts instructions in a 

deterministic but approximate manner to keep overheads low. 

Because threads need to communicate with one another, isolation among threads is broken 

periodically when all threads have finished their quanta and the accumulated updates of each 

thread are made visible to all other threads during “commit mode.” Values produced by a thread are 

visible only to the thread itself until commit mode makes them globally visible. Thread isolation is 

implemented with per-thread store buffers: hash tables mapping addresses to fixed-size chunks of 

memory. Finally, a quantum round consists of the execution of one quantum by each thread during 

parallel mode and the subsequent commit mode. A series of quantum rounds allows an arbitrary 

computation to execute deterministically. Synchronization (memory ordering) may force quanta to 

end early; for this and other implementation details like thread creation and I/O please refer to 

Chapter 4. 

MELD’s deterministic language is DPJ, a region-based type and effect system for Java. We use the 

version of DPJ described in [20], and do not leverage the nondeterministic extensions described 

subsequently [140]. DPJ enforces determinism by allowing a programmer to carve up the heap into 
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named regions. Regions can be very fine-grained, at the level of a single object field or array index. 

Regions can also be hierarchical, which allows tree-based data structures and recursive array 

decompositions to be soundly expressed. Code that reads or writes regions is summarized in the 

type system via read and write effects, respectively, added to method signatures. These effects can 

be written by the programmer (though they are statically checked) and in many cases inferred 

[141]. Parallelism is supported via parallel for-loops (foreach statements) and parallel statement 

execution (cobegin blocks). A compile-time analysis checks the effects of concurrent operations 

for non-interference: if there are two concurrent operations on the same region, and at least one is 

a write effect, the program will not type check. DPJ programs that do type check are guaranteed to 

have the semantics of a deterministic serial execution of the program where parallel for-loops and 

coroutines are executed sequentially. 

Figure 30 shows a simple DPJ program with two 

regions and effects. The variables x and y are 

placed in regions RX and RY, respectively. The 

method setX writes to variable x, which is in 

region RX, and therefore setX has the effect 

writes RX. A similar situation arises for getY. 

Since regions RX and RY are distinct, DPJ can prove that the statements of do’s cobegin block can 

be parallelized safely and retain the semantics of running sequentially. Effects must be specified for 

every method that is called, even via other methods, from inside a parallel task, as setX and getY 

are. The do method, however, is not called inside a parallel task and thus needs no effect annotation 

(see Section 5.4.2). If do were to be called inside a parallel task, it would need the effect writes 

RX, reads RY to reflect its own effects (none) as well as the effects of its callees. 

CoreDet and DPJ have complementary strengths. CoreDet performs an alias analysis that is able to 

remove runtime instrumentation from simple uses of thread-private data, but DPJ’s programmer-

driven effect system is much more powerful. DPJ’s parallelism constructs are limited to fork and 

class C { 
  region RX, RY; 
  int x in RX; 
  int y in RY; 
   
  void setX(int i) writes RX { x = i; } 
  int getY() reads RY { return y; } 
   
  void do() { 
    cobegin { setX(); getY(); } 
  } 
} 

Figure 30: A simple DPJ program with regions and 
effects. Underlined code indicates new syntax 
added for DPJ. 
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join, while CoreDet supports all pthread synchronization. MELD combines these systems to form a 

deterministic system that is both fast and general. 

Not all weaknesses can be complemented away, however. To boost program throughput, CoreDet’s 

quantum formation (but not store buffering) is enabled for all code, even code written in a 

deterministic language. Moreover, due to determinism’s noncomposable nature, data managed by 

CoreDet and then passed to a DPJ function cannot recover DPJ’s sequential semantics, though the 

data can soundly be computed upon without store buffer instrumentation while preserving 

determinism. The practical ramification for MELD is that while the entire program is guaranteed to 

be deterministic, it carries the guarantees provided by an execution-level determinism system, 

which is weaker than those provided by a language-level approach. A parallel program written 

entirely in a deterministic language has sequential semantics, ensuring that differing numbers of 

threads at runtime cannot affect the outcome of the program – the parallelism is implicit and 

invisible. For execution-level techniques, however, thread count is part of program input that must 

be explicitly tested – running a program with a different number of threads may expose new 

interleavings and new program behaviors, albeit in a deterministic manner. 

5.3 Combining Execution-level and Language-Level Determinism 

To integrate execution-level and language-level determinism in a single program without 

compromising determinism guarantees, some amount of isolation must be enforced between them. 

This section discusses the isolation that code written in deterministic languages implicitly requires 

in order to be soundly incorporated into a larger program. Section 5.4 discusses the MELD type 

system that statically enforces this isolation. 

5.3.1 Starting Simple: Pure Language-Level Determinism 

A program written entirely in DPJ is both deterministic and data-race-free [20]. All concurrent 

accesses to shared memory (the relative timing of which is a primary cause of nondeterminism) are 

proven non-interfering at compile-time. While this approach offers determinism with no runtime 
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overhead, DPJ programs cannot express many useful synchronization idioms and data sharing 

patterns. 

