

© Copyright 2012

Joseph Devietti

Deterministic Execution for Arbitrary Multithreaded Programs

Joseph Devietti

A dissertation 

submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2012

Reading Committee:

Luis Ceze, Chair

Daniel Grossman

Henry Levy

Program Authorized to Offer Degree:

Department of Computer Science and Engineering

University of Washington

Abstract

Deterministic Execution for Arbitrary Multithreaded Programs

Joseph Devietti

Chair of the Supervisory Committee:

Associate Professor Luis Ceze

Computer Science and Engineering

Nondeterminism is one of the main reasons that parallel programming is so difficult. Bugs can

vanish when programs are rerun or run under a debugger, thwarting attempts at their removal.

Stress-testing is a common practice to flush out rare defects though it consumes extensive

processing power and offers no real guarantees of discovering bugs. Deployment can similarly

expose new issues that are difficult to reproduce. Finally, nondeterminism frustrates replicating

multithreaded programs for fault-tolerance or performance as the replicas can diverge silently.

Determinism eliminates these problems, making debugging and replication possible and making

testing more valuable and efficient.

Previous efforts at providing determinism required programs to be (re-)written in restrictive

languages. In contrast to these language-level determinism schemes, this dissertation shows how

execution-level determinism can be provided for arbitrary parallel programs, even programs that

contain concurrency errors. First, we employ a hardware-based approach to provide determinism

for unmodified binaries running on a deterministic multiprocessor system. Second, we show that

memory consistency relaxations both enable a pure software-based implementation of execution-

level determinism for arbitrary programs and also admit a simpler deterministic multiprocessor

design. Finally, we describe a hybrid mechanism that integrates execution-level and language-level

determinism techniques to provide determinism for arbitrary programs with higher performance

than an execution-level approach alone.

 i

TABLE OF CONTENTS

List of Figures .. v

List of Tables ... vii

Chapter 1 Introduction .. 1

1.1 The Challenges of Parallelism .. 2

1.2 The Benefits of Reproducibility and Determinism .. 3

1.3 Previous Work on Deterministic Parallelism .. 5

1.4 Dissertation Goals and Contributions ... 6

1.4.1 DMP: A Deterministic MultiProcessor.. 7

1.4.2 RCDC: A Relaxed Consistency Deterministic Computer ... 7

1.4.3 MELD: Merging Execution-level and Language-level Determinism .. 8

1.5 Reading Guide ... 10

Chapter 2 Related Work.. 11

2.1 Concurrency Bug Detection and Survival .. 11

2.1.1 Data Races .. 12

2.1.2 Atomicity Violations .. 15

2.1.3 General Concurrency Bug Detection ... 17

2.1.4 Simplifying Memory Consistency Models ... 18

2.2 Programming Models for Parallelism ... 21

2.2.1 Task Parallel Frameworks .. 21

2.2.2 Transactional Memory .. 23

2.3 Thread-level Speculation ... 24

2.4 Multithreaded Record and Replay ... 25

2.4.1 Hardware Record and Replay .. 25

2.4.2 Software Record and Replay Techniques ... 28

2.5 Deterministic Parallelism .. 29

2.5.1 Determinism Verification .. 29

2.5.2 Deterministic Parallel Languages .. 30

2.5.3 Execution-level Determinism Systems .. 31

Chapter 3 A Deterministic MultiProcessor Architecture .. 35

 ii

3.1 Enforcing Deterministic Shared Memory Multiprocessing ... 36

3.1.1 Basic Idea – DET-SERIAL .. 36

3.1.2 Handling Application-Level Synchronization ... 37

3.1.3 Recovering Parallelism ... 37

3.1.4 Exploiting the Critical Path – QB-SYNCFOLLOW, QB-SHARING and QB-SYNCSHARING 41

3.2 Implementation Issues .. 43

3.2.1 Hardware-Only Implementation .. 43

3.2.2 Software-Only Implementation .. 45

3.2.3 Leveraging Commercial Hardware Transactional Memory .. 46

3.3 Experimental Setup .. 47

3.3.1 Hardware Implementation ... 48

3.3.2 Software Implementation.. 48

3.4 Evaluation ... 49

3.4.1 Performance and Scalability... 49

3.4.2 Sensitivity Analysis .. 50

3.4.3 Characterization .. 52

3.4.4 CoreDet: Performance and Scalability ... 53

3.5 Discussion ... 53

3.6 Conclusions .. 56

Chapter 4 Trading Strong Memory Consistency for Simpler Determinism 58

4.1 Relaxed-Consistency Deterministic Execution ... 59

4.1.1 DET-TSO: Store Buffering ... 59

4.1.2 DET-HB: Leveraging Data-Race-Free Memory Models .. 60

4.2 RCDC System Overview .. 64

4.3 Implementation.. 66

4.3.1 Quantum Formation .. 66

4.3.2 Buffering ... 67

4.3.3 Committing Buffered Data .. 69

4.3.4 Synchronization Library .. 74

4.4 System Issues .. 75

4.4.1 Support for nondeterministic execution ... 76

4.4.2 Processes .. 76

4.4.3 Context Switches ... 76

 iii

4.4.4 Paging .. 77

4.4.5 Memory Errors... 77

4.4.6 Store Buffer Parameters and Determinism .. 77

4.5 Evaluation ... 78

4.5.1 Performance and Scalability... 79

4.5.2 Characterization .. 80

4.5.3 Sensitivity to Quantum Size .. 81

4.5.4 Compiler-Runtime Implementation .. 81

4.6 Conclusions .. 82

Chapter 5 Merging Execution-level and Language-level Determinism 83

5.1 Pitfalls of Integrating Execution-Level and Language-Level Determinism 83

5.2 Background .. 84

5.3 Combining Execution-level and Language-Level Determinism ... 87

5.3.1 Starting Simple: Pure Language-Level Determinism ... 87

5.3.2 Supporting Concurrent Conflicting Tasks .. 88

5.3.3 Supporting Arbitrary Parallelism Constructs ... 89

5.3.4 Supporting Casts and Modularity ... 90

5.4 The MELD Type System .. 95

5.4.1 Type Qualifiers ... 95

5.4.2 Defaults ... 96

5.4.3 Type Rules ... 97

5.5 Implementation.. 97

5.5.1 Type Qualifier System ... 98

5.5.2 DPJ Compiler ... 98

5.5.3 MELD Compiler and Runtime System .. 98

5.5.4 Handling thread fork/join ... 99

5.6 Extensions ... 100

5.6.1 Incorporating Nondeterminism ... 100

5.6.2 Qualifier Polymorphism .. 101

5.7 Limit Study .. 101

5.7.1 Experimental Setup ... 102

5.7.2 Results .. 102

5.8 Conclusions ... 103

 iv

Chapter 6 Conclusions .. 105

6.1 Summary of Techniques .. 105

6.2 Limitations .. 106

6.3 Looking Forward .. 107

References .. 109

 v

LIST OF FIGURES

Figure 1: CPU frequency and core count of desktop/server microprocessors from 1971-2011 1

Figure 2: The value of reproducibility throughout the software development cycle 3

Figure 3: Our basic approach to determinism ... 6

Figure 4: The overlapping definitions of different classes of concurrency errors 11

Figure 5: The happens-before relation ... 12

Figure 6: An assembly code example of a single-variable atomicity violation .. 15

Figure 7: A parallel execution and two of its multiple communication-equivalent interleavings 35

Figure 8: Deterministic serialization of memory operations .. 36

Figure 9: Recovering parallelism by overlapping communication-free execution 38

Figure 10: Deterministic serialization of shared memory communication only .. 39

Figure 11: Recovering parallelism by executing quanta as memory transactions 40

Figure 12: When better quantum breaking policies lead to better performance 42

Figure 13: DMP performance with 4, 8 and 16 threads .. 49

Figure 14: DMP performance with different quantum sizes ... 50

Figure 15: DMP performance with page-granularity conflict detection ... 51

Figure 16: DMP quantum building schemes’ performance with 1,000-insn quanta 51

Figure 17: DMP quantum building schemes’ performance with 10,000-insn quanta 51

Figure 18: Runtime of COREDET-SHTAB relative to nondeterministic execution ... 53

Figure 19: Timeline of a quantum round in DET-TSO and DET-HB ... 59

Figure 20: A comparison of execution under DET-HB and under DET-TSO ... 63

Figure 21: RCDC system overview ... 64

Figure 22: RCDC commit process when all application threads are scheduled .. 71

Figure 23: RCDC commit process when an application thread is switched out .. 73

Figure 24: Deterministic locking for DET-HB ... 74

Figure 25: RCDC performance normalized to NONDET ... 79

Figure 26: Performance of RCDC-HB and RCDC-TSO ... 80

Figure 27: Reasons why quanta end for RCDC-HB and RCDC-TSO ... 80

Figure 28: Performance of ferret with 16 processors using different quantum sizes 81

Figure 29: Performance of COREDET -HB and COREDET-TSO .. 81

Figure 30: A simple DPJ program with regions and effects ... 86

Figure 31: A simple DPJ program with concurrent conflicting tasks ... 88

Figure 32: Aliasing between exdet and langdet locations results in nondeterminism. 89

 vi

Figure 33: An internally-parallel, in-place sort function that we can easily write in DPJ 90

Figure 34: After casting from langdet to exdet, existing langdet aliases must not be used. 92

Figure 35: Assignments between xldet different scopes can introduce nondeterminism 93

Figure 36: An updated version of the program from Figure 35 ... 94

Figure 37: Runtime of Java Grande kernels with MELD ... 102

 vii

LIST OF TABLES

Table 1: Terminology used in previous conference papers and in this dissertation. 10

Table 2: Characterization of hardware DMP results. .. 52

 viii

ACKNOWLEDGMENTS

Getting a PhD is not a solo sport. Over the past five years I have benefited from the love and support

of an amazing team of people. Two pages are not enough to describe the immense impact they have

had on my life and on this work, but I shall try.

Let me start by thanking my advisers Luis Ceze and Dan Grossman. Your complementary

backgrounds and research perspectives combine to form an environment that I, and many others in

our group, have found incredibly fruitful. Luis, thank you for your energy and for always pushing

me to achieve my full potential. Dan, thank you for your diligence and clear thinking that has helped

me better understand so many of my own ideas. A special thanks is also due to you both for putting

up with my incessant dabbling in new technologies from simulators to presentation software to

revision control systems, often at the expense of forward progress. Without your guidance I would

surely still be polishing my first simulator to a brilliant but useless sheen.

I owe a tremendous debt of gratitude to my parents for supporting me through college and

encouraging me to add a second major that turned out to be a defining event in my life. Throughout

grad school their unwavering support and advice have helped me grow, as a researcher and as a

person. I am also indebted to my sister for her support and for a steady supply of silliness and

amazing baked goods. Many a critical deadline push has been fueled by her amazing éclairs.

At Microsoft Research I had the opportunity to work with Karin Strauss and Shaz Qadeer. I am

grateful for their insights, patience in working with me to find a successful project, and for

continuing our collaboration long after my internship ended. At UW I had the opportunity to work

with many great faculty members. I am grateful to Mark Oskin for helping me get started with

research at UW and for career advice as I finished. I also deeply appreciated Susan Eggers’

encouragement and honesty throughout my time at UW.

During my time at UW, my fellow graduate students in the SAMPA group have made my life

technically, intellectually and socially rewarding. I and the other lab members deeply benefited

 ix

from Jacob Nelson’s friendship, grace under pressure, and ability to order the chaos of shared

computing infrastructure. Brandon Lucia brought a creativity and energy to everything he worked

on that I wish I could emulate; the many late-night breaks we took from debugging to laser his cat

were also very useful. I am grateful for Tom Bergan’s rigorous thinking and incredible coding

abilities; the scope of our projects would have been much less without Tom’s help. Ben Wood was

always great fun to work with, though, given that almost none of our collaborations resulted in

publications, perhaps too much so. Ben’s skills at creative acronyming are second-to-none. In

addition to their friendship and humor, I must also recognize Hadi Esmaeilzadeh for bringing real

microarchitecture research to our group, Adrian Sampson for an impeccable presentation style and

always ensuring the vegetarians had something to eat, and Owen Anderson for his incredible

knowledge of LLVM.

My time in grad school wouldn’t have been nearly as rich without the amazing friendship of Kayur,

Mike, Tomas, John, Yaw and Ben. From early morning workouts to all-day LOTRO to late-night

conversations, with an endless stream of nerdy humor throughout, you guys made me feel at home

at UW and in Seattle, and kept me from taking grad school too seriously.

And finally, to my wife Sylvia, a few private words addressed to you in public. You have been a

constant source of love, vitality and great cooking throughout my degree. Your honesty and

openness have indelibly improved my life, even more than your reliable stream of song parodies.

You have additionally contributed to my research in many ways, from helping clarify my

presentations and visualizations to many parts of this document as well. I feel so lucky to have you

as a partner, and I look forward to all the joys of life we’ll share together.

 x

DEDICATION

To my parents, for their love, generosity and support throughout my life.

I would never have made it here without you.

1

Chapter 1 Introduction

Over the last several years, multicore processors have steadily displaced their single-core

counterparts: first in server rooms, then in desktops and laptops, and most recently in phones and

tablets as well. It is already

impossible to buy a new machine with

only one core in many market

segments. Multicores’ swift invasion

of the general-purpose processor

market has been spurred by the need

to meet three simultaneous

constraints: high performance, energy

efficiency, and limited cooling

capacity. Increasing processor

frequency has been one of the

traditional approaches to improving

single-threaded performance, but

higher frequencies require higher

processor voltages, driving total chip power usage up per Power =

Capacitance×Voltage2×Frequency. Higher power usage also generates more heat that places more

stress on cooling. Ultimately, higher power usage and limited cooling capacity defined a “power

wall” that placed a practical limit on CPU frequency, reached in 2006 for desktop and server

processors (Figure 1, left axis, blue filled circles).

Multicore processors offered a solution to the power wall, as two cores running at N GHz provide

the same aggregate performance as one core running at 2N GHz, but with substantial power and

cooling savings over the single-core processor. These efficiencies have driven the popularity of

multicore hardware (Figure 1, right axis, orange empty circles). Unfortunately, the spread of

Figure 1: CPU frequency (blue filled circles) and core count (orange
empty circles) of production desktop/server microprocessors from
1971-2011. Power supply and cooling limitations imposed a ceiling
on frequency improvements in 2006 that sparked the rapid
transition to multicore. Data from the Stanford CPUDB project [1].

1970 1975 1980 1985 1990 1995 2000 2005 2010

year

0.1

0.2

0.5

1

2

5

10

20

50

100

200

500

1,000

2,000

5,000

c
lo

c
k
 (

M
H

z)
 -

 f
ill

e
d

 c
ir

c
le

s

0

1

2

3

4

5

6

7

8

9

c
o

re
s
 -

 e
m

p
ty

 c
ir

c
le

s

2

parallel software has not kept pace with that of parallel hardware. Efficient use of now-ubiquitous

multicore processors requires that software be parallelized to take advantage of extra computing

resources. Manually parallelizing code requires substantial engineering effort, and automatic

parallelization remains an open research challenge.

1.1 The Challenges of Parallelism

Like all software, parallel software must satisfy criteria like correctness, performance, usability and

cost. Parallelism presents special challenges in terms of performance and correctness since

parallelism inherits all of sequential programming’s difficulties and adds many new ones. The focus

of this dissertation will be on techniques to improve the correctness of parallel programs. However,

even if it were trivial to write correct parallel programs, many open challenges would remain in

ensuring those programs ran efficiently. Much recent research has examined the difficulties of

scheduling [2], automatically tuning [3] and performance debugging [4] parallel applications. The

work presented in this dissertation strives to improve correctness while having a minimal negative

impact on performance.

Parallelism poses many correctness challenges, from dealing with concurrency errors like data

races [5,6], atomicity violations [7] and ordering violations [8], to reasoning about the complexities

of memory consistency models [9,10], to coping with the nondeterminism inherent in most parallel

systems. Nondeterminism is orthogonal to these other challenges – a deterministic system does not

eliminate concurrency bugs, nor does eliminating all concurrency bugs eliminate nondeterminism.

Nevertheless, we believe that nondeterminism is a more fundamental challenge because the

presence of nondeterminism exacerbates parallelism’s other challenges. Nondeterminism destroys

reproducibility, introducing a host of issues throughout the software development process. Bugs

can appear or disappear from run to run, defeating attempts to understand and remove them.

Testing’s guarantees are weakened in the presence of nondeterminism, because a passing test says

little about future behavior. Deployed software can similarly expose new issues that are difficult to

reproduce. Finally, nondeterminism frustrates attempts at replicating multithreaded programs as

the replicas can easily diverge, nullifying the reliability or availability benefits of replication.

3

1.2 The Benefits of Reproducibility and Determinism

Reproducibility does not directly improve the correctness of a parallel program, but it is a key

enabler of correctness. Figure 2 shows the benefits reproducibility brings to the process of

developing multithreaded software, from debugging through testing and deployment. We

distinguish between two flavors

of reproducibility: a weak flavor

achievable via either determinism

or record and replay mechanisms

that improves the debugging

process, and a strong flavor

possible only via determinism

(the shaded region in Figure 2)

that improves testing and

deployed code as well.

Reproducibility is crucial for improving the process of debugging parallel software.

Nondeterminism is the source of timing-sensitive “heisenbugs” which can disappear when run

under a debugger or manifest only infrequently when run natively. Nondeterminism also thwarts

any use of reverse debugging [11], a technique that helps to triage bugs. In contrast, deterministic

execution allows buggy executions to be replayed, both forwards and backwards, in the same

straightforward manner in which single-threaded programs can be.

Testing a multithreaded program often relies on stress testing: running a program with the same

input many times to haphazardly exercise a variety of timing conditions, some of which might

expose bugs. Determinism eliminates the need to perform stress testing since program execution is

guided solely by its input.

Determinism can amplify the power of static analysis tools like model checkers [12] by reducing the

size of the state space they must explore. Determinism can also assist dynamic tools (e.g., data race

Figure 2: The value of reproducibility throughout the software
development cycle. The shaded region indicates benefits attainable
only through determinism; other benefits can be achieved via
determinism or record and replay mechanisms.

Debug
reverse debugging is possible

Deploy
more robust production code

Test
no need to
stress testtesting results

are reproducible

production bugs
can be reproduced

in-house

tested inputs behave
identically in production

4

detectors [13,14]) that focus on verifying a single execution with lower overhead, but suffer acutely

from nondeterminism that makes detected errors hard to reproduce and guarantees about future

executions impossible to provide. Deterministic execution acts as a powerful lever for dynamic

analysis, by providing repeatability, and also ensuring that once a given input has been verified as

safe, all future executions of that input will be safe as well. Such a guarantee about future

executions can also be leveraged to enable new forms of incremental re-verification in response to

code changes.

Code tested and then deployed on a deterministic platform has two significant advantages over

code running on a nondeterministic platform. First, any tested inputs used in production are

guaranteed to have the same behavior in both environments. This allows developers to have high

confidence in their software; nondeterminism can no longer introduce a dramatically new set of

behaviors once their software is deployed. Second, bugs manifesting on a machine in the field can

be reproduced back in a development environment.

Finally, deterministic execution makes it simple to replicate multithreaded programs for fault-

tolerance: broadcasting inputs to all replicas ensures they remain synchronized.

Weak reproducibility makes reverse debugging possible, and allows bugs that appear during

testing or in production to be reproduced. Determinism, however, brings the benefits of

reproducibility full circle by 1) eliminating the need to stress test, since a parallel program always

behaves the same way for a given input, 2) ensuring that no new behaviors for a given input are

possible in production, increasing the assurance provided by testing, ultimately 3) making deployed

code more reliable. The value of even weak reproducibility can be seen in the commercial support

for tools that make single-threaded executions repeatable, such as VMWare’s replay debugger [15]

and gdb’s recent support for reverse execution [16]. Support for multithreaded execution is less

common; one example is Corensic’s Jinx tool [17] that offers limited amounts of reproducibility in

testing environments. Next-generation tools that offer deterministic execution would be of even

greater value.

5

1.3 Previous Work on Deterministic Parallelism

Prior to our work on execution-level determinism, a language-based approach was required to

achieve deterministic parallelism. We briefly outline the most relevant language-based work here,

and defer a fuller discussion of other related work in deterministic parallelism to Section 2.5.

Currently-proposed deterministic languages favor reduced expressiveness over runtime

instrumentation. StreamIt [18] is a deterministic stream processing language that restricts

programmers to a non-Turing-complete language without loops in exchange for static guarantees

about the buffer sizes needed to implement a stream pipeline. NESL [19] and Deterministic Parallel

Java (DPJ) [20] offer a similar bargain in supporting only fork-join parallelism. NESL is a purely

functional language, and its lack of mutability avoids issues with interference – when concurrent

threads read and write the same data. DPJ adds a sophisticated type-and-effect system to Java to

statically prove non-interference for concurrent threads, while still supporting Java’s fully mutable

semantics. NESL and DPJ’s static approaches provide determinism with zero runtime overhead,

running programs as efficiently as nondeterministic languages. In addition to performance,

deterministic languages provide strong safety guarantees in the form of sequential semantics:

because the operations of concurrent threads have been proved non-interfering, parallelism does

not affect the program’s outcome. Deterministic languages are a safe and performant approach to

parallelism for programs that fit within their restrictions.

Other approaches to deterministic parallelism have embraced existing languages but support only

restricted programming models, such as requiring data race freedom or forbidding the use of

complex synchronization mechanisms like locks. Task parallel frameworks like Cilk [21] (see

Section 2.2.1) have exactly these restrictions. Writing a data race or resorting to the use of richer

synchronization primitives can silently result in nondeterministic execution. Grace [22] is a notable

exception: it explores support for a C/C++ nested fork-join programming model with isolation

enforced via virtual memory protection. Isolation, plus the lack of synchronization idioms other

than fork and join, guarantees the determinism of Grace programs. Concurrently with our initial

6

work on determinism, Kendo [23] proposed deterministic execution for data-race-free C/C++

programs that use arbitrary synchronization. Kendo exploits data race freedom to avoid the need

for expensive thread isolation. Kendo also takes advantage of hardware performance counters to

provide very reasonable overheads, at roughly 20% slowdown with 4 threads.

1.4 Dissertation Goals and Contributions

The goal of this dissertation is to evaluate the feasibility and efficiency of techniques that provide

determinism for arbitrary parallel programs. Toward this goal we furnish three specific

contributions, in the design and evaluation of three deterministic execution systems. The first, DMP

or Deterministic MultiProcessor [24,25], is a pure-hardware design that leverages hardware’s

ability to perform low-overhead speculative execution. The second, RCDC or Relaxed Consistency

Deterministic Computer [26], proposes a hybrid hardware-software design for reduced complexity

with equivalent performance to DMP. The final system is MELD [27], a pure-software approach for

Merging Execution-level and Language-level Determinism that reduces the runtime overhead of

execution-level determinism by integrating static, language-based techniques.

Despite the variety of implementation technologies

used in these three systems – from hardware

transactional memory to type systems – DMP,

RCDC and MELD share a common approach to

providing determinism (Figure 3). Initially, each

thread of a multithreaded program is placed in an

isolated memory space, wherein an update to

shared memory is visible only to the thread that

performed the update. Effectively, the original

multithreaded program is converted into a

collection of single-threaded programs. Single-threaded programs naturally execute in a

deterministic fashion; thus the determinism of the entire program is ensured. The mechanism used

to ensure thread isolation varies depending on the deterministic execution system, from processor-

Figure 3: Our basic approach to determinism is
precise control of thread communication, with
alternating periods of isolated execution and
deterministic merging of accumulated outputs.

7

private hardware caches to runtime instrumentation to static analysis that proves isolation at

compile-time.

Of course, threads must periodically communicate with one another in order for the program to

execute correctly. Thus, inter-thread communication is allowed at regular intervals, subject to two

restrictions. First, these communication points must arise at deterministic places in the execution.

Second, the communication itself, i.e., merging updates that have been performed by remote

threads, must be performed deterministically. Again, the mechanisms used to implement

deterministic communication differ by system. Counting fixed numbers of machine or bytecode

instructions is a persistent approach for identifying deterministic points in an execution.

Mechanisms for merging updates deterministically range from hardware techniques for thread-

level speculation [28] to order-independent geometry rendering algorithms [29] from computer

graphics.

1.4.1 DMP: A Deterministic MultiProcessor

DMP ([24] and Chapter 3) is a novel hardware architecture that runs programs deterministically,

even if they use arbitrary synchronization constructs or contain data races. The DMP design built

upon existing proposals for hardware transactional memory [30], a vibrant research area that has

made the transition into shipping products from IBM [31,32] and Intel [33] (see Section 3.2.3). DMP

divides the execution of each thread into a series of transactions and ensures that these

transactions commit in a deterministic order. The size of transactions can be adjusted to match the

limitations of a hardware transactional memory system, eliminating the need for unbounded

transactions. To evaluate DMP, we built an architecture simulator demonstrating that DMP incurs

approximately 20% overhead compared to nondeterministic execution.

1.4.2 RCDC: A Relaxed Consistency Deterministic Computer

To bring the benefits of deterministic execution to today’s systems, we then designed the CoreDet

algorithm [34] for deterministic execution. The main insight behind CoreDet was that DMP’s need

for always-on speculation could be exchanged for a non-speculative approach coupled with a more

8

relaxed memory consistency model based on Total Store Order [35,36]. This new design admitted a

realizable software implementation of execution-level determinism. The CoreDet deterministic

compiler [34] provides determinism for arbitrary C/C++ programs. The CoreDet compiler is open-

source and has been downloaded by researchers at over 20 institutions worldwide. Our

experiments show that CoreDet exacts a 5x slowdown on average, but brings the benefits of

determinism to existing programs running on today’s hardware.

To maintain determinism, CoreDet required that synchronization operations be serialized – a clear

scalability bottleneck for programs that use frequent synchronization. The RCDC deterministic

execution algorithm ([26] and Chapter 4) eliminates this bottleneck via additional consistency

relaxations coupled with a more scalable deterministic synchronization algorithm from prior work

[23]. RCDC affords a natural hardware-software implementation, leveraging private caches to

cheaply enforce thread isolation while leaving software in control of making updates visible. To

show the generality of the RCDC approach, we built a hardware simulator to evaluate our hybrid

hardware-software design and extended the CoreDet compiler to evaluate a pure-software design

as well. Both in simulation and in software, RCDC significantly improves the performance of

programs with fine-grained synchronization. Moreover, RCDC’s hybrid hardware-software

implementation provides fully deterministic execution with performance comparable to that of the

original DMP hardware proposal, without the need for always-on speculation.

The source code of our implementations of CoreDet and RCDC, as well as the raw data presented in

the RCDC paper, are available from http://sampa.cs.washington.edu.

1.4.3 MELD: Merging Execution-level and Language-level Determinism

MELD leverages both our experience building execution-level determinism systems and the rich

and deeply complementary body of work on deterministic parallel languages. On the one hand,

execution-level determinism enforces determinism dynamically for arbitrary programs but with

runtime costs. On the other hand, deterministic languages enforce determinism statically without

http://sampa.cs.washington.edu/

9

runtime overhead and with sequential semantics but only support fork-join programs expressible

in sophisticated but limiting static type systems.

To combine the generality of dynamic determinism with the performance of static determinism, we

designed the MELD system ([27] and Chapter 5) that merges execution-level and language-level

determinism in a sound, i.e., determinism-preserving, manner. To maintain generality, MELD

sacrifices the sequential semantics guarantee typical of deterministic languages, as general parallel

programs have no natural sequential semantics. MELD uses a simple qualifier-based type system

for Java to partition a program’s data into regions operated on by either execution-level or

language-level determinism. MELD also supports a dynamic privatization mechanism to transition

data from one region to the other during program execution. To evaluate MELD, we have built a

Java-based execution-level determinism compiler and runtime system, and are working on

integrating this with the Deterministic Parallel Java [20] language. Our initial results suggest that

static determinism can substantially accelerate deterministic execution’s performance, while

retaining generality for the remainder of the program.

10

1.5 Reading Guide

Chapter 3 and Chapter 4 are updated versions of

the DMP [24] and RCDC [26] conference papers,

respectively. These chapters have been revised to

include a unified nomenclature, distinguishing

between system implementations (DMP, CoreDet

and RCDC) and deterministic execution

algorithms (DET-*) which are typically

implemented both in a hardware and a software

system. Table 1 translates from the terminology

of the conference papers to that of this

dissertation. We also consistently refer to

software implementations of deterministic

algorithms as CoreDet, though this results in a

slight anachronism in Section 3.4.4 as the original

DMP paper [24] proposed a compiler-based

implementation before the term CoreDet was

later introduced in [34]. For completeness, Table

1’s shaded cells translate the terms used in the

CoreDet paper [34], though the CoreDet system is not discussed at length in this dissertation.

