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Data has become more widely available to the public for consumption, for example,

through the Web and the recent “Open Data” movement. An emerging cohort of users,

called Data Enthusiasts, want to analyze this data, but have limited technical or data

science expertise. In response to these trends, online visual analytics systems have emerged

as a popular tool for data analysis and sharing. Current visual analytics systems such as

Tableau and Many Eyes enable this user cohort to be able to perform sophisticated data

analysis visually at interactive speeds and without any programming.

Together, these two systems have been used by tens of thousands of authors to create

hundreds of thousands of views, yet we know very little about how these systems are being

used. The first challenge we address in this thesis, thus, is: how are popular visual analytics

systems such as Tableau and Many Eyes being used for data analysis? To the best of our

knowledge, this is the first study of its kind, and presents important details about the use

of online, visual analytics systems.

Visual analytics systems provide basic support for data integration. A simple approach

for interactive data integration in Tableau was implemented in that tool in the context of

this dissertation. Visual analytics, systems, however, do not currently assist users with de-

tecting or resolving potential data quality problems including the well-known deduplication

problem. Recent approaches for deduplication focus on cleaning entire datasets and com-





monly require hundreds to thousands of user labels. In this thesis, we address the challenge

of deduplication in the context of visual data analytics with an approach that produces

significantly cleaner views for small labeling budgets than state-of-the-art alternatives. The

key idea behind the approach is to consider the impact that individual tuples have on a

visualization and to monitor how the view changes during cleaning.
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Chapter 1

INTRODUCTION

The need for effective analysis of data is widely recognized today, and many tools aim

to support professional data scientists from industry and the sciences with this task (e.g.,

Hadoop [5], Spark [6], and Dato [31]). There is, however, another growing cohort of users

who need the ability to analyze data, but have limited technical expertise. These users

are without formal training in data science. They are called Data Enthusiasts [53, 141].

Such users are increasingly applying data and visualizations to illustrate a story, answer a

question, or make a decision. Some common examples include teachers (e.g., to understand

student performance across years), real-estate agents (e.g., to anticipate market trends), and

Web journalists (e.g., to tell stories based on data). In this thesis, we focus on supporting

the data analysis needs of this new class of users.

Data is also increasingly being made available for public consumption on the Web thanks

to the recent “Open Data” movement. Since 2009, governments from all over the world

(including the US, Canada, and Japan) and governing bodies such as the United Nations

and European Union have published their own open data repositories. As of 2015, there are

over 426 established local, regional, and national open data catalogues available on the Web

through the open source datacatalogs.org project. Despite an abundance of public data

(estimated to be 2.8 zettabytes in 2012), a “Digital Universe Study” by the International

Data Corporation (IDC) [42], found that only a small fraction, 0.5%, is analyzed. The gulf

between availability and exploitation presents a significant opportunity for the database

community to study the root-causes and bridge the gap by improving the analytical tools

for all users, both the data scientists and the data enthusiasts.
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1.1 Visual Analytics Systems

Recent self-service visual analytics systems strive to support a broad spectrum of users: from

beginner data enthusiasts to seasoned business intelligence analysts. Tableau Public [112],

Fusion Tables [46], and Many Eyes [125] are among the most popular examples. These visual

analytics tools enable the sensemaking model [21]: the typical analytical process starts

with a question that a data enthusiast seeks to answer. Unless she already has a dataset

to explore, the data enthusiast then manually forages for relevant data by, for example,

using a search engine such as Google or Bing. Once the appropriate dataset is acquired,

the data is explored through a suitable visualization. The user continues to interact with

the visualization by, for example, drilling down to the details, rolling up to summarize

a dimension, or adding dimensions from other datasets. These existing systems provide

several desirable features to support data enthusiasts. They enable users to visually explore

their data as illustrated in Figure 1.1, which removes the need for learning any programming

or query languages. They facilitate the integration and study of multiple datasets at the

same time. Finally, they support collaborations through sharing visualizations and data

online for both viewing and editing by others.

Visual interfaces enable data enthusiasts to author sophisticated queries using drag-and-

drop actions in a GUI and view the answer(s) through a single visualization (or multiple

linked ones). These visualizations are represented internally as database views. Users

can create sophisticated views that combine multiple heterogeneous data sets (e.g., Excel

spreadsheets, relational databases, data cubes, delimited text files, etc.) along a common

dimension or set of dimensions (i.e., shared categorical attributes). This type of visual

programming environment supports the sensemaking model well because it provides inter-

active response times both in authoring the question and in producing visual results; such

interactive Q&A is possible in part because the user only has to focus on the semantics of

the query and not its syntax. As a concrete example, consider the Tableau visualization

in Figure 1.1(top), which compares the academic productivity of the US research branches

of IBM and Google. In this visualization, two datasets (DBLP [32] and Freegeoip [40]) are

joined on-the-fly using simple drag-and-drop GUI actions. The DBLP dataset lists pub-
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SELECT [geo].[Latitude] ON ROWS, [geo].[Longitude] ON COLUMNS,

[geo].[Domain] ON COLOR, COUNT([pub].[pubid]) ON SIZE

FROM [pub]

LEFT JOIN [geo] ON [pub].[Domain] = [geo].[Domain]

WHERE [pub].[Domain] IN {"google.com","googlepages.com","ibm.com"}

AND [geo].[Country] = "United States"

Figure 1.1: The Tableau visual interface and visualization (top) and corresponding VizQL, a
formal language describing both the data and visualization (bottom). Two datasets, DBLP
and Freegeoip, are combined to show the total publication counts for Google and IBM.

lications by author while the Freegeoip dataset maps author web pages to IP addresses

and then geolocations. To create the visualization in Figure 1.1, the user interacts with a

relational dataset by dragging a “Dimension” (categorical data such as a domain name) or

“Measure” (quantitative data such as a latitude/longitude coordinate) field from the data

window in Figure 1.1(left) to the visual canvas (right). In response to the user’s actions,

Tableau automatically renders the data points on a map visualization. We explore this
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example in more detail in Chapter 2.

1.2 Visual Analytics Challenges

While visual analytics systems have rapidly evolved over the past several years, many re-

search challenges remain open.