5.3.2 Supporting Concurrent Conflicting Tasks 

A natural generalization from a pure-DPJ approach 

is to allow conflicting concurrent tasks, while 

maintaining determinism (unlike in [140] which 

supports conflicting concurrent tasks at the cost of 

nondeterminism). We will use the CoreDet 

execution-level determinism system to handle conflicts deterministically. Consider, without loss of 

generality, a DPJ program that has a conflict on only one memory location (Figure 31). 

To ensure the determinism of this program, we want CoreDet to manage reads and writes to M. 

Other locations (e.g., F) are ignored by CoreDet. We partition memory locations into two classes: 

those that are possibly subject to concurrent conflicts are labeled exdet, as they are managed by 

execution-level determinism, and all other memory locations are labeled as langdet, as they are 

managed by language-level determinism. DPJ ignores exdet memory locations for the purposes of 

verifying interference-freedom, and CoreDet does not generate code to enforce determinism for 

accesses to langdet memory locations. As with regular DPJ, all langdet locations must be placed 

in some region and a method M called, directly or indirectly, from a parallel task that touches 

langdet data must have effect annotations (see Figure 30 and Section 5.4.2). Methods that touch 

only exdet data, however, require no effect annotations. 

Removing exdet accesses from DPJ’s analysis is conceptually straightforward. However, CoreDet, 

along with all other execution-level determinism systems, requires a notion of deterministic logical 

time to coordinate updates to shared memory. CoreDet uses instruction counting for this purpose. 

CoreDet’s main source of overhead is its thread-isolation mechanism – a per-thread store buffer 

implemented as a hash table – though quantum formation has noticeable overhead as well. 

class C { 
  region R; 
  int M in R = 0; 
  float F in R = 0.0; 
  main() writes R { 
    cobegin { M++; M++ } 
  } 
} 

Figure 31: A simple DPJ program with concurrent 
conflicting tasks. 
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With MELD, we must instrument the program so that each thread maintains its dynamic instruction 

count and uses that count to form quanta. We must instrument all parts of the program to keep 

quanta balanced – as uniformly sized as possible to eliminate excessive waiting at quantum 

boundaries. However, we only need CoreDet’s heavyweight store buffers for accesses to exdet 

memory locations. langdet locations can safely skip the store buffer and directly access global 

memory, reducing runtime overhead compared to CoreDet’s pure-exdet solution.  

5.3.3 Supporting Arbitrary Parallelism Constructs 

We can incorporate the use of arbitrary parallelism constructs, like locks and atomic operations,8 

using the same mechanism we used to handle concurrent conflicting tasks. Each DPJ task can 

synchronize in complicated ways with other tasks, though DPJ cannot statically reason about this 

synchronization and so will find a large number of concurrent, conflicting accesses. In general, DPJ 

may deem every memory location to be subject to conflicting accesses. If we label all memory 

locations as exdet, then DPJ will ignore these conflicts and no parallel program will fail its type 

checking. This is precisely the CoreDet approach, providing generality at a significant runtime cost. 

By allowing programs to contain a mix of 

langdet and exdet data, MELD is a 

generalization of the pure-DPJ and pure-CoreDet 

approaches. Allowing such flexibility is not 

without its costs; as we saw earlier we instrument 

the entire program for quantum formation, even if 

exdet accesses are rare. To ensure that we compile accesses to a memory location M correctly we 

must assign a consistent label for M. Failing to do so would allow two threads to see M as both 

exdet and langdet, respectively (Figure 32). If ld and ed run concurrently, ld’s update to M 

will skip the store buffer and directly update memory. This update races with ed’s read of M, 

causing the print statement to generate nondeterministic output. Thus, we must ensure that M is 

either always treated as langdet, where DPJ will statically catch the data race, or exdet, where 

                                                             
8 Mapping thread fork/join is slightly more involved, and we defer the discussion to Section 5.5.4. 

int M = 0; 
 
void ed() { // sees M as exdet 
  print M; 
} 
 
void ld() { // sees M as langdet 
  M = 2; 
} 
 
// nondeterministic 
cobegin { ed(); ld(); } 

Figure 32: Aliasing between exdet and langdet 
locations results in nondeterminism. 
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both accesses will use the store buffer and ed’s read will be safely isolated. Section 5.4 discusses 

implementing this simple labeling of memory locations to work with the Java language. 

5.3.4 Supporting Casts and Modularity 

While a fixed partition of memory locations into langdet and exdet is sound, it is inflexible. 

Moving data from one partition to the other entails copying each memory location involved, 

inducing extra programmer burden and runtime cost. We would like the ability to soundly cast 

memory locations between labels. We 

would also like the flexibility of using DPJ on 

small components within a larger program, 

e.g., a pure function that sorts an array in parallel (Figure 33). Our current approach requires the 

array A to be labeled langdet and that DPJ be able to prove non-interference for all accesses to A 

throughout the entire program. 

These two goals of supporting casts and modular use of a deterministic language are highly related. 