Section 3.2.3 includes a new discussion about using upcoming hardware transactional memory

support to accelerate the DMP-TM proposal.

Chapter 5 represents a more developed version of the MELD workshop paper [27]. Though the

results presented are still preliminary, we envision a subsequent publication to include these and

further revisions.

Table 1: Terminology used in previous conference
papers and in this dissertation.

Paper Paper Term Dissertation
Term

DMP [24] DMP DMP

DMP-Serial DET-SERIAL

DMP-ShTab DET-SHTAB

DMP-TM DET-TM

DMP-TMFwd DET-TMFWD

Hw-DMP DMP

Hw-DMP-Serial DMP-SERIAL

Hw-DMP-ShTab DMP-SHTAB

Hw-DMP-TM DMP-TM

Hw-DMP-TMFwd DMP-TMFWD

Sw-DMP COREDET

Sw-DMP-ShTab COREDET-SHTAB

RCDC [31] RCDC RCDC

DMP-TSO DET-TSO

DMP-HB DET-HB

RCDC-DMP-TSO RCDC-TSO

RCDC-DMP-HB RCDC-HB

CoreDet DMP-TSO COREDET-TSO

CoreDet DMP-HB COREDET-HB

CoreDet [34] DMP-O DET-SHTAB

DMP-TM DET-TM

DMP-B DET-TSO

DMP-PB -

11

Chapter 2 Related Work

The ideas behind execution-level determinism draw inspiration from a large body of research in

making parallelism simpler to express and safer to use. This research ranges from automatically

identifying and repairing concurrency defects, to enabling simpler memory consistency models, to

providing alternative programming models for parallelism. Directly related to our work on

determinism is previous work on managing parallelism implicitly, either via automatically

extracting parallelism from sequential programs or via deterministic and implicitly-parallel

languages. Also directly related are techniques for record and replay of multithreaded programs,

and execution-level determinism systems from other researchers inspired by our systems.

2.1 Concurrency Bug Detection and Survival

There have been many proposals for automatically

detecting, and in some cases avoiding, bugs in

parallel programs. So-called concurrency bugs

come in many different classes with overlapping

definitions, as shown in Figure 4. Additionally,

some classes of errors, e.g., data races and

sequential consistency violations, have precise

definitions and detectors can be built that will

identify all such violations that arise during an

execution. Richer classes of concurrency errors have also been identified, such as atomicity

violations [7] and ordering violations [8], that do not have such precise definitions. Atomicity and

ordering violations are not axiomatic – they are defined only with respect to some programmer-

provided specification that says what operations should be atomic or how operations should be

ordered.

Figure 4: The overlapping definitions of different
classes of concurrency errors.

12

2.1.1 Data Races

Data-race-freedom (DRF) has emerged as a safety

property that can be usefully applied to general

parallel programs. A variety of schemes have been

proposed to verify or enforce DRF with a spectrum

of performance/precision trade-offs. The gold

standard for enforcing DRF is a race detector that is

both sound (misses no races) and complete

(reports no false races). The core algorithm for

fully precise data race detection is the vector-clock

algorithm [5,6,37]. Vector-clock data race detection uses the happens-before relation to order

events within and between threads in a parallel program. The happens-before relation is a partial

order, and thus two events from different threads may or may not be ordered with respect to one

another: events that are not ordered are said to be concurrent. For events occurring in a single

thread, the happens-before relation includes program order. Figure 5 gives an example of an inter-

thread happens-before edge, which arises between release and acquire operations of the same lock

(the dashed arrow); the operations on location A are ordered by the happens-before edge (plus

program order in each thread) while the operations on location B are not. A data race arises if two

memory accesses from different threads are concurrent and access the same memory location in a

conflicting way, i.e., at least one of the accesses is a write. In Figure 5, the operations on location B

form a data race. Programs that are DRF provide three important properties. First, they execute in a

sequentially-consistent manner [9,10]. Second, synchronization-free regions of code execute

atomically and in isolation [38]. Third, for an access A to a variable V, the value of V cannot change

due to remote operations within A’s interference-free region – the region of code from A’s

immediately preceding lock acquire to A’s immediately subsequent lock release [39,40]. Taken

together, these properties make DRF programs much easier to write and to reason about than non-

DRF programs.

Figure 5: The happens-before relation. The accesses
to location B form a data race.

13

In order to verify DRF, researchers have proposed techniques to detect data races. Many static race

detection algorithms have been explored (e.g., [41]) though they are invariably unsound or

incomplete due to undecidability. Dynamic race detection algorithms have been proposed as early

as 1989 [42], and since then researchers have steadily improved the time and space performance of

race detection while exploring the trade-offs of various soundness and completeness guarantees.

Eraser [43] proposed lockset violation detection, an approximation of race detection which

assumes that a consistent set of locks are used to protect each shared variable. Eraser automatically

infers the association between locks and variables, and then checks for violations of this inferred

locking discipline. As not all programs hold a consistent set of locks when protecting a given

variable – e.g., the set of locks can change when a variable is privatized by different threads – Eraser

can report spurious races where none exist, though it never misses races. HARD [44] is a hardware-

based implementation of the lockset algorithm that uses bloom-filters per cache line to encode

which locks should be held when accessing the corresponding data. Goldilocks [14] is a lockset-

happens-before hybrid race detection algorithm that uses locksets to accelerate race detection

while maintaining precision. Goldilocks uses sound (but incomplete) static race detectors [45,46] to

reduce runtime overheads further, and also proposed throwing a language-level exception when a

race is detected, an idea that would be subsequently explored in [38,47]. While the lockset

algorithm is imprecise, it remains useful because, until recently [13], it held a significant

performance advantage over precise forms of race detection.

The latest advance in fully precise race detection is the FastTrack race detector [13], which reduces

the per-shared-variable space needs of a traditional vector-clock algorithm from O(n), where n is

the number of threads in the program, to O(1) in many cases. FastTrack leverages the observation

that programs typically protect all accesses of a location x – both reads and writes – with a single

lock. Thus, there is typically only 1 previous reader for a given location, and there is no need to

store information for each of n potential readers. For correctness, FastTrack can dynamically

transition to a O(n) representation when necessary to support more complicated sharing patterns

from, e.g., reader-writer locks. These space savings translate into time savings as well, as race

14

checks need to examine fewer vector clock entries. The intuition behind FastTrack’s optimization is

the same as that which motivated lockset race detectors, which assume that programs adhere to a

one-lock-per-location invariant and report violations thereof. Lockset race detection was originally

proposed as a faster, though incomplete, alternative to vector-clock race detection [43]. Leveraging

lockset’s key idea allows FastTrack to provide performance comparable to that of lockset-based

race detection, without the latter’s tendency to detect false races. However, even with FastTrack the

cost of fully sound and complete race detection remains high, incurring a roughly 8x runtime

overhead.

Other researchers have improved the performance of data race detection via sampling: turning data

race detection off for most of the program to avoid its runtime overheads. In theory, a sampling-

based approach can miss arbitrary numbers of races, completely invalidating soundness

guarantees. In practice, principled approaches to sampling can perform quite well. LiteRace [48]

proposes detecting races based on the frequency with which code paths execute: hot code paths are

rarely subject to analysis while cold paths are regularly analyzed. Since the race detection analysis

is expensive, but run infrequently, overall performance overhead is around 50%. The consequence

is that on average only 70% of races are detected. PACER [49] proposes a different sampling

strategy that guarantees that races will be detected in proportion to the sampling rate. PACER

divides an execution into time windows, and performs race detection within these windows at a

specified rate. To uphold the probabilistic detection guarantee, a limited form of race detection is

enabled during non-sampled windows, catching all races where one of the racing accesses is inside

a sample and the other access is outside. For a 1% sampling rate, PACER adds runtime overhead of

around 50%, and PACER’s sampling strategy allows space and time overheads, as well as detection

probabilities, to scale up and down with the sampling rate.

While DRF is a useful safety property for multithreaded programs, techniques to fully enforce DRF

are too expensive for production use. Sampling strategies decrease runtime overhead substantially,

at the cost of reducing DRF to a bug-finding heuristic, instead of a safety property a programmer

can rely upon.

15

2.1.2 Atomicity Violations

Atomicity violations were first described in [7], where they were called “high-level data races” and

defined as the following situation: two threads access a

shared variable, and while the accesses should have been

performed atomically one of the threads performs a series

of non-atomic accesses to the shared variables due to

programmer error. Figure 6 illustrates an atomicity

violation: the load-increment-store operations on V should

occur atomically but due to a lack of synchronization each

thread performs them non-atomically. This results in T0’s

update being lost, so that after both threads attempt to increment V only one increment is recorded.

One important property of atomicity violations is that they violate an atomicity specification that

states which accesses need to be performed atomically. This atomicity specification is,

unfortunately, often unavailable and is only implicitly represented by the program’s code. While

there is no way to know for certain what accesses should be performed atomically in the absence of

the actual specification, a number of useful heuristics have been identified. These heuristics

inevitably entail both false positives, when an atomicity violation is detected but the program is in

fact abiding by its (missing) atomicity specification, and false negatives, when the program’s

(missing) atomicity specification is deviated from but no atomicity violation is detected.

[7] also generalizes the definition of atomicity violations to accesses of a set of shared variables.

This has resulted in two sub-classes of atomicity violations: single-variable atomicity violations and

multi-variable atomicity violations. Figure 6 shows an example of a single-variable atomicity

violation involving just the shared variable V. A multi-variable atomicity violation arises when

accesses to a set of variables should be performed atomically, e.g., when updating the real and

imaginary components of a complex number, but due to a programming error the variables are not

updated atomically. Detecting multi-variable atomicity violations is inherently more complicated as

it requires grouping variables into meaningful sets whose atomicity can then be examined. This

T0 T1

load r0 V

add r0 r0, 1 load r0 V

store r0 V add r0 r0, 1

 store r0 V

Figure 6: An assembly code example of
a single-variable atomicity violation.
The lack of atomicity causes T0’s
increment to be dropped.

16

grouping process is again driven by heuristics and can be another source of both false positive and

false negative atomicity violation reports.

Several atomicity violation detection schemes sidestep false positive/false negative issues by

requiring the programmer to provide an atomicity specification. Atomizer [50] requires such a

specification, and then dynamically verifies that the specification is adhered to during execution.

Atomizer’s dynamic analysis is based on lockset race detection, and lockset’s intrinsic false

positives make Atomizer’s atomicity analysis imprecise as well. Velodrome [51] improves upon

Atomizer by providing sound and complete atomicity violation detection, again with respect to a

programmer-provided specification. In the absence of a provided atomicity specification, e.g., when

dealing with legacy programs, both Atomizer and Velodrome evaluate the implicit specification that

assumes all functions should execute atomically. While clearly leading to false positives, both

schemes report no more than a few dozen warnings per program, making these heuristics tractable.

The Serializability Violation Detector [52] proposed a more sophisticated heuristic for discovering

atomicity violations, effective enough to be used in the absence of an actual atomicity specification.

Starting from a read access A to a shared variable, SVD infers an atomic region for subsequent

accesses that are data- or control-dependent on A. SVD can thus discover some forms of single- and

multi-variable atomicity violations automatically. AVIO [53] generalizes the SVD result, proposing a

comprehensive framework for single-variable atomicity violations. Using this framework, AVIO

uses training runs to infer the atomicity specification of the program: pairs of accesses that are

atomic during training runs, but non-atomic during production runs, are likely atomicity violations.

AVIO is able to automatically identify four real atomicity violation bugs in Apace and MySQL, with

only five false positive reports on average for each program. The AtomAid system [54]

automatically repairs atomicity violations by coupling AVIO’s techniques for identifying single-

variable atomicity violations with the BulkSC architecture [55]. BulkSC groups the dynamic

instruction stream into chunks that execute atomically, as a low-overhead way of providing

sequential consistency (Section 2.1.4 below). AtomAid adjusts chunk boundaries such that pairs of

17

accesses representing likely atomicity violations are placed in the same chunk, and, since chunks

execute atomically, the atomicity violation will be repaired.

CTrigger [56] is a system that increases the manifestation probability of atomicity violations,

making bug detection and other testing tools more effective. CTrigger collects a set of potential

unserializable access interleavings (based on the AVIO [53] framework) and uses dynamic analysis

to prune away those interleavings that are unreachable due to the program’s synchronization. The

remaining interleavings are ranked by their likelihood of being an actual bug, and small delays are

inserted into the program’s execution to make the unserializable interleavings more likely to occur.

Using CTrigger makes atomicity violation bugs manifest orders of magnitude more quickly than

with regular stress testing.

As researchers made steady progress finding and fixing single-variable atomicity violations,

attention turned toward the more challenging problem of multi-variable atomicity violations. While

SVD detected some kinds of multi-variable atomicity violations with its data- and control-

dependence analysis, MUVI [57] pioneered a more general analysis that learns correlations among

sets of variables from a series of training runs, and uses these correlations to automatically detect

multi-variable atomicity violations. MUVI was able to identify five real-world multi-variable

atomicity violations and discovered four new such bugs in Firefox. ColorSafe [58] is another

proposal for multi-variable atomicity bug detection and survival. ColorSafe uses memory allocation

information to correlate variables, and then uses this information to identify and also proactively

avoid likely multi-variable atomicity violations.

2.1.3 General Concurrency Bug Detection

More recent work on concurrency bug detection has focused on new classes of concurrency bugs

such as order violations [8] and on building concurrency bug detectors that work for many classes

of errors. Order violations arise when a program relies on two events, e.g., two critical sections,

always occurring in a particular order when the events can occur in either order. Order violations

are distinct from both data races and atomicity violations. Unlike data races, the two events in an

18

order violation may be individually well-synchronized. Unlike atomicity violations, which are

inherently unordered, order violations arise due to an expected (but unenforced) ordering. Order

violations represent a detection challenge as the presence of an order violation depends on the

(often missing) ordering specification of a program.

To cope with rich classes of errors like atomicity and order violations, many researchers have

focused on properties common to all concurrency bugs and started building general concurrency

bug detectors. These tools focus on detecting problematic patterns among communicating load and

store instructions. For example, Bugaboo [59] records the context surrounding inter-thread

communication events and uses the context to help differentiate correct from buggy

communication patterns. The Interleaving-Constrained Multiprocessor [60] uses testing runs to

learn ordering invariants among instructions. During production runs these invariants are enforced

by the processor, automatically avoiding problematic interleavings. DefUse [61] learns invariants

about which definition each use of a variable should read from, and reports violations of these

invariants as errors. The errors uncovered by DefUse can be indicative of concurrency bugs and

also sequential bugs like memory errors. Recon [62] focuses on making concurrency bug detection

more useful to programmers by automatically identifying the root cause of a bug. Recon’s bug

reconstructions demonstrate to the programmer not just that a likely error occurred, but also how

the program entered the problematic state.

2.1.4 Simplifying Memory Consistency Models

The memory consistency models of modern languages and architectures [9,10,63] are notoriously

complex. Despite years of scrutiny, subtle errors have been found in both the Java Memory Model

and its JVM implementations [64]. Even assuming the correctness of the model and its

implementation, the sequentially consistent (SC) semantics [65] offered by these languages for DRF

programs is often void in practice as the DRF precondition is not verified (see Section 2.1.1). Thus,

programmers cannot rely on SC behavior. Furthermore, others have noted that DRF implies much

stronger properties than SC, e.g., interference-freedom [40]. The resulting “gap” between SC and

DRF can be exploited to provide SC much more cheaply than DRF. Motivated by the high overheads

19

of fully sound and complete race detection, researchers have proposed variations on race detection

that enforce SC or detect SC violations. These SC-based schemes have proven to be substantially

more performant than full data race detection.

Many have proposed using speculation to increase the scope for memory reordering [66–70]. We

focus on contemporary approaches, which support relaxing all instruction reorderings across a

wider window than previous work. BulkSC [55] and ASO [71] are pioneering architectures that

provide high-performance sequential consistency instead of the weaker consistency models

common in modern multiprocessors. BulkSC extends the Bulk [72] architecture to provide

sequential consistency. The original Bulk architecture offered a mechanism to atomically execute

chunks of thousands of instructions, using Bloom filter-based [73] signatures to efficiently encode

read and write sets. Bulk’s chunk mechanism was used to implement both transactional memory

(also called TM, see Section 2.2.2) and thread-level speculation (also called TLS, see Section 2.3) in a

unified way. Building on Bulk, BulkSC groups a program’s entire dynamic instruction stream,

instead of just TM or TLS accesses, into chunks. Speculative execution of each chunk allows

processors to execute chunks in parallel for high performance, and the ability to aggressively

reorder instructions within a chunk eliminates many potential consistency-related processor stalls.

Pipelined chunk execution reduces the latency of cross-chunk consistency stalls as well so that

BulkSC incurs negligible overhead despite providing strong memory ordering. The Atomic

Sequence Ordering (ASO) processor [71] also performs memory ordering speculation at coarse

granularity, using a scalable FIFO store buffer to guarantee memory ordering and to enable

speculation across a large window of instructions. Much like BulkSC, ASO breaks up execution into a

series of atomic sequences and guarantees memory ordering only across, not within, sequences.

Speculative state is buffered in the L1 cache, avoiding the need for associative search during store-

load forwarding. Pristine store values are held in the FIFO store buffer and are accessed only during

infrequent commit operations or rarer abort operations. Similarly to BulkSC, ASO provides SC yet

outperforms a conventional relaxed-consistency RMO [35] machine. Finally, InvisiFence [74]

provides high-performance sequential consistency in the context of a conventional multiprocessor,

20

unlike BulkSC’s dependence on the Bulk architecture, and without the need for a large FIFO store

buffer as in ASO. InvisiFence uses the L1 cache for speculative state, and the L2 cache for pristine

state, and ensures fast, atomic commit/abort operations via flash-clearing speculative/valid bits,

respectively, in the L1 cache. As with BulkSC and ASO, InvisiFence provides SC memory ordering

with better performance than a conventional RMO machine.

Subsequent work has looked at exporting sequential consistency farther up the programming stack.

Conflict Exceptions [38] verifies the atomicity and isolation of all synchronization-free regions, a

weaker property than DRF but one that can be enforced more cheaply using a simplified version of

unbounded hardware transactional memory. Conflict Exceptions guarantees both SC and that all

synchronization-free regions execute serializably; otherwise an eponymous “conflict exception” is

thrown that terminates the program.

DRFx [47,75] weakens Conflict Exceptions’ guarantee in exchange for reduced hardware

requirements and better performance. DRFx verifies atomicity and isolation of short compiler-

defined regions that are guaranteed not to exceed the resources of a best-effort hardware TM

system. Similarly to Conflict Exceptions, DRFx verifies that these regions execute serializably or

raises a runtime exception. By allowing only intra-region compiler reorderings, an exception-free

DRFx execution is guaranteed to be sequentially consistent. However, the boundaries of these

smaller regions are completely governed by the compiler, providing no source-level atomicity

guarantees to the programmer.

The primary use of the sequential-consistency-else-exception guarantees of Conflict Exceptions and

DRFx is simplifying the memory models of modern languages like Java [9] and C++ [10]. In the

absence of these hardware mechanisms, a sequential consistency guarantee is obtainable only for

programs that satisfy the stringent DRF requirement, and in conventional systems there is no

checking of whether programs have in fact satisfied it. The stronger atomicity and isolation

guarantees of Conflict Exceptions may be useful to compiler writers or even application

programmers, though the performance implications of the need to support unbounded

21

synchronization-free regions have not been clearly evaluated. A recent in-depth performance

evaluation of the DRFx architecture [75] found that its runtime overheads were quite modest – less

than 25% for a simulated 16-core machine – showing that supporting SC throughout the execution

stack can be done affordably.

Other work on memory consistency has focused on extracting maximum performance from weak

consistency models. The Conditional Memory Ordering (CMO) system [76], which observes that the

fence semantics offered by modern processors are frequently stronger than is needed to correctly

implement language memory models like the JMM. CMO elides memory fences at runtime when

they are dynamically unnecessary, and a pure-software implementation of CMO improved the

performance of many Java applications by 5-10%. In a similar vein, [39] exploits the full flexibility

of the C++ memory model [10] to expand the scope for compiler optimizations across lock acquires

and releases (see Section 2.1.1). The extra flexibility allows the compiler to elide many memory

instructions that a conventional compiler cannot, and though the resulting performance impact is

negligible many optimization opportunities remain unexplored. The RCDC system (Chapter 4) takes

similar advantage of language memory models’ relaxations to reduce the cost of deterministic

memory ordering, which is even more expensive than its nondeterministic counterpart. RCDC’s

consistency optimizations in particular are modeled heavily on CMO’s design.

2.2 Programming Models for Parallelism

Parallel programming models have a long history both in theory and in practice, dating back nearly

as long as computing itself. This section examines select recent developments in parallel

programming models that are most relevant for understanding the deterministic systems described

in Chapters 3-5.

2.2.1 Task Parallel Frameworks

Tasks are an increasingly popular programming abstraction for parallel architectures. Many major

hardware and software vendors have produced task parallelism frameworks, from Intel’s Cilk [21]

and Threading Building Blocks [77] to Apple’s Grand Central Dispatch [78], Microsoft’s Task

22

Parallel Library [79] and Java’s ForkJoin framework [80]. These task parallel frameworks abstract

away notions of processors and threads, requiring programmers to think only in terms of tasks and

the dependences between tasks. Task dependences are often specified via control flow, instead of

via locks and shared memory, resulting in a simplified programming model. The runtime system

manages the scheduling of tasks onto actual processing resources, honoring dependences and

preventing the hardware from being over- or underutilized.

Task systems answer many of parallel computing’s performance challenges, but their correctness

benefits are less clear. Data races are still possible if a programmer specifies task dependences

incorrectly. The Cell Superscalar (CellSs) task system [81] offers the potential for increased safety

by requiring that inter-task communication occur only via function arguments, instead of shared

memory. Such a limited interface is likely amenable to automatic dependence verification. Many

task systems additionally have very strong repeatability guarantees, providing sequential

semantics for race-free programs [21,81]. That is, if a program uses data-race-free task parallelism,

it can be debugged and replayed in exactly the same manner as a single-threaded program.

However, data races can introduce nondeterminism that voids this guarantee [82]. Overall, current

task systems focus on providing performance portability and provide no significant safety benefits

over parallel programming with general-purpose languages.

Tasks are also the primary parallelism construct in GPU programming models such as CUDA [83],

OpenCL [84] and DirectCompute [85]. Historically, GPUs were programmed for computer graphics

in a fork-join style where communication between concurrently-executing tasks was impossible to

express in the programming model. More recently, GPUs have begun supporting atomic operations

that allow communication between concurrent tasks. These atomic operations can be used to build

mutexes, allowing arbitrary parallelism constructs to be expressed [86]. As GPUs adopt more of

CPUs’ generality, they also inherit the latter’s programmability challenges. GPU architecture

researchers have adopted many CPU techniques to cope with these challenges, such as race

detectors [87,88] and transactional memory [89] (see Section 2.2.2 below).

23

2.2.2 Transactional Memory

Transactional memory (TM) is similar in spirit to, and borrows its name from, database

transactions [90], though TM was first proposed as a hardware accelerator for lock-free data

structures [30]. In the original TM proposal, a processor speculatively executes a transaction – a

series of updates to shared memory that execute atomically and in isolation. The updates are

buffered in the processor’s L1 cache and so are invisible to remote processors. Cache coherence is

used to detect conflicting operations by remote processors. If the local transaction completes

without any conflicts, the operation is committed to memory by allowing the buffered cache lines to

become globally visible. If a conflict is encountered, the local transaction can be rolled back and the

original data fetched again from elsewhere in the memory hierarchy. Transactions, as first

proposed, provide an elegant and performant mechanism for implementing multiword CAS

operations which simplify many lock-free algorithms.

After this initial hardware TM (or HTM) proposal, the idea of using transactions more broadly as a

synchronization mechanism gained tremendous momentum [91]. Transactions offer a compelling

alternative to lock-based synchronization, as transactions are 1) a simple, declarative

synchronization primitive, 2) amenable to a highly-concurrent implementation whose complexity

can be hidden from the programmer, and 3) inherently deadlock-free.1 Researchers have

investigated many aspects of TM, such as support for transactions that overflow the resources of

the L1 cache [92], the semantics of transactions and non-transactional code [93], different buffering

and conflict detection strategies [94], partial transaction commit to avoid wasted work [95], partial

re-execution to avoid the need to perform rollback on conflicts [96], and hybrid hardware-software

support for transactions [97]. HTM techniques have also been repurposed to accelerate lock-based

critical sections by speculatively eliding lock acquisition [70], to sandbox speculative compiler

optimizations [98], and to protect against atomicity violations [99].

1 Application-level progress is not guaranteed, however, as conflicting transactions may continually trigger
rollbacks.

24

Many software TM (or STM) systems have been built as well, in academia [100,101] and also by

Microsoft [102], Intel [103], and the GCC team [104]. STM systems have brought to the surface

many real-world implementation issues such as interoperating with legacy, lock-based code and

handling I/O operations that cannot be rolled back [105]. HTM support was also integrated into

some production microprocessors, starting with Azul’s formerly-available Vega 3 chip [106] that

offered a form of speculative lock elision [70]. Today, IBM’s BlueGene/Q processor [32] and

zEnterprise EC12 mainframe [31] offer HTM support, and Intel will integrate TM support into the

x86 ISA starting with the 2013 Haswell architecture [33].

Transactional memory plays an important role in the design of the Deterministic MultiProcessor

architecture (Chapter 3). DMP divides the execution of an arbitrary parallel program into a series of

transactions. Building on TM’s serializable execution semantics, DMP then ensures that the

transactions logically execute in a fixed serial order. The underlying TM facility ensures that

transactions execute in parallel to recover performance.

2.3 Thread-level Speculation

Thread-level speculation (TLS) [28] is a set of techniques to extract parallelism from legacy

sequential programs automatically. TLS was originally proposed as a hardware design analogous to

out-of-order execution, but at coarser granularity: entire loop iterations or function calls are

speculatively executed out-of-order on multiple CPU cores. Sophisticated hardware tracks memory

dependences to ensure equivalence to the sequential semantics of the original program.

Knight [107] first proposed hardware support for speculative parallelization of LISP programs. The

mostly-functional nature of LISP dramatically simplifies dependence tracking between tasks. Later,

Multiscalar [28] proposed the first recognizable TLS system, which extracted parallelism from

sequential, imperative code running on a conventional microprocessor. Multiscalar inspired a

number of subsequent proposals [108–112]. While the initial TLS proposals required hardware

support, they inspired many software-only approaches as well. Speculation and dependence

tracking are implemented in software, typically via compiler instrumentation. However, despite a

25

large amount of research, practical TLS techniques to extract parallelism from sequential programs

remain elusive. Recently, impressive results have been obtained from using sophisticated profile-

driven compilation and programmer-provided annotations to parallelize sequential integer codes

across multiple cores [113] and even nodes in a cluster [114]. This semi-automated parallelization

approach seems a promising path going forward.

TLS techniques have inspired many of the techniques used in the DMP system (Chapter 3), though

to an opposite end. While TLS seeks to parallelize a sequential program, DMP imposes determinism

by serializing a (nondeterministic) parallel program to obtain determinism. DMP exploits the TLS

observation that the execution of a program can be parallel even if serial semantics are required.

Starting from a parallel program, as DMP does, allows speculative parallelization to be more

effective than it has been in the context of sequential programs.

2.4 Multithreaded Record and Replay

Record and replay systems can be used to replay an execution for debugging or forensic purposes.

Record and replay systems have strong repeatability properties but have not as yet been extended

to improve safety. The central design trade-off in record and replay systems is between the amount

of execution information logged (which impacts runtime overhead and log size) and the extent to

which an execution can be replayed. In particular, we divide record and replay schemes into those

that can replay executions with data races and those that cannot. There has also been steady

progress in lossless recording techniques, mostly in hardware but recently in software-based

systems as well, that has reduced time and space overheads without sacrificing repeatability.

2.4.1 Hardware Record and Replay

Logging the values returned by each memory read is sufficient to replay any multithreaded

execution [115,116], but incurs high time and space overhead. Recording just the order of accesses

to a global shared cache [117], with the help of hardware support, also suffices. A better approach,

however, is to record just the points of communication between threads; Netzer [118] showed how

to transitively reduce this communication to produce an optimally small log.

26

A number of architecture proposals have built on and extended Netzer’s transitive-reduction idea.