Challenge 1: Despite their growing popularity, little is known about how these visual an-

alytics systems are being used. Even basic statistics such as the number of users are often

not published (e.g., Fusion Tables [46]), let alone any details of user activity. The most

prominent system, Many Eyes, started in early 2007, and initial studies [27] indicated a

significant uptake, as well as collaboration between users; but there have been no follow-up

studies on usage, nor have there been comparable studies of other web-based or web-centric

visual data analysis systems. Shortly before Many Eyes, in December 2006, Swivel.com was

launched. Swivel was much simpler than Many Eyes, but run as a start-up rather than an

experiment. It shut down in summer 2010, casting doubt on whether there was a market for

web-based visual data analysis systems. At the same time, there is clearly broad interest in

data integration, analysis, and visualization. The New York Times, The Washington Post,

The Guardian, and other news media are not only increasingly using visual data analysis as

part of news stories, but also experimenting with more sophisticated types of visualizations.

As our society continues to become data-enabled, it is important that we continue to

improve data management and analysis tools. If we are to build better online data visual-

ization and sharing systems, the first step is to understand how they are being used today.

The key contribution addressed in Chapter 4 is to shed light on this exact question: How

are online visual data analysis and sharing systems being used?

Challenge 2: In recent work [89, 90] (also Chapter 4), we found that today’s visual ana-

lytics services are attracting hundreds or thousands of new accounts each month, but most

users author only one visualization and never return. A recent interview study of Open

Government Data consumers [48] corroborates that current visualization tools are under-

serving their users. One key limitation that make these systems unsuitable for many users

is that the tools assume the data is clean and in a well-structured relational format, which is
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typically not the case. Data enthusiasts have reported that cleaning and transforming their

datasets is one of the most time-consuming and tedious steps in their analytical workflows

(often comprising 80% of the work [30]). The data is useless until that labor is accomplished

up front. Deduplication is one kind of dirty data problem. This problem manifests when

there are different representations of the same real world entity or object in the data sources

being integrated. For example, the same restaurant may appear under two different phone

numbers. The same product may use different abbreviations in its name or may include a

different description. Recent approaches for deduplication focus on cleaning entire datasets

and require significant human effort. In Chapter 5, we address the problem of deduplication

in the context of visual data analytics. The key contribution of this chapter is View Impact

Cleaning, a new active-learning approach for record deduplication that strives to produce

the cleanest visualization/view possible with limited user effort in the form of a limited

budget for data labeling.

1.3 Dissertation Contributions

The focus of this dissertation is on improving visual data analytics systems. In the con-

text of supporting data enthusiasts in their exploratory, visual analytic tasks on structured

datasets, the contributions of this thesis are the following:

Usage study of two visual data analytics systems (Chapter 4). We take a first

step toward understanding how online visual data analysis systems are being used through

a longitudinal measurement study of two popular online data visualization and analysis

systems: Tableau Public [112] and Many Eyes [125, 83]. Both systems allow users to create

visualizations online, and both are free to use. Tableau Public requires the download of a

Windows-only client, while Many Eyes is used entirely in the browser. Both systems provide

a variety of visualization techniques, which not only generate static images, but which the

viewer can interact with in the browser.

We tackle the question of how both of these systems are being used from the perspective

of the database community. Through our study, we thus focus on the following core set of

questions: (1) How popular are these systems? How many users do they attract and how
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Figure 1.2: Views, dirty (left) and clean (right), over Fodor ∪ Zagat restaurant datasets.

active are these users? (2) How heavily do users leverage the collaborative features of these

tools? (3) What do users actually do with the data? How do they analyze it? How much

data (in terms of relation cardinality and degree) do users choose to visualize at any given

time? And finally (4) Do users integrate multiple data sources in their visualizations? And

how do they perform these integrations? To the best of our knowledge, this is the first

formal study of these types of systems.

View-driven data cleaning (Chapter 5). Duplicate records may affect a visualization.

Figures 1.1 and 1.2 show two examples. In Figure 1.1 there are duplicate entries representing

Google publications in the Bay Area: google.com (purple circle) and googlepages.com

(orange circle). These two circles should be instead combined, as they represent publications

for the same entity, Google. In Figure 1.2, we see the impact of duplicate entities on the view

of the top four cuisine types by quantity of restaurants in San Francisco over a restaurant

dataset created from the union of the Fodor and Zagat restaurant ratings datasets in the

RIDDLE1 repository. Duplicate records affect results and should therefore be cleaned. The

problem, however, is that data cleaning is a disruptive process. It interrupts the user during

her primary data exploration task. Our goal is to clean a user’s visualization with minimal

interruption.

State-of-the-art techniques for deduplication use active learning [93, 45], where one or

1http://www.cs.utexas.edu/users/ml/riddle
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Figure 1.3: Views, dirty (left) and clean (right), over Fodor ∪ Zagat restaurant datasets.

more users label training examples, which enable the system to learn a classifier that cat-

egorizes pairs of tuples as either duplicates or not. Active learning iteratively asks users

for additional, carefully selected labels and re-trains the classifier until the classifier stops

improving. Existing methods produce high-quality classifiers. Because they focus strictly

on the data cleaning task, however, existing methods request hundreds to thousands [93, 45]

of labels during the data cleaning process.

The time-consuming labeling effort imposed by existing approaches conflicts with the

interactive, real-time constraints exploratory visual analytics systems impose to support

sensemaking [91]. Worse, current systems do not prioritize labeling pairs that actually

impact the view. The user may thus easily find herself labeling data that she is not even

analyzing.

In Chapter 5, we develop an approach that addresses the above problem. Our method,

called View Impact Cleaning, performs deduplication in a manner that focuses on a user’s

current visualization (or dashboard of visualizations). View Impact Cleaning yields a sig-

nificantly cleaner view than active learning alone when given a small labeling budget. It

only asks the user to label data that is currently being visualized and it automatically stops

the cleaning process when it detects that additional labels will not change the visualization

further even if they could yield a better overall classifier.

By developing the View Impact Cleaning method, we make the following specific con-

tributions:
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1. We define a new notion of view sensitivity to duplicate tuples. View sensitivity cap-

tures the extent to which a view is affected by duplicate tuples. We also define a new

notion of view impact score of individual tuples on a visualization. The view impact

score measures the extent to which a view will change if a given tuple is found to be

a duplicate and is removed.