We call each modular use of DPJ, e.g., to write psort in DPJ without taking the rest of the program 

into consideration, a deterministic language component or DLC. In our implementation a DLC is a 

function F and the transitive closure of functions F calls, but a DLC can be generalized to any 

lexically-scoped region of code and the code reachable from it. Previously we’ve implicitly treated 

the entire program as one DLC (with potentially many exdet locations). However, a program can 

consist of multiple DLCs as long as each satisfies DPJ’s preconditions: that DPJ has full visibility into 

the threading and aliasing of the data it operates upon. These conditions are naturally fulfilled 

when an entire program is written in DPJ, but in our modular use we violate this “closed world” 

assumption. While DPJ statically guarantees non-interference among the threads it creates and 

memory it allocates, it cannot, of course, provide guarantees about other threads or memory that it 

is unaware of. To implement psort correctly as a DLC, we must ensure no other code operates on 

psort’s array concurrently. Two concurrent calls operating on the same array may interfere with 

one another, violating determinism and other correctness properties. To maintain determinism, we 

need to ensure non-interference between: 

<region R> void psort(int[]<R> A) writes R { 
  // sort A in parallel, in-place 
} 

Figure 33: An internally-parallel, in-place sort function that 
we can easily write in DPJ. 
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1. the threads internal to the DLC 
2. different threads running outside the DLC 
3. concurrent calls to a given DLC by different threads 
4. different DLCs running in different threads 
5. a DLC and a thread running outside the DLC 

Condition 1 is handled by DPJ and condition 2 by CoreDet. Conditions 3-5 are handled by a sound 

cast mechanism that allows transferring locations from exdet to langdet. The cast mechanism 

dynamically checks that, if we cast a memory location M from exdet to langdet, M is not 

accessed by anyone other than the casting thread – the cast effectively checks for correct 

privatization. Failures to privatize correctly are, thanks to determinism, repeatable across 

executions. Once M is correctly privatized, M satisfies DPJ’s preconditions and can be safely passed 

to a DLC. As a performance optimization, we introduce a new label xldet to track memory 

locations subject to these casts to reduce the runtime overhead of the cast mechanism. 

5.3.4.1 Casting from exdet to langdet 

MELD’s cast mechanism relies on dynamic checks. Casting a location M from exdet to langdet 

adds M to a “poison set.” Once M is in the poison set, concurrent exdet accesses to M trigger a 

runtime error (Condition 5). Casts also trigger runtime errors for a concurrent cast of the same 

memory location, which allows us to support multiple DLCs executing simultaneously (Conditions 3 

and 4). To detect concurrent writes, in commit mode threads check if they are updating a poisoned 

location. To detect concurrent reads, all reads of exdet locations also check if they access a 

poisoned location. These dynamic checks are not necessary in the baseline CoreDet scheme, but in 

the common case – an empty poison set – they add little overhead. Casts must execute at quantum 

boundaries for two reasons. First, casting at quantum boundaries ensures casts occur at a 

deterministic time, avoiding races with exdet accesses to the about-to-be-cast location that can 

result in nondeterministic runtime errors. Second, the quantum boundary also acts as a memory 

fence, ensuring that buffered exdet writes from the current thread are made visible to subsequent 

langdet reads by the same thread, as the langdet reads will skip the store buffer. 
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5.3.4.2 Casting back to exdet 

Supporting only casts from exdet to langdet makes subsequent computation via an exdet alias 

impossible. Casting from langdet to exdet must be done carefully, however. Supporting 

arbitrary casting from langdet to exdet would require instrumenting all langdet accesses, to 

ensure that, after the cast, all accesses occurred with exdet instrumentation. If langdet aliases to 

E persist, nondeterminism can result because, as Figure 34 shows, writes through a langdet 

reference can race with writes performed 

through an exdet reference. Keeping 

langdet accesses streamlined is also 

crucial for performance, so MELD disallows 

general langdet-to-exdet casts. 

However, to be able to prune the poison set 

we would like to support langdet-to-

exdet casts for a memory location E that was exdet to begin with.  

As a simple approach to control the aliasing of locations cast from exdet to langdet, we 

introduce a new xldet label and impose scope restrictions on its use. Instead of allowing casts 

from exdet to langdet, we only allow casts between exdet and xldet. langdet memory 

locations have no scope restrictions – they can be globally-visible static fields live for the entire 

execution of the program. xldet locations must be locally-scoped so that they do not outlive the 

DLC which computes on them. Assignment restrictions (Section 5.4.3) prevent xldet memory 

locations from escaping to the larger scope of langdet locations. Viewing the entire program as 

one large DLC reveals that langdet locations are in fact subject to the same scoping restrictions as 

xldet, but the scope is the life of the program. Note also that casts from xldet to exdet require 

no special consideration and are compiled as NOPs. During the scope of an xldet alias, dynamic 

checks prevent conflicting accesses via exdet aliases. After the xldet alias has gone out of scope, 

it is removed from the poison set and exdet aliases can be used again. 

region R; 
exdet int[] E = new int[4]; 
 
// cast to langdet 
langdet int[] L in R = (langdet int[]) E; 
 
psort(L); // call DLC 
 
// cast to exdet, langdet alias remains 
E = (exdet int[]) L; 
 
// nondeterministic result 
cobegin { L[0] = 1; E[0] = 2; } 

Figure 34: After casting a location from langdet to 
exdet, existing langdet aliases must not be used. 
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The local scope of xldet locations allows our compiler to automatically handle removing xldet 

locations from the poison set. These removals must occur at quantum boundaries to avoid 

nondeterministic runtime errors from conflicting exdet accesses, just as with exdet-to-xldet 

casting (Section 5.3.4.1). 