The Flight Data Recorder (FDR) system [119] tags cache lines with the instruction count of their

last accessor processor. By transferring these counters on coherence events the inter-processor

communication graph can be built. FDR uses transitivity to avoid logging redundant edges in this

graph, though since accessor information in restricted to the cache, cache misses must be

conservatively logged. BugNet [120] proposes record and replay for user-space events only, using

processor-local logs for the values returned by all loads (as in the very first record and replay

systems) and an FDR-like mechanism for recording synchronization events between processors.

The Regulated Transitive Reduction (RTR) system [121] improves the communication graph

recording of FDR by hallucinating inter-processor edges that increase the effectiveness of Netzer’s

transitive reduction beyond what is possible with the program’s true edges alone. RTR is also the

first record and replay scheme to support non-sequentially-consistent hardware, by recording the

values of loads that potentially violate SC. Overall, RTR reduces log sizes by about 20x compared to

FDR. Concurrently proposed with RTR, Strata [122] divides an execution into periods free of inter-

processor communication, each of which is called a “stratum”.2 Strata simply logs the number of

memory references performed by each processor during a stratum, requiring much simpler

hardware than FDR or RTR. Since multithreaded programs do not communicate constantly, an

individual stratum can cover many thousands of instructions, and log sizes are about 5x smaller

than FDR.

ReRun [123] and DeLorean [124] both exploit Strata’s insight about communication-free periods of

execution. ReRun [123] achieves log sizes on par with RTR and hardware requirements on par with

Strata by tracking communication-free periods (called “episodes”) on a per-processor basis instead

of on a global basis. Tracking per-processor episodes results in longer episodes and yields more

scalable hardware. Logging 1) the size of each episode (in number of memory references performed

within it) and 2) a Lamport timestamp [37] ordering each episode with those of other processors

are sufficient to subsequently reproduce an execution. Rerun uses small hardware signatures [72]

2 NB: We use the term Strata (capital S) for the research proposal, and the term stratum (lower-case s) for the
region of execution logged in the Strata proposal.

27

to discover inter-processor communication, instead of FDR/RTR’s per-cache line accessor

information. While ReRun ends an episode whenever communication occurs between concurrent

episodes, Timetraveler [125] observes that only cyclic communication between episodes requires

an episode boundary. If the communication is entirely from episode A (on P0) to episode B (on P1),

even if there are multiple communicating loads and stores in each episode, the execution can be

reproduced by ordering episode A before B during replay. If communication from episode B to

episode A occurs, an episode boundary must be inserted to maintain an acyclic episode graph.

Timetraveler allows for longer episodes which result in log sizes 90% smaller than ReRun’s. Karma

[126] also extends ReRun to support parallel replay. Karma replaces ReRun’s Lamport timestamps

with a DAG encoding that identifies which processors’ episodes immediately precede and succeed

the current processor’s episode. During replay, a processor may replay an episode as soon as all of

its predecessor episodes have replayed; parallelism in the DAG accelerates the replay process to

within 30% of recording speed, unlike ReRun’s completely sequential replay.

DeLorean [124] divides execution into “chunks” of instructions that are executed atomically and in

isolation. A chunk from each processor updates shared state via a commit process, potentially

triggering re-execution if two chunks’ updates conflict. By constraining execution to commit chunks

in a fixed order and to mostly produce chunks of constant size (though overflowing cache capacity

may nondeterministically cause smaller chunks to form), DeLorean reduces logging requirements

by two orders of magnitude over previous proposals.

More recently, researchers have proposed record-and-replay designs that leverage a global clock

for smaller log sizes and simpler hardware designs. LReplay [127] uses the global clock to divide

execution into fixed periods of time, e.g., 1024 cycles, without needing to assign a logical timestamp

to each period. Communicating memory operations that execute in non-concurrent periods are

naturally ordered by the global clock, while those that execute in concurrent periods are recorded

in a separate log. LReplay handles consistency models as relaxed as TSO by detecting potential SC

violations and logging them. Relying on a global clock allows the LReplay design to avoid modifying

the caches or cache coherence protocol, which is a common feature of previous record-and-replay

28

approaches. CoreRacer [128] adopts a similar approach to LReplay, but in the context of an Intel

multicore design. CoreRacer has a similar minimally-invasive design based around Intel’s

TimeStamp Counter (TSC) register, a synchronous global clock visible to all cores that was

introduced in the Nehalem architecture.

The idea of modifying execution to reduce logging requirements, as used by RTR and DeLorean, is a

direct influence on the design of DMP. DMP takes this idea to its logical conclusion: using complete

control over the execution to replace logging with a pre-determined scheduling policy.

Deterministic execution shows that logging is not intrinsically necessary to provide reproducibility.

However, recent record-and-replay schemes [127,128] maintain an advantage over deterministic

execution in that they require less invasive hardware support.

2.4.2 Software Record and Replay Techniques

Recent advances in pure-software record and replay systems provide acceptable runtime

overheads without sacrificing replayability in the presence of data races. The LEAP [129] system

provides full replayability by using the log-all-reads idea [116] in conjunction with static analysis to

prune the amount of logging required. LEAP’s overheads range from 10% to 7x on a range of Java

benchmarks. DoublePlay [130] is a pure-software scheme inspired by the idea of constrained

execution first espoused in hardware proposals like RTR and DeLorean. DoublePlay uses multiple

executions of the same program to parallelize recording. One version of the program “runs ahead”

at nearly full speed, logging only synchronization operations, and separating the dynamic execution

into windows called “epochs.” Each epoch is then re-executed on a single processor (so that only

scheduling decisions need be logged) guided by the synchronization log. If epoch execution

diverges from the run-ahead process’ state, execution is rolled back and restarted from the end of

the problematic epoch. Otherwise, sufficient information has been recorded to replay that epoch

precisely. DoublePlay achieves low recording overhead – typically less than 50% – by speculating

that epochs will not diverge under re-execution and parallelizing re-execution across extra cores.

29

Many software-only record and replay systems sacrifice replayability for performance. RecPlay

[131] was among the first to do this, logging only synchronization operations, which is sufficient to

replay execution up until the first data race. PRES [132] and ODR [133] extend this idea by

recording a configurable subset of the information required for full replay, e.g., system calls,

synchronization, or function calls. During replay, these schemes use the recorded log and a data-

race detector to search for a desired execution that, e.g., triggers a bug. PRES and ODR incur

runtime overheads similar to those of DoublePlay, but without using extra compute resources

during recording. However, these schemes sometimes require thousands of replay attempts to

reproduce an execution.

2.5 Deterministic Parallelism

Deterministic parallelism systems deliver the benefits of repeatability without any logging

requirements by eliminating nondeterministic interactions among threads. Determinism’s

constrained execution is the key to bringing the benefits of repeatability to the entire software

development cycle (Figure 2, page 3).

2.5.1 Determinism Verification

There have been several proposals to verify the determinism of a computation at runtime.

Sadowski et al. [134] showed with SingleTrack that determinism can be thought of as a stronger

safety property than race detection, defining nondeterminism as a “race” on a lock object. Due to its

expanded notion of a data race, SingleTrack’s evaluation was limited to programs that use

deterministic synchronization primitives, though “race-free” locking is permitted in principle.

SingleTrack has the same overhead as vector clock race detection, but provides repeatability by

raising an exception at the first sign of nondeterminism.

Burnim et al. [135] advocate using programmer-specified determinism specifications to verify

executions as “semantically deterministic.” The DETERMIN system [136] can automatically infer

these specifications, though such high-level notions of correctness will likely require human

verification. Semantic determinism allows insignificant low-level details (e.g., the order of elements

30

in a set implemented via a linked-list) to be glossed over in favor of verifying the determinism of a

higher-level property (e.g., the contents of the set). However, semantic determinism offers no real

safety guarantees, as it permits data races and non-sequentially-consistent behavior, and offers no

repeatability when determinism specifications are violated.

2.5.2 Deterministic Parallel Languages

Deterministic parallel languages trade reduced expressiveness in exchange for strong safety and

programmability guarantees. Earlier languages built on functional languages [19] or required

runtime checking to support imperative language features [137], but more recent efforts [20] have

employed rich type systems capable of statically verifying determinism even in the presence of

mutability.

Jade [137] is an implicitly parallel language based on C. A Jade programmer decomposes a serial C

program into a nested task hierarchy, each task having a programmer-specified access specification

that states what data structures the task will read or write. Using the access specification, the Jade

runtime will opportunistically execute non-interfering tasks in parallel, preserving the sequential

semantics of the program while attaining greater performance. Tasks that violate their access

specification trigger runtime errors.

Similar to Jade, Prometheus [138] is an extension to C++ that dynamically tracks object ownership

and uses ownership to collect operations on each object into serialization sets. The operations on a

given serialization set are performed serially, ensuring determinism while allowing parallel

operations on distinct objects. Programmers are responsible for partitioning objects into

serialization sets and incorrect specifications, such as putting the same object into two distinct sets,

trigger a runtime error.

StreamIt [18] is a deterministic stream processing language that restricts programmers to a loop-

free language to define the nodes in a stream processing graph. Determinism is enforced by

allowing communication only along the edges of the stream graph. The language restrictions allow

the StreamIt compiler to statically size the buffers needed between nodes in the stream graph.

31

NESL [19] is a purely functional language with support for nested data parallelism. NESL’s

functional features ensure determinism in the face of parallelism without the need for runtime

checks. NESL has also heavily influenced the design of Data Parallel Haskell [139], which

implements many of NESL’s language constructs in the lazy, purely functional language Haskell.

Deterministic Parallel Java (DPJ) [20] is a set of extensions to Java to provide statically-checked

deterministic fork-join parallelism in the context of a modern object-oriented language. DPJ adds a

sophisticated type-and-effect system to Java to statically prove non-interference among parallel

tasks. DPJ programs incur zero runtime overhead, running as efficiently as nondeterministic code. A

subsequent extension to DPJ has added support for interfering parallel tasks, using a STM system to

ensure serializable, but potentially nondeterministic, execution [140]. Other extensions have added

support for effect inference [141] and more expressive parallelism such as pipelines [142] and non-

nested parallel tasks [143]. DPJ, a core component of the MELD system, is described more fully in

Section 5.2.

Besides performance, another major benefit of many deterministic languages is that they provide

strong safety guarantees in the form of sequential semantics: every execution of a program written

in Jade, Prometheus, NESL, DPH or DPJ is exactly equivalent to a sequential execution of that

program. This allows executions to be replayed and replicated without any further machinery. This

is the same guarantee provided by many task parallel systems (e.g., Cilk [21]) but crucially – and

unlike currently-proposed task systems – deterministic languages actually enforce the non-

interference properties required for sequential semantics to hold.

2.5.3 Execution-level Determinism Systems

In contrast with language-level approaches to determinism, execution-level determinism is

characterized by dynamic instrumentation to enforce determinism on a more general class of

programs. Different systems have explored the costs of supporting different programming models

and different memory consistency models.

32

2.5.3.1 Execution-Level Determinism for Arbitrary Programs

DMP’s ([24] and Chapter 3) execution-level determinism contrasted sharply with previous

language-based approaches to determinism with its support for arbitrary programs, including

programs with data races. CoreDet ([34] and Section 4.1.1) is a compiler-based implementation of

execution-level determinism that supports the TSO memory consistency model, instead of the

stronger SC model as with DMP. This relaxation of consistency allows CoreDet to achieve good

scalability without resorting to the complexities of speculation that DMP requires. RCDC ([26] and

Chapter 4) continues CoreDet’s use of store buffering but relaxes consistency to the furthest extent

permissible by modern language memory models [9,10]. Combining relaxed consistency with a

synchronization scheduling algorithm adapted from Kendo [23], RCDC delivers performance

comparable to the original DMP proposal but with much simpler non-speculative hardware.

Calvin [144] is a hardware version of CoreDet that offers two modes of execution. In bounded

mode, Calvin behaves like DMP and RCDC, generating quantum boundaries due to 1) hitting a fixed

instruction count, 2) executing an atomic instruction, or 3) deterministically overflowing a

hardware resource like an L1-backed store buffer. In unbounded mode, Calvin virtualizes the size of

hardware resources with software. In exchange for reduced performance, Calvin’s unbounded

mode ends quanta only due to ISA-visible events, providing portability across different hardware

implementations.

dOS [145] is an extension to Linux that provides DMP-style deterministic execution as an OS

service. The dOS service eliminates “internal” nondeterminism due to timer interrupts and data

races, and uses a shim layer to allow user-level control of “external” nondeterminism such as I/O.

dOS uses page protection to enforce isolation between threads, which incurs much higher

overheads than previous hardware and compiler proposals but works for arbitrary binaries, sans

recompilation or hardware support.

Dthreads [146] is a pure-software deterministic runtime provides works for arbitrary programs

using copy-on-write paging for isolation coupled with the TSO-based consistency model from

33

CoreDet [34]. Instead of counting instructions to define quanta, Dthreads counts synchronization

operations. Using a source-level event as the marker of logical time means that deterministic

program execution cannot be perturbed by small code changes, e.g., adding a single instruction, as

is the case with DMP. While Dthreads guarantees determinism in the presence of data races,

forward progress does not always hold for programs that use racy flag-based synchronization.

Dthreads’ virtual memory approach to store buffering is generally faster than CoreDet’s hash-table-

based implementation.

The Tern [147] and Peregrine [148] systems propose a broader notion of determinism by steering

program execution onto the same schedules across a range of inputs. A set of schedules are

accumulated during testing and, during production, these memoized schedules are reused

whenever possible. In contrast with the traditional notion of determinism that makes execution

repeatable only for a single input but can allow distinct inputs to diverge widely, Tern and

Peregrine force different inputs to execute in a similar fashion. Reusing schedules helps avoid bugs

by adhering to well-tested schedules, and can reduce the cost of multithreaded record-and-replay

and replication as well.

2.5.3.2 Execution-Level Determinism with Restrictions

Kendo [23] provides deterministic execution for race-free programs via a library of deterministic

synchronization primitives. Because Kendo assumes a race-free program, it has no need for

expensive store buffering mechanisms found in other execution-level determinism systems. Kendo

makes synchronization events deterministic by using threads’ instruction counts to govern when

lock acquires can occur (see Section 4.3.4.2); instruction counts are tracked efficiently via hardware

performance counters. With its lightweight approach, Kendo’s overheads on real hardware are

quite reasonable, at roughly 20% with 4 threads.

Grace [22] (the predecessor to Dthreads [146]) and Determinator [149] explore support for a

nested fork-join programming model with isolation enforced via virtual memory protection.

Isolation, plus a limitation to deterministic synchronization idioms only, guarantees the

34

determinism of Grace and Determinator programs. Grace supports C/C++ programs written in a

fork/join style, while Determinator provides new OS primitives for fork/join programming. Both

Grace and Determinator observe that data races are eliminated via a combination of their

programming model restrictions and dynamic checks. Legacy programs that use threads and locks

can be mapped, somewhat inefficiently, onto Determinator’s primitives using a CoreDet-like

scheme.

The Concurrent Revisions [150] system offers determinism for task-parallel programs, where tasks

execute in isolation from one another, modifying private copies of memory. Each task operates on a

revision of memory and, when tasks join, their revisions are merged together via programmer-

specified deterministic merge functions. The shared state that is modified and merged across

revisions must be annotated by the programmer, and missing annotations can result in

nondeterministic results. However, the judicious use of buffering only where necessary allows

revisions to have low performance overhead: just a 5% increase in runtime over sequential

execution for a 3D gaming workload. Subsequent extensions [151] showed that the Concurrent

Revisions programming model is a natural fit for incremental computation, as isolation between

tasks simplifies determining which tasks to reexecute when inputs change.

35

Chapter 3 A Deterministic MultiProcessor Architecture

This chapter describes the design and evaluation of a fully Deterministic MultiProcessing (DMP)

shared memory computer architecture. We show that, with hardware support, arbitrary shared

memory parallel programs can be executed deterministically with modest performance cost.

We define a deterministic shared memory multiprocessor system as a computer system that: (1)

executes multiple threads that communicate via shared memory, and (2) will produce the same

program output if given the same program input. This definition implies that a parallel program

running on a DMP system is as deterministic as a single-threaded program.

The most direct way to guarantee deterministic behavior is to preserve the same global

interleaving of instructions in every execution of a parallel program. However, several aspects of

this interleaving are irrelevant for ensuring deterministic behavior. It is not important which global

interleaving is chosen, as long as it is always the same. Also, if two instructions do not communicate,

their order can be swapped with no observable effect on program behavior. The key to

deterministic execution is that all communication between threads must be precisely the same for

every execution. This guarantees that the program always behaves the same way if given the same

input.

Guaranteeing deterministic inter-thread

communication requires that each dynamic

instance of an instruction (consumer) read data

produced from the same dynamic instance of

another instruction (producer). Producer and

consumer need not be in the same thread, so this

communication happens via shared memory.

Interestingly, there are multiple global

Figure 7: A parallel execution (a) and two of its
multiple communication-equivalent interleavings
(b). Solid markers represent communicating
instructions, hollow markers represent instructions
that do not communicate.

36

interleavings that lead to the same communication between instructions, they are called

communication-equivalent interleavings (Figure 7). In summary, any communication-equivalent

interleaving will yield the same program behavior. To guarantee deterministic behavior, then, we

need to carefully control only the behavior of load and store operations that cause communication

between threads. This insight is key to efficient deterministic execution.

3.1 Enforcing Deterministic Shared Memory Multiprocessing

This section describes how to build a deterministic multiprocessor system. We focus on the key

mechanisms and defer discussion of specific implementations to Section 3.2. For explanatory

purposes we begin with a naïve approach that serializes all threads, and then refine this simple

technique into progressively more efficient organizations.

3.1.1 Basic Idea – DET-SERIAL

As seen earlier, making multiprocessors deterministic depends upon ensuring that the

communication between threads is deterministic. The easiest way to accomplish this is to allow

only one processor at a time to access memory in a

deterministic order. This process can be thought of

as a “memory access token” being deterministically

passed among the processors. We call this

deterministic serialization of a parallel execution

(Figure 8b). Deterministic serialization guarantees

that inter-thread communication is deterministic

by preserving all pairs of communicating memory

instructions.

The simplest way to implement such serialization is to have each processor obtain the memory

access token (henceforth called deterministic token) and, when the memory operation is

completed, pass it to the next processor in the deterministic order. A processor blocks whenever it

needs to access memory but does not have the deterministic token.

Figure 8: Deterministic serialization of memory
operations. Dots are memory operations and
dashed arrows are happens-before
synchronization.

37

Waiting for the token at every memory operation is likely to be expensive and will cause significant

performance degradation compared to the original parallel execution (Figure 8a). Performance

degradation stems from overhead introduced by waiting and passing the deterministic token and

from the serialization itself, which removes the benefits of parallel execution. Synchronization

overhead can be mitigated by synchronizing at a coarser granularity (Figure 8c), allowing each

processor to execute a finite, deterministic number of instructions, a quantum, before passing the

token to the next processor. We refer to a system with serialization at the granularity of quanta as

DET-SERIAL. The process of dividing the execution into quanta is called quantum building: the

simplest way to build a quantum is to break execution up into fixed instruction counts, on the order

of tens of thousands of instructions. We call this simple quantum building policy QB-COUNT.

3.1.2 Handling Application-Level Synchronization

Note that this deterministic serialization does not interfere (e.g., introduce deadlocks or violate

memory ordering requirements) with application-level synchronization. This serialized execution

is a valid execution schedule in any traditional nondeterministic system. Moreover, the

deterministic execution systems we propose provide sequential consistency [65] if full memory

fences are inserted at quantum boundaries (Section 3.2). Hence, the extra synchronization imposed

by DET-SERIAL (and the other deterministic execution variants) resides below application-level

synchronization and the two do not impact one another’s correctness. Awareness of application-

level synchronization can, however, improve performance (Section 3.1.4).

3.1.3 Recovering Parallelism

Reducing the impact of serialization requires enabling parallel execution while preserving the same

execution behavior as deterministic serialization. We propose two techniques to recover

parallelism. The first technique exploits the fact that threads do not communicate all the time,

allowing concurrent execution of communication-free periods. The second technique uses

speculation to allow parallel execution of quanta from different processors, re-executing quanta

when determinism might have been violated.

38

3.1.3.1 Leveraging Communication-Free Execution – DET-SHTAB

The performance of deterministic parallel execution can be improved by leveraging the observation

that threads do not communicate all the time. Periods of the execution that do not communicate can

execute in parallel with other threads. Thread communication, however, must happen

deterministically. With DET-SHTAB, we achieve this by falling back to deterministic serialization

only while threads communicate. Each quantum is broken into two parts: a communication-free

prefix that executes in parallel with other quanta, and a suffix, from the first point of

communication onwards, that executes serially. The execution of the serial suffix is deterministic

because each thread runs serially in an order determined by the deterministic token, just as in DET-

SERIAL. The transition from parallel execution to serial execution is deterministic because it occurs

only when all threads are blocked – each thread will block either at its first point of inter-thread

communication or, if it does not communicate with other threads, at the end of its current quantum.

Thus, each thread blocks during each of its quanta (though possibly not until the end), and each

thread blocks at a deterministic point within each quantum because communication is detected

deterministically (described later).

Inter-thread communication occurs when a

thread writes to shared (i.e., non-private) pieces

of data. In this case, the system must guarantee

that all threads observe such writes at a

deterministic point in their execution. Figure 9

illustrates how this is enforced in DET-SHTAB.

There are two important cases: (1) reading data

held private by a remote processor, and (2)

writing to shared data (privatizing it). Case (1) is shown in Figure 9a: when quantum 2 attempts to

read data that is held private by a remote processor P0, it must first wait for the deterministic token

and for all other threads to be blocked waiting for the deterministic token. In this example, the read

cannot execute until quantum 1 finishes executing. This is necessary to guarantee that quantum 2

Figure 9: Recovering parallelism by overlapping
communication-free execution.

39

always gets the same data, since quantum 1 might still write to A before it completes executing.

Case (2) is shown in Figure 9b: when quantum 1, which already holds the deterministic token,

attempts to write to a piece of shared data, it must also wait for all other threads to be blocked

waiting for the deterministic token. In this example, the store cannot execute until quantum 2

finishes executing. This is necessary to guarantee that all processors observe the change of the state

of A (from shared to privately held by a remote processor) at a deterministic point in their

execution. Note that each thread waits to receive

the token when it reaches the end of a quantum

before starting its next quantum. This periodically

(and deterministically) allows a thread waiting for

all other threads to be blocked to make progress.

To detect writes that cause communication, DET-

SHTAB needs a global data-structure to keep track

of the sharing state of memory positions. A sharing

table is a conceptual data structure that contains

sharing information for each memory position; it

can be kept at different granularities, e.g., line or

page. Figure 10 shows a flowchart of how the sharing table is used. Some accesses can freely

proceed in parallel: a thread can access its own private data without holding the deterministic

token (1) and it can also read shared data without holding the token (2). However, in order to write

to shared data or read data regarded as private by another thread, a thread needs to wait for its

turn in the deterministic total order, when it holds the token and all other threads are blocked also

waiting for the token (3). This guarantees that the sharing information is kept consistent and its

state transitions are deterministic. When a thread writes to a piece of data, it becomes the owner of

the data (4). Similarly, when a thread reads data not yet read by any thread, it becomes the owner

of the data. Finally, when a thread reads data owned by another thread, the data becomes shared

Figure 10: Deterministic serialization of shared
memory communication only.

40

(5). Other deterministic policies to govern sharing are possible, but this policy, modeled on MESI

cache coherence protocols, works well for applications with locality.

In summary, DET-SHTAB lets threads run concurrently as long as they are not communicating. As

soon as they attempt to communicate, DET-SHTAB deterministically serializes communication and

updates the sharing table to exploit locality.

3.1.3.2 Leveraging Support for Transactional Memory – DET-TM and DET-TMFWD

Executing quanta atomically and in isolation in a deterministic total order is equivalent to

deterministic serialization. To see why, consider a quantum executed atomically and in isolation as

a single instruction in the deterministic total order, which is the same as DET-SERIAL. Transactional

Memory [30] can be leveraged to make quanta appear to execute atomically and in isolation. This,

coupled with a deterministic commit order, makes execution equivalent to deterministic

serialization while recovering parallelism.

We use TM support by encapsulating each quantum

inside a transaction, making it appear to execute

atomically and in isolation. In addition, we need a

mechanism to form quanta deterministically and

another to enforce a deterministic commit order.

As Figure 11a illustrates, speculation allows a

quantum to run concurrently with other quanta in

the system as long as there are no overlapping

memory accesses that would violate the original

deterministic serialization of memory operations. In case of conflict, the quantum later in the

deterministic total order gets squashed and re-executed (2). We enforce a deterministic commit

order by requiring a processor to hold the deterministic token in order to commit. Once a processor

is done committing, it passes the token to the next processor in the deterministic order. Note that

Figure 11: Recovering parallelism by executing
quanta as memory transactions (a). Avoiding
unnecessary squashes with un-committed data
forwarding (b).

41

the deterministic total order of quantum commits is a key component in guaranteeing deterministic

serialization of memory operations. We call this system DET-TM.

Having a deterministic commit order also allows isolation to be selectively relaxed, further

improving performance by allowing uncommitted (or speculative) data to be forwarded between

quanta. This can potentially save a large number of squashes in applications that have more inter-

thread communication. To do so, we allow a quantum to fetch speculative data from another

uncommitted quantum earlier in the deterministic order. This is illustrated in Figure 11b, where

quantum 2 fetches an uncommitted version of A from quantum 1. Note that without support for

forwarding, quantum 2 would have been squashed. To guarantee correctness, if a quantum that

provided data to other quanta is squashed, all subsequent quanta must also be squashed since they

might have consumed incorrect data. We call a DMP system that leverages support for TM with

forwarding DET-TMFWD.

Another interesting effect of pre-defined commit ordering is that memory renaming, analogous to

register renaming in out-of-order processors, can be employed to avoid squashes on write-after-

write and write-after-read conflicts. For example, in Figure 11a, if quanta 3 and 4 execute

concurrently, the store to A in (3) need not squash quantum 4 despite their write-after-write

conflict.

3.1.4 Exploiting the Critical Path – QB-SYNCFOLLOW, QB-SHARING and QB-SYNCSHARING

The most basic quantum building policy, QB-COUNT, produces quanta based on counting

instructions and breaking a quantum when a deterministic, target number of instructions is

reached. However, instruction-count based quantum building does not capture the fact that threads

execute instructions at different rates, and this can lead to idle time at quantum boundaries. It also

does not capture the fact that multi-threaded programs have a critical path. Intuitively, the critical

thread changes as threads communicate with each other via synchronization operations and data

sharing.

42

We now describe how to exploit typical program behavior to adapt the size of quanta and lead to

more efficient progress on the critical path of execution. We devised three heuristics to do so. The

first heuristic, called QB-SYNCFOLLOW, simply ends a

quantum when an unlock operation is performed.

As Figure 12 shows, the rationale is that when a

thread releases a lock (P0), other threads might be

spinning waiting for that lock (P1), so the

deterministic token should be sent forward as early

as possible to allow the waiting thread to make

progress. In addition, QB-SYNCFOLLOW passes the

token forward immediately if a thread starts

spinning on a lock.

The second heuristic relies on information about

data sharing to identify when a thread has potentially completed work on shared data, and

consequently ends a quantum at that time. It does so by determining when a thread hasn’t issued

memory operations to shared locations in some time, e.g., in the last 30 memory operations. The

rationale is that when a thread is working on shared data, it is expected that other threads will

access that data soon. By ending a quantum early and passing the deterministic token, the

consumer thread potentially consumes the data earlier than if the quantum in the producer thread

ran longer. This not only has an effect on performance in all DMP techniques, but also reduces the

amount of work wasted by squashes in DET-TM and DET-TMFWD. We call this quantum building

heuristic QB-SHARING.

In addition, we explore a combination of QB-SYNCFOLLOW and QB-SHARING, which we refer to as QB-

SYNCSHARING. This quantum building strategy monitors synchronization events and sharing

behavior. QB-SYNCSHARING determines the end of a quantum whenever either of the other two

techniques would have decided to do so.

Figure 12: Example of a situation when better
quantum breaking policies lead to better
performance.

43

3.2 Implementation Issues

As seen in the previous section, implementing an execution-level determinism system requires a

mechanism to deterministically break the execution into quanta and mechanisms to guarantee the

properties of deterministic serialization. A system could have all these mechanisms completely in

hardware, completely in software or even as a mix of hardware and software components. The

trade-off is one of complexity versus performance. A hardware-only implementation offers better

performance but requires changes to the multiprocessor hardware. Conversely, a software-only

implementation performs worse but does not require special hardware. This section discusses the

relevant points in each implementation.