2. We develop an active-learning-based method that builds an initial classifier and then

iteratively improves that classifier. The classifier categorizes pairs of base tuples in the

provenance of the user’s view as either duplicates or not. The novelty of our approach

is in the selection of the training examples. Our approach uses both the view impact

scores of individual tuples and the potential of a training example to improve the

classifier quality.

3. We develop a new stopping condition for view cleaning that considers not the quality of

the classifier but instead considers how the view has been evolving during the cleaning

process. An important implication of our approach is that it stops cleaning a view

both in the case where a sufficient number of tuples have been removed to clean the

view and in the case where a view is not sensitive to duplicate tuples and cleaning has

little effect on the view.

We evaluate our approach on nine different views specified on two real-world datasets.

We find that, when given a small cleaning budget, our approach yields significantly cleaner

views than active learning without consideration for the users’s view. It also effectively

stops cleaning earlier than active learning alone while delivering cleaner views. Finally, we

evaluate and discuss the problem of cleaning a dashboard comprising multiple visualizations.

Data Blending (Chapter 2): In the context of this dissertation, we also implemented a

basic approach for interactive data integration in the Tableau system, which we present in

Chapter 2, and which is called data blending. The contribution of the data blending feature

is in its implementation.
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1.4 Dissertation Outline

The dissertation is organized as follows. In Chapter 2, we present an overview of Tableau, a

popular visual data analytics service for data enthusiasts, and its current features including

data blending, and its limitations. The text for Chapter 2 is published in the Industrial Track

of the ACM Special Interest Group on the Management of Data (SIGMOD) in 2012 [92]

with the following collaborators from Tableau: Ross Bunker, Jock Mackinlay, Robert Mor-

ton, and Chris Stolte. Next, in Chapter 3 we summarize the various challenges that data

enthusiasts face in their analytical workflows and what problems related work addresses.

The text for Chapter 3 appears in the 2014 International Conference on Very Large Data

Bases (VLDB), Vision Track [91]. This publication was the result of a collaboration be-

tween the Department of Computer Science & Engineering at the University of Washington

(including my advisors, Magdalena Balazinska and Dan Grossman) and Tableau (including

my manager, Jock Mackinlay). We then study in Chapter 4 the details of how the Tableau

and Many Eyes systems are being used for analytics. The work was originally published

in the 2014 SIGMOD Record [90], and we include an extended version of the experimental

results. This publication was a collaboration between the University of Washington (Mag-

dalena Balazinska and Dan Grossman) and Tableau (Robert Kosara and Jock Mackinlay).

In Chapter 5, we present a new approach to deduplication in the context of an interactive

visual analytics system called View Impact Cleaning. This work was done in collabora-

tion with my advisors, Magdalena Balazinska and Dan Grossman, and a machine learning

expert from the Department of Electrical Engineering, Hannaneh Hajishirzi. This work is

currently in submission. Finally, we discuss future directions and conclude with our overall

contributions in Chapter 6.

In summary, in the context of a visual data analytics environment such as Tableau and

Many Eyes and motivated by a growing cohort of users with limited technical expertise,

this dissertation work addresses the following problems with the goal of improving next

generation visual analytics systems: 1) How are two popular systems, Tableau and Many

Eyes, being used (Chapter 4) and 2) How can such systems assist users in the complex task

of cleaning data that has duplicate entities (Chapter 5).
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Chapter 2

BACKGROUND: VISUAL DATA ANALYTICS WITH TABLEAU

In this chapter, we present an overview of Tableau [113], a commercial business intelli-

gence software tool that supports interactive, visual analysis of data. The content of this

chapter is an extended version of a SIGMOD Industrial paper published in 2012 [92]. This

chapter is organized as follows. We present a high-level discussion of the key features of

Tableau in Section 2.1. Next, in Section 2.2, we describe in-depth a data integration feature

called data blending that supports on-the-fly data integration as part of the data analysis

cycle and that we implemented in the context of this dissertation. Finally, in Section 2.3,

we present Tableau’s data cleaning capabilities.

2.1 Tableau overview

Tableau [113] is a data visualization tool that sits between the end-user and the database

and allows the user to create visualizations by dragging and dropping fields from her dataset

onto a visual canvas. In response to these actions, Tableau generates formal VizQL (Vi-

sual Query Language) [109] statements to build the requested visualization. VizQL is a

structured query language with support for rendering graphics and data. As a concrete

example, the six lines of VizQL shown in Figure 1.1(bottom) describe the visualization in

Figure 1.1(top). The formalism represents the semantics underlying the tool. The user

does not author the language directly, but rather her interactions with the data through the

GUI automatically result in the generated code. Tableau’s high-level architecture is shown

in Figure 2.1. The VizQL compiler creates all of the data and visual encodings generated

from the user interactions as VizQL statements. Each VizQL statement is compiled into

the SQL or Multidimensional Expressions (MDX) queries necessary to generate the data for

the visualization. These queries are executed by Tableau’s in-memory, column-store data

engine [132] if the underlying data can be collocated in the same database; otherwise the
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queries are federated to the data sources and the result set is pulled into the data engine.

As shown in Figure 2.1(top), the types of input data that Tableau supports include any

structured relational data, data cubes (see [49] for details), Excel spreadsheets, and flat

text files such as comma-separated-values (CSV).

A visualization is a visual representation of a database view computed over a single

input dataset or combination of data sets (as in a JOIN operation). For example, during

the initial data import process, the user can specify any of the five standard JOIN operations

over multiple data sets, e.g., INNER, LEFT OUTER, RIGHT OUTER, FULL OUTER,

and CROSS to combine these datasets into a single view that can then further be filtered

or aggregated as needed. A visualization is organized by its discrete fields (e.g., categorical

attributes) into a series of pages (e.g., a progression of time values) and partitions (e.g.,

a hierarchy of attribute values), and like a GROUP BY clause in SQL, these grouping fields

comprise the primary key of the visualization. Thus as the user is exploring one dataset

through a visualization, other datasets can be blended on-the-fly into the visualization, using

the primary key of the visualization as the join key. However, this blending operation is

restricted to a LEFT OUTER JOIN.

Tableau is equipped with two means of integrating data that have different assumptions

of where the data is located. First, in the case where the data sets are collocated (or can

be collocated), Tableau formulates a query that joins them (no union) locally, in-memory

to produce a visualization. However, in the case where the data sets are not collocated

(or cannot be collocated), Tableau federates queries to each data source, and creates a

dynamic, blended view in-memory that consists of the joined result sets of the queries.