5.3.4.3 Nested xldet locations 

Supporting the nesting of xldet references 

requires one final refinement to our type system: 

uniquely identifying each xldet scope. Figure 35 

shows how nondeterminism can result if xldet 

scopes are not uniquely identified. We begin with 

inner’s cast on line 5: this adds ef to the poison 

set, and since all xldet scopes are treated alike 

the assignment on line 6 type checks even though 

arr has outer’s larger scope and ef has 

inner’s smaller scope. At the end of inner, ef 

is removed from the poison set. However, 

because the ef reference has escaped inner’s 

scope, outer is able to write to one of ef’s fields 

via the array arr on line 12. As outer’s write is 

via an xldet reference, no store buffer instrumentation is performed. Concurrently, bad accesses 

ef via an exdet reference on line 17, and since ef is no longer in the poison set, this access 

succeeds and may nondeterministically see or fail to see outer’s write. The fact that ef’s removal 

from the poison set must occur at a quantum boundary does not solve this issue. Nothing prevents 

bad from performing enough computation to cause its conflicting access (line 17) to be in the same 

quantum round as outer’s access (line 12). 

1 exdet Foo ef; 
2 region R; 
3  
4 void inner(xldet Foo[] arr) { 
5   xldet Foo xf in R = (xldet) ef; 
6   arr[0] = xf; // assignment ok 
7 } 
8  
9 void outer() { 
10   xldet Foo[] arr in R = new Foo[1]; 
11   inner(arr); 
12   arr[0].field = 1; 
13 } 
14  
15 void bad() { 
16   // ... 
17   ef.field++; 
18 } 
19  
20 void main() { 
21   // nondeterministic! 
22   cobegin {  
23     outer(); 
24     bad();  
25   } 
26 } 

Figure 35: If all xldet scopes are treated alike, 
assignment between different scopes can introduce 
nondeterminism. 
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Our solution to this problem in MELD is to ensure that xldet qualifiers are annotated with the 

scope in which they appear. Our solution is modeled on the region annotations used in the Cyclone 

language [162], but is simplified because 1) all xldet qualifiers are in local scope (Section 5.3.4.2) 

and 2) MELD does not support existential types. 

For simplicity, programmers must 

explicitly write scope annotations 

on all xldet variables, though 

[162] has shown how scope 

annotations can often be inferred to 

reduce programmer burden. Class 

definitions can be parameterized by 

different scope variables, to allow 

each field of an instance to belong to 

a different scope. Similarly, 

methods are scope-polymorphic to 

allow them to take arguments of 

different scopes and to support 

recursion. Scopes are checked for 

equality based on their names, and only assignments between variables of equal scope are allowed. 

The scope annotations can be checked with an intraprocedural analysis that statically guarantees 

the absence of any assignment of a variable into a location of greater scope. 

Returning to our code example, Figure 36 shows an updated version of the program from Figure 35 

with each xldet qualifier annotated with its scope (in parentheses), and methods annotated with 

polymorphic scope variables (in brackets). These scope annotations allow our type checker to 

notice the mismatched scope assignment at line 6, as the two scopes have different names, and 

trigger a compile-time error. 

1 exdet Foo ef; 
2 region R; 
3  
4 void inner<s>(xldet(s) Foo[] arr) { 
5   xldet(inner) Foo xf in R = (xldet(inner)) ef; 
6   arr[0] = xf; // assignment fails 
7 } 
8  
9 void outer() { 
10   xldet(outer) Foo[] arr in R = new Foo[1]; 
11   inner<outer>(arr); 
12   arr[0].field = 1; 
13 } 
14  
15 void bad() { 
16   // ... 
17   ef.field++; 
18 } 
19  
20 void main() { 
21   cobegin {  
22     outer(); 
23     bad();  
24   } 
25 } 

Figure 36: An updated version of the program from Figure 35, with 
each xldet location annotated with its scope. New code is 
underlined, with locals’ scope annotations in parentheses and 
methods’ polymorphic scope variables in brackets. 
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Even though our scope annotation rule for checking assignments disallows them, assignments from 

locations of outer scope to locations of inner scope are sound. Because scopes are properly nested, 

identifying an outer scope is straightforward – when a new scope N is created, any scope S that 

already exists must be larger, and thus assignments from S to N are sound. Prior work has 

supported such assignments through a subtyping mechanism [162]. For simplicity, MELD 

conservatively disallows all inter-scope assignments. 

5.4 The MELD Type System 

The MELD type system uses type qualifiers to enforce a partition of a program’s memory locations 

among the labels exdet, xldet, and langdet. MELD’s qualifier system has been implemented for 

Java, but a previous prototype was implemented for C [27] and these ideas translate naturally into 

other languages as well. This section describes the semantics of our type qualifiers and the typing 

rules that enforce isolation at compile-time.  

5.4.1 Type Qualifiers 

In MELD, type qualifiers can be attached to any reference type appearing in a field definition, local 

variable, function parameter or generic type instantiations. Qualifiers are also permitted on static 

fields of primitive type (see below). A qualifier identifies the label for the storage of the object the 

reference points to. So langdet Foo f describes a reference f to an instance of type Foo where 

the memory locations comprising the instance’s fields are all labeled with langdet. The instance 

may contain fields that are themselves references; the labels on these fields similarly apply to the 

storage for the objects they point to. The label for the reference f itself is specified by the object 

containing f, unless f is a local variable or static field (see below). To reduce the annotation burden 

on the programmer, exdet is the default qualifier and needn’t be written explicitly. 