3.2.1 Hardware-Only Implementation

Quantum Building: The simplest quantum building policy, QB-COUNT, is implemented by counting

dynamic instructions as they retire and placing a quantum boundary when the desired quantum

size is reached. QB-SYNCFOLLOW requires access to information about synchronization, which can be

obtained by a compiler or annotations in the synchronization libraries. On a weakly ordered

consistency model, synchronization can be inferred from the fence instructions present in a binary,

but with stronger models like TSO lock releases are not readily distinguishable from regular stores.

QB-SHARING requires monitoring memory accesses and determining whether they are to shared

data or not, which is done using the sharing table (Section 3.1.3.1), discussed later in this section.

Finally, QB-SYNCSHARING is exactly a logical OR of the decision made by QB-SYNCFOLLOW and QB-

SHARING. Regardless of the quantum building policy used, depending upon the consistency model of

the underlying hardware, threads must perform a memory fence at the edge of a quantum, which is

where inter-thread communication occurs.

We now describe the hardware implementations of DET-SERIAL, DET-SHTAB, DET-TM and DET-

TMFWD, which we label with a “DMP-” prefix to distinguish them from software implementations

discussed in Section 3.3.2.

44

DMP-SERIAL: DET-SERIAL is implemented in hardware with a token that is passed between

processors in the deterministic order. The hardware supports multiple tokens, allowing multiple

deterministic processes at the same time – each process has its own token.

DMP-SHTAB: The sharing table data-structure used by DET-SHTAB keeps track of the sharing state of

data in memory. Our hardware implementation of the sharing table leverages the cache line state

maintained by a MESI cache coherence protocol. A line in exclusive or modified state is considered

private by the local processor so, as the flowchart in Figure 10 shows, it can be freely read or

written by its owner thread without holding the deterministic token. The same applies for a read

operation on a line in shared state. Conversely, a thread needs to acquire the deterministic token

before writing to a line in shared state, and moreover, all other threads must be at a deterministic

point in their execution, e.g., blocked. The state of the entries in the sharing table corresponding to

lines that are not cached by any processor is kept in memory and managed by the memory

controller, much like a directory in directory-based cache coherence. Note, however, that we do not

require directory-based coherence per se. This state is transferred when cache misses are serviced.

Nevertheless, directory-based systems can simplify the implementation of DMP-SHTAB even

further.

We now address how the state changes of the sharing table happen deterministically. There are

three requirements: (1) speculative instructions cannot change the state of the sharing table; (2) a

coherence request that changes the state of a cache line can only be performed during the serial

suffix of a quantum when the issuer holds the deterministic token; and (3) all nodes need to know

when the other nodes are blocked waiting for the deterministic token – this is necessary to

implement step 3 in Figure 10. To guarantee (1), speculative instructions that need to change the

sharing table can only do so when they are not speculative anymore. To guarantee (2), for all

coherence requests performed during the parallel prefix of a quantum, the servicing node nacks any

request that implies a change in a line’s coherence state, e.g., a downgrade, otherwise the node

processes the request as usual. Finally, (3) is guaranteed by having all processors broadcast when

they block or when they unblock.

45

Alternatively, sharing table implementations can use memory tagging, where the tags represent the

sharing information. Moreover, our evaluation (Section 3.4) shows that tracking sharing

information at page granularity does not suffer from excessive false sharing. This suggests a page-

level implementation, which is simpler than a line-level implementation.

DMP-TM and DMP-TMFWD: On top of standard TM support, a hardware implementation of DET-TM

needs a mechanism to enforce a specific transaction commit order – the deterministic commit order

of quanta encapsulated inside transactions. DMP-TM does that by allowing a transaction to commit

only when the processor receives the deterministic token. After a single commit, the processor

passes the token to the next processor in the deterministic order. DET-TMFWD requires more

elaborate TM support to allow speculative data to flow from uncommitted quanta earlier in the

deterministic order. This is implemented by making the coherence protocol aware of the data

version of quanta, very similarly to versioning protocols used in Thread-Level Speculation (TLS)

systems [152]. One interesting aspect of DMP-TM is that, if a transaction overflow event is made

deterministic, it can be used as a quantum boundary, making a bounded TM implementation

perfectly suitable for a DMP-TM system. Making transaction overflow deterministic requires

making sure that updates to the speculative state of cache lines happen strictly as a function of

memory instruction retirement, i.e., updates from speculative instructions cannot be permitted. In

addition, it also requires all non-speculative lines to be displaced before an overflow is triggered,

i.e., the state of non-speculative lines cannot affect the overflow decision.

The implementation choices in a hardware-only DMP system also have performance versus

complexity trade-offs. DMP-TMFWD offers better performance but requires mechanisms for

speculative execution, conflict detection and memory versioning, whereas DMP-SHTAB performs a

little worse but does not require speculation.

3.2.2 Software-Only Implementation

A deterministic system can also be implemented using a compiler or a binary rewriting

infrastructure. The implementation details are largely similar to the hardware implementations.

46

The compiler builds quanta by sparsely inserting code to track dynamic instruction count in the

control-flow-graph – quanta need not be of uniform size as long as the size is deterministic. This is

done at the beginning and end of function calls, and at the tail end of CFG back edges. The inserted

code tracks quantum size and, when the target size has been reached or exceeded, it calls back to a

runtime system, which implements the various determinism techniques. DET-SERIAL is supported in

software by implementing the deterministic token as a queuing lock. For DET-SHTAB, the compiler

instruments every load and store to call back to the runtime system, the runtime system

implements the logic shown in Figure 12, and the sharing table itself is kept in memory.

It is also possible to implement a deterministic system using software transactional memory (STM),

but, as discussed in [34], the assumptions made by STM systems do not mesh well with DET-TM’s

requirements. First, STM systems assume that most code executes non-transactionally, contrary to

DET-TM’s transactions-all-the-time approach. With DET-TM, the overhead of running software

transactions cannot be amortized by executing non-transactional code. Second, transactions in DET-

TM are not lexically scoped at the source language level. Supporting un-scoped transactions

requires an STM system that can roll back the call stack arbitrarily, which in turn requires

instrumenting all stack reads and writes – a significant runtime cost.

3.2.3 Leveraging Commercial Hardware Transactional Memory

Implementing DMP-TM on top of commercially available hardware TM systems [31–33] is also

possible. These systems do not offer the ability to modify cache eviction policies, or control the

speculative forwarding of values between concurrent transactions. The biggest obstacle, however,

is ensuring transactions commit in a deterministic order. On Intel’s upcoming Haswell architecture

[33], for example, there is no way to perform non-transactional accesses from within a transaction.

Such accesses could be used to implement a spin-loop at the end of a transaction to ensure it did not

commit out of order. In the absence of such an out-of-band communication channel, deterministic

transaction commit cannot be enforced directly because any bidirectional communication between

transactions will cause one of the transactions to roll back.

47

However, a mechanism can be built that will detect out-of-order transaction commits by injecting

synthetic data dependences between quanta. Say we have three threads T0, T1 and T2 executing

three quanta A, B and C, respectively, and the deterministic commit order is A, then B, then C. At the

end of quantum A, T0 writes a sentinel value to location A’. At the end of quantum B, T1 reads A’

and, if the sentinel value is not present, rolls back its transaction for quantum B. If the sentinel is

present T1 writes a sentinel value to location B’. At the end of quantum C, T2 then reads B’,

checking for the sentinel, etc. The data dependences verify that a quantum is serialized in the

appropriate order, otherwise it (and all quanta ordered after it) will be rolled back.

This order-violation detection mechanism is likely to trigger many needless rollbacks in practice.

Optimizing quantum formation to suit the limitations of HTM systems is another interesting open

question. While these and other issues will prove challenging, we are optimistic that upcoming HTM

support will accelerate the performance of determinism on real systems.

3.3 Experimental Setup

We evaluate both hardware and software implementations of a DMP system. We use the SPLASH2

[153] and PARSEC [154] benchmark suites and run the benchmarks to completion. Some

benchmarks were not included due to infrastructure problems such as out of memory errors and

other system issues such as lack of 64-bit compatibility. Note that the input sizes for the software

implementation experiments are typically larger than the ones used in the simulation runs due to

simulation time constraints. We ran our native experiments on a machine with dual Intel Xeon

quad-core 64-bit processors (8 cores total) clocked at 2.8 GHz, with 8GB of memory running Linux

2.6.24. In the sections below we describe the evaluation environment for each implementation

category.

48

3.3.1 Hardware Implementation

We assess the performance trade-offs of the different hardware implementations of DMP systems

with a simulator written using PIN [155]. The model includes the effects of serialized execution,3

quantum building, memory conflicts, speculative execution squashes and buffering for a single

outstanding transaction per thread in DMP-TM. Note that even if execution behavior is

deterministic, simulated performance is not deterministic because it relies on traces generated

(nondeterministically) from Pin. Therefore we run our simulator multiple times, average the results

and provide error bars showing the 90% confidence interval for the mean. While the model

simplifies some microarchitectural details, the specifics of the various DMP system

implementations are modeled in detail. To reduce simulation time, our model assumes that the IPCs

(including squashed instructions) of all the different DMP modes are the same. This reasonable

assumption allows us to compare performance between different DMP schemes using our

infrastructure. Note that the comparison baseline (nondeterministic parallel execution) also runs

on our simulator.

3.3.2 Software Implementation

We evaluate the performance impact of a software-based determinism system (CoreDet4) by using

a compiler pass written for LLVM v2.2 [156]. Its main transformations are described in Section

3.2.2. The pass is executed after all other compiler optimizations. Once the object files are linked to

the runtime environment, LLVM does another complete link-time optimization pass to inline the

runtime library with the main object code.

The runtime system provides a custom pthreads-compatible thread management and

synchronization API. Finally, the runtime system allows the user to control the maximum quantum

size and the granularity of entries in the sharing table. We configured these parameters on a per-

application basis, with quantum sizes varying from 10,000 to 200,000 instructions, and sharing

table entries from 64B to 4KB. Our CoreDet experiments run on real hardware, so we took multiple

3 Note that the simulation actually serializes quanta execution functionally, which affects how the system
executes the program. This accurately models the effects of quanta serialization on application behavior.
4 This use of the term CoreDet is anachronistic. See Section 1.5 for details.

49

runs, averaged their running time and provided error bars in the performance plot showing the

90% confidence interval for the mean. The focus of this chapter is on the deterministic algorithms

and their hardware implementations, so we omit a detailed description and evaluation of our

software-only implementation.

3.4 Evaluation

We first show the scalability of our hardware proposals: in the best case, DMP-SHTAB has negligible

overhead compared to nondeterministic parallel execution with 16 threads, while the more

aggressive DMP-TMFWD reduces DMP-SHTAB’s overheads by 20% on average. We then examine the

sensitivity of our hardware proposals to changes in quantum size, conflict detection granularity,

and quantum building strategy. Finally, we show the scalability of our software-only COREDET-

SHTAB proposal and demonstrate that it does not unduly limit performance scalability. We believe

that DMP-SHTAB represents a good trade-off between performance and complexity, and that

COREDET-SHTAB is fast enough to be useful for debugging and, depending on the application,

deployment purposes.

3.4.1 Performance and Scalability

Figure 13 shows the scalability of our techniques compared to the nondeterministic, parallel

baseline. We ran each benchmark with 4, 8 and 16 threads, and QB-SYNCSHARING producing 1,000-

instruction quanta. As one would expect, DMP-SERIAL exhibits slowdown nearly linear with the

number of threads. The degradation can be sub-linear because DMP affects only the parallel

Figure 13: Runtime overheads with 4, 8 and 16 threads. (P) indicates page-level conflict detection; otherwise
line-level detection is used.

4 8
barnes

 16 4 8
cholesky

 16 4 8
fft(P)

 16 4 8
fmm

 16 4 8
lu-nc

 16 4 8
ocean-c(P)

 16 4 8
radix(P)

 16 4 8
vlrend

 16 4 8
water-sp

 16 4 8
SPLASH
gmean

 16 4 8
blacksch

 16 4 8
bodytr

 16 4 8
fluid

 16 4 8
strmcl

 16 4 8
PARSEC
gmean

 16
1.0

1.5

2.0

2.5

3.0

ru
n
ti
m

e
 n

o
rm

a
liz

e
d

 t
o

n
o
n

-d
e

te
rm

in
is

ti
c
 p

a
ra

lle
l
e

x
e

c
u

ti
o

n

 3
.7

 6
.2

1
0
.7

 3
.4

 3
.6

 6
.1

1
0
.2

 3
.1

 3
.8

 3
.6

 6
.8

1
0
.3

 3
.8

 7
.0

1
1
.0

 3
.1

 5
.2

 8
.4

 3
.2

 5
.6

 4
.3

 6
.4

 3
.8

 7
.0

1
2
.1

 3
.2

 3
.3

 4
.4

 3
.8

 6
.9

1
1
.8

 4
.6

 6
.7

DMP-TMFwd DMP-TM DMP-ShTab DMP-Serial

50

behavior of an application’s execution. DMP-SHTAB has 38% overhead on average with 16 threads,

and in the few cases where DMP-SHTAB has larger overheads (e.g., lu-nc), DMP-TM provides much

better performance. For an additional cost in hardware complexity, DMP-TMFWD, with an average

overhead of only 21%, provides a consistent performance improvement over DMP-TM. DMP-SHTAB

and the TM-based schemes all scale sub-linearly with the number of processors. The overhead for

TM-based schemes is flat for most benchmarks, suggesting that a TM-based system would be ideal

for larger DMP systems. Thus, with the right hardware support, the performance of deterministic

execution can be very competitive with nondeterministic parallel execution.

3.4.2 Sensitivity Analysis

Figure 14 shows the effects of changing the

maximum number of instructions included in a

quantum. Again, we use the QB-SYNCSHARING

scheme, with line-granularity conflict detection.

Increasing the size of quanta consistently degrades

performance for the TM-based schemes, as larger

quanta increase the likelihood and cost of aborts since more work is lost. The ability of DMP-

TMFWD to avoid conflicts helps increasingly as the quanta size gets larger. With DMP-SHTAB, the

effect is more application dependent: most applications (e.g., vlrend) do worse with larger quanta,

since each quantum holds the deterministic token for longer, potentially excluding other threads

from making progress. For lu-nc, however, the effect is reversed: lu-nc has relatively large

communication-free regions per quantum, allowing the token-passing overhead to be amortized

better. On average, however, DMP-SERIAL is less affected by quantum size.

Figure 14: Performance of 2,000 (2), 10,000 (X) and
100,000 (C) instruction quanta, relative to 1,000
instruction quanta.

2 X
lu-nc

 C 2 X
vlrend

 C 2 X
SPLASH
gmean

 C 2 X
strmcl

 C 2 X
PARSEC
gmean

 C
-100%

-80%

-60%

-40%

-20%

0%

20%

40%

%
 s

p
e

e
d

u
p
 o

v
e
r

1
,0

0
0

-i
n

s
n

 q
u

a
n

ta DMP-TMFwd
DMP-TM
DMP-ShTab
DMP-Serial

51

Figure 15 compares conflict detection at cache line

(32-byte) and page (4096-byte) granularity.

Increasing the conflict detection granularity

decreases the performance of the TM-based

schemes, as they suffer more (likely false) conflicts.

The gap between DMP-TMFWD and DMP-TM grows

as the former can avoid some of the conflicts by

forwarding values. DMP-SERIAL is unaffected, because it does no conflict detection. With DMP-

SHTAB, a coarser granularity can lead to more blocking (e.g., lu-nc and streamcluster) but can also,

surprisingly, improve performance by taking advantage of spatial locality (e.g., radix, ocean-c). This

suggests a pro-active privatization/sharing mechanism to improve the performance of DMP-SHTAB.

On average, our results show that exploiting existing virtual memory support to implement DMP-

SHTAB could be quite effective.

Figure 16 shows the performance effect of different

quantum building strategies. Smarter quantum

builders generally do not improve performance

much over the QB-COUNT 1,000-instruction

baseline, as QB-COUNT produces such small quanta

that heuristic breaking cannot substantially

accelerate progress along the application’s critical

path. With 10,000-instruction quanta (Figure 17),

the effects of the different quantum builders are

more pronounced. In general, the quantum builders

that take program synchronization into account

(QB-SYNCFOLLOW and QB-SYNCSHARING) outperform

those that do not. DMP-SERIAL and DMP-SHTAB

perform better with smarter quantum building,

Figure 15: Performance of page-granularity conflict
detection, relative to line-granularity.

Figure 16: Performance of QB-SHARING (s), QB-
SYNCFOLLOW (sf) and QB-SYNCSHARING (ss) quantum
builders, relative to QB-COUNT, with 1,000-insn
quanta.

Figure 17: Performance of quantum building
schemes, relative to QB-COUNT, with 10,000-insn
quanta.

fft lu-nc

ocean-c

radix

vlrend

S
P
LA

S
H

gm
ean

bodytr

fluid
strm

cl

P
A
R
S
E
C

gm
ean

-100%

-50%

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

500%

%
 s

p
e

e
d

u
p

 o
v
e

r
w

o
rd

-g
ra

n
u
la

ri
ty

DMP-TMFwd
DMP-TM
DMP-ShTab

s sf
barnes

 ss s sf
radix(P)

 ss s sf
SPLASH
gmean

 ss s sf
bodytr

 ss s sf
strmcl

 ss s sf
PARSEC
gmean

 ss
-40%

-20%

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

%
 s

p
e

e
d

u
p
 o

v
e
r

Q
B

-C
o
u

n
t

DMP-TMFwd
DMP-TM
DMP-ShTab
DMP-Serial

s
 barnes

 sf ss s
 radix(P)

 sf ss s
 SPLASH
 gmean

 sf ss s
 bodytr

 sf ss s
 strmcl

 sf ss s
 PARSEC
 gmean

 sf ss
-40%

-20%

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

%
 s

p
e

e
d

u
p
 o

v
e
r

Q
B

-C
o
u

n
t

DMP-TMFwd
DMP-TM
DMP-ShTab
DMP-Serial

52

while the TM-based schemes are less affected, as TM-based schemes recover more parallelism. QB-

SHARING works well with DMP-SHTAB and PARSEC, and works synergistically with synchronization-

aware quantum building: QB-SYNCSHARING often outperforms QB-SYNCFOLLOW (as with barnes).

3.4.3 Characterization

Table 2 provides more insight into our sensitivity results. For DMP-TM, with both line- and page-

level conflict detection, we give the average read- and write-set sizes (which show that our TM

buffering requirements are modest), and the percentage of quanta that suffer conflicts. The

percentage of conflicts is only roughly correlated with performance, as not all conflicts are equally

expensive. For the DMP-SHTAB scheme, we show the amount of execution overlap of a quantum

with other quanta (parallel prefix), as a percentage of the average quantum size. This metric is

highly correlated with performance: the more communication-free work exists at the beginning of

each quantum, the more progress a thread can make before needing to acquire the deterministic

token. Finally, we give the average quantum size and the percentage of quanta breaks caused by the

heuristic of each of the quantum builders, with a 10,000-instruction maximum quanta size. The

average quantum size for QB-COUNT is uniformly very close to 10,000 instructions, so we omit those

results. Since the average quantum size for QB-SYNCFOLLOW is generally larger than that for QB-

Table 2: Characterization of hardware DMP results. †Same granularity as used in Figure 13.

Benchmark

DMP with 1,000-insn quanta
QB Strategy, with 10,000-insn quanta†

TM ShTab
Line Page Line Page SyncFollow Sharing SyncSharing

R/W
set size

%
conflicts

R/W
set size

%
conflicts

% Q
overlap

% Q
overlap

avg Q
size

% sync
breaks

avg Q
size

% sharing
breaks

avg Q
size

% sync
breaks

barnes 27/9 37 9/2 64 47 46 5929 42 4658 67 5288 54
cholesky 14/6 23 3/1 39 31 38 6972 30 3189 94 6788 35

fft 22/16 25 3/4 26 19 39 9822 1 3640 62 4677 49
fmm 30/6 51 7/1 69 33 29 8677 15 4465 65 5615 50
lu-nc 47/33 71 6/4 77 14 16 7616 24 6822 37 6060 42

ocean-c 46/15 28 5/2 34 5 46 5396 49 3398 73 3255 73
radix 16/20 7 3/7 13 31 42 8808 15 3346 71 4837 57

vlrend 27/8 38 7/1 50 41 39 7506 28 7005 45 6934 38
water-sp 32/19 19 5/1 45 40 37 7198 5 5617 30 6336 20

SPLASH amean 30/16 31 5/2 44 29 35 7209 27 4987 57 5363 48
blacksch 28/9 8 14/1 10 48 48 10006 <1 9163 10 9488 7
bodytr 11/4 16 3/2 28 39 19 7979 25 7235 31 6519 37

fluid 41/8 76 8/2 75 43 40 871 98 2481 95 832 99
strmcl 36/5 28 10/2 91 60 12 9893 1 1747 79 2998 77

PARSEC amean 29/6 36 9/1 51 45 30 7228 19 5156 54 3880 64

53

SHARING, and the former outperforms the latter, we see that smaller quanta are not always better: it

is important to choose quantum boundaries well, as QB-SYNCFOLLOW does.

3.4.4 CoreDet5: Performance and Scalability

Figure 18 shows the performance and scalability of

COREDET-SHTAB compared to the parallel baseline.

We see two classes of trends, slowdowns that

increase with the number of threads (e.g., barnes)

and slowdowns that don’t increase much with the

number of threads (e.g., fft). For benchmarks in the

latter class, adding more threads substantially

improves raw performance. Even for benchmarks

in the former class, while adding threads does

decrease raw performance compared to the

corresponding parallel baseline, the slowdown is sublinear in the number of threads. Thus, adding

threads still results in an improvement in raw performance. In summary, this data shows that

COREDET-SHTAB does not unduly limit performance scalability for multithreaded applications.

3.5 Discussion

Our evaluation of the various DMP schemes leads to several conclusions. At the highest level, the

conclusion is that deterministic execution in a multiprocessor environment is achievable on future

systems with little, if any, performance degradation. The simplistic DMP-SERIAL has a geometric

mean slowdown of 6.5x on 16 threads. By orchestrating communication with DMP-SHTAB, this

slowdown reduces to a geometric mean of 37% and often less than 15%. By using speculation with

DMP-TM, we were able to reduce the overhead to a geometric mean of 21% and often less than

10%. Through the addition of forwarding with DMP-TMFWD, the overhead of deterministic

execution is less than 15% and often less than 8%. Finally, software solutions can provide

5 This use of the term CoreDet is anachronistic. See Section 1.5 for details.

Figure 18: Runtime of COREDET-SHTAB relative to
nondeterministic execution.

barnes fft fmm lu-c radix water-sp SPLASH
gmean

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

C
o

re
D

e
t-

S
h
T

a
b

 r
u
n

ti
m

e
 n

o
rm

a
liz

e
d

 t
o

n
o

n
d

e
te

rm
in

is
ti
c
 p

a
ra

lle
l
e
x
e
c
u

ti
o

n

2 threads
4 threads
8 threads

54

deterministic execution with a performance cost suitable for debugging on current generation

hardware, and depending upon the application, deployment.

Now that we have defined what deterministic shared memory multiprocessing is, shown how to

build efficient hardware support for it, and demonstrated that software solutions can be built for

current generation hardware, we discuss several additional points. These are: (1) performance,

complexity and energy trade-offs; (2) support for debugging; (3) interaction with operating system

and I/O nondeterminism; and (4) making deterministic execution portable for deployment.

Implementation Trade-offs. Our evaluation showed that using speculation in the hardware-based

implementation pays off in terms of performance. However, speculation potentially wastes energy,

requires complex hardware and has implications in system design, since some code, such as I/O

and parts of an operating system, cannot execute speculatively. Fortunately, DET-TM, DET-SHTAB

and DET-SERIAL can coexist in the same system. One easy way to co-exist is to switch modes at a

deterministic boundary in the program (e.g., the edge of a quanta). More interestingly, a DMP

system can be designed to support multiple modes co-existing simultaneously. This allows a DMP

system to use the most convenient approach depending on what code is running, e.g., using

speculation (DET-TM) in user code and avoiding it (DET-SHTAB) in kernel code.

DMP systems could also be built in a hybrid hardware-software fashion, instead of a purely

hardware or software implementation. A hybrid DET-TM system, for example, could leverage

modest hardware TM support while doing quantum building and deterministic ordering more

flexibly in software with low performance cost. A hybrid DET-SHTAB system could efficiently

implement the sharing table by leveraging modern cache coherence protocols; exposing coherence

state transitions could enable a simple high performance hybrid DET-SHTAB implementation in the

near future. Chapter 4 explores the idea of a hybrid hardware-software system in greater depth.

Supporting Debugging Instrumentation. In order to enable a debugging environment in a DMP

system, we need a way of allowing the user to instrument code for debugging while preserving the

interleaving of the original execution. To accomplish this, implementations must support a

55

mechanism that allows a compiler to mark code as being inserted for instrumentation purposes

only; such code will not affect quantum building, and thus preserves the original behavior.

Dealing with nondeterminism from the OS and I/O. There are many sources of nondeterminism

in today’s systems, from concurrently running processes to the state of hardware predictors and

arbiters. A DMP system hides most of them, allowing many multithreaded programs to run

deterministically. Besides hiding the nondeterminism of the microarchitecture, a DMP system also

hides the nondeterminism of OS thread scheduling by using the deterministic token to provide low-

level deterministic thread scheduling, causing threads to run in the same order on every execution.

Nevertheless, challenging sources of nondeterminism remain.

One challenge is that parallel programs can use the operating system to communicate between

threads. A DMP system needs to make that communication deterministic. One way to address the

problem is to execute OS code deterministically, which was discussed earlier in this section.

Alternatively, a layer between the operating system and the application can be utilized to detect

communication and synchronization via the kernel and provide it within the application itself. This

is the solution employed by our software implementation.

Another challenge is that many operating system API calls allow nondeterministic outcomes.

System calls such as read may lead to variations in program execution from run to run, as their API

specification itself permits such variation. There are two ways to handle nondeterministic API

specifications: ignore them – any variation in outcome could also have occurred to sequential code;

or fix them, by providing alternative, deterministic APIs. With read, a solution is to always return

the maximum amount of data requested until EOF. The dOS [145] deterministic OS explores issues

of OS-nondeterminism even further, providing a deterministic process abstraction that provides

deterministic shared memory communication and identifies other sources of nondeterminism in

the POSIX API. dOS allows programmers to write handlers for these nondeterministic sources,

simplifying multithreaded record-and-replay and the replication of multithreaded programs.

56

The final, and perhaps most difficult challenge is that the real world is simply nondeterministic.

Ultimately, programs interact with remote systems and users, which are nondeterministic and can

affect thread interleavings. With DMP, the inputs on which a program’s output depends are fewer,

and easier to identify and control than with nondeterministic multiprocessors. Though the sources

of these inputs may be nondeterministic, these inputs are much lower-volume than the totality of

shared memory communication. Thus, DMP allows many multithreaded programs to execute

completely deterministically, and allows the behavior of the remaining programs to be debugged,

recorded and replicated more easily.

Support for deployment. We contend that deterministic systems should not just be used for

development, but for deployment as well. We believe systems in the field should behave like

systems used for testing. The reason is twofold. First, developers can have higher confidence their

programs will work correctly once deployed. Second, if the program does crash in the field, then

deterministic execution provides a meaningful way to collect and replay crash history data.

Supporting deterministic execution across different physical machines places additional constraints

on the implementation. Quanta must be built the same across all systems. This means machine-

specific effects cannot be used to end quanta (e.g., micro-op count, or a full cache-set for bounded

TM-based implementations). Furthermore, passing the deterministic token across processors must

be the same for all systems. This suggests that DMP hardware should provide the core mechanisms,

and leave the quanta building and scheduling control up to software. The Calvin [144] system

explores similar issues (see Section 2.5.3.1).

3.6 Conclusions

This chapter made the case for fully deterministic shared memory multiprocessing. We have shown

that the key requirement to support deterministic execution is deterministic communication via

shared memory. Fortunately, this requirement still leaves room for efficient implementations. We

described a range of implementation alternatives, in both hardware and software, with varying

degrees of complexity and performance cost. Our simulations show that a hardware

implementation of a DMP system can have negligible performance degradation over

57

nondeterministic systems. We also briefly described our compiler-based software-only

deterministic system and show that while the performance impact is significant, it is quite tolerable

for debugging.

While the benefits for debugging are obvious, we suggest that parallel programs should always run

deterministically. Deterministic execution in the field has the potential to increase reliability of

parallel code, as the system in the field would behave similarly to in-house testing environments,

and to allow a more meaningful collection of crash information.