Data blending is a complementary technology to the standard collocated approach with the

following benefits:

1) Resolves data granularity problems. Frequently a user wants to combine data that

may not be at the same granularity. For example, let’s say that an employee at company

A wants to compare the yearly growth of sales to a competitor company B. The dataset

for company B (see Figure 2.2) contains a detailed quarterly growth of sales for B (quarter,

year is the primary key), while company A’s dataset only includes the yearly sales (year is

the primary key). If the employee simply joins these two datasets on yearly earnings, then
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Figure 2.1: Architecture of Tableau

each row from A will be duplicated for each quarter in B for a given year resulting in an

inaccurate overestimate of A’s yearly earnings. This duplication problem can be avoided

if, for example, company B’s sales dataset were first aggregated to the level of year, then

joined with company A’s dataset. In this case, data blending detects that the data sets

are at different granularities by examining their primary keys and notes that in order to

join them, the common field is year (based on textual similarity of the attribute name). In

order to blend the data on year, an aggregation query is issued to company B’s dataset,

which returns the sales aggregated up to the yearly level as shown in Figure 2.2. This

result is blended with company A’s dataset to produce the desired visualization of yearly

sales for companies A and B. The blending feature does all of this on-the-fly without user-

intervention.



13

!"#$%&' ()*" +%*"')" ,#-.*/01213*4)5

6#%"-)'
,#77))

8998 +: :9;999

+8 <9;999

+= =<;999

+> 8<;999

899= +: 89;999

+8 :<;999

+= :9;999

+> <9;999

899> +: 8<;999

+8 :<;999

+= :9;999

+> <9;999

,#-.*/01213)&#/$*"01?*'*1@*A4)

!"#$%&' ()*" +#,-*./0102*3)4

5#%",)'
+#66))

7887 978:888

788; 9;8:888

788< 9<=:888

+#,-*./010!">,*"/0?*'*0@*A3)

!"#$%&' ()*" +#,-*./0102*3)4 +#,-*./0502*3)4

6#%",)'
+#77))

8998 :89;999 :89;999

899< :<9;999 =>;999

899? :?>;999 :99;999

53).$)$0@*'*0A*B3)

Figure 2.2: Company A and B data tables (left) and blended result (right)

2) Resolves collocation problems. Many of Tableau’s BI users are faced with challenges

in integrating external data sources into IT-managed data repositories. Some of them sim-

ply cannot collocate their datasets for integration either because they lack the appropriate

permissions or because moving their large data to their own locally-managed repository is

expensive and untenable. In other cases, the data repository may have rigid structure, as

with relational data cubes, to ensure performance, support security or protect data quality.

Furthermore, it is often unclear if it is worth the effort of integrating an external data set

that has uncertain value. The user may not know until she has started exploring the data if

it has enough value to justify spending the time to integrate and load it into her repository.

Thus, one of the paramount benefits of data blending is that it allows the user to quickly

start exploring her data, and during exploration the integration happens automatically as

a natural part of the analysis cycle. An interesting final benefit of the blending approach

is that it enables users to seamlessly integrate across different types of data (which usually

exist in separate repositories) such as relational, cubes, text files, spreadsheets, etc.
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3) Adapts to needs of exploratory visual analytics. A key benefit of data blending

is its flexibility; it gives the user the freedom to view blended data at different granularities

and control how data is integrated on-the-fly. The blended views are dynamically created

as the user is visually exploring the datasets. For example, the user can drill-down, roll-up,

pivot, or filter any blended view as needed during her exploratory analysis. This feature is

useful for data exploration and what-if analysis.

2.2 Data integration in Tableau: data blending

In this section, we discuss in greater detail how data blending works, beginning with a high-

level overview in Section 2.2.1, a discussion of the blending architecture in Section 2.2.2, the

semantics of blending in Section 2.2.3, how filters work in a blended view in Section 2.2.4,

join key inference in Section 2.2.5, and a discussion of the cardinality of blended views

in Section 2.2.6. We conclude this section with some illustrative blending examples in

Section 2.2.7 taken from Tableau’s users.

2.2.1 Data blending overview

The data blending feature, released in Tableau 6.0, allows an end-user to dynamically com-

bine and visualize data from multiple heterogeneous sources (e.g., Excel spreadsheets, text

files, and relational databases) without any upfront integration effort. This feature automat-

ically creates mediated schemas and wrappers as the user interactively builds a visualization

on-the-fly. It also joins in only the necessary information from a data source (e.g., as spec-

ified by the user through the GUI) to create the view with minimal data movement, as

queries are federated to the data sources in the case where the data cannot be collocated.

A key aspect of the Tableau data blending feature is its ability to integrate data without

causing any significant disruption to the analysis cycle: Tableau automatically infers how

to combine the two datasets. Its inference abilities, however, are limited to joining datasets

on the columns that share the same name and aggregating the new dataset if necessary and

possible.

A user authors a visualization starting with a single data source (known as the primary),

which establishes the context for subsequent blending operations in that visualization. Data
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Figure 2.3: Tableau’s data blending architecture

blending begins when the user drags in fields from a different data source, known as a

secondary data source. Blending happens automatically, and only requires user intervention

to resolve conflicts. Thus the user can continue modifying the visualization, including

bringing in additional secondary data sources, drilling down to finer-grained details, etc.,

without disrupting their analytical flow. The novelty of this approach is that the entire

architecture supporting the task of integration is created at runtime and adapts to the

evolving queries in typical analytical workflows.

2.2.2 Data blending architecture

The data blending system, shown in Figure 2.3 takes as input the VizQL query workload

generated by the user’s GUI actions and data source schemas, and automatically infers how

to query the data sources remotely and combine their results on-the-fly. The system features

a two-tier, mediator-based architecture in which the VizQL query workload is analyzed and
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Figure 2.4: Components of the mediated schema

partitioned at runtime based on the corresponding data source fields being used. The

primary mediator initiates this process by removing the visual encodings from the VizQL

query workload to yield an abstract query. The abstract query is partitioned for further

processing by the primary mediator and one or more secondary mediators. The primary

mediator creates the mediated schema for the given query workload. It then federates the

abstract queries to the primary data source as well as the secondary mediators and their

respective data sources. The wrappers compile the abstract queries into concrete SQL or

MDX queries and instantiate the semantic mappings between the data sources and the

mediated schema for each query. The primary mediator joins all the result sets returned

from all data sources to produce the mediated result set used by the rendering system.