The memory location holding a local variable doesn’t need a label, because this location is always 

thread-private in Java. Both DPJ and CoreDet can safely ignore the memory locations used to hold 

local variables. Of course, local variables can still have qualifiers, labeling the memory locations 

pointed to by locals of reference type. 
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A static field s has no enclosing instance, references to which would label the memory location 

holding s. We handle static fields like s specially by allowing s to have two qualifiers – the first 

labeling the memory location of s itself, and the second labeling the memory locations of the 

instance s points to if s is of reference type. 

References to the current object (this) are also handled specially. The qualifier on this 

identifies the label for the memory locations of the fields the this reference points to. As there is 

no natural way to add a qualifier to this we require a qualifier on methods stating which label for 

this they accept. To call the same method on both, say, langdet and exdet instances requires 

duplicating the method with a different name. Our approach avoids adding more complexity to 

Java’s overloading rules. 

A qualifier on a single-dimensional array, e.g., langdet int[] L, identifies the label for the 

memory locations storing the array elements. For multidimensional arrays a single qualifier 

identifies the label for the memory locations of all the array elements and sub-elements. E.g., 

langdet int[][] L means that L[0] points to an array of type langdet int[], which in 

turn points to a langdet memory location holding an int. 

5.4.2 Defaults 

In MELD the default qualifier is exdet. This choice ensures that legacy programs will run 

deterministically without programmer intervention. The DPJ system that MELD builds on has its 

own set of defaults, however, that must be modified for compatibility with MELD. In DPJ, methods 

have a default effect annotation of “reads and writes the entire heap” – a safe approximation of 

what a programmer might write. DPJ’s default makes all single-threaded code valid DPJ code: 

effects are only required for methods that can be called (directly or indirectly) from a concurrent 

context like cobegin or foreach.  

In the context of MELD, DPJ’s default effect is problematic, however. When we consider a call to a 

method M in a concurrent context, and if M’s signature has no effects, we cannot distinguish 

whether 1) M is a method that touches only exdet data and thus needs no effects or 2) M touches 
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langdet data but the programmer has neglected to specify effects for M. In case 1), concurrent 

calls to M are deterministic because the execution-level deterministic runtime system ensures 

determinism even if M contains data races. In case 2), concurrent calls to M are not necessarily 

deterministic and DPJ should trigger a compile-time error, prompting the programmer to specify 

more precise effects for M. However, we cannot distinguish these cases without examining the code 

of M. Thus, in MELD we eliminate DPJ’s default effect and instead require all methods that access 

langdet data to have an effect annotation, even if those methods are never called in a concurrent 

context. This requirement is easily enforced as part of MELD’s type checking.  

5.4.3 Type Rules 

Assignments between memory locations of different labels are not allowed in MELD, except for 

explicit casts between exdet and xldet. All xldet qualifiers carry a scope annotation (see 

Section 5.3.4.3) and assignments between xldet qualifiers of different scopes are not allowed. 

Assignments from newly-allocated objects (the result of the new operator) are implicitly cast to the 

label of the receiving location. Implicit assignments, such as passing parameters in function calls 

and return values, are also subject to these restrictions. These assignment restrictions are 

straightforward to enforce using intra-procedural analysis. 

To handle Java’s generics, MELD permits qualifiers to be attached to type parameters. Type 

parameters with different MELD qualifiers are incompatible: e.g., a langdet Foo cannot be added 

to a List<exdet Foo>. 

5.5 Implementation 

The MELD compiler consists of three main components: 1) a type qualifier system, 2) the DPJ 

compiler, and 3) a Java-based compiler and runtime system based on CoreDet. While work has 

begun on these components, the MELD type qualifier system and modifications to the DPJ compiler 

are not yet complete. 



 

 

98 

5.5.1 Type Qualifier System 

MELD’s type qualifier system will be implemented in the Checker Framework [163], a framework 

for pluggable type checking in Java. MELD’s qualifiers are naturally expressed as Java annotations 

(e.g., @Langdet) which allows them to be visible to many other Java-based tools. MELD’s typing 

rules will be implemented as a checker for the Checker Framework. We will also use Java 

annotations to identify functions that are DLC entry points. 

5.5.2 DPJ Compiler 

To ensure that our langdet and xldet qualifiers are sound we must ensure that every 

langdet/xldet location is in fact statically checked by the DPJ compiler, and that all exdet 

locations are ignored. We will extend the DPJ compiler to take MELD qualifiers into account while 

performing its analysis. To support multiple DLCs, we will run the DPJ compiler iteratively over 

“slices” of the program. The first iteration will check langdet qualifiers, taking the whole program 

into account. Then, each DLC will be considered separately, checking the xldet locations within 

that DLC for non-interference. To simplify the DLC analysis, we parameterize the xldet qualifier 

with an argument identifying which DLC it belongs to. 