Perhaps contrary to popular belief, a shared memory multiprocessor system can execute programs

deterministically with little performance cost. We believe that deterministic multiprocessor

systems are a valuable goal, as they abstract away several difficulties in writing, debugging and

deploying parallel code.

58

Chapter 4 Trading Strong Memory Consistency for Simpler
Determinism

Relaxing memory ordering has proven instrumental in improving performance and scalability in

conventional nondeterministic shared-memory multiprocessor architectures [157,158]. While

speculation alleviates some of the costs of strong ordering [55,67,71,159] in complex architectures,

we still relax memory ordering to allow compiler optimizations and to simplify hardware.

Interestingly, strong memory ordering has a much higher cost in deterministic multiprocessing

than in nondeterministic multiprocessing. Therefore we argue that, in deterministic

multiprocessors, it is even more important to give up strong memory ordering in favor of higher

performance and lower complexity.

This chapter discusses RCDC, a Relaxed Consistency Deterministic Computer system. RCDC

improves upon the DMP design presented in Chapter 3 in two ways. First, RCDC implements a new

deterministic execution algorithm, called DET-HB (for “happens-before”), which relaxes memory

consistency while still supporting data-race-free-based memory models (e.g., those of Java and

C++). This improves performance and scalability by requiring fewer costly fences, which leads to

less serialization. DET-HB does not employ speculation and does not sacrifice determinism in the

presence of races.

Second, RCDC uses a lower complexity hybrid hardware/software implementation in which the

hardware provides only two simple mechanisms, software-controlled store buffering and

instruction counting, leaving the rest of the implementation to software. Implementing store

buffering in hardware has the pleasant side effect of reducing the effects of false sharing. RCDC can

be implemented on a commodity multiprocessor architecture and does not interfere with software

(e.g., the OS) that does not choose to use it.

59

4.1 Relaxed-Consistency Deterministic Execution

This section presents our new deterministic execution algorithm, DET-HB. For expository purposes,

we first describe the DET-TSO deterministic execution algorithm [34], which DET-HB builds upon.

4.1.1 DET-TSO: Store Buffering

Isolating threads is a core component of providing deterministic execution. Store buffers are a

common and useful mechanism for achieving this isolation. In this approach, each quantum round

is divided into three modes, a parallel mode, a commit mode, and a serial mode. During parallel

mode, all stores are buffered in a thread-local store buffer, giving each thread a private view of

shared memory. After parallel mode, all threads enter a commit mode in which the local store

buffers are published to the global memory space. This commit happens deterministically. The

effect is a serial commit order, but the implementation uses parallelism to avoid a sequential

bottleneck. After commit mode is a short serial mode in which threads execute in a deterministic

serial order and operate on shared memory directly. Serial mode is used to execute atomic

synchronization operations, as described below.

Figure 19a illustrates one round of execution in DET-TSO. Each thread executes one quantum per

round, where, as in DET-SERIAL, a quantum is some deterministic number of instructions. DET-TSO is

deterministic due to four properties: (1) quantum lengths are deterministic; (2) threads are

isolated in parallel mode, preventing nondeterministic interference from other threads; (3) commit

mode ensures that writes to shared memory happen in a deterministic order; and (4) serial mode

Figure 19: Timeline of a quantum round in DET-TSO and DET-HB, showing the division of each round into parallel,
serial, and commit modes. DET-HB improves upon DET-TSO by allowing synchronization to happen in parallel
mode, eliminating the need for serial mode.

60

ensures that atomic synchronization happens in a deterministic order. Note that the deterministic

guarantee offered by DET-TSO does not depend on a race-free assumption – data races are resolved

deterministically as a result of the isolation provided by parallel mode, combined with the

deterministic order on writes provided by commit mode.

Notice that execution under DET-TSO is not sequentially consistent. Stores are not globally visible

until commit mode, effectively reordering them after loads in the same quantum. This reordering

breaks atomic operations like compare-and-swap (CAS), as a CAS is an atomic read-write pair but

DET-TSO will reorder the write to commit mode, breaking atomicity. This issue reveals the need for

serial mode – during serial mode, atomic operations execute atomically and deterministically.

Further, it reveals the need to define the semantics of a memory fence. In DET-TSO, thread T ends its

parallel mode when it reaches a memory fence. This flushes T’s local store buffer, implementing the

semantics of a full memory fence. Because DET-TSO does not distinguish between different types of

memory fences, it implements the total-store-order (TSO) memory model.

DET-TSO achieves high performance when serial mode is empty and parallel mode is balanced,

meaning that all quanta in a round execute in the same amount of real time. Serial mode is empty

when synchronization is rare; prior work [34] has shown how to use instruction counting to

achieve balanced parallel modes when serial mode is empty. When synchronization does happen, it

forces DET-TSO into serial mode, whereby every synchronization operation causes global

coordination. Synchronization not only causes serialization but also imbalance in parallel mode,

which results in additional lost parallelism due to excess waiting. When synchronization is

frequent, the effects of serialization and imbalance dominate and performance suffers.

4.1.2 DET-HB: Leveraging Data-Race-Free Memory Models

DET-HB addresses the major weakness of DET-TSO: synchronization. Like DET-TSO, DET-HB uses

deterministic store buffers and divides execution into quantum rounds with parallel modes and

commit modes. However, DET-HB introduces a new approach to deterministic synchronization that

improves on DET-TSO in two respects. First, DET-HB implements a data-race-free [157] (DRF)

61

relaxed memory model based on the happens-before relation between threads (hence “DET-HB”).

This model requires fewer memory fences than TSO, which makes parallel mode less likely to end

early, thus increasing parallelism. However, weakening consistency alone does not remove all

impediments to scalability, as DET-TSO requires that synchronization execute in a globally

serialized fashion. To remove this further bottleneck, DET-HB eliminates the need for an explicit

serial mode by using the Kendo algorithm [23] to execute synchronization directly in parallel mode,

while still providing determinism even for programs with data races. Overall, these optimizations

let DET-HB execute with less serialization and less imbalance than DET-TSO, leading to improved

parallelism as illustrated in Figure 19b.

The key observation of DET-HB is that language-level memory models have weaker consistency

guarantees than TSO. Specifically, Java [9] and C++ [10] define consistency models based on the

data-race-free model [157]. From the programmer’s perspective, it does not matter that the

execution layer (e.g., the hardware) provides TSO when other layers of the system (e.g., the

compiler) guarantee only DRF. Further, the need to precisely control memory visibility causes

nondeterministic processor-local fences to become global operations in deterministic systems like

DET-TSO, which suggests that strong memory ordering has a much higher cost in deterministic

systems than in nondeterministic systems. Both these observations imply that deterministic

systems should relax consistency as much as possible. As DRF-based models are specified by high-

level languages, they represent the limit to which memory ordering can be relaxed.

4.1.2.1 Synchronization in DET-HB

As DET-TSO is a deterministic version of a TSO consistency model, DET-HB is a deterministic version

of a DRF consistency model. DET-HB differs from DET-TSO in its approach to synchronization. The

rest of this section presents the basic ideas of DET-HB. We describe details of the DET-HB

synchronization algorithm along with our synchronization library in Section 4.3.4.

Consider mutex locks in a language with a DRF-like model, such as Java or C++. In these languages,

the visibility of stores is guaranteed only along happens-before edges, which can arise from

62

program order between consecutive operations in a thread or from synchronization operations

across threads. When thread T acquires lock L, this creates a happens-before edge E from the

previous releaser of L to T. The DRF model guarantees that from this point forward, T will see

stores that transitively happen-before its acquire of L. Other stores need not be visible. Therefore,

in DRF models, T needs a memory fence after acquiring lock L only when happens-before edge E is

not redundant. When E is redundant, the fence can be elided.

DET-HB exploits two happens-before redundancies: (1) thread-local edges, and (2) cross-quantum

edges. First consider thread-local redundancies: if T was the previous releaser of L, then lock L has

not been handed off to another thread, and we say that happens-before edge E is local to thread T. A

fence is not needed in this case because edge E is redundant with program order. Prior work has

had this same insight but in the context of nondeterministic systems, and furthermore has shown

that lock locality is very common in Java programs [30, 33].

Cross-quantum redundancies are more interesting. They follow from the observation that all

quanta in round N are connected to all quanta in round N + 1 by implicit happens-before edges.

These implicit edges arise from the bulk-synchronous style of execution used by DET-HB, illustrated

in Figure 19b. The important result is that an explicit fence is not necessary when synchronization

is separated by a quantum boundary. Thus, by matching quantum length with the frequency of

synchronization, DET-HB can eliminate many unnecessary fences, increasing performance and

scalability.

63

Figure 20b demonstrates both the above redundancies. An example of a redundant cross-quantum

edge is shown when thread T0 acquires lock B in quantum 2: this creates a happens-before edge

with the release of lock B by thread T1 in quantum 1. Because this edge crosses a quantum

boundary (i.e., it crosses a commit mode), T0 does not need to execute an explicit fence when

acquiring lock B. In contrast, note that under DET-TSO, T0 must execute a fence, i.e., end its

quantum, before acquiring lock B.

An example of a thread-local redundancy is also shown in quantum 2, where T0 reacquires lock B.

As T0’s updates are automatically visible to itself, there is no need for a fence. The extra

serialization necessary to enforce the stronger TSO memory model is illustrated in Figure 20a.

Further, Figure 20b shows that DET-HB does not require a serial mode, in contrast to DET-TSO,

which executes all lock acquires in serial mode. Even with the weaker DRF memory model,

serializing all synchronization eliminates the ability to exploit thread-local redundant fences. Recall

that DET-TSO uses a serial mode to guarantee both atomicity and a deterministic order of

synchronization. For correctness and determinism, DET-HB must make these same two guarantees.

Our solution is to use the Kendo algorithm [26] to impose a deterministic total order on all

synchronization within a single quantum round. This algorithm allows synchronization to operate

directly on the global memory space, bypassing the store buffer so the operation happens

atomically. We describe this algorithm along with our synchronization library in Section 4.3.4.

Figure 20: A comparison of execution under DET-HB with execution under DET-TSO, showing how DET-HB extracts
more parallelism from programs with frequent synchronization.

64

4.1.2.2 Language Memory Models

Even though DRF does not specify the semantics of races, DET-HB’s deterministic guarantees hold

even for programs with data races. DET-HB’s DRF memory model naturally matches the C++

memory model; however, the Java memory model specifies some behavior for data races, e.g., to

prevent “out-of-thin-air” values. DET-HB does not itself introduce any potential “out-of-thin-air”

values because it does not employ any form of speculation. A Java compiler must (still) ensure that

its optimizations do not violate the Java memory model and also must ensure that proper

synchronization and fences are inserted. Therefore, compiling Java code for DET-HB’s memory

model is no more complex than compiling for other weakly ordered architectures.

4.2 RCDC System Overview

RCDC provides an efficient

implementation of DET-HB

through a combination of

hardware and software

mechanisms, as summarized

in Figure 21. The four main

components of RCDC are (1) a

precise instruction-count mechanism to divide each thread’s instruction stream into balanced

quanta efficiently, (2) a store-buffer mechanism that allows threads to execute in isolation from

other threads, (3) a deterministic commit mechanism that concludes each quantum round, and (4)

a custom synchronization library that implements a pthreads interface while enforcing DET-HB’s

memory-consistency model. These components are implemented as a combination of hardware and

software designed for maximal flexibility and minimal hardware complexity.

Quantum formation is an ideal use case for hardware, as counting instructions involves nearly

zero overhead in hardware but causes substantial slowdown in software. The hardware

instruction-counting mechanism simply counts instructions as they retire, triggering a user-level

Figure 21: RCDC system overview, showing the division of responsibility
between hardware and software. The shaded boxes show RCDC’s
additions.

65

QuantumReached trap when a pre-defined total is reached. This trap is responsible for actually

starting the commit process that makes buffered data visible.

Our synchronization library requires the ability to disable and enable instruction counting for the

local processor, and also to read the current instruction counts of remote processors. For this

purpose the instruction-count mechanism can be controlled and queried via the StopInsnCount,

StartInsnCount, and ReadInsnCount instructions.

Deterministic quantum formation beyond simply counting instructions is also possible. Section

4.3.1 describes a more advanced strategy that uses opcodes and store buffer hit/miss information

to construct quanta with better balance.

The store buffer mechanism is also a natural fit for hardware, where processor-private caches can

isolate an executing thread from other threads in the system (like in hardware transactional

memory, but without an abort mechanism) with additional bits of cache line state. We rely on

simple compiler modifications or binary rewriting to replace existing store instructions with our

new BufferedStore instruction. With more sophisticated analysis, ordinary non-buffered store

instructions can, without any loss of determinism, replace buffered stores to locations that are

provably thread-private. This increases the effective capacity of the store buffer without additional

hardware resources.

The deterministic commit mechanism is triggered by software, via a new Commit instruction. The

actual commit process is implemented in hardware, as described in Section 4.3.3. The commit

process is invoked by software in response to QuantumReached and BufferFull traps, as well

as to enforce the memory consistency requirements of DET-HB. Hardware triggers a BufferFull

trap immediately when a store buffer overflows. Note that our cache replacement policy, described

in Section 4.3.2.1, is designed to ensure that store buffer overflows happen deterministically.

Finally, our custom synchronization library acts as a drop-in replacement for pthreads. It uses the

instructions described above to enforce DET-HB’s consistency model. Because the decision of when

66

to commit is left to software, our synchronization library can easily be modified to implement other

consistency models, e.g., DET-TSO.

4.3 Implementation

We now discuss implementation details for the major hardware and software components

described in Section 4.2.

4.3.1 Quantum Formation

For quantum formation, the hardware does instruction counting and sets a trap after a software-

defined quantum budget is exhausted. This mechanism is initialized by system software when a

process is created. This code registers a user-level trap that is invoked whenever the quantum size

is reached, establishes the size of quanta, and executes the StartInsnCount instruction.

Thus far, we have discussed quantum formation in terms of counting instructions. However, it is

possible to provide better quantum balance by giving instructions non-uniform weights, e.g., based

on opcode. One useful optimization leverages the deterministic contents of the store buffer.

Memory accesses deterministically either hit in the store buffer (i.e., hit to a written cache line) or

miss the store buffer (which means either hitting to an unwritten cache line or missing to the next-

level cache or beyond). Knowing whether the memory operation is a load or a store lets us, in many

cases, accurately assess the latency of that operation deterministically. Loads that miss the store

buffer are often hits to a clean line, so we assign them a low weight. But stores that miss in the store

buffer tend to be cache misses, and thus have high latency. Assigning higher weights to such stores

results in better quantum balance since the weight assigned to each instruction better

approximates its actual latency. Finally, we add to the sum of instruction weights as instructions

retire, allowing access to hit/miss information, and also avoiding any issues with wrong-path

instructions.

67

4.3.2 Buffering

RCDC’s hardware provides support for buffering data, while software (i.e., the compiler) controls

what data is buffered via the BufferedStore instruction. This section details how buffering

support is implemented as an extension to the cache hardware.

Cache-based data buffering imposes a few system requirements: (1) buffered lines cannot be

provided to remote requests; (2) the commit protocol, which makes buffered data available to all

processors, needs to be deterministic; and (3) the system needs to support context switches. RCDC

provides this functionality on top of a conventional directory-based MOESI cache coherence

protocol and implements buffering in private caches, while still naturally supporting shared caches.

For simplicity of explanation, we consider only a single private L1 cache per processor in the

discussion below.

4.3.2.1 Cache Extensions for Store Buffering

Each L1 cache line is extended with a write-mask, which has as many bits as bytes in the cache line.

When a BufferedStore instruction is executed, the corresponding write-mask bits are set.

Consequently, lines with non-null write-masks contain buffered data.

To ensure that store buffer capacity is exhausted deterministically, we modify the cache eviction

policy to always preferentially evict unwritten cache lines from a set. This ensures determinism

while maximizing the amount of progress a processor can make before running out of store buffer

capacity. When all lines of a cache set are buffered and an eviction needs to happen, RCDC triggers a

BufferFull trap and the runtime system ends the quantum.

Non-buffered stores to cache lines in the non-buffered state proceed normally, following the

conventional MOESI protocol. Non-buffered stores to cache lines in the buffered state are treated

like BufferedStores. Note that buffering data from a non-buffered store is valid with respect to

the instruction semantics as it is always correct to buffer private data – it just will not bring any

benefit. If a non-buffered store necessarily cannot be buffered because of program semantics, then

software needs to guarantee that this does not happen (e.g., using careful memory layout).

68

4.3.2.2 Coherence Operations

We augment the transitions in a conventional MOESI protocol to handle our new BufferedStore

instruction. This requires three changes to a conventional MOESI protocol. First, if an L1 cache

receives a request for a line whose write-mask is non-null, the request is nacked. The requester

then goes to a shared cache (or memory) to fulfill its request. This is necessary to guarantee that

buffered data is never provided to remote requests. Second, a line must be in the Shared state

before it can be written by a BufferedStore instruction. Finally, our commit protocol (Section

4.3.3) moves lines to the Owned state after they have been published. As a consequence of these last

two changes, moving a line to the Shared state to satisfy a BufferedStore may require a write-

back operation (e.g., because that line may have been buffered in the previous round).

Interestingly, isolating each thread’s updates into separate store buffers also yields a solution to

false sharing, by allowing threads to perform updates to the same cache line within a quantum

round without any serialization via the coherence protocol. The line becomes temporarily

incoherent, but the updates are merged deterministically at the end of the round. If threads’

updates are in conflict (i.e., two threads update the same bytes), there is a data race in the user

program – data-race free programs can never observe this relaxation of coherence. This approach is

similar to delayed consistency [160] for nondeterministic multiprocessors.

4.3.2.3 Context Switches

The kernel can context switch away from and back to a thread at any time, even during parallel

mode, as long as it invokes the SaveBufferedLines and RestoreBufferedLines

instructions to save and restore a thread’s current store buffer.

These instructions make use of a per-thread, in-memory data structure called the Buffered Data

Table (BDT), which contains the saved store buffer contents for a given thread. A BDT has a row for

each cache line in a processor’s store buffer, with one column for the line’s data, another for the

line’s write-mask, and a third for a “next” pointer whose use is described below. A row in the BDT is

considered valid if its write-mask is non-null. The SaveBufferedLines instruction simply

69

flushes all buffered lines from the cache to the BDT. As it does so, it clears the write-masks of all

buffered lines in the L1 cache and transitions them to the Invalid state, making them available for

the next thread to be switched in. The RestoreBufferedLines instruction iterates over all

buffered lines in a given BDT, restoring them into the L1 cache. After a line is restored from the BDT

to the L1 cache, its write-mask is cleared in the BDT to signify that the line is no longer saved in-

memory.

These two instructions additionally maintain a separate, per-process table called the Buffered

Address Map (BAM). The BAM is a table of pointers mapping each line address to a linked list of

BDT entries storing the in-memory versions of that line. The pointer in each BDT entry points to the

next thread’s BDT entry in the list. Each BDT entry represents the saved state of one buffered

version of the given cache line. By walking the list, the BAM table can be used to enumerate all in-

memory versions of a buffered line. BAMs are used during the commit process as described in the

following section.

We highlight that these instructions can be expensive, not only on their own, but also because of the

extra work they impose on the commit process. In Section 4.4 we describe a few kernel scheduling

optimizations that make these instructions infrequent.

4.3.3 Committing Buffered Data

In DET-HB, the transition to commit mode is controlled by software, which uses the Commit

instruction to initiate the actual commit process in hardware. The RCDC software runtime executes

the following pseudocode for each thread when it reaches its quantum boundary, e.g., when its

quantum budget has been exhausted:

1 end_quantum() {
2 global_barrier()
3 Commit
4 global_barrier()
5 }

70

The first barrier represents the transition from parallel mode to commit mode; the Commit

instruction represents commit mode; and the second barrier represents the transition back to

parallel mode to start the next quantum (see Figure 19b). The first barrier ensures that all threads

are ready to commit, while the second barrier ensures that all threads have finished publishing the

contents of their store buffers.

The goal of the commit process is to merge buffered data deterministically and publish it globally. If

a line has no buffered data in any cache, commit has no effect on that line. When a line has buffered

data in one or more caches, the commit process deterministically merges all buffered data and then

publishes this data to the rest of the system by moving the merged line to the Owned state.

A processor executes the commit instruction by iterating over all lines in its cache that have

buffered data, i.e., those lines with non-null write-masks. For each of those lines, the processor

executes the commit protocol. The commit protocol coordinates with the directory and with other

processors, collects all buffered versions of a line, and then deterministically merges them. Once the

commit protocol has been executed for all of the processor’s buffered lines, the Commit instruction

retires. At this point, the processor’s entire store buffer has been globally published.

The commit protocol needs to handle two cases: committing when all buffered versions of a line are

in-cache; and committing when at least one buffered version of a line is out-of-cache (i.e., because

the thread was context-switched out). We describe both cases in detail below.

4.3.3.1 In-cache Commit (all threads running)

The processor issues a commit message for the given line to the directory; the directory replies

with an acknowledgment for commit and a list of sharers for that line. The processor sends a

commit message to each sharer. Upon receipt of a commit message, each sharer returns a reply

indicating if it has the line, and if so, it includes the write-mask and the data for the requested line,

as well as its deterministic order id; it then clears its write-mask and moves the line to Invalid state.

When the committing processor receives a reply, it merges the other processor’s data into its own

71

line. Once the processor has collected replies from all sharers, it clears the line’s write-mask and

moves the line to the Owned state, making the line visible to all processors.

The merge algorithm takes lines from two processors, P0 and P1, and computes the result of P0’s

writes happening before P1, where P0 has the smaller order id. This algorithm is straightforward

and has been described by prior work [34].

Note that if the directory nacks the request for commit of a given line, this implies that some other

processor has already started the commit for that line; the requester then waits until it receives a

commit request for the line from another processor. Also note that while the commit process can

actually happen in any order, the final state is guaranteed to be deterministic because the merge

process is deterministic. Moreover, when the sharers list includes only the committing processor,

no merge is necessary; the processor simply clears the line’s write-mask and moves the line to the

Owned state.

Figure 22 illustrates how RCDC deals with multiple caches trying to commit to the same line A.

Processors P0, P1, and P2 all have buffered copies of line A. First, P0 and P2 send concurrent

commit requests for line A to the directory (1a, 2a). P0’s message arrives first, and the directory

responds to P0 with an acknowledgment message (1b), including the list of sharers, allowing P0 to

proceed with committing line A. Since commit has started for line A, the directory responds to P2

with a negative acknowledgment (2b) and P2 waits for a commit request (which it is bound to get

Figure 22: RCDC commit process when all application threads are scheduled. Shaded areas are RCDC additions.

72

since it is guaranteed that another processor is committing A). P0 continues by sending commit

messages to all sharers of A (3a, 3b). P1 and P2 respond with a message containing their data, write

mask, and deterministic order (4a, 4b) and then invalidate their copy of the line. Upon receiving the

acks, P0 deterministically merges the data with its own (5) and notifies the directory that line A has

been committed (6).

4.3.3.2 Out-of-cache Commit (at least one thread is switched out)

We now describe the more general case where at least one sharer has been switched out. RCDC

supports this case with a simple extension to the directory: each directory entry, in addition to the

sharers, also includes a single bit called the in-memory bit, which indicates if the line has data in an

in-memory Buffered Data Table. This in-memory bit is set by the SaveBufferedLines

instruction.

When a committing processor issues a commit message for a line to the directory, the directory

replies with an acknowledgment and a list of sharers as before, and the processor communicates

with the sharers as before. However, the directory also replies with the state of the in-memory bit.

If the in-memory bit is set, the committing processor walks rows in Buffered Data Tables via the

Buffered Address Map table to enumerate all in-memory versions of the line being committed. The

processor merges these versions into its own line using the same algorithm as before, and then

sends a commit-complete message to the directory. At this point the directory can clear the in-

memory bit.

73

Note that commit still proceeds correctly even if the only thread that has a given line buffered is

switched out, since that thread will invoke the Commit instruction when it is eventually switched

in. (The barrier on line 4 of end_quantum ensures this.) Also, note that the directory serves as a

serialization point for the cache line operations performed by the Commit, SaveBufferedLines,

and RestoreBufferedLines instructions; this prevents races between the commit process and

context switches, making it safe for the kernel to switch out a thread at any time without sacrificing

determinism (note especially that a thread can be safely switched out between lines 2 and 3 of

end_quantum).

Figure 23 illustrates how RCDC commits line A when a thread that has buffered line A has been

switched out. P0, P1, and P2 all had buffered copies of line A. The thread on P2 is ready for commit

but was switched out just before the commit process starts. The buffered data is saved in P2’s

Buffered Data Table in memory, and the in-memory bit set in the directory. P0 sends a commit

message (1a) to the directory for line A. The directory replies with an acknowledgment (1b),

including the list of sharers and the in-memory bit. P0 then sends a commit message for line A to P1

(2a), which replies with an acknowledgment (2b) before invalidating the copy of the line. At the

same time, P0 accesses the Buffered Address Map to enumerate the list of in-memory lines, and

notices that P2’s BDT contains a copy of line A (3a). P2’s saved line is found and returned to P0 (3b),

and then removed from the Buffered Data Table. Next, P0 merges both received versions of line A

Figure 23: RCDC commit process when an application thread is switched out.

74

with its own version (4) and clears the write mask. Finally, P0 notifies the directory that the commit

for line A is complete (5), and the directory resets line A’s in-memory bit.

4.3.4 Synchronization Library

Our synchronization library is implemented

using two basic building blocks: conditional

memory fences and deterministic serialization.

Conditional memory fences enforce DET-HB’s

memory model. A mechanism for deterministic

serialization based on the Kendo algorithm [26]

is used to execute synchronization during

parallel mode of DET-HB.

Figure 24 shows our implementation of

deterministic mutex locks. The

sync_acquire and sync_release

functions represent conditional memory fences,

while wait_for_turn represents

deterministic serialization. Other

synchronization objects such as barriers,

condition variables, and even lock-free data

structures can be built from these same building blocks.

4.3.4.1 Conditional Memory Fences

We use the functions sync_acquire and sync_release to implement deterministic lock and

unlock just as traditional nondeterministic implementations of lock and unlock use acquire and

release fences [158]. The key difference is the conditional on lines 2-3 of sync_acquire: when

this conditional is true, the release-to-acquire happens-before edge is redundant and a fence can be

elided. When this conditional is false, a fence is necessary: end_quantum is invoked, which

1 sync_acquire(o: SyncObject) {
2 if (o.quantum < curr_quantum ||
3 o.releaser == self) {
4 return // fence not necessary
5 }
6 end_quantum()
7 }
8
9 deterministic_lock(l: Lock) {
10 StopInsnCount
11 while (true) {
12 wait_for_turn()
13 if (CAS(l.locked, 0, 1))) {
14 sync_acquire(l)
15 StartInsnCount
16 return
17 }
18 end_quantum()
19 }
20 }
21
22 sync_release(o: SyncObject) {
23 o.quantum = curr_quantum
24 o.releaser = self
25 }
26
27 deterministic_unlock(l: Lock) {
28 StopInsnCount
29 wait_for_turn()
30 sync_release(l)
31 l.locked = 0
32 StartInsnCount
33 }

Figure 24: Deterministic locking for DET-HB

75

executes the Commit instruction. This conditional implements the observation noted earlier in

Section 4.1.2.1: a fence is not necessary when the happens-before edge is local to a thread (line 3)

or crosses a quantum boundary (line 2). Note also that when lines 2-5 are removed,

sync_acquire is a full fence, and so the remaining algorithm implements a consistency model

equivalent to TSO.

4.3.4.2 Deterministic Synchronization

We use the Kendo algorithm [26] to serialize synchronization deterministically. The basic idea is as

follows: before performing synchronization, a thread T must wait for its turn, meaning it must wait

until it has the global minimum instruction count (ties are broken by thread ID). While waiting for

its turn, T must disable instruction counting by invoking StopInsnCount; this ensures

deterministic instruction counting since T may have to wait a nondeterministic amount of time

before its turn arrives. After synchronization is complete, T invokes StartInsnCount. The

wait_for_turn function can be implemented by polling other threads’ instruction counts via the

ReadInsnCount instruction.6

Note that lines 13-14 and lines 30-31 execute atomically: wait_for_turn designates the

beginning of an atomic region that is ended by StartInsnCount.7 It is within these regions that

the lock object is updated. For these updates to appear atomically, they must apply directly to the

global memory space; i.e., all reads and updates of lock objects must bypass the store buffer. To

ensure that lock objects are never buffered, lock objects can never exist on the same cache line as

ordinary data; this introduces a partition of shared memory into lock objects and ordinary data.