2.2.3 Blending semantics: post-aggregate left join

In a blended visualization, the grouping fields from the primary data source become the

primary key of the mediated schema. In Figure 2.4 these are shown as the dark-green fields

in the primary data source, and the light-green fields represent the aggregated data. Each

secondary data source must contain at least one field that matches a visualization grouping

field in order to blend into the mediated schema. The matching fields in a secondary data
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Figure 2.5: Concrete example of post-aggregate join involving two secondary data sets and
a primary dataset on airline data. If the secondary table at the bottom had fuel costs/gal
per quarter, then the data would have to be aggregated into a per-year value.

source comprise its join key, and fields that appear in the GROUP BY clause issued by the

secondary mediator wrappers. The aggregated data from the secondary data source, shown

in light-purple, is then left-joined along its join key into the mediated result set. We refer to

this left-join of aggregated result sets as a post-aggregate join. A concrete example is shown

in Figure 2.5 involving airline data.

2.2.4 Filtering data from a blended view

Tableau provides several options for filtering data. Data may be filtered based on aggre-

gate conditions, such as excluding airlines having a low total count of flights. A user can

filter aggregate data from the primary and secondary data sources in this fashion, which

results in rows being removed from the mediated result set. In contrast, row-level filters
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are only allowed for the primary data source. To improve performance of queries sent to

the secondary data sources, Tableau will filter the join keys to exclude values which are not

present in the domain of the primary data source result set, since these values would be

discarded by the left-join.

2.2.5 Join key inference

Tableau uses very simple rules for automatically detecting candidate join keys: 1) the

secondary data source field name must match a field with the same name in the primary

data source, 2) the data types must match 3) if they are date/time fields, they must represent

the same granularity date bin in the date/time hierarchy, e.g., both are MONTH. A user

can intervene to force a match either by providing field captions to rename fields within

the Tableau data model, or by explicitly defining a link between fields using a simple user

interface.

2.2.6 Discussion of cardinality of blended view

As a user blends additional data into her visualization/view, she is guaranteed that the

blended data will not affect the cardinality of the view. The left-join ensures that no rows

from the primary data source result set are lost due to missing data from a secondary data

source. Additionally there cannot be a one-to-many mapping between the domain values

of the primary key and those of the secondary join key, because the secondary join key is

a subset of the primary key and contains only unique values in the aggregated secondary

result set. We find that this approach is the most natural for augmenting a visualization

with secondary data sources of uncertain value or quality, which is a common scenario for

Tableau users.

Data blending supports many-to-one relationships between the domain values of the

primary key and each secondary join key. A many-to-one relationship can occur when the

secondary data source contains coarser-grained data than the mediated result set. Figure 2.6

shown such an example with a simple coffee dataset. Since the join key in a secondary result

set may match a subset of the blended result set primary key, portions of the secondary
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Figure 2.6: Concrete example of blending a coarser-grained secondary data source with a
finer-grained primary dataset on synthetic coffee data.

result set may be duplicated across repeated values in the mediated result set. This does not

pose a risk of double-counting measure values, because all aggregation is performed prior to

the join. And once an attribute has been aggregated, Tableau does not permit any further

aggregations to be performed on top of an already aggregated data value. However, in the

example in Figure 2.6, the user can remove the ‘Quarter’ attribute from the blended table

to roll up the view to only show the aggregated SUM of values for each year. When a blended

visualization uses multiple secondary data sources, each secondary join key may match any

subset of the primary key, as shown in the example from Figure 2.5. The primary mediator

handles duplicating each secondary result set as needed to join with the mediated result

set.

Finally, a secondary dimension which is not part of the join key (and thus not a grouping

field in the secondary query) can still be used in the visualization. If it is functionally

dependent on the join key, a secondary dimension can be used without affecting the result

set cardinality. Tableau references this kind of non-grouping dimension using both MIN and

MAX aggregations in the query issued to the secondary data source, which allows Tableau
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Figure 2.7: Small sample tables of infant mortality rates, GDP, and population in 2000

to determine if the dimension is functionally dependent on the join key. For each row in

the secondary result set, if the two aggregated values are the same then the value is used

as-is, reflecting the functional dependence on the grouping fields. If the aggregated values

differ, Tableau represents the value using a special form of NULL called ManyValues. This

is represented in the visualization as a ‘*’, but retains the behavior of NULL when used in

calculated fields or other computations. The visual feedback allows a user to distinguish

this lack of data from the NULL values which occur due to missing or mismatched data.

2.2.7 Blending examples from Tableau users

All of the data and visualizations discussed in this section are from real users of Tableau

who made them publicly available through Tableau’s online version, Tableau Public.1.

Simple blending example: Infant mortality vs. GDP. Three unique data sources

(see left half of Figure 2.7 for sample tables) are blended together to create the visualization

shown in Figure 2.8. In this example, the Tableau user wants to understand if there is a

1https://public.tableau.com
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Figure 2.8: Blended view of infant mortality rates, GDP, and population in 2000

connection between infant mortality rates, GDP, and population. She has three distinct

spreadsheets with the following characteristics: the first data source contains information

about the infant mortality rates per 1000 live births for each country, the second contains in-

formation about each country’s total population, and the third source contains country-level

GDP. For this analysis task, the user drags the fields, "Country or Area" and "Infant

mortality rate per 1000 live births", from her first data source onto the blank visual

canvas. Since these fields were the first ones selected by the user, then the data source associ-

ated with these fields becomes the primary data source. This action produces a visualization

showing the relative infant mortality rates for each country. But the user wants to under-

stand if there is a correlation between GDP and infant mortality, so she then drags the "GDP

per capita in US dollars" field onto the current visual canvas from Data Table A. The

step to join the GDP measure from this separate data source happens automatically: the
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(a) (b)

Figure 2.9: Screenshots of blended airline data from the US Bureau of Transportation
Statistics:
(a) Two blended datasets: airfare price (324M rows) and fuel costs (8K rows) by year
(b) Four blended datasets: both datasets from (a), on-time performance (140M rows), and
carrier names (1.5K rows).

blending system detects the common join key (ı.e. "Country or Area") and combines the

GDP data with the infant mortality data for each country. Finally, to complete her analysis

task, she adds the "Population" measure from Data Table B, to the visual canvas, which

produces the visualization in Figure 2.8 associated with the blended data table in Figure 2.7.