Because DPJ extends the Java language with new syntax for type and effect annotations, standard 

Java tools will not work on DPJ code. Thus, our compiler flow will run the DPJ analysis first. The 

output of the DPJ compiler is standard Java source code; crucially, Java annotations are preserved 

through the DPJ compiler so that MELD type checking can follow. 

5.5.3 MELD Compiler and Runtime System 

While the CoreDet compiler and runtime system [34] worked for C/C++ programs, we have 

implemented a similar infrastructure in Java-based technologies to allow MELD to take advantage 

of the DPJ language. Our compiler is built on the Soot Java optimization framework [164]. The 

MELD compiler instruments a program with callbacks to the MELD runtime system. Memory 

accesses are instrumented for store buffering, and control-flow edges to perform instruction 

counting and quantum formation. The MELD runtime system itself is implemented as a Java library. 
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Store buffers are implemented as thread-private hash tables. To avoid unnecessary boxing each 

thread has a collection of hash tables: one for each Java primitive type and one for reference types. 

Instruction counting is performed by a callback on every basic block that counts the number of 

bytecodes executed. 

Once the MELD type qualifier system is in place, the MELD compiler will use Java annotations on 

each memory location to elide store buffer instrumentation for langdet and xldet locations. 

exdet-to-xldet casts will also be implemented by the compiler, along with the automatic cleanup 

of xldet locations once their DLC is finished. This automatic cleanup mechanism requires a stack 

(LIFO) for each DLC. New xldet scope entries are pushed and popped whenever an xldet scope 

is entered and exited, respectively. On an exdet-to-xldet cast, a new element is added to the 

xldet scope entry at the top of the stack and the exdet location is added to the poison set. When 

exiting an xldet scope, all elements in the xldet scope entry at the top of the stack are removed 

from the poison set. 

5.5.4 Handling thread fork/join 

To allow the DPJ compiler to understand the parallel structure of a program, our prototype requires 

that a MELD program’s parallelism be expressed in terms of DPJ’s parallelism constructs: cobegin 

and foreach. Many multithreaded applications use threads in a straightforward way – creating a 

number at program launch, computing with them, and then joining with them before exiting. Such 

nested use of threads maps well to DPJ’s nested parallelism constructs, e.g., each “thread” can be 

created via a function call in an iteration of a foreach loop. To support the full expressivity of 

threads, which can be forked and joined in a non-nested fashion, we propose the use of a static 

analysis, such as the Soot framework’s [164] May-Happen-in-Parallel analysis, to conservatively 

identify what code may run in parallel with other code, and to feed this information to the DPJ 

compiler to ensure that methods that concurrently access langdet data are conflict-free. 

Recently-proposed extensions to DPJ incorporate support for non-nested parallelism [143], 

allowing all thread fork/join operations to be handled directly with DPJ primitives. 
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5.6 Extensions 

This section describes some extensions to MELD that we view as promising future work: soundly 

handling nondeterminism and supporting qualifier polymorphism. 

5.6.1 Incorporating Nondeterminism 

We may wish to allow a certain amount of nondeterminism within our program, e.g., logging, 

network output or profiling code, for two reasons: 1) its nondeterminism will not have a large 

bearing on the determinism of the rest of the program and 2) such nondeterministic code can run 

without the overheads of the execution-level determinism system. To employ nondeterminism in a 

sound way, we need to formally guarantee that its effects are not allowed to “contaminate” the 

determinism of the rest of our program. 

To soundly incorporate determinism and nondeterminism within a single program, we modify the 

type system described in Section 5.4 to become more like a standard static information-flow 

tracking type system [165]. The main extensions are 1) additional restrictions placed on scalar 

assignments, and 2) protection against implicit flows via control flow. These additions, combined 

with MELD’s existing restrictions on assignments for reference types, suffice to prevent the 

nondeterministic part of the program from affecting the deterministic parts. 

The nondeterministic part of the program (unlike integrating with deterministic languages) has no 

special requirements. To return to our list of correctness conditions from Section 5.3.4, we must 

additionally ensure non-interference between: 

6. nondeterministic code and threads running inside a DLC 
7. nondeterministic code and threads running outside a DLC 

There is, of course, no requirement to isolate nondeterministic code from itself. For the purposes of 

integrating nondeterminism, it is sufficient to consider exdet, xldet and langdet as being 

equivalent: they all guarantee that a memory location is deterministic. If we consider these as a 

single “det” label, then we can use the type lattice det ⊑ nondet and run standard information-flow 

typing rules to support nondeterministic memory locations. 
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Casts that modify the qualifiers of nondet data (endorsements in the information-flow tracking 

literature) have a special semantic meaning: they represent a kind of “internal input” to the 

deterministic part of a program, analogous to external input read from, e.g., files or sockets. A 

record-and-replay system building upon MELD would perform logging at nondet endorsements to 

precisely capture this internal input and allow for repeatability of the deterministic portion of the 

program. 

MELD’s data-centric annotation approach is especially significant when nondeterminism is allowed 

into a program, because determinism guarantees are meaningful only when referring to data. A 

memory location M will have deterministic contents at the end of a program if and only if M is only 

ever updated with deterministic values.9 A code-centric approach to determinism like [140] allows 

deterministic and nondeterministic values to be assigned to M, albeit in a data-race-free manner. 