4.4 System Issues

This section describes some of the issues that would be encountered when integrating RCDC with

operating systems and legacy software.

6 Alternatively, we could implement wait_for_turn via interprocessor interrupts rather than polling.
7 Atomicity for the lock release is necessary to guarantee that concurrent releases of the same lock (e.g., due
to programmer error) still result in a deterministic outcome.

76

4.4.1 Support for nondeterministic execution

The use of store buffers is a software choice. Therefore, programs can choose to execute

nondeterministically. Kernel code, for example, would not need to be executed deterministically.

One caveat is that our eviction policy risks monopolizing the cache. Recall that buffered lines are

pinned in the cache; if a cache set fills with buffered lines, it cannot be reused until the store buffer

has committed. This can accidentally prevent important systems code (e.g., context switch code)

from running. We have two solutions. The first is to reserve a small victim buffer for non-buffered

cache lines; and the second is to reserve just N-1 lines of a set for buffered data, where the cache

uses N-way sets.

4.4.2 Processes

In RCDC, each process is by default its own determinism domain; in other words, threads within a

process behave deterministically with respect to each other. Deterministic processes can run

alongside nondeterministic processes. Moreover, if multiple processes share memory pages, the

processes can be aggregated into a single determinism domain, much like the deterministic process

group abstraction in dOS [145]. As long as different determinism domains do not share memory

pages, the boundary of determinism domains can be defined completely by software without any

extra hardware support.

4.4.3 Context Switches

To maintain determinism, RCDC requires that a thread’s current instruction count and the contents

of its store buffer be saved and restored across context switches. To reduce the amount of state that

must be saved and restored, the OS kernel can be modified in two ways, described below.

First, the kernel can be modified to context switch away from a deterministic thread only at a

quantum boundary, i.e., just after line 4 of end_quantum (Section 4.3.3). This eliminates the need

to save and restore the contents of store buffers, since store buffers are always empty at a quantum

boundary.

77

Additionally, if there are N CPUs but more than N threads in a given determinism domain, the

kernel can schedule threads in groups of N per quanta, much like gang scheduling [161]. This

considerably reduces the need to save and restore the contents of store buffers. It also can improve

quantum balance, by eliminating the underutilization that occurs when N+1 threads must be

scheduled per round, yet there are only N processors available.

4.4.4 Paging

It is important to make sure that none of the pages that have buffered data are paged out. The

simplest way to provide this guarantee is to restrict paging so it happens only at the end of commit

mode. In addition, the runtime system can provide the kernel with a list of pages that are provably

unshared; these can be paged out at any time.

4.4.5 Memory Errors

As discussed in Section 4.3.4, lock objects must be partitioned from ordinary data. If this partition is

broken by some memory operation, e.g., due to a memory error in a type unsafe language like C++,

then that memory operation is a potential source of nondeterminism. For example, an errant read

that happens to address a lock object will return a nondeterministic value, since that read can race

with some other thread performing a lock acquire.

4.4.6 Store Buffer Parameters and Determinism

The parameters of the store buffer (i.e., the cache geometry) can affect quantum boundaries

because buffer overflows cause a quantum to end. Thus, RCDC cannot guarantee the same

deterministic execution will arise on two machines with different cache/store buffer

configurations. One can address this potential issue by restricting store buffer usage such that its

effective size is the same across different machines. The number of threads a program uses, and the

parameters used to build quanta (e.g., size) are also implicit inputs that must be replicated to

ensure repeatability.

78

4.5 Evaluation

The goals of our evaluation are to understand the effects of memory ordering relaxation on

deterministic execution and to understand how RCDC’s mechanisms behave dynamically. To these

ends, we evaluate RCDC in two basic ways: (1) a hardware simulator of the DET-HB mechanisms

called RCDC-HB, and (2) a software-only implementation of DET-HB using a compiler and runtime

system called COREDET-HB. To measure the effectiveness of our consistency model optimizations

we also implemented a TSO version of RCDC (termed RCDC-TSO) and used the TSO version of

CoreDet from [34] (termed COREDET-TSO).

We built a hardware simulation infrastructure using the Intel Pin [155] binary instrumentation

tool. The model focuses on the first order effects and includes RCDC’s major components, including

store buffering in private caches, quantum formation, committing, and consistency models for both

DET-TSO and DET-HB. For the memory system, private 8-way 32KB L1 and private 8-way 256KB L2

caches for each core, with a 16-way 8MB shared L3. All caches have 64B lines. Instructions take 1

cycle to execute, and it takes an additional 1, 10, 35 and 120 cycles to access the L1, L2, L3 and main

memory, respectively. We modeled 2, 4, 8 and 16 processor systems. With the exception of Figure

28, all workloads are run with a target quantum size of 50,000 instructions, except for ferret (25k),

fluidanimate (1k) and streamcluster (1k). We determined these parameters by finding the best

performance of our workloads, at 16 processors, for each quantum size in the range shown in

Figure 28. Quantum commit costs 100 cycles. Error bars indicate the 95% confidence interval for

the mean of 10 runs.

Our hardware simulations use version 2.1 of the PARSEC [154] benchmark suite. We used the

simsmall input set for each workload. Due to excessive memory usage, we were not able to run the

freqmine, raytrace and facesim workloads. Due to a lack of support for reader-writer locks and

lock-free synchronization in our runtime system, we were not able to run the bodytrack and

canneal workloads, respectively.

79

Our software-only implementation was built on top of the CoreDet [34] compiler and runtime

system infrastructure. The source code for our simulator, modifications to CoreDet, and

experimental data are available from http://sampa.cs.washington.edu.

4.5.1 Performance and Scalability

We start with a performance comparison of RCDC and the nondeterministic baseline (NONDET), as

measured using our hardware simulator. Figure 25 plots performance of RCDC-HB for 2, 4, 8, and

16 processors normalized to NONDET with the same number of processors. Most applications suffer

little performance degradation, but the overheads are still just over 60% in the worst case with 16

threads. Broadly, the performance costs in RCDC come from imbalance (periodic barriers at the end

of parallel mode), extra stalls due to costly fences in synchronization operations, and the cost of

committing buffered data. We characterize these costs more precisely below. Overall, RCDC

provides fully deterministic execution for a modest runtime cost for many of our workloads.

From Figure 25 we can also see how RCDC’s performance scales with additional cores. In a minority

of cases (e.g., ferret), RCDC does not scale as well as NONDET. Most of the time, however, RCDC scales

just as well as NONDET does, as evidenced by a consistent slowdown despite increasing core counts.

Sometimes (e.g., vips) RCDC even closes the performance gap at higher core counts because the

underlying benchmark does not scale well even with NONDET. Some of RCDC’s overheads, like

reduced cache capacity due to store buffering, can take advantage of additional parallel resources

even when the underlying application cannot.

Figure 25: Performance of RCDC normalized to NONDET for 2, 4, 8 and 16 processors.

w orkload

blackscholes dedup ferret f luidanimate streamcluster sw aptions vips x264

100%

120%

140%

160%

180%

%
ru

n
ti

m
e
 c

o
m

p
a
re

d
 t
o
 n

o
n
d
e
t

2p

4p

8p

16p

http://sampa.cs.washington.edu/

80

We also implemented a version of DET-TSO on top

of RCDC (called RCDC-TSO) to assess the benefit of

the extra memory reordering relaxation offered by

DET-HB. Figure 26 compares the performance of

RCDC-HB and RCDC-TSO, normalized to NONDET

with the same number of processors. We include

only the benchmarks ferret, fluidanimate, and vips;

other benchmarks have less frequent

synchronization, so the performance of RCDC-HB and RCDC-TSO is essentially identical. For these

three benchmarks, RCDC-HB yields markedly better performance compared to RCDC-TSO, which

comes from the fact that RCDC-HB is able to elide many costly fences (i.e., quantum boundaries)

that RCDC-TSO cannot elide.

4.5.2 Characterization

To better understand RCDC’s behavior, Figure 27

breaks down the reasons for quantum boundaries.

The three reasons a quantum can end are:

instruction count, which is simply when a quantum

has reached its maximum size; store buffer

overflows, when the store buffer overflows and the

thread cannot continue until its buffered data is committed; and fences, when a synchronization

operation needs a memory fence to ensure the consistency model is upheld.

Note that RCDC-HB has many fewer commits due to fences (the top segment of each bar) than

RCDC-TSO. This quantifies the effect discussed in Section 4.1.2 (Figure 20), which is the essence of

why RCDC-HB offers significantly better performance than RCDC-TSO.

Store buffer overflows are a frequent source of quantum imbalance for several workloads. While

RCDC-HB is effective at reducing the number of fences, some of the premature quantum ends that

Figure 26: Performance of RCDC-HB and RCDC-TSO
normalized to NONDET for 4, 8 and 16 processors.

Figure 27: Reasons why quanta end for RCDC-HB
and RCDC-TSO, for 16 processors.

81

would have been a fence with RCDC-TSO are then replaced with store buffer overflows, which still

result in quantum imbalance.

4.5.3 Sensitivity to Quantum Size

We end our RCDC evaluation with a

characterization of how maximum quantum size

affects performance. Figure 28 shows performance

of ferret on a 16-processor RCDC system. The

relationship between performance and quantum

size can be highly non-linear: for ferret, larger

quanta help smooth the effects of frequent quantum rounds, but beyond 25k instructions the extra

imbalance of large quanta hurts performance. This effect was noticeable with both RCDC-HB and

RCDC-TSO.

4.5.4 Compiler-Runtime Implementation

In addition to the above hardware simulation, we

implemented DET-HB in the CoreDet deterministic

compiler and runtime system [34]. This

implementation required changes only to CoreDet’s

synchronization library; the compiler and other

parts of the runtime system were unmodified. We

evaluated our CoreDet implementation using the

PARSEC and SPLASH2 benchmark suites, and include a comparison of the performance of COREDET-

HB with the performance of COREDET-TSO. For this evaluation, we enabled all of CoreDet’s compiler

optimizations.

Figure 29 summarizes this evaluation. The performance of COREDET-HB is largely the same as that

of COREDET-TSO, with two exceptions: fluidanimate and fmm. Both these benchmarks have a

relatively high frequency of synchronization. COREDET-HB’s improved handling of synchronization

Figure 28: Performance of ferret with 16 processors
using different quantum sizes.

Figure 29: Performance of COREDET -HB and
COREDET-TSO normalized to NONDET for 2, 4, and 8
threads.

100%

150%

200%

250%

%
ru

n
ti

m
e
 c

o
m

p
a
re

d
 t
o
 n

o
n
d
e
t

Quantum Size (insns)

1k

5k

10k

15k

20k

25k

50k

75k

100k

82

allows it to increase performance by about 20%: from 5x to 4x overhead for fluidanimate and from

4.5x to 3.5x overhead for fmm. This shows that the benefits of relaxed consistency determinism are

not limited to hardware.

4.6 Conclusions

We have presented RCDC, a new deterministic multiprocessing architecture that leverages memory

ordering relaxation to improve performance. We propose a new deterministic execution algorithm

that combines deterministic synchronization with weak memory ordering to improve performance

by reducing unnecessary stalls when enforcing determinism for arbitrary multithreaded programs.

We also propose a hybrid hardware/software design that requires the hardware to provide only

software-controlled store buffering and precise instruction counting, thereby reducing hardware

complexity. Our results show that RCDC is competitive with nondeterministic multiprocessors, in

terms of both absolute performance and scalability, without employing speculation. Moreover, our

HW/SW approach allows precise control of when determinism should be enforced, providing

flexibility to system software.

We believe this work is an important step toward realistic systems for the deterministic execution

of arbitrary programs. Relaxed memory ordering aids performance by avoiding global barriers for

synchronization operations while our HW/SW approach provides simplicity and flexibility.

83

Chapter 5 Merging Execution-level and Language-level Determinism

As discussed in Section 2.5, the proposals for ensuring determinism for parallel programs largely

fall into two camps: execution-level determinism and language-level determinism. Execution-level

techniques [22–24,26,34,145,146,149] enforce a deterministic, but still parallel, interleaving of

memory operations at runtime. This necessitates some runtime overhead in exchange for

determinism – providing determinism for arbitrary, potentially-racy programs can exact up to a

10x slowdown [34]. Language-level techniques [18–20,137] eschew runtime overheads by

adopting a more restrictive programming model, such as pipeline [18] or fork-join [20] parallelism.

For code that fits into such paradigms, determinism can be enforced by construction or via a static

type system, which results in no runtime overhead.

Programmers wishing for the benefits of determinism are thus faced with a difficult trade-off:

accepting the runtime overheads of execution-level determinism or rewriting their programs (if

possible) to fit into a deterministic language’s model. This chapter proposes a system called MELD

that merges execution-level and language-level determinism. MELD employs execution-level

determinism by default – to support arbitrary existing code – with a targeted application of

deterministic language mechanisms to make the performance-critical part of an application fast.

5.1 Pitfalls of Integrating Execution-Level and Language-Level Determinism

MELD ensures the deterministic integration of deterministic languages within an execution-level

determinism system. MELD uses runtime checks and a lightweight data-centric qualifier system for

Java that allows a program’s data to be partitioned at fine-grain between static and dynamic

determinism enforcement schemes. Initially, one might think that to integrate a deterministic

language into an execution-level determinism system it would suffice to call functions whose code

was written in a deterministic language. The code of these functions would be verified by the

deterministic language’s machinery, which would take the place of the runtime instrumentation

84

used by the execution-level system. There are unfortunately several fundamental reasons why this

simple approach would not work:

• It violates the deterministic language’s assumptions: Deterministic languages make assumptions

about aliasing and concurrency that do not hold if threads can make arbitrary simultaneous calls

with arbitrary data into code written in a deterministic language.

• It violates the deterministic execution system’s assumptions: To preserve determinism, returning

from the deterministic-language call must happen at a deterministic point with respect to other

threads. Doing so in a scalable way requires that we still instrument the code executing under

language-level determinism (see Section 5.3.2).

• It does not support real programs: If the deterministic-language code can only access completely

disjoint data from the deterministic execution code, then we cannot support the access patterns of

many real programs. But it is crucial to distinguish data that is only accessed by a deterministic

language as this is the key way that we improve performance.

Identifying and overcoming the problems with this naive approach is the motivation for the

language design we describe. We present the key invariants necessary for using a deterministic

language within a deterministic execution system while preserving determinism and improving

performance. To the best of our knowledge, our work is the first to enable incorporating a

deterministic language within a deterministic execution system.

5.2 Background

To evaluate the MELD system, we are building a prototype compiler that augments programs with a

deterministic execution runtime system, and allows the integration of code written in a

deterministic language. There are many possible choices for these two components, and we believe

our approach generalizes to other combinations of execution-level and language-level determinism

systems. We have based our Java compiler on the CoreDet deterministic compiler for C/C++ ([34]

and Section 4.1.1) because of our familiarity with its code and because it provides execution-level

85

determinism for arbitrary parallel programs. We chose Deterministic Parallel Java [20] as the

deterministic language because it is also open-source and provides statically-enforced determinism

for Java.

MELD’s execution-level determinism system is built on the CoreDet compiler and runtime

system [34]. We described CoreDet more fully in Section 4.1.1 and include a brief recapitulation

here for convenience. We build upon the RCDC version of CoreDet ([26] and Chapter 4) that extends

the original work with additional memory consistency optimizations. CoreDet enforces

determinism by isolating each program thread with its own private copy of memory, effectively

turning a multithreaded program into a series of single-threaded programs (the “parallel mode” of

Figure 19). The chunk of instructions executed by each thread is called a quantum; determinism

follows from having quanta of a deterministic size (typically constant). Building quanta in this way

requires instrumenting a program to count instructions; CoreDet counts instructions in a

deterministic but approximate manner to keep overheads low.

Because threads need to communicate with one another, isolation among threads is broken

periodically when all threads have finished their quanta and the accumulated updates of each

thread are made visible to all other threads during “commit mode.” Values produced by a thread are

visible only to the thread itself until commit mode makes them globally visible. Thread isolation is

implemented with per-thread store buffers: hash tables mapping addresses to fixed-size chunks of

memory. Finally, a quantum round consists of the execution of one quantum by each thread during

parallel mode and the subsequent commit mode. A series of quantum rounds allows an arbitrary

computation to execute deterministically. Synchronization (memory ordering) may force quanta to

end early; for this and other implementation details like thread creation and I/O please refer to

Chapter 4.

MELD’s deterministic language is DPJ, a region-based type and effect system for Java. We use the

version of DPJ described in [20], and do not leverage the nondeterministic extensions described

subsequently [140]. DPJ enforces determinism by allowing a programmer to carve up the heap into

86

named regions. Regions can be very fine-grained, at the level of a single object field or array index.

Regions can also be hierarchical, which allows tree-based data structures and recursive array

decompositions to be soundly expressed. Code that reads or writes regions is summarized in the

type system via read and write effects, respectively, added to method signatures. These effects can

be written by the programmer (though they are statically checked) and in many cases inferred

[141]. Parallelism is supported via parallel for-loops (foreach statements) and parallel statement

execution (cobegin blocks). A compile-time analysis checks the effects of concurrent operations

for non-interference: if there are two concurrent operations on the same region, and at least one is

a write effect, the program will not type check. DPJ programs that do type check are guaranteed to

have the semantics of a deterministic serial execution of the program where parallel for-loops and

coroutines are executed sequentially.

Figure 30 shows a simple DPJ program with two

regions and effects. The variables x and y are

placed in regions RX and RY, respectively. The

method setX writes to variable x, which is in

region RX, and therefore setX has the effect

writes RX. A similar situation arises for getY.

Since regions RX and RY are distinct, DPJ can prove that the statements of do’s cobegin block can

be parallelized safely and retain the semantics of running sequentially. Effects must be specified for

every method that is called, even via other methods, from inside a parallel task, as setX and getY

are. The do method, however, is not called inside a parallel task and thus needs no effect annotation

(see Section 5.4.2). If do were to be called inside a parallel task, it would need the effect writes

RX, reads RY to reflect its own effects (none) as well as the effects of its callees.

CoreDet and DPJ have complementary strengths. CoreDet performs an alias analysis that is able to

remove runtime instrumentation from simple uses of thread-private data, but DPJ’s programmer-

driven effect system is much more powerful. DPJ’s parallelism constructs are limited to fork and

class C {
 region RX, RY;
 int x in RX;
 int y in RY;

 void setX(int i) writes RX { x = i; }
 int getY() reads RY { return y; }

 void do() {
 cobegin { setX(); getY(); }
 }
}

Figure 30: A simple DPJ program with regions and
effects. Underlined code indicates new syntax
added for DPJ.

87

join, while CoreDet supports all pthread synchronization. MELD combines these systems to form a

deterministic system that is both fast and general.

Not all weaknesses can be complemented away, however. To boost program throughput, CoreDet’s

quantum formation (but not store buffering) is enabled for all code, even code written in a

deterministic language. Moreover, due to determinism’s noncomposable nature, data managed by

CoreDet and then passed to a DPJ function cannot recover DPJ’s sequential semantics, though the

data can soundly be computed upon without store buffer instrumentation while preserving

determinism. The practical ramification for MELD is that while the entire program is guaranteed to

be deterministic, it carries the guarantees provided by an execution-level determinism system,

which is weaker than those provided by a language-level approach. A parallel program written

entirely in a deterministic language has sequential semantics, ensuring that differing numbers of

threads at runtime cannot affect the outcome of the program – the parallelism is implicit and

invisible. For execution-level techniques, however, thread count is part of program input that must

be explicitly tested – running a program with a different number of threads may expose new

interleavings and new program behaviors, albeit in a deterministic manner.

5.3 Combining Execution-level and Language-Level Determinism

To integrate execution-level and language-level determinism in a single program without

compromising determinism guarantees, some amount of isolation must be enforced between them.

This section discusses the isolation that code written in deterministic languages implicitly requires

in order to be soundly incorporated into a larger program. Section 5.4 discusses the MELD type

system that statically enforces this isolation.

5.3.1 Starting Simple: Pure Language-Level Determinism

A program written entirely in DPJ is both deterministic and data-race-free [20]. All concurrent

accesses to shared memory (the relative timing of which is a primary cause of nondeterminism) are

proven non-interfering at compile-time. While this approach offers determinism with no runtime

88

overhead, DPJ programs cannot express many useful synchronization idioms and data sharing

patterns.

5.3.2 Supporting Concurrent Conflicting Tasks

A natural generalization from a pure-DPJ approach

is to allow conflicting concurrent tasks, while

maintaining determinism (unlike in [140] which

supports conflicting concurrent tasks at the cost of

nondeterminism). We will use the CoreDet

execution-level determinism system to handle conflicts deterministically. Consider, without loss of

generality, a DPJ program that has a conflict on only one memory location (Figure 31).

To ensure the determinism of this program, we want CoreDet to manage reads and writes to M.

Other locations (e.g., F) are ignored by CoreDet. We partition memory locations into two classes:

those that are possibly subject to concurrent conflicts are labeled exdet, as they are managed by

execution-level determinism, and all other memory locations are labeled as langdet, as they are

managed by language-level determinism. DPJ ignores exdet memory locations for the purposes of

verifying interference-freedom, and CoreDet does not generate code to enforce determinism for

accesses to langdet memory locations. As with regular DPJ, all langdet locations must be placed

in some region and a method M called, directly or indirectly, from a parallel task that touches

langdet data must have effect annotations (see Figure 30 and Section 5.4.2). Methods that touch

only exdet data, however, require no effect annotations.

Removing exdet accesses from DPJ’s analysis is conceptually straightforward. However, CoreDet,

along with all other execution-level determinism systems, requires a notion of deterministic logical

time to coordinate updates to shared memory. CoreDet uses instruction counting for this purpose.

CoreDet’s main source of overhead is its thread-isolation mechanism – a per-thread store buffer

implemented as a hash table – though quantum formation has noticeable overhead as well.

class C {
 region R;
 int M in R = 0;
 float F in R = 0.0;
 main() writes R {
 cobegin { M++; M++ }
 }
}

Figure 31: A simple DPJ program with concurrent
conflicting tasks.

89

With MELD, we must instrument the program so that each thread maintains its dynamic instruction

count and uses that count to form quanta. We must instrument all parts of the program to keep

quanta balanced – as uniformly sized as possible to eliminate excessive waiting at quantum

boundaries. However, we only need CoreDet’s heavyweight store buffers for accesses to exdet

memory locations. langdet locations can safely skip the store buffer and directly access global

memory, reducing runtime overhead compared to CoreDet’s pure-exdet solution.

5.3.3 Supporting Arbitrary Parallelism Constructs

We can incorporate the use of arbitrary parallelism constructs, like locks and atomic operations,8

using the same mechanism we used to handle concurrent conflicting tasks. Each DPJ task can

synchronize in complicated ways with other tasks, though DPJ cannot statically reason about this

synchronization and so will find a large number of concurrent, conflicting accesses. In general, DPJ

may deem every memory location to be subject to conflicting accesses. If we label all memory

locations as exdet, then DPJ will ignore these conflicts and no parallel program will fail its type

checking. This is precisely the CoreDet approach, providing generality at a significant runtime cost.

By allowing programs to contain a mix of

langdet and exdet data, MELD is a

generalization of the pure-DPJ and pure-CoreDet

approaches. Allowing such flexibility is not

without its costs; as we saw earlier we instrument

the entire program for quantum formation, even if

exdet accesses are rare. To ensure that we compile accesses to a memory location M correctly we

must assign a consistent label for M. Failing to do so would allow two threads to see M as both

exdet and langdet, respectively (Figure 32). If ld and ed run concurrently, ld’s update to M

will skip the store buffer and directly update memory. This update races with ed’s read of M,

causing the print statement to generate nondeterministic output. Thus, we must ensure that M is

either always treated as langdet, where DPJ will statically catch the data race, or exdet, where

8 Mapping thread fork/join is slightly more involved, and we defer the discussion to Section 5.5.4.

int M = 0;

void ed() { // sees M as exdet
 print M;
}

void ld() { // sees M as langdet
 M = 2;
}

// nondeterministic
cobegin { ed(); ld(); }

Figure 32: Aliasing between exdet and langdet
locations results in nondeterminism.

90

both accesses will use the store buffer and ed’s read will be safely isolated. Section 5.4 discusses

implementing this simple labeling of memory locations to work with the Java language.

5.3.4 Supporting Casts and Modularity

While a fixed partition of memory locations into langdet and exdet is sound, it is inflexible.

Moving data from one partition to the other entails copying each memory location involved,

inducing extra programmer burden and runtime cost. We would like the ability to soundly cast

memory locations between labels. We

would also like the flexibility of using DPJ on

small components within a larger program,

e.g., a pure function that sorts an array in parallel (Figure 33). Our current approach requires the

array A to be labeled langdet and that DPJ be able to prove non-interference for all accesses to A

throughout the entire program.

These two goals of supporting casts and modular use of a deterministic language are highly related.

We call each modular use of DPJ, e.g., to write psort in DPJ without taking the rest of the program

into consideration, a deterministic language component or DLC. In our implementation a DLC is a

function F and the transitive closure of functions F calls, but a DLC can be generalized to any

lexically-scoped region of code and the code reachable from it. Previously we’ve implicitly treated

the entire program as one DLC (with potentially many exdet locations). However, a program can

consist of multiple DLCs as long as each satisfies DPJ’s preconditions: that DPJ has full visibility into

the threading and aliasing of the data it operates upon. These conditions are naturally fulfilled

when an entire program is written in DPJ, but in our modular use we violate this “closed world”

assumption. While DPJ statically guarantees non-interference among the threads it creates and

memory it allocates, it cannot, of course, provide guarantees about other threads or memory that it

is unaware of. To implement psort correctly as a DLC, we must ensure no other code operates on

psort’s array concurrently. Two concurrent calls operating on the same array may interfere with

one another, violating determinism and other correctness properties. To maintain determinism, we

need to ensure non-interference between:

<region R> void psort(int[]<R> A) writes R {
 // sort A in parallel, in-place
}

Figure 33: An internally-parallel, in-place sort function that
we can easily write in DPJ.

91

1. the threads internal to the DLC
2. different threads running outside the DLC
3. concurrent calls to a given DLC by different threads
4. different DLCs running in different threads
5. a DLC and a thread running outside the DLC

Condition 1 is handled by DPJ and condition 2 by CoreDet. Conditions 3-5 are handled by a sound

cast mechanism that allows transferring locations from exdet to langdet. The cast mechanism

dynamically checks that, if we cast a memory location M from exdet to langdet, M is not

accessed by anyone other than the casting thread – the cast effectively checks for correct

privatization. Failures to privatize correctly are, thanks to determinism, repeatable across

executions. Once M is correctly privatized, M satisfies DPJ’s preconditions and can be safely passed

to a DLC. As a performance optimization, we introduce a new label xldet to track memory

locations subject to these casts to reduce the runtime overhead of the cast mechanism.

5.3.4.1 Casting from exdet to langdet

MELD’s cast mechanism relies on dynamic checks. Casting a location M from exdet to langdet

adds M to a “poison set.” Once M is in the poison set, concurrent exdet accesses to M trigger a

runtime error (Condition 5). Casts also trigger runtime errors for a concurrent cast of the same

memory location, which allows us to support multiple DLCs executing simultaneously (Conditions 3

and 4). To detect concurrent writes, in commit mode threads check if they are updating a poisoned

location. To detect concurrent reads, all reads of exdet locations also check if they access a

poisoned location. These dynamic checks are not necessary in the baseline CoreDet scheme, but in

the common case – an empty poison set – they add little overhead. Casts must execute at quantum

boundaries for two reasons. First, casting at quantum boundaries ensures casts occur at a

deterministic time, avoiding races with exdet accesses to the about-to-be-cast location that can

result in nondeterministic runtime errors. Second, the quantum boundary also acts as a memory

fence, ensuring that buffered exdet writes from the current thread are made visible to subsequent

langdet reads by the same thread, as the langdet reads will skip the store buffer.

92

5.3.4.2 Casting back to exdet

Supporting only casts from exdet to langdet makes subsequent computation via an exdet alias

impossible. Casting from langdet to exdet must be done carefully, however. Supporting

arbitrary casting from langdet to exdet would require instrumenting all langdet accesses, to

ensure that, after the cast, all accesses occurred with exdet instrumentation. If langdet aliases to

E persist, nondeterminism can result because, as Figure 34 shows, writes through a langdet

reference can race with writes performed

through an exdet reference. Keeping

langdet accesses streamlined is also

crucial for performance, so MELD disallows

general langdet-to-exdet casts.