Simple blending example: Airfare price vs. fuel costs. A Tableau data blending

scenario is shown in Figure 2.9, which includes multiple views that were composed in minutes

by uniquely combining four different airline datasets, the largest of which includes a 324

million row ticket pricing database and a 140 million row on-time performance database.

A user starts by dragging fields from any dataset on to a blank visual canvas, iteratively

building a VizQL statement which ultimately produces a visualization. In this example, the

user first drags the VizQL fields, YEAR(Flight Date) and AVG(Airfare), from the pricing

dataset onto the visual canvas.

Data blending occurs when the user adds fields from a separate dataset to an existing
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VizQL statement in order to augment their analysis. Tableau assigns the existing dataset

to the primary mediator and uses secondary mediators to manage each subsequent dataset

added to the VizQL. The mediated schema has a primary key composed of the grouping

VizQL fields from the primary dataset (e.g., YEAR(Flight Date)); the remaining fields in

the mediated schema are the aggregated VizQL fields from the primary dataset along with

the VizQL fields from each secondary dataset. Continuing our example, the user wishes to

drag AVG(Total Cost per Gallon) from the fuel cost dataset to the visualization. The

schema matching algorithm examines the secondary dataset for one or more fields whose

name exactly matches a field in the primary key of the mediated schema. While the proposed

matches are often sufficient and acceptable, the user can specify an override. Since the fuel

cost dataset has a field named Date, the user provides a caption of Flight Date to resolve

the schema discrepancy.

At this point the mediated schema is created and the VizQL workload is then federated

to the wrappers for each dataset. Each wrapper compiles VizQL to SQL or MDX for the

given workload, executes the query, and maps the result set into the intermediate form

expected by the primary mediator. The mapping is performed dynamically, since both the

VizQL and the data model evolve during a user’s iterative analytical workflow. Finally, the

primary mediator performs a left-join of each secondary result set along the primary key of

the mediated schema. In this example, the mediated result set is rendered to produce the

visualization shown in Figure 2.9(a).

Evolved Blending Example: Airfaire price vs. fuel costs and delays. Figure 2.9(b)

shows further evolution of the analysis of airline datasets, and demonstrates several key

points of data blending. First, the user adds a unique ID field named uniquecarrier from

the primary dataset to the VizQL to visualize results for each airline ID over time. The

mediated schema adapts by adding this field to its primary key, and the secondary mediator

automatically queries the fuel cost dataset at this finer granularity since it too has a field

named uniquecarrier. Next, the user decorates the visualization with descriptive airline

names for each airline ID by dragging a field named Carrier Name from a lookup table.

This dataset is at a coarser granularity than the existing mediated schema, since it does not
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Figure 2.10: Sample data tables for airline blending example

represent changes to the carrier name over time. The data blending system automatically

handles this challenge by allowing the left-join to use a subset of the mediated result set

primary key, and replicating the carrier name across the mediated result set. Figure 2.10

demonstrates this effect using a tabular view of a portion of the mediated result set, along

with portions of the primary and secondary result sets. The figure also demonstrates how

the left-join preserves data for years which have no fuel cost records. Last, the user adds

average airline delays from a 140 million row dataset which matches on Flight Date and

uniquecarrier. This is a fast operation, since the wrapper performs mapping operations

on the relatively small, aggregated result set produced by the remote database. Note that

none of these additional analytical tasks required the user to intervene in data integration
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Figure 2.11: Gapminder tribute demonstrating on-the-fly creation of blended views

tasks, allowing their focus to remain on finding insight in the data.

Wealth and health of nations: a Gapminder tribute. A Tableau user created an

interactive visualization inspired by Gapminder [43] (see Figure 2.11), which allows users to

select and plot various demographic data in a scatterplot, with each data point representing

a country. This is a nice example that demonstrates the flexibility of data blending. A user

can select from three different data sources to blend on the x-axis (including life expectancy,

CO2 emissions, and population) and three sources for the y-axis (including number of chil-

dren per woman, energy use, and income per person). This demonstrates the flexibility of

the data blending feature, namely that users can dynamically change their blended views

by pivoting on different data sources and measures to blend in their visualizations.
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Figure 2.12: San Francisco election outcome modeling

Modeling election outcomes. Figure 2.12 illustrates the possible outcomes of an election

for District 2 Supervisor of San Francisco. With this type of visualization, the user can

select different election styles and see how their choice affects the outcome of the election.

What’s interesting from a blending standpoint is that this is an example of a many-to-one

relationship between the primary and secondary datasets. This means that the fields being

left-joined in by the secondary data sources match multiple rows from the primary dataset

and results in these values being duplicated. Thus any subsequent aggregation operations

would reflect this duplicate data, resulting in overestimates. The blending feature, however,

prevents this scenario from occurring by performing all aggregation prior to duplicating

data during the left-join.
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2.3 Data cleaning in Tableau

In this section, we discuss the current data cleaning capabilities of Tableau, including sup-

port for changing data values with aliases, calculated fields, and ad-hoc groupings. It should

be noted that all of these cleaning actions are manually specified by the user while they are

exploring their data visually.

Correcting data values with aliases. Tableau supports manual user intervention in re-

solving field names when schema matching fails (exact string match on the attribute name).

And once the schemas match and data is blended, the visualization can help provide feed-

back regarding the validity of the underlying data values and domains. If there are any

data inconsistencies, users can provide aliases for a field’s data values which will override

the original values in any query results involving that field. The primary mediator per-

forms a left-join using the aliases of the data values, allowing users to blend data despite

discrepancies from data entry errors and spelling variations. Tableau provides a simple user

interface for editing field aliases.

Transforming data values with calculated fields. Calculated fields are another aspect

of Tableau’s data model which support data cleaning. Calculated fields support arbitrary

transformations of original data values into new data values, such as trimming whitespace

from a string or constructing a date from an epoch-based integer timestamp. As with

database fields, calculated fields can be used as primary keys or join keys.