Such an approach cannot, however, make any guarantees about M’s value being deterministic. More 

simply, as we observed earlier (Section 5.2), levels of determinism are not composable: passing a 

variable with a nondeterministic value to a function written in a deterministic language will not 

“recover” determinism for that variable. 

5.6.2 Qualifier Polymorphism 

Others have shown how to extend a type qualifier system like MELD’s to account for qualifier 

polymorphism [165,167]. Polymorphic qualifiers would admit extra flexibility for, e.g., the this 

reference or function parameters, avoiding the need to clone methods to perform the same 

computation on different labels. 

5.7 Limit Study 

To evaluate MELD within the limits of our current infrastructure (Section 5.5) we have undertaken 

a limit study of MELD’s potential. 

                                                             
9 Modulo the special case of resetting the variable to a known deterministic value. This is useful in a security 
context for regaining trust from untrusted values [166] but is not useful in our context since the 
nondeterministic value cannot be read. 
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5.7.1 Experimental Setup 

We ran our experiments on an 8-core 2.4GHz Intel Xeon E5462 (“Nehalem”) with 10GB of RAM, 

using 64-bit Ubuntu Linux 8.10. Our experiments run with 8 program threads on the Sun Java 

HotSpot VM 1.7.0_05, running in 64-bit server mode. We use the kernel benchmarks from the Java 

Grande Forum [168]. We have scaled the input sizes of the kernels to have meaningful runtimes, 

except for the Series kernel which already runs for several minutes on our machine. For Crypt, we 

increased the input array size by a factor of 20 and perform the main encrypt-decrypt operation 30 

times in a loop. For LUFact, we increased the input size by a factor of 5; for SOR by a factor of 10; 

and for SparseMatmult by a factor of 20. 

5.7.2 Results 

We have evaluated the performance of MELDed programs with various portions of MELD’s runtime 

instrumentation disabled. These experiments show where the performance bottlenecks are in the 

current system, and give an upper bound on the speedup possible through the use of langdet and 

xldet qualifiers. 

The bars in Figure 37 are normalized to the 

blue bars – runtime of execution under full 

execution-level determinism, i.e., with all 

memory locations labeled as exdet. The blue 

bars are the slowest configuration, and lower 

bars are better. The purple bars show the 

performance when store buffering is 

completely disabled, modeling the case when 

all memory locations are labeled as xldet or 

langdet. The green bars show the 

performance when executing in Kendo [23] 

mode – dynamic instruction count is used to force synchronization operations into a deterministic 

order, but no quantum formation or store buffering takes place. The orange bars show the 

 

Figure 37: Runtime of Java Grande kernels with various 
components of MELD’s runtime instrumentation disabled. 
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performance when only dynamic instruction counting is performed. Finally, the red bars show the 

performance of nondeterministic execution. 

The differences between different bars in Figure 37 reveal where the time goes in the MELD 

runtime system. First, the sizeable gap between red and blue, for all benchmarks except Series, 

indicates that full execution-level determinism imposes a substantial slowdown over 

nondeterministic execution: up to 58x for LUFact. The gap between purple and blue shows that the 

extensive use of xldet/langdet accesses has the potential to dramatically reduce runtime 

overheads for SOR and SparseMatmult. Crypt and LUFact gain more from eliminating quantum 

formation (green bars) and deterministic synchronization (yellow bars) than from eliminating the 

store buffer. Smarter quantum formation strategies, such as adjusting quantum size dynamically 

[144,145], will likely reduce quantum formation overhead. The gap between the red and orange 

bars shows that our current implementation of instruction counting imposes high overheads in 

some cases (10x for LUFact). The MELD compiler currently naïvely instrument all control-flow back 

edges, which is far from optimal for tight loops and short branches. A smarter policy (e.g., from 

[34]) would reduce overheads noticeably. 

Overall, these experiments show that MELD’s primary optimization, using a deterministic language 

to remove store buffer instrumentation, is a promising approach. They also point to areas in the 

MELD runtime system that need improvement. 

5.8 Conclusions 

We have presented MELD, a new system for integrating deterministic languages within a 

deterministic execution system. We leverage deterministic execution’s support for arbitrary 

parallel programs, and deterministic languages’ support for fast, statically-checked determinism to 

accelerate the performance of deterministic execution on programs that cannot be readily 

expressed in a deterministic language. We show that naïvely integrating a deterministic language 

into a deterministic execution system does not preserve determinism, and we describe the 

requirements for soundly doing so. We use a simple qualifier-based type system to enforce isolation 
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between the execution-level and language-level determinism parts of a program. Our results 

suggest that integrating Deterministic Parallel Java into a Java port of the CoreDet deterministic 

execution system can improve determinism’s performance substantially. 

We believe that the static and dynamic approaches to determinism, heretofore separate, are much 

better together. An integrated approach is an important step towards making deterministic systems 

fast enough and general enough for widespread use. 
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Chapter 6 Conclusions 

This dissertation has demonstrated and evaluated a series of hardware and software techniques for 

providing execution-level determinism in an efficient manner. We established that deterministic 

execution of arbitrary parallel programs is possible (Chapter 3), evaluated the trade-offs among 

pure-hardware (Chapter 3), hybrid hardware-software (Chapter 4), and pure-software (Chapters 4, 

5) deterministic platforms, and showed that relaxing memory consistency (Chapter 4) and 

incorporating deterministic languages (Chapter 5) are two important optimizations for increasing 

the performance of execution-level determinism. We have also placed these techniques in the 

context of parallel programmability research (Chapter 2), showing how our work on determinism 

has been inspired by previous research and has inspired others. 