However, to be able to prune the poison set

we would like to support langdet-to-

exdet casts for a memory location E that was exdet to begin with.

As a simple approach to control the aliasing of locations cast from exdet to langdet, we

introduce a new xldet label and impose scope restrictions on its use. Instead of allowing casts

from exdet to langdet, we only allow casts between exdet and xldet. langdet memory

locations have no scope restrictions – they can be globally-visible static fields live for the entire

execution of the program. xldet locations must be locally-scoped so that they do not outlive the

DLC which computes on them. Assignment restrictions (Section 5.4.3) prevent xldet memory

locations from escaping to the larger scope of langdet locations. Viewing the entire program as

one large DLC reveals that langdet locations are in fact subject to the same scoping restrictions as

xldet, but the scope is the life of the program. Note also that casts from xldet to exdet require

no special consideration and are compiled as NOPs. During the scope of an xldet alias, dynamic

checks prevent conflicting accesses via exdet aliases. After the xldet alias has gone out of scope,

it is removed from the poison set and exdet aliases can be used again.

region R;
exdet int[] E = new int[4];

// cast to langdet
langdet int[] L in R = (langdet int[]) E;

psort(L); // call DLC

// cast to exdet, langdet alias remains
E = (exdet int[]) L;

// nondeterministic result
cobegin { L[0] = 1; E[0] = 2; }

Figure 34: After casting a location from langdet to
exdet, existing langdet aliases must not be used.

93

The local scope of xldet locations allows our compiler to automatically handle removing xldet

locations from the poison set. These removals must occur at quantum boundaries to avoid

nondeterministic runtime errors from conflicting exdet accesses, just as with exdet-to-xldet

casting (Section 5.3.4.1).

5.3.4.3 Nested xldet locations

Supporting the nesting of xldet references

requires one final refinement to our type system:

uniquely identifying each xldet scope. Figure 35

shows how nondeterminism can result if xldet

scopes are not uniquely identified. We begin with

inner’s cast on line 5: this adds ef to the poison

set, and since all xldet scopes are treated alike

the assignment on line 6 type checks even though

arr has outer’s larger scope and ef has

inner’s smaller scope. At the end of inner, ef

is removed from the poison set. However,

because the ef reference has escaped inner’s

scope, outer is able to write to one of ef’s fields

via the array arr on line 12. As outer’s write is

via an xldet reference, no store buffer instrumentation is performed. Concurrently, bad accesses

ef via an exdet reference on line 17, and since ef is no longer in the poison set, this access

succeeds and may nondeterministically see or fail to see outer’s write. The fact that ef’s removal

from the poison set must occur at a quantum boundary does not solve this issue. Nothing prevents

bad from performing enough computation to cause its conflicting access (line 17) to be in the same

quantum round as outer’s access (line 12).

1 exdet Foo ef;
2 region R;
3
4 void inner(xldet Foo[] arr) {
5 xldet Foo xf in R = (xldet) ef;
6 arr[0] = xf; // assignment ok
7 }
8
9 void outer() {
10 xldet Foo[] arr in R = new Foo[1];
11 inner(arr);
12 arr[0].field = 1;
13 }
14
15 void bad() {
16 // ...
17 ef.field++;
18 }
19
20 void main() {
21 // nondeterministic!
22 cobegin {
23 outer();
24 bad();
25 }
26 }

Figure 35: If all xldet scopes are treated alike,
assignment between different scopes can introduce
nondeterminism.

94

Our solution to this problem in MELD is to ensure that xldet qualifiers are annotated with the

scope in which they appear. Our solution is modeled on the region annotations used in the Cyclone

language [162], but is simplified because 1) all xldet qualifiers are in local scope (Section 5.3.4.2)

and 2) MELD does not support existential types.

For simplicity, programmers must

explicitly write scope annotations

on all xldet variables, though

[162] has shown how scope

annotations can often be inferred to

reduce programmer burden. Class

definitions can be parameterized by

different scope variables, to allow

each field of an instance to belong to

a different scope. Similarly,

methods are scope-polymorphic to

allow them to take arguments of

different scopes and to support

recursion. Scopes are checked for

equality based on their names, and only assignments between variables of equal scope are allowed.

The scope annotations can be checked with an intraprocedural analysis that statically guarantees

the absence of any assignment of a variable into a location of greater scope.

Returning to our code example, Figure 36 shows an updated version of the program from Figure 35

with each xldet qualifier annotated with its scope (in parentheses), and methods annotated with

polymorphic scope variables (in brackets). These scope annotations allow our type checker to

notice the mismatched scope assignment at line 6, as the two scopes have different names, and

trigger a compile-time error.

1 exdet Foo ef;
2 region R;
3
4 void inner<s>(xldet(s) Foo[] arr) {
5 xldet(inner) Foo xf in R = (xldet(inner)) ef;
6 arr[0] = xf; // assignment fails
7 }
8
9 void outer() {
10 xldet(outer) Foo[] arr in R = new Foo[1];
11 inner<outer>(arr);
12 arr[0].field = 1;
13 }
14
15 void bad() {
16 // ...
17 ef.field++;
18 }
19
20 void main() {
21 cobegin {
22 outer();
23 bad();
24 }
25 }

Figure 36: An updated version of the program from Figure 35, with
each xldet location annotated with its scope. New code is
underlined, with locals’ scope annotations in parentheses and
methods’ polymorphic scope variables in brackets.

95

Even though our scope annotation rule for checking assignments disallows them, assignments from

locations of outer scope to locations of inner scope are sound. Because scopes are properly nested,

identifying an outer scope is straightforward – when a new scope N is created, any scope S that

already exists must be larger, and thus assignments from S to N are sound. Prior work has

supported such assignments through a subtyping mechanism [162]. For simplicity, MELD

conservatively disallows all inter-scope assignments.

5.4 The MELD Type System

The MELD type system uses type qualifiers to enforce a partition of a program’s memory locations

among the labels exdet, xldet, and langdet. MELD’s qualifier system has been implemented for

Java, but a previous prototype was implemented for C [27] and these ideas translate naturally into

other languages as well. This section describes the semantics of our type qualifiers and the typing

rules that enforce isolation at compile-time.

5.4.1 Type Qualifiers

In MELD, type qualifiers can be attached to any reference type appearing in a field definition, local

variable, function parameter or generic type instantiations. Qualifiers are also permitted on static

fields of primitive type (see below). A qualifier identifies the label for the storage of the object the

reference points to. So langdet Foo f describes a reference f to an instance of type Foo where

the memory locations comprising the instance’s fields are all labeled with langdet. The instance

may contain fields that are themselves references; the labels on these fields similarly apply to the

storage for the objects they point to. The label for the reference f itself is specified by the object

containing f, unless f is a local variable or static field (see below). To reduce the annotation burden

on the programmer, exdet is the default qualifier and needn’t be written explicitly.

The memory location holding a local variable doesn’t need a label, because this location is always

thread-private in Java. Both DPJ and CoreDet can safely ignore the memory locations used to hold

local variables. Of course, local variables can still have qualifiers, labeling the memory locations

pointed to by locals of reference type.

96

A static field s has no enclosing instance, references to which would label the memory location

holding s. We handle static fields like s specially by allowing s to have two qualifiers – the first

labeling the memory location of s itself, and the second labeling the memory locations of the

instance s points to if s is of reference type.

References to the current object (this) are also handled specially. The qualifier on this

identifies the label for the memory locations of the fields the this reference points to. As there is

no natural way to add a qualifier to this we require a qualifier on methods stating which label for

this they accept. To call the same method on both, say, langdet and exdet instances requires

duplicating the method with a different name. Our approach avoids adding more complexity to

Java’s overloading rules.

A qualifier on a single-dimensional array, e.g., langdet int[] L, identifies the label for the

memory locations storing the array elements. For multidimensional arrays a single qualifier

identifies the label for the memory locations of all the array elements and sub-elements. E.g.,

langdet int[][] L means that L[0] points to an array of type langdet int[], which in

turn points to a langdet memory location holding an int.

5.4.2 Defaults

In MELD the default qualifier is exdet. This choice ensures that legacy programs will run

deterministically without programmer intervention. The DPJ system that MELD builds on has its

own set of defaults, however, that must be modified for compatibility with MELD. In DPJ, methods

have a default effect annotation of “reads and writes the entire heap” – a safe approximation of

what a programmer might write. DPJ’s default makes all single-threaded code valid DPJ code:

effects are only required for methods that can be called (directly or indirectly) from a concurrent

context like cobegin or foreach.

In the context of MELD, DPJ’s default effect is problematic, however. When we consider a call to a

method M in a concurrent context, and if M’s signature has no effects, we cannot distinguish

whether 1) M is a method that touches only exdet data and thus needs no effects or 2) M touches

97

langdet data but the programmer has neglected to specify effects for M. In case 1), concurrent

calls to M are deterministic because the execution-level deterministic runtime system ensures

determinism even if M contains data races. In case 2), concurrent calls to M are not necessarily

deterministic and DPJ should trigger a compile-time error, prompting the programmer to specify

more precise effects for M. However, we cannot distinguish these cases without examining the code

of M. Thus, in MELD we eliminate DPJ’s default effect and instead require all methods that access

langdet data to have an effect annotation, even if those methods are never called in a concurrent

context. This requirement is easily enforced as part of MELD’s type checking.

5.4.3 Type Rules

Assignments between memory locations of different labels are not allowed in MELD, except for

explicit casts between exdet and xldet. All xldet qualifiers carry a scope annotation (see

Section 5.3.4.3) and assignments between xldet qualifiers of different scopes are not allowed.

Assignments from newly-allocated objects (the result of the new operator) are implicitly cast to the

label of the receiving location. Implicit assignments, such as passing parameters in function calls

and return values, are also subject to these restrictions. These assignment restrictions are

straightforward to enforce using intra-procedural analysis.

To handle Java’s generics, MELD permits qualifiers to be attached to type parameters. Type

parameters with different MELD qualifiers are incompatible: e.g., a langdet Foo cannot be added

to a List<exdet Foo>.

5.5 Implementation

The MELD compiler consists of three main components: 1) a type qualifier system, 2) the DPJ

compiler, and 3) a Java-based compiler and runtime system based on CoreDet. While work has

begun on these components, the MELD type qualifier system and modifications to the DPJ compiler

are not yet complete.

98

5.5.1 Type Qualifier System

MELD’s type qualifier system will be implemented in the Checker Framework [163], a framework

for pluggable type checking in Java. MELD’s qualifiers are naturally expressed as Java annotations

(e.g., @Langdet) which allows them to be visible to many other Java-based tools. MELD’s typing

rules will be implemented as a checker for the Checker Framework. We will also use Java

annotations to identify functions that are DLC entry points.

5.5.2 DPJ Compiler

To ensure that our langdet and xldet qualifiers are sound we must ensure that every

langdet/xldet location is in fact statically checked by the DPJ compiler, and that all exdet

locations are ignored. We will extend the DPJ compiler to take MELD qualifiers into account while

performing its analysis. To support multiple DLCs, we will run the DPJ compiler iteratively over

“slices” of the program. The first iteration will check langdet qualifiers, taking the whole program

into account. Then, each DLC will be considered separately, checking the xldet locations within

that DLC for non-interference. To simplify the DLC analysis, we parameterize the xldet qualifier

with an argument identifying which DLC it belongs to.

Because DPJ extends the Java language with new syntax for type and effect annotations, standard

Java tools will not work on DPJ code. Thus, our compiler flow will run the DPJ analysis first. The

output of the DPJ compiler is standard Java source code; crucially, Java annotations are preserved

through the DPJ compiler so that MELD type checking can follow.

5.5.3 MELD Compiler and Runtime System

While the CoreDet compiler and runtime system [34] worked for C/C++ programs, we have

implemented a similar infrastructure in Java-based technologies to allow MELD to take advantage

of the DPJ language. Our compiler is built on the Soot Java optimization framework [164]. The

MELD compiler instruments a program with callbacks to the MELD runtime system. Memory

accesses are instrumented for store buffering, and control-flow edges to perform instruction

counting and quantum formation. The MELD runtime system itself is implemented as a Java library.

99

Store buffers are implemented as thread-private hash tables. To avoid unnecessary boxing each

thread has a collection of hash tables: one for each Java primitive type and one for reference types.

Instruction counting is performed by a callback on every basic block that counts the number of

bytecodes executed.

Once the MELD type qualifier system is in place, the MELD compiler will use Java annotations on

each memory location to elide store buffer instrumentation for langdet and xldet locations.

exdet-to-xldet casts will also be implemented by the compiler, along with the automatic cleanup

of xldet locations once their DLC is finished. This automatic cleanup mechanism requires a stack

(LIFO) for each DLC. New xldet scope entries are pushed and popped whenever an xldet scope

is entered and exited, respectively. On an exdet-to-xldet cast, a new element is added to the

xldet scope entry at the top of the stack and the exdet location is added to the poison set. When

exiting an xldet scope, all elements in the xldet scope entry at the top of the stack are removed

from the poison set.

5.5.4 Handling thread fork/join

To allow the DPJ compiler to understand the parallel structure of a program, our prototype requires

that a MELD program’s parallelism be expressed in terms of DPJ’s parallelism constructs: cobegin

and foreach. Many multithreaded applications use threads in a straightforward way – creating a

number at program launch, computing with them, and then joining with them before exiting. Such

nested use of threads maps well to DPJ’s nested parallelism constructs, e.g., each “thread” can be

created via a function call in an iteration of a foreach loop. To support the full expressivity of

threads, which can be forked and joined in a non-nested fashion, we propose the use of a static

analysis, such as the Soot framework’s [164] May-Happen-in-Parallel analysis, to conservatively

identify what code may run in parallel with other code, and to feed this information to the DPJ

compiler to ensure that methods that concurrently access langdet data are conflict-free.

Recently-proposed extensions to DPJ incorporate support for non-nested parallelism [143],

allowing all thread fork/join operations to be handled directly with DPJ primitives.

100

5.6 Extensions

This section describes some extensions to MELD that we view as promising future work: soundly

handling nondeterminism and supporting qualifier polymorphism.

5.6.1 Incorporating Nondeterminism

We may wish to allow a certain amount of nondeterminism within our program, e.g., logging,

network output or profiling code, for two reasons: 1) its nondeterminism will not have a large

bearing on the determinism of the rest of the program and 2) such nondeterministic code can run

without the overheads of the execution-level determinism system. To employ nondeterminism in a

sound way, we need to formally guarantee that its effects are not allowed to “contaminate” the

determinism of the rest of our program.

To soundly incorporate determinism and nondeterminism within a single program, we modify the

type system described in Section 5.4 to become more like a standard static information-flow

tracking type system [165]. The main extensions are 1) additional restrictions placed on scalar

assignments, and 2) protection against implicit flows via control flow. These additions, combined

with MELD’s existing restrictions on assignments for reference types, suffice to prevent the

nondeterministic part of the program from affecting the deterministic parts.

The nondeterministic part of the program (unlike integrating with deterministic languages) has no

special requirements. To return to our list of correctness conditions from Section 5.3.4, we must

additionally ensure non-interference between:

6. nondeterministic code and threads running inside a DLC
7. nondeterministic code and threads running outside a DLC

There is, of course, no requirement to isolate nondeterministic code from itself. For the purposes of

integrating nondeterminism, it is sufficient to consider exdet, xldet and langdet as being

equivalent: they all guarantee that a memory location is deterministic. If we consider these as a

single “det” label, then we can use the type lattice det ⊑ nondet and run standard information-flow

typing rules to support nondeterministic memory locations.

101

Casts that modify the qualifiers of nondet data (endorsements in the information-flow tracking

literature) have a special semantic meaning: they represent a kind of “internal input” to the

deterministic part of a program, analogous to external input read from, e.g., files or sockets. A

record-and-replay system building upon MELD would perform logging at nondet endorsements to

precisely capture this internal input and allow for repeatability of the deterministic portion of the

program.

MELD’s data-centric annotation approach is especially significant when nondeterminism is allowed

into a program, because determinism guarantees are meaningful only when referring to data. A

memory location M will have deterministic contents at the end of a program if and only if M is only

ever updated with deterministic values.9 A code-centric approach to determinism like [140] allows

deterministic and nondeterministic values to be assigned to M, albeit in a data-race-free manner.

Such an approach cannot, however, make any guarantees about M’s value being deterministic. More

simply, as we observed earlier (Section 5.2), levels of determinism are not composable: passing a

variable with a nondeterministic value to a function written in a deterministic language will not

“recover” determinism for that variable.

5.6.2 Qualifier Polymorphism

Others have shown how to extend a type qualifier system like MELD’s to account for qualifier

polymorphism [165,167]. Polymorphic qualifiers would admit extra flexibility for, e.g., the this

reference or function parameters, avoiding the need to clone methods to perform the same

computation on different labels.

5.7 Limit Study

To evaluate MELD within the limits of our current infrastructure (Section 5.5) we have undertaken

a limit study of MELD’s potential.

9 Modulo the special case of resetting the variable to a known deterministic value. This is useful in a security
context for regaining trust from untrusted values [166] but is not useful in our context since the
nondeterministic value cannot be read.

102

5.7.1 Experimental Setup

We ran our experiments on an 8-core 2.4GHz Intel Xeon E5462 (“Nehalem”) with 10GB of RAM,

using 64-bit Ubuntu Linux 8.10. Our experiments run with 8 program threads on the Sun Java

HotSpot VM 1.7.0_05, running in 64-bit server mode. We use the kernel benchmarks from the Java

Grande Forum [168]. We have scaled the input sizes of the kernels to have meaningful runtimes,

except for the Series kernel which already runs for several minutes on our machine. For Crypt, we

increased the input array size by a factor of 20 and perform the main encrypt-decrypt operation 30

times in a loop. For LUFact, we increased the input size by a factor of 5; for SOR by a factor of 10;

and for SparseMatmult by a factor of 20.

5.7.2 Results

We have evaluated the performance of MELDed programs with various portions of MELD’s runtime

instrumentation disabled. These experiments show where the performance bottlenecks are in the

current system, and give an upper bound on the speedup possible through the use of langdet and

xldet qualifiers.

The bars in Figure 37 are normalized to the

blue bars – runtime of execution under full

execution-level determinism, i.e., with all

memory locations labeled as exdet. The blue

bars are the slowest configuration, and lower

bars are better. The purple bars show the

performance when store buffering is

completely disabled, modeling the case when

all memory locations are labeled as xldet or

langdet. The green bars show the

performance when executing in Kendo [23]

mode – dynamic instruction count is used to force synchronization operations into a deterministic

order, but no quantum formation or store buffering takes place. The orange bars show the

Figure 37: Runtime of Java Grande kernels with various
components of MELD’s runtime instrumentation disabled.

Crypt LUFact Series SOR SparseMatmult

N
o
n
d
e
t

In
s
n
C

o
u
n
t

K
e
n
d
o

N
o
S

B

F
u
ll
 E

L
D

N
o
n
d
e
t

In
s
n
C

o
u
n
t

K
e
n
d
o

N
o
S

B

F
u
ll
 E

L
D

N
o
n
d
e
t

In
s
n
C

o
u
n
t

K
e
n
d
o

N
o
S

B

F
u
ll
 E

L
D

N
o
n
d
e
t

In
s
n
C

o
u
n
t

K
e
n
d
o

N
o
S

B

F
u
ll
 E

L
D

N
o
n
d
e
t

In
s
n
C

o
u
n
t

K
e
n
d
o

N
o
S

B

F
u
ll
 E

L
D

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ru
n
tim

e
 n

o
rm

a
liz

e
d
 t
o
 M

E
L
D

scheme

Nondet

InsnCount

Kendo

NoSB

Full ELD

103

performance when only dynamic instruction counting is performed. Finally, the red bars show the

performance of nondeterministic execution.

The differences between different bars in Figure 37 reveal where the time goes in the MELD

runtime system. First, the sizeable gap between red and blue, for all benchmarks except Series,

indicates that full execution-level determinism imposes a substantial slowdown over

nondeterministic execution: up to 58x for LUFact. The gap between purple and blue shows that the

extensive use of xldet/langdet accesses has the potential to dramatically reduce runtime

overheads for SOR and SparseMatmult. Crypt and LUFact gain more from eliminating quantum

formation (green bars) and deterministic synchronization (yellow bars) than from eliminating the

store buffer. Smarter quantum formation strategies, such as adjusting quantum size dynamically

[144,145], will likely reduce quantum formation overhead. The gap between the red and orange

bars shows that our current implementation of instruction counting imposes high overheads in

some cases (10x for LUFact). The MELD compiler currently naïvely instrument all control-flow back

edges, which is far from optimal for tight loops and short branches. A smarter policy (e.g., from

[34]) would reduce overheads noticeably.

Overall, these experiments show that MELD’s primary optimization, using a deterministic language

to remove store buffer instrumentation, is a promising approach. They also point to areas in the

MELD runtime system that need improvement.

5.8 Conclusions

We have presented MELD, a new system for integrating deterministic languages within a

deterministic execution system. We leverage deterministic execution’s support for arbitrary

parallel programs, and deterministic languages’ support for fast, statically-checked determinism to

accelerate the performance of deterministic execution on programs that cannot be readily

expressed in a deterministic language. We show that naïvely integrating a deterministic language

into a deterministic execution system does not preserve determinism, and we describe the

requirements for soundly doing so. We use a simple qualifier-based type system to enforce isolation

104

between the execution-level and language-level determinism parts of a program. Our results

suggest that integrating Deterministic Parallel Java into a Java port of the CoreDet deterministic

execution system can improve determinism’s performance substantially.

We believe that the static and dynamic approaches to determinism, heretofore separate, are much

better together. An integrated approach is an important step towards making deterministic systems

fast enough and general enough for widespread use.

105

Chapter 6 Conclusions

This dissertation has demonstrated and evaluated a series of hardware and software techniques for

providing execution-level determinism in an efficient manner. We established that deterministic

execution of arbitrary parallel programs is possible (Chapter 3), evaluated the trade-offs among

pure-hardware (Chapter 3), hybrid hardware-software (Chapter 4), and pure-software (Chapters 4,

5) deterministic platforms, and showed that relaxing memory consistency (Chapter 4) and

incorporating deterministic languages (Chapter 5) are two important optimizations for increasing

the performance of execution-level determinism. We have also placed these techniques in the

context of parallel programmability research (Chapter 2), showing how our work on determinism

has been inspired by previous research and has inspired others.

6.1 Summary of Techniques

This dissertation describes several techniques that allow arbitrary parallel programs to execute

deterministically and investigates the trade-offs among these techniques. The basic pattern that all

of these techniques follow is to divide a program’s execution into deterministically-sized chunks of

instructions called quanta. During each quantum, threads initially execute in isolation and

subsequently are allowed to communicate in a precisely controlled way.

Chapter 3 describes the use of a sharing table that tracks memory ownership (Section 3.1.3.1) and

hardware transactional memory (Section 3.1.3.2) to enforce isolation among threads. For the

sharing table approach, an initially-immutable sharing table prevents threads from communicating

with one another. Subsequently, threads that need to modify the sharing table to make progress are

executed in a deterministic serial order. The TM approach uses hardware transactions [30] to keep

threads isolated and a deterministic transaction commit order to ensure that communication

occurs in a precise order.

Chapter 4 describes the use of store buffers to isolate threads without the need for conflict

detection. Store buffers offer a simple, speculation-free isolation mechanism without the overhead

106

of tracking and updating memory ownership information. The price is a more complicated memory

consistency model – the sharing table and TM-based determinism systems both provide sequential

consistency [65] while the store buffer approach provides weaker ordering guarantees.

Finally, Chapter 5 discusses how to integrate deterministic languages with our previously

developed techniques. Using the type-and-effect system of Deterministic Parallel Java [20] to

statically prove the isolation of concurrent operations, we can eliminate some of the overhead of

enforcing determinism at runtime. As with providing other program properties like memory safety

and type safety, a combination of static and dynamic approaches suits determinism well.

6.2 Limitations

While we have detailed how to provide determinism for arbitrary programs, there are nevertheless

several limitations to our approaches. We discuss elsewhere the performance implications of our

techniques which are certainly an important factor limiting wider adoption. In this section we

describe other factors that inhibit real-world usage of determinism.

The first is that our deterministic mechanisms are built on a notion of deterministic logical time

that is quite brittle: dynamic instruction count. Virtually any code change will alter a program’s

dynamic instruction count, even for an identical input, and this change can occur in opaque ways

due to sophisticated compiler optimizations. A change in dynamic instruction count can alter

quantum boundaries, affecting in turn a program’s communication patterns and therefore its

execution. In principle, a code change results in an entirely new program for which testing and

validation must begin from scratch. Limited forms of robustness to such code changes are possible,

e.g., ignoring extra instructions inserted for debugging. However, a more principled way of handling

code changes would dramatically simplify the testing of deterministic programs.

Another limitation of our approaches is that a deterministic execution is a function of both program

input and a small set of explicit configuration parameters. Quantum size, for example, has a large

impact on performance and must be set explicitly, though others have proposed [144,145]

deterministically adjusting quantum size at runtime. For our hardware-based techniques, the

107

geometry of private caches affects execution by altering quantum boundaries, though Calvin [144]

shows how to virtualize these hardware resources at some performance cost. The deterministic

ordering imposed on threads, needed to resolve memory update conflicts and coordinate

synchronization operations, can also impose slowdown, though it too can perhaps be modified

online in a deterministic way to improve performance. Allowing these configuration parameters to

be derived automatically from program input will improve determinism’s performance portability

and eliminate the need to test different configurations for each input.

Finally, we believe that determinism is an enabler of program correctness, though it does not

directly provide it. A program run on one of our deterministic systems may well crash more

frequently than when run on a nondeterministic platform. Over time, determinism’s debugging

benefits should result in more correct programs even though end users may prefer not to wait.

Nondeterminism also provides a weak kind of fault-tolerance, in that there is a chance that a

particular crash may vanish simply on re-running the program. Our determinism techniques can

perhaps be extended to allow a more principled notion of execution diversity where execution is a

function of program input as well as, e.g., a random seed. Research in exposing [56] and masking

[54] software bugs is also likely to prove deeply synergistic with deterministic execution.

6.3 Looking Forward

It would be fitting if future work on deterministic execution were entirely a function of previous

work. This is unlikely to be the case, however, as researchers continue to improve determinism’s

performance, overcome its limitations, uncover new uses for it, and incorporate it with other

established mechanisms for improving parallel programmability. It is our particular hope that

determinism’s debugging and testing benefits can be more rigorously established going forwards.

This can come through better deterministic systems that explicitly target these use-cases instead of

focusing on improving performance. User studies and the study of real-world deployments of

determinism will also be invaluable for measuring determinism’s benefits and informing the design

of next-generation deterministic systems that are even more helpful. Ultimately, these efforts will

108

broaden determinism’s impact and help make parallelism, with its attendant performance and

energy benefits, more accessible to a wide audience.

109

REFERENCES

1. Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson, and Mark Horowitz. CPU DB:
Recording Microprocessor History. Queue, 10:4 April 2012, 10–27.

2. Heidi Pan, Benjamin Hindman, and Krste Asanović. Composing Parallel Software Efficiently
with Lithe. In PLDI, 2010.

3. Archana Ganapathi, Kaushik Datta, Armando Fox, and David Patterson. A case for machine
learning to optimize multicore performance. In HotPar, 2009.

4. Aleksey Pesterev, Nickolai Zeldovich, and Robert T. Morris. Locating cache performance
bottlenecks using data profiling. In EuroSys, 2010.

5. Colin Fidge. Logical time in distributed computing systems. IEEE Computer, 24:8 August 1991,
28–33.

6. Friedemann Mattern. Virtual Time and Global States of Distributed Systems. In Parallel and
Distributed Algorithms, 1989.

7. Cyrille Artho, Klaus Havelund, and Armin Biere. High-Level Data Races. Journal on Software
Testing, Verification & Reliability, 13:4 2003, 220–227.

8. Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics. In ASPLOS, 2008.

9. Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory model. In POPL, 2005.
10. Hans-J. Boehm and Sarita V. Adve. Foundations of the C++ concurrency memory model. In PLDI,

2008.
11. Marvin Zelkowitz. Reversible execution as a diagnostic tool. PhD Dissertation, Cornell

University, 1971.
12. Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley

Professional, 2003.
13. Cormac Flanagan and Stephen N. Freund. FastTrack: Efficient and Precise Dynamic Race

Detection. In PLDI, 2009.
14. Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: a race and transaction-aware java

runtime. In PLDI, 2007.
15. VMware: VMware Workstation Zealot: Enhanced Execution Record / Replay in Workstation

6.5. 2008. http://blogs.vmware.com/workstation/2008/04/enhanced-execut.html.
16. GDB and Reverse Debugging. http://www.gnu.org/software/gdb/news/reversible.html.
17. Corensic Concurrency Debugger and Thread Debugger for Parallel Applications and Multi-Core

Software. http://www.corensic.com/.
18. William Thies, Michal Karczmarek, and Saman P. Amarasinghe. StreamIt: A Language for

Streaming Applications. In CC, 2002.
19. Guy Blelloch. NESL: A Nested Data-Parallel Language. 1992.
20. Robert Bocchino, Mohsen Vakilian, Vikram Adve, Danny Dig, Sarita Adve, Stephen Heumann,

Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, and Hyojin Sung. A Type and Effect
System for Deterministic Parallel Java. In OOPSLA, 2009.

21. Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the Cilk-5
multithreaded language. In PLDI, 1998.

22. Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. Grace: safe multithreaded
programming for C/C++. In OOPSLA, 2009.

23. Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo: Efficient Deterministic
Multithreading in Software. In ASPLOS, 2009.

24. Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. DMP: Deterministic Shared Memory
Multiprocessing. In ASPLOS, 2009.

110

25. Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. DMP: Deterministic Shared Memory
Multiprocessing. IEEE Micro, 30:1 January 2010, 40–49.

26. Joseph Devietti, Jacob Nelson, Tom Bergan, Luis Ceze, and Dan Grossman. RCDC: A Relaxed
Consistency Deterministic Computer. In ASPLOS, 2011.

27. Joseph Devietti, Dan Grossman, and Luis Ceze. The Case For Merging Execution- and Language-
Level Determinism with MELD. In Workshop on Determinism and Correctness in Parallel
Programming (WoDet), 2012.

28. Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar processors. In ISCA, 1995.
29. Wolfgang Straßer. Schnelle Kurven- und Flächendarstellung auf graphischen Sichtgeräten. PhD

Dissertation, Technische Universität Berlin, 1974.
30. Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support for lock-free

data structures. In ISCA, 1993.
31. The IBM zEnterprise EC12 - proven hybrid computing designed to manage multiple workloads,

with the simplicity of a single system. 2012. http://www-01.ibm.com/common/ssi/cgi-
bin/ssialias?infotype=AN&subtype=CA&htmlfid=897/ENUS112-155&appname=USN.

32. IBM Corporation. Transactional Memory.
http://pic.dhe.ibm.com/infocenter/compbg/v121v141/index.jsp?topic=%2Fcom.ibm.xlcpp12
1.bg.doc%2Fproguide%2Fbg_tm_concept.html.

33. James Reinders. Transactional Synchronization in Haswell. 2012.
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-
haswell.

34. Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman. CoreDet: A
Compiler and Runtime System for Deterministic Multithreaded Execution. In ASPLOS, 2010.

35. Sarita Adve and Kourosh Gharachorloo. Shared memory consistency models: a tutorial.
Computer, 29:12 December 1996, 66–76.

36. Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory Consistency and Cache
Coherence. Synthesis Lectures on Computer Architecture, 6:3 May 2011, 1–212.

37. Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21:7 July 1978, 558–565.

38. Brandon Lucia, Luis Ceze, Karin Strauss, Shaz Qadeer, and Hans-J. Boehm. Conflict exceptions:
simplifying concurrent language semantics with precise hardware exceptions for data-races. In
ISCA, 2010.

39. Laura Effinger-Dean, Hans-J. Boehm, Dhruva Chakrabarti, and Pramod Joisha. Extended
Sequential Reasoning for Data-Race-Free Programs. In ACM SIGPLAN Workshop on Memory
Systems Performance and Correctness, 2011.

40. Laura Effinger-Dean, Brandon Lucia, Luis Ceze, Dan Grossman, and Hans-J. Boehm. IFRit:
Interference-Free Regions for Dynamic Data-Race Detection. In OOPSLA, 2012.

41. Dawson Engler and Ken Ashcraft. RacerX: effective, static detection of race conditions and
deadlocks. In SOSP, 2003.

42. D. Schonberg. On-the-fly detection of access anomalies. In PLDI, 1989.
43. Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson.

Eraser: a dynamic data race detector for multithreaded programs. ACM Transactions on
Computer Systems, 15:4 November 1997, 391–411.

44. Pin Zhou, Radu Teodorescu, and Yuanyuan Zhou. HARD: Hardware-Assisted Lockset-based
Race Detection. In HPCA, 2007.

45. Martin Abadi, Cormac Flanagan, and Stephen N. Freund. Types for safe locking: Static race
detection for Java. ACM Transactions on Programming Languages and Systems, 28:2 March
2006, 207–255.

46. Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for Java. In PLDI, 2006.

111

47. Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and Satish
Narayanasamy. DRFX: a simple and efficient memory model for concurrent programming
languages. In PLDI, 2010.

48. Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. LiteRace: Effective Sampling for
Lightweight Data-Race Detection. In PLDI, 2009.

49. Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley. PACER: Proportional Detection
of Data Races. In PLDI, 2010.

50. Cormac Flanagan and Stephen N Freund. Atomizer: a dynamic atomicity checker for
multithreaded programs. In POPL, 2004.

51. Cormac Flanagan, Stephen N. Freund, and Jaeheon Yi. Velodrome: a sound and complete
dynamic atomicity checker for multithreaded programs. In PLDI, 2008.

52. Min Xu, Rastislav Bodík, and Mark D. Hill. A serializability violation detector for shared-
memory server programs. In PLDI, 2005.

53. Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. AVIO: detecting atomicity violations via
access interleaving invariants. In ASPLOS, 2006.

54. Brandon Lucia, Joseph Devietti, Karin Strauss, and Luis Ceze. Atom-Aid: Detecting and
Surviving Atomicity Violations. In ISCA, 2008.

55. Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. BulkSC: bulk enforcement of
sequential consistency. In ISCA, 2007.

56. Soyeon Park, Shan Lu, and Yuanyuan Zhou. CTrigger: exposing atomicity violation bugs from
their hiding places. In ASPLOS, 2009.

57. Shan Lu, Soyeon Park, Chongfeng Hu, Xiao Ma, Weihang Jiang, Zhenmin Li, Raluca A. Popa, and
Yuanyuan Zhou. MUVI: automatically inferring multi-variable access correlations and detecting
related semantic and concurrency bugs. In SOSP, 2007.

58. Brandon Lucia, Luis Ceze, and Karin Strauss. ColorSafe: architectural support for debugging
and dynamically avoiding multi-variable atomicity violations. In ISCA, 2010.

59. Brandon Lucia and Luis Ceze. Finding concurrency bugs with context-aware communication
graphs. In MICRO, 2009.

60. Jie Yu and Satish Narayanasamy. A case for an interleaving constrained shared-memory multi-
processor. In ISCA, 2009.

61. Yao Shi, Soyeon Park, Zuoning Yin, Shan Lu, Yuanyuan Zhou, Wenguang Chen, and Weimin
Zheng. Do I Use the Wrong Definition? DeFuse: Definition-Use Invariants for Detecting
Concurrency and Sequential Bugs. In OOPSLA, 2010.

62. Brandon Lucia, Benjamin P. Wood, and Luis Ceze. Isolating and understanding concurrency
errors using reconstructed execution fragments. In PLDI, 2011.

63. Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar, and Peter Sewell. Clarifying and
compiling C/C++ concurrency: from C++11 to POWER. In POPL, 2012.

64. Jaroslav Ševčík and David Aspinall. On Validity of Program Transformations in the Java
Memory Model. In ECOOP, 2008.

65. Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess
Programs. IEEE Transactions on Computers, C-28:9 September 1979, 690–691.

66. Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Two techniques to enhance the
performance of memory consistency models. In ICPP, 1991.

67. Chris Gniady, Babak Falsafi, and T. N. Vijaykumar. Is SC + ILP = RC? In ISCA, 1999.
68. José F. Martínez and Josep Torrellas. Speculative synchronization: applying thread-level

speculation to explicitly parallel applications. In ASPLOS, 2002.
69. Parthasarathy Ranganathan, Vijay S. Pai, and Sarita V. Adve. Using speculative retirement and

larger instruction windows to narrow the performance gap between memory consistency
models. In SPAA, 1997.

112

70. Ravi Rajwar and James R. Goodman. Speculative lock elision: enabling highly concurrent
multithreaded execution. In MICRO, 2001.

71. Thomas F. Wenisch, Anastasia Ailamaki, Babak Falsafi, and Andreas Moshovos. Mechanisms for
store-wait-free multiprocessors. In ISCA, 2007.

72. Luis Ceze, James Tuck, Josep Torrellas, and Calin Cascaval. Bulk Disambiguation of Speculative
Threads in Multiprocessors. In ISCA, 2006.

73. Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM, 13:7 July 1970, 422–426.

74. Colin Blundell, Milo M.K. Martin, and Thomas F. Wenisch. InvisiFence: performance-
transparent memory ordering in conventional multiprocessors. In ISCA, 2009.

75. Abhayendra Singh, Daniel Marino, Satish Narayanasamy, Todd Millstein, and Madan Musuvathi.
Efficient Processor Support for DRFx, a Memory Model With Exceptions. In ASPLOS, 2011.

76. Christoph von Praun, Harold W. Cain, Jong-Deok Choi, and Kyung Dong Ryu. Conditional
Memory Ordering. In ISCA, 2006.

77. TBB Home. http://threadingbuildingblocks.org/.
78. Grand Central Dispatch - Mac OS X Technology Overview - Apple Developer.

http://developer.apple.com/technologies/mac/snowleopard/gcd.html.
79. Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The design of a task parallel library.

In OOPSLA, 2009.
80. Doug Lea. A Java fork/join framework. In JAVA, 2000.
81. Pieter Bellens, Josep M. Perez, Rosa M. Badia, and Jesus Labarta. CellSs: a programming model

for the Cell BE architecture. In SC, 2006.
82. Mingdong Feng and Charles E. Leiserson. Efficient detection of determinacy races in Cilk

programs. In SPAA, 1997.
83. John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable Parallel Programming

with CUDA. Queue, 6:2 March 2008, 40–53.
84. Khronos Group. OpenCL. http://www.khronos.org/opencl/.
85. Microsoft Corporation. Compute Shader Overview (Windows). http://msdn.microsoft.com/en-

us/library/ff476331.aspx.
86. Arun Ramamurthy. Towards Scalar Synchronization in SIMT Architectures. Master’s Thesis,

University of British Columbia, 2011.
87. Michael Boyer, Kevin Skadron, and Westley Weimer. Automated Dynamic Analysis of CUDA

Programs. In Workshop on Software Tools for MultiCore Systems, 2008.
88. Mai Zheng, Vignesh T. Ravi, Feng Qin, and Gagan Agrawal. GRace: a low-overhead mechanism

for detecting data races in GPU programs. In PPoPP, 2011.
89. Wilson W. L. Fung, Inderpreet Singh, Andrew Brownsword, and Tor M. Aamodt. Hardware

transactional memory for GPU architectures. In MICRO, 2011.
90. Jim Gray. Notes on data base operating systems. In Bayer, R., Graham, R. and Seegmüller, G.,

eds., Operating Systems. Springer Berlin / Heidelberg, 1978, 393–481.
91. Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory, 2nd Edition. Morgan and

Claypool Publishers, 2010.
92. Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing Transactional Memory. In ISCA,

2005.
93. Milo Martin, Colin Blundell, and E. Lewis. Subtleties of Transactional Memory Atomicity

Semantics. IEEE Computer Architecture Letters, 5:2 July 2006, 17–17.
94. Jayaram Bobba, Kevin E. Moore, Haris Volos, Luke Yen, Mark D. Hill, Michael M. Swift, and

David A. Wood. Performance pathologies in hardware transactional memory. In ISCA, 2007.
95. Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, Luke Yen, Mark D. Hill, Ben Liblit, Michael

M. Swift, and David A. Wood. Supporting nested transactional memory in logTM. In ASPLOS,
2006.

113

96. Colin Blundell, Arun Raghavan, and Milo M.K. Martin. RETCON: transactional repair without
replay. In ISCA, 2010.

97. Bratin Saha, Ali-Reza Adl-Tabatabai, and Quinn Jacobson. Architectural Support for Software
Transactional Memory. In MICRO, 2006.

98. Naveen Neelakantam, Ravi Rajwar, Suresh Srinivas, Uma Srinivasan, and Craig Zilles. Hardware
atomicity for reliable software speculation. In ISCA, 2007.

99. Haris Volos, Andres Jaan Tack, Michael M. Swift, and Shan Lu. Applying transactional memory
to concurrency bugs. In ASPLOS, 2012.

100. Nir Shavit and Dan Touitou. Software transactional memory. In PODC, 1995.
101. Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III. Software

transactional memory for dynamic-sized data structures. In PODC, 2003.
102. Microsoft Corporation. STM.NET. http://msdn.microsoft.com/en-us/devlabs/ee334183.aspx.
103. Intel Corporation. Intel® C++ STM Compiler, Prototype Edition. http://software.intel.com/en-

us/articles/intel-c-stm-compiler-prototype-edition/.
104. TransactionalMemory - GCC Wiki. http://gcc.gnu.org/wiki/TransactionalMemory.
105. Joe Duffy. A (brief) retrospective on transactional memory. Generalities & Details: Adventures in

the High-tech Underbelly, 2010.
http://www.bluebytesoftware.com/blog/2010/01/03/ABriefRetrospectiveOnTransactionalM
emory.aspx.

106. Cliff Click. And now some Hardware Transactional Memory comments…. Cliff Click’s Blog, 2009.
http://www.azulsystems.com/blog/cliff/2009-02-25-and-now-some-hardware-transactional-
memory-comments.

107. Tom Knight. An architecture for mostly functional languages. In ACM Conference on LISP and
Functional Programming, 1986.

108. Lance Hammond, Mark Willey, and Kunle Olukotun. Data speculation support for a chip
multiprocessor. In ASPLOS, 1998.

109. Venkata Krishnan and Josep Torrellas. Hardware and software support for speculative
execution of sequential binaries on a chip-multiprocessor. In ICS, 1998.

110. Pedro Marcuello, Antonio González, and Jordi Tubella. Speculative multithreaded processors.
In ICS, 1998.

111. J. Gregory Steffan and Todd Mowry. The Potential for Using Thread-Level Data Speculation to
Facilitate Automatic Parallelization. 1998.

112. Ye Zhang, Lawrence Rauchwerger, and Josep Torrellas. Hardware for Speculative Run-Time
Parallelization in Distributed Shared-Memory Multiprocessors. In HPCA, 1998.

113. Arun Raman, Hanjun Kim, Thomas R. Mason, Thomas B. Jablin, and David I. August. Speculative
parallelization using software multi-threaded transactions. In ASPLOS, 2010.

114. Hanjun Kim, Arun Raman, Feng Liu, Jae W. Lee, and David I. August. Scalable Speculative
Parallelization on Commodity Clusters. In MICRO, 2010.

115. Douglas Z. Pan and Mark A. Linton. Supporting reverse execution for parallel programs. In
PADD, 1988.

116. Thomas J. Leblanc and John M. Mellor-Crummey. Debugging Parallel Programs with Instant
Replay. IEEE Transactions on Computers, C-36:4 April 1987, 471–482.

117. David F. Bacon and Seth Copen Goldstein. Hardware-assisted replay of multiprocessor
programs. In PADD, 1991.

118. Robert H. B. Netzer. Optimal tracing and replay for debugging shared-memory parallel
programs. In PADD, 1993.

119. Min Xu, Rastislav Bodik, and Mark D. Hill. A “flight data recorder” for enabling full-system
multiprocessor deterministic replay. In ISCA, 2003.

120. Satish Narayanasamy, Gilles Pokam, and Brad Calder. BugNet: Continuously Recording
Program Execution for Deterministic Replay Debugging. In ISCA, 2005.

114

121. Min Xu, Mark D. Hill, and Rastislav Bodik. A regulated transitive reduction (RTR) for longer
memory race recording. In ASPLOS, 2006.

122. Satish Narayanasamy, Cristiano Pereira, and Brad Calder. Recording shared memory
dependencies using strata. In ASPLOS, 2006.

123. Derek R. Hower and Mark D. Hill. Rerun: Exploiting Episodes for Lightweight Memory Race
Recording. In ISCA, 2008.

124. Pablo Montesinos, Luis Ceze, and Josep Torrellas. DeLorean: Recording and Deterministically
Replaying Shared-Memory Multiprocessor Execution Efficiently. In ISCA, 2008.

125. Gwendolyn Voskuilen, Faraz Ahmad, and T. N. Vijaykumar. Timetraveler: exploiting acyclic
races for optimizing memory race recording. In ISCA, 2010.

126. Arkaprava Basu, Jayaram Bobba, and Mark D. Hill. Karma: scalable deterministic record-replay.
In ICS, 2011.

127. Yunji Chen, Weiwu Hu, Tianshi Chen, and Ruiyang Wu. LReplay: A Pending Period Based
Deterministic Replay Scheme. In ISCA, 2010.

128. Gilles Pokam, Cristiano Pereira, Shiliang Hu, Ali-Reza Adl-Tabatabai, Justin Gottschlich,
Jungwoo Ha, and Youfeng Wu. CoreRacer: A Practical Memory Race Recorder for Multicore x86
TSO Processors. In MICRO, 2011.

129. Jeff Huang, Peng Liu, and Charles Zhang. LEAP: lightweight deterministic multi-processor
replay of concurrent java programs. In FSE, 2010.

130. Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica Ouyang, Peter M. Chen, Jason
Flinn, and Satish Narayanasamy. DoublePlay: Parallelizing Sequential Logging and Replay. In
ASPLOS, 2011.

131. Michiel Ronsse and Koen De Bosschere. RecPlay: a fully integrated practical record/replay
system. ACM Transactions on Computer Systems, 17:2 May 1999, 133–152.

132. Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini Kaushik, Kyu H. Lee, and Shan
Lu. PRES: probabilistic replay with execution sketching on multiprocessors. In SOSP, 2009.

133. Gautam Altekar and Ion Stoica. ODR: output-deterministic replay for multicore debugging. In
SOSP, 2009.

134. Caitlin Sadowski, Stephen N. Freund, and Cormac Flanagan. SingleTrack: A Dynamic
Determinism Checker for Multithreaded Programs. In ESOP, 2009.

135. Jacob Burnim and Koushik Sen. Asserting and checking determinism for multithreaded
programs. In FSE, 2009.

136. Jacob Burnim and Koushik Sen. DETERMIN: inferring likely deterministic specifications of
multithreaded programs. In ICSE, 2010.

137. Martin C. Rinard and Monica S. Lam. The design, implementation, and evaluation of Jade. ACM
Transactions on Programming Languages and Systems, 20:3 May 1998, 483–545.

138. Matthew D. Allen, Srinath Sridharan, and Gurindar S. Sohi. Serialization sets: a dynamic
dependence-based parallel execution model. In PPoPP, 2009.

139. Manuel M. T. Chakravarty, Gabriele Keller, Roman Lechtchinsky, and Wolf Pfannenstiel. Nepal -
Nested Data Parallelism in Haskell. In Euro-Par, 2001.

140. Robert Bocchino, Stephen Heumann, Nima Honarmand, Sarita V. Adve, Vikram S. Adve, Adam
Welc, and Tatiana Shpeisman. Safe nondeterminism in a deterministic-by-default parallel
language. In POPL, 2011.

141. Mohsen Vakilian, Danny Dig, Robert Bocchino, Jeffrey Overbey, Vikram Adve, and Ralph
Johnson. Inferring Method Effect Summaries for Nested Heap Regions. In ASE, 2009.

142. Robert L. Bocchino and Vikram S. Adve. Types, regions, and effects for safe programming with
object-oriented parallel frameworks. In ECOOP, 2011.

143. Stephen Heumann and Vikram Adve. Tasks with Effects: A Model for Disciplined Concurrent
Programming. In Workshop on Determinism and Correctness in Parallel Programming (WoDet),
2012.

115

144. Derek R. Hower, Polina Dudnik, David A. Wood, and Mark D. Hill. Calvin: Deterministic or Not?
Free Will to Choose. In HPCA, 2011.

145. Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven Gribble. Deterministic process groups in
dOS. In OSDI, 2010.

146. Tongping Liu, Charlie Curtsinger, and Emery D. Berger. Dthreads: efficient deterministic
multithreading. In SOSP, 2011.

147. Heming Cui, Jingyue Wu, Chia-Che Tsai, and Junfeng Yang. Stable deterministic multithreading
through schedule memoization. In OSDI, 2010.

148. Heming Cui, Jingyue Wu, John Gallagher, Huayang Guo, and Junfeng Yang. Efficient
deterministic multithreading through schedule relaxation. In SOSP, 2011.

149. Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. Efficient system-enforced
deterministic parallelism. In OSDI, 2010.

150. Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. Concurrent programming with
revisions and isolation types. In OOPSLA, 2010.

151. Sebastian Burckhardt, Daan Leijen, Caitlin Sadowski, Jaeheon Yi, and Thomas Ball. Two for the
price of one: a model for parallel and incremental computation. In OOPSLA, 2011.

152. Sridhar Gopal, T. N. Vijaykumar, James E. Smith, and Guri Sohi. Speculative Versioning Cache. In
HPCA, 1998.

153. Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta.
The SPLASH-2 programs: characterization and methodological considerations. In ISCA, 1995.

154. Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC benchmark suite:
characterization and architectural implications. In PACT, 2008.

155. Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven
Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building customized program analysis
tools with dynamic instrumentation. In PLDI, 2005.

156. Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In CGO, 2004.

157. Sarita V. Adve and Mark D. Hill. Weak ordering - a new definition. In ISCA, 1990.
158. Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta, and John

Hennessy. Memory consistency and event ordering in scalable shared-memory
multiprocessors. In ISCA, 1990.

159. Enrique Vallejo, Marco Galluzzi, Adria n Cristal, Fernando Vallejo, Ramo n Beivide, Per
Stenstro m, James E. Smith, and Mateo Valero. Implementing Kilo-Instruction Multiprocessors.
In ICPS, 2005.

160. Michel Dubois, Jin Chin Wang, Luiz A. Barroso, Kangwoo Lee, and Yung-Syau Chen. Delayed
consistency and its effects on the miss rate of parallel programs. In SC, 1991.

161. John Ousterhout. Scheduling Techniques for Concurrent Systems. In ICDCS, 1982.
162. Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Cheney.

Region-based memory management in cyclone. In PLDI, 2002.
163. Matthew M. Papi, Mahmood Ali, Telmo Luis Correa, Jr., Jeff H. Perkins, and Michael D. Ernst.

Practical pluggable types for java. In ISSTA, 2008.
164. Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan.

Soot - a Java bytecode optimization framework. In Conference of the Centre for Advanced Studies
on Collaborative Research, 1999.

165. Andrew C. Myers. JFlow: practical mostly-static information flow control. In POPL, 1999.
166. Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar Mysore, Frederic T. Chong, and

Timothy Sherwood. Complete information flow tracking from the gates up. In ASPLOS, 2009.
167. Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. A theory of type qualifiers. In PLDI,

1999.

116

168. Charles Daly, Jane Horgan, James Power, and John Waldron. Platform independent dynamic
Java virtual machine analysis: the Java Grande Forum Benchmark suite. In ACM-ISCOPE
Conference on Java Grande, 2001.

117

VITA

Joseph Devietti was born in Glendale, California. In 2006 he earned a Bachelor of Science in

Engineering degree in Computer Science and a Bachelor of Arts in English from the University of

Pennsylvania. In 2009 he earned a Master of Science degree in Computer Science and Engineering

from the University of Washington and he earned a Doctor of Philosophy in Computer Science and

Engineering at the University of Washington in 2012.

	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 The Challenges of Parallelism
	1.2 The Benefits of Reproducibility and Determinism
	1.3 Previous Work on Deterministic Parallelism
	1.4 Dissertation Goals and Contributions
	1.4.1 DMP: A Deterministic MultiProcessor
	1.4.2 RCDC: A Relaxed Consistency Deterministic Computer
	1.4.3 MELD: Merging Execution-level and Language-level Determinism

	1.5 Reading Guide

	Chapter 2 Related Work
	2.1 Concurrency Bug Detection and Survival
	2.1.1 Data Races
	2.1.2 Atomicity Violations
	2.1.3 General Concurrency Bug Detection
	2.1.4 Simplifying Memory Consistency Models

	2.2 Programming Models for Parallelism
	2.2.1 Task Parallel Frameworks
	2.2.2 Transactional Memory

	2.3 Thread-level Speculation
	2.4 Multithreaded Record and Replay
	2.4.1 Hardware Record and Replay
	2.4.2 Software Record and Replay Techniques

	2.5 Deterministic Parallelism
	2.5.1 Determinism Verification
	2.5.2 Deterministic Parallel Languages
	2.5.3 Execution-level Determinism Systems
	2.5.3.1 Execution-Level Determinism for Arbitrary Programs
	2.5.3.2 Execution-Level Determinism with Restrictions

	Chapter 3 A Deterministic MultiProcessor Architecture
	3.1 Enforcing Deterministic Shared Memory Multiprocessing
	3.1.1 Basic Idea – Det-Serial
	3.1.2 Handling Application-Level Synchronization
	3.1.3 Recovering Parallelism
	3.1.3.1 Leveraging Communication-Free Execution – Det-ShTab
	3.1.3.2 Leveraging Support for Transactional Memory – Det-TM and Det-TMFwd

	3.1.4 Exploiting the Critical Path – QB-SyncFollow, QB-Sharing and QB-SyncSharing

	3.2 Implementation Issues
	3.2.1 Hardware-Only Implementation
	3.2.2 Software-Only Implementation
	3.2.3 Leveraging Commercial Hardware Transactional Memory

	3.3 Experimental Setup
	3.3.1 Hardware Implementation
	3.3.2 Software Implementation

	3.4 Evaluation
	3.4.1 Performance and Scalability
	3.4.2 Sensitivity Analysis
	3.4.3 Characterization
	3.4.4 CoreDet : Performance and Scalability

	3.5 Discussion
	3.6 Conclusions

	Chapter 4 Trading Strong Memory Consistency for Simpler Determinism
	4.1 Relaxed-Consistency Deterministic Execution
	4.1.1 Det-TSO: Store Buffering
	4.1.2 Det-HB: Leveraging Data-Race-Free Memory Models
	4.1.2.1 Synchronization in Det-HB
	4.1.2.2 Language Memory Models

	4.2 RCDC System Overview
	4.3 Implementation
	4.3.1 Quantum Formation
	4.3.2 Buffering
	4.3.2.1 Cache Extensions for Store Buffering
	4.3.2.2 Coherence Operations
	4.3.2.3 Context Switches

	4.3.3 Committing Buffered Data
	4.3.3.1 In-cache Commit (all threads running)
	4.3.3.2 Out-of-cache Commit (at least one thread is switched out)

	4.3.4 Synchronization Library
	4.3.4.1 Conditional Memory Fences
	4.3.4.2 Deterministic Synchronization

	4.4 System Issues
	4.4.1 Support for nondeterministic execution
	4.4.2 Processes
	4.4.3 Context Switches
	4.4.4 Paging
	4.4.5 Memory Errors
	4.4.6 Store Buffer Parameters and Determinism

	4.5 Evaluation
	4.5.1 Performance and Scalability
	4.5.2 Characterization
	4.5.3 Sensitivity to Quantum Size
	4.5.4 Compiler-Runtime Implementation

	4.6 Conclusions

	Chapter 5 Merging Execution-level and Language-level Determinism
	5.1 Pitfalls of Integrating Execution-Level and Language-Level Determinism
	5.2 Background
	5.3 Combining Execution-level and Language-Level Determinism
	5.3.1 Starting Simple: Pure Language-Level Determinism
	5.3.2 Supporting Concurrent Conflicting Tasks
	5.3.3 Supporting Arbitrary Parallelism Constructs
	5.3.4 Supporting Casts and Modularity
	5.3.4.1 Casting from exdet to langdet
	5.3.4.2 Casting back to exdet
	5.3.4.3 Nested xldet locations

	5.4 The MELD Type System
	5.4.1 Type Qualifiers
	5.4.2 Defaults
	5.4.3 Type Rules

	5.5 Implementation
	5.5.1 Type Qualifier System
	5.5.2 DPJ Compiler
	5.5.3 MELD Compiler and Runtime System
	5.5.4 Handling thread fork/join

	5.6 Extensions
	5.6.1 Incorporating Nondeterminism
	5.6.2 Qualifier Polymorphism

	5.7 Limit Study
	5.7.1 Experimental Setup
	5.7.2 Results

	5.8 Conclusions

	Chapter 6 Conclusions
	6.1 Summary of Techniques
	6.2 Limitations
	6.3 Looking Forward

	References