Manual entity resolution with ad-hoc groups. Last, Tableau allows users to organize

a field’s related data values into groups. These ad-hoc groups can be used for manual entity

resolution, such as binding multiple variations of business names to a canonical form. Ad-

hoc groups also allow constructing coarser-grained structures, such as grouping states into

regions. Data blending supports joins between two ad-hoc groups, as well as joins between

an ad-hoc group and a string field.
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Chapter 3

RELATED WORK

In this chapter, we discuss the existing literature and tools that support data enthusiasts

in their analytical workflows. This chapter is organized as follows. In Section 3.1, we first

present the capabilities and limitations of the state-of-the-art interactive visual analytics

tools. Then in Section 3.2, we discuss a complex analytical workflow step, data integration,

for which existing visual analytics tools provide limited support. Integrating heterogeneous

datasets is challenging because across datasets, the data values and schemas are not canoni-

calized or standardized. We discuss the latest techniques that address common data quality

problems through interactive cleaning of data in Section 3.3 and resolving duplicate enti-

ties, or deduplication, in Section 3.4. Note that this thesis does not solve any specific data

integration problem other than deduplication. The related work thus focuses primarily on

that latter problem.

3.1 Interactive Visual Data Analytics

There has been a wealth of commercial and academic visual analytics systems that support

data exploration through a visual interface with visual queries. Users author such queries

through drag-and-drop interactions with the visualization system’s Graphical User Interface

(GUI). Some popular visual analytics systems from industry include Tableau [113] and its

web-facing Tableau Public [112], Fusion Tables [46, 47], PowerPivot [86], Qlikview [98], and

Spotfire [1, 107]. Some notable systems from academia include Many Eyes [125],Visage [102],

DEVise [80], DataSplash [142], imMens [79], and VIQING [95]. These tools support what is

called the sensemaking model [21]: The typical analytical process starts with a question that

a data enthusiast seeks to answer. The data enthusiast then forages for relevant data unless

she already has a dataset to explore. Once the appropriate dataset is acquired, the data

is explored through an appropriate visualization. The user continues to interact with the
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visualization by, for example, drilling down to the details or pivoting out some dimensions.

To support the sensemaking process for data enthusiasts, these analytics systems share the

common usability characteristic that no programming or database experience is necessary

to query and explore the data; users instead author queries and visualizations through their

interactions (e.g., drag-and-drop or pull-down a menu) with the visualization system’s GUI.

Figure 1.1 shows Tableau’s GUI and Figure 3.1 shows Many Eyes’s GUI as two illustrative

examples.

Tableau, however, has the following distinguishing characteristics from other related vi-

sual analytics systems, which motivates our focus on the Tableau system in this dissertation:

1. A formal declarative language that combines query, analysis, and visualization into a

single framework (called Visual Query Language, or VizQL [110, 54]). See Figure 1.1

(bottom) for an illustrative example. VizQL is not visible to the user, but rather is

automatically generated by the system in response to the user’s interactions with the

GUI. It is simply an intermediate representation describing the data and visualization.

2. An architecture that compiles the VizQL specification automatically into two parts:

the queries (SQL or MDX) and the drawing commands necessary to generate the

visualization. This gives Tableau users the unique flexibility of changing the query

used to fetch the data and their view of it simultaneously.

3. Incremental view/visualization construction in which the user explores a subset of the

full dataset (e.g., applying a row-level filter or projecting a subset of the columns)

at-a-time. The systems from related work, in contrast, load the entire data set first

from disk to the in-memory database before the user can issue queries. This model

either requires that the user already knows what questions to ask (not natural for

exploring a database) or incurs the overhead of loading unnecessary data.

4. Query federation, which supports flexible exploration of one or multiple heterogeneous

data sources at a time, integrating their result sets on-the-fly. In contrast, the visual-

izations systems from related work that also integrate data [46, 47], require that the

entire data sources be integrated before they can be explored and visualized. Again,

this forces the user to know what queries to ask in advance, which is not natural for
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Figure 3.1: GUI for uploading data and creating a visualization in the Many Eyes system.
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exploration, or to perform potentially unnecessary extra work .

5. Basic manual data cleaning support for: (1) entity resolution, (2) aliases for fixing

inconsistent data values, and (3) basic string transformations (e.g., trim whitespace,

upper/lower case, etc.). However, these cleaning operations are all manually specified

and the system does not provide any assistance on predicting data cleaning issues nor

on resolving them.

These features make it possible to incrementally build data views and visualizations,

which is key to smoothly supporting interactive data exploration in the sensemaking process.

Users author VizQL expressions by dragging and dropping fields from their datasets onto a

visual canvas. In this dissertation, we thus take a pay-as-you-go approach to data cleaning

by focusing on cleaning the data that actually impacts the view/visualization. We refer the

reader to Chapter 2 for more details on Tableau.

In contrast to Tableau, many of the current visual analytics systems lack support for data

federation, integration, and cleaning. Separate tools also exist for supporting data federation

(e.g., IBM’s InfoSphere Federation Server [62] and Cisco’s Data Federation tool [25]), data

integration (e.g., Microsoft Data Explorer [82]) and data cleaning (e.g., Trifacta [117] and

Wrangler [68]). However, in this dissertation, we focus on Tableau as it provides the closest

unified model of visualization with initial support for data cleaning and integration.

In Chapter 4, we present a measurement study of Many Eyes and Tableau Public. We

study how these systems are being used for visual data analysis and find that they have

much room for growth: they attract large numbers of users but most users do not push the

limit of what these tools can do.

3.2 Interactive Data Integration

Integrating different data sources is challenging due to the fact that data is heterogeneous:

different schemas, deviations of values from a canonical form, different data granularities,

different domains, etc [34]. There are two primary activities that require significant human

effort upfront: creating the mediated schema and the semantic mappings between the in-

dividual data source schemas and the mediated schema [34]. The mediated schema is the
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schema of the result set or view over the original data sets. A concrete example is shown in

Figure 2.5. The semantic mappings are typically a set of wrapper code, which allow infor-

mation to be retrieved directly from original data sets. Such integration activities require

detailed knowledge of the domain as well as an understanding of the queries that need to

be supported.