6.1 Summary of Techniques 

This dissertation describes several techniques that allow arbitrary parallel programs to execute 

deterministically and investigates the trade-offs among these techniques. The basic pattern that all 

of these techniques follow is to divide a program’s execution into deterministically-sized chunks of 

instructions called quanta. During each quantum, threads initially execute in isolation and 

subsequently are allowed to communicate in a precisely controlled way. 

Chapter 3 describes the use of a sharing table that tracks memory ownership (Section 3.1.3.1) and 

hardware transactional memory (Section 3.1.3.2) to enforce isolation among threads.  For the 

sharing table approach, an initially-immutable sharing table prevents threads from communicating 

with one another. Subsequently, threads that need to modify the sharing table to make progress are 

executed in a deterministic serial order. The TM approach uses hardware transactions [30] to keep 

threads isolated and a deterministic transaction commit order to ensure that communication 

occurs in a precise order. 

Chapter 4 describes the use of store buffers to isolate threads without the need for conflict 

detection. Store buffers offer a simple, speculation-free isolation mechanism without the overhead 
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of tracking and updating memory ownership information. The price is a more complicated memory 

consistency model – the sharing table and TM-based determinism systems both provide sequential 

consistency [65] while the store buffer approach provides weaker ordering guarantees. 

Finally, Chapter 5 discusses how to integrate deterministic languages with our previously 

developed techniques. Using the type-and-effect system of Deterministic Parallel Java [20] to 

statically prove the isolation of concurrent operations, we can eliminate some of the overhead of 

enforcing determinism at runtime. As with providing other program properties like memory safety 

and type safety, a combination of static and dynamic approaches suits determinism well. 

6.2 Limitations 

While we have detailed how to provide determinism for arbitrary programs, there are nevertheless 

several limitations to our approaches. We discuss elsewhere the performance implications of our 

techniques which are certainly an important factor limiting wider adoption. In this section we 

describe other factors that inhibit real-world usage of determinism. 

The first is that our deterministic mechanisms are built on a notion of deterministic logical time 

that is quite brittle: dynamic instruction count. Virtually any code change will alter a program’s 

dynamic instruction count, even for an identical input, and this change can occur in opaque ways 

due to sophisticated compiler optimizations. A change in dynamic instruction count can alter 

quantum boundaries, affecting in turn a program’s communication patterns and therefore its 

execution. In principle, a code change results in an entirely new program for which testing and 

validation must begin from scratch. Limited forms of robustness to such code changes are possible, 

e.g., ignoring extra instructions inserted for debugging. However, a more principled way of handling 

code changes would dramatically simplify the testing of deterministic programs. 

Another limitation of our approaches is that a deterministic execution is a function of both program 

input and a small set of explicit configuration parameters. Quantum size, for example, has a large 

impact on performance and must be set explicitly, though others have proposed [144,145] 

deterministically adjusting quantum size at runtime. For our hardware-based techniques, the 
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geometry of private caches affects execution by altering quantum boundaries, though Calvin [144] 

shows how to virtualize these hardware resources at some performance cost. The deterministic 

ordering imposed on threads, needed to resolve memory update conflicts and coordinate 

synchronization operations, can also impose slowdown, though it too can perhaps be modified 

online in a deterministic way to improve performance. Allowing these configuration parameters to 

be derived automatically from program input will improve determinism’s performance portability 

and eliminate the need to test different configurations for each input. 

Finally, we believe that determinism is an enabler of program correctness, though it does not 

directly provide it. A program run on one of our deterministic systems may well crash more 

frequently than when run on a nondeterministic platform. Over time, determinism’s debugging 

benefits should result in more correct programs even though end users may prefer not to wait. 

Nondeterminism also provides a weak kind of fault-tolerance, in that there is a chance that a 

particular crash may vanish simply on re-running the program. Our determinism techniques can 

perhaps be extended to allow a more principled notion of execution diversity where execution is a 

function of program input as well as, e.g., a random seed. Research in exposing [56] and masking 

[54] software bugs is also likely to prove deeply synergistic with deterministic execution. 

6.3 Looking Forward 

It would be fitting if future work on deterministic execution were entirely a function of previous 

work. This is unlikely to be the case, however, as researchers continue to improve determinism’s 

performance, overcome its limitations, uncover new uses for it, and incorporate it with other 

established mechanisms for improving parallel programmability. It is our particular hope that 

determinism’s debugging and testing benefits can be more rigorously established going forwards. 

This can come through better deterministic systems that explicitly target these use-cases instead of 

focusing on improving performance. User studies and the study of real-world deployments of 

determinism will also be invaluable for measuring determinism’s benefits and informing the design 

of next-generation deterministic systems that are even more helpful. Ultimately, these efforts will 
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broaden determinism’s impact and help make parallelism, with its attendant performance and 

energy benefits, more accessible to a wide audience. 
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