Data integration is an old problem involving matching the schemas between two data

sets (called schema matching) and issuing queries to the mediated schema such that they

can be mapped to the original data sets to retrieve the requested information (called schema

mapping). Many solutions have previously been proposed for the tasks of schema mapping

and matching [65, 82, 41, 97, 99, 59]. Related work on dataspace systems [39, 28] advocates

automating these two primary integration activities as much as possible. For example, as-

sisting users with the schema matching by allowing fuzzy matches on identifier names instead

of insisting on exact-matches. The resulting integration should give best-effort answers and

allow for improving the system in a pay-as-you-go fashion. In other words, the user should

get immediate benefit of investing time in using the data management functionality. For

example, visualization systems like Tableau and Fusion Tables [46, 47] can help infer some

missing schema-level information (e.g., data types of columns) by checking the type of the

data values in that column. Such systems also leverage the type information of the columns

to suggest relevant visualizations (e.g., if the column contains latitude/longitude coordi-

nates then the system suggests a map view). Other pay-as-you-go data integration only

systems like InfoChimps [65], Microsoft Data Explorer (formerly the Montego project [82]),

Clio [41, 97], Clip [99] (which builds on Clio), and MDQ [59] generate schema matches

and mappings semi-automatically using a combination of inference techniques and human-

supplied annotations (e.g., by drawing lines across schema elements or textual ones that

carry transformation semantics). In summary, the pay-as-you-go approach to data inte-

gration is a natural fit for exploratory visual analysis, allowing the user to pay the cost of

integrating her datasets incrementally as she explores them.

Currently there are two primary types of pay-as-you-go integration systems: federa-

tion [34] and transformation (i.e., extract-transform-load, or ETL) [34]. The federated

approach queries the data at the sources (only moving the data that satisfies the query)
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and combines the result sets on-the-fly using a distributed query processing engine. In con-

trast, ETL systems load the data into a local data store in advance of query processing.

Recent prior work that combines visual analysis with data integration [46, 47, 98, 106, 107]

take an ETL approach. Tableau, in contrast, employs a federated approach that integrates

data that has been first aggregated at the sources. This approach is well-suited to interac-

tivity, as it (1) only moves data necessary to answer a question (2) only moves aggregated

data, and (3) leverages the power of the fast database systems.

In this dissertation, we address a common data quality problem, deduplication, which

occurs in the context of integrating two data sources.

3.3 Interactive Data Cleaning

Data can contain a variety of quality issues such as inconsistent or wrong values, missing

values, and duplicate entries. Data cleaning deals with the detection and removal of such

errors and inconsistencies from data in order to improve the quality of data. Data quality

problems are present in single data sources, such as text files and databases, e.g., due to

misspellings during data entry, missing information, or other invalid data. Data quality

problems are worsened by data integration because of inconsistencies in data representation

between the original data sources and the presence of redundant but not identical infor-

mation. As a result, data cleaning is often a first step taken by users when they integrate

heterogeneous data sources because the sources often contain redundant data in different

representations (e.g., deduplication). Different data representations need to be canonical-

ized and deduplicated to ensure that the user’s analytical queries are over accurate and

consistent data.

State-of-the-art data cleaning systems such as Wrangler [68], Potter’s Wheel [100],

Google Refine [61], and Microsoft Data Explorer (formerly Montego [82]) support an ETL-

style of first loading all of the data into a local data store and performing the cleaning

operations holistically. These systems present the data visually as a spreadsheet and sup-

port basic data cleaning transformations such as splitting or merging data columns, table

pivot/unpivot, upper/lower case values, etc. This approach to cleaning, however, is expen-

sive and conflicts with the real-time constraints in interactive, exploratory environments.
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Moreover, it forces the user to either clean ahead of time, delaying time to first visualization,

or to context-switch away from the visualization. Interestingly, only one of the interactive

data cleaning systems from the literature takes an incremental approach to data cleaning

(DBWipes [144]). In this system, users execute aggregate queries, and the system presents

the result visually where the user can interactively detect and clean data value errors in the

query results. While the DBWipes system helps users identify the source of data quality

problems while exploring the data visually in increments, it requires the user to write ag-

gregate SQL queries and provides no support for complex data cleaning challenges such as

deduplication. This system, thus, has limited applicability to data enthusiasts. Moreover,

none of these state-of-the art interactive systems support cleaning/detection operations over

integrated data sources. An important cleaning operation, deduplication, which we discuss

next, is thus unsupported by the current visual analytics systems. Even state-of-the-art

industrial data cleaning systems such as Trifacta [117] offer only basic support for dedupli-

cation (i.e., exact matches on all attributes).

3.4 Deduplication

In this section, we present the problem of deduplication in detail. We begin with a descrip-

tion of the deduplication problem and present some basic examples in 3.4.1. Then in 3.4.2,

we discuss the common deduplication workflow steps taken by state-of-the-art systems from

the literature. Deduplication is typically modeled as a binary classification problem, in

which a matching function is used to classify pairs of entities as matching or not. How-

ever, manually creating an accurate matching function requires technical expertise. Thus,

in supporting data enthusiasts, we focus on presenting the literature in which this matching

function is a classifier that can be automatically learned from a labeled set of examples

in 3.4.3.

3.4.1 Deduplication Problem

Deduplication is a fundamental problem in data integration dealing with multiple different

representations of the same entity (due to non-canonicalized data values across the data

sources being integrated). One common data quality problem is the existence of duplicate
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Table 3.1: Rows r1 and r2 are exact duplicates and rows r1 and r3 are fuzzy duplicates.

First Name Last Name Address Phone

r1 Jennifer Smith 123 Elm St. (206) 867 5309

r2 Jennifer Smith 123 Elm St. (206) 867 5309

r3 Jenny Smith 123 Elm Street (206) 867 5309

records that refer to the same real-world entity. This problem can occur in any dataset,

but it is most common in datasets that are the result of data integration. For example, the

same restaurant may appear under two different phone numbers. The same product may

use different abbreviations in its name or may include a different description. Therefore, in

order to integrate two or more data sources it is necessary to recognize representations that

refer to the same real-world entity. In integration scenarios where the duplicate entities

are exact replicas, they are trivial to identify and remove. A simple select-distinct query

suffices. However, in most cases the duplicate entities are not exact replicas (e.g., the data

may contain misspellings, be incomplete, incorrect, or inconsistent). Given the tendency

for data to exhibit heterogeneity in values, the task of identifying duplicates is challenging.

This setting is the one that we consider in Chapter 5 of this dissertation. Thus, such

duplicates are also called fuzzy duplicates [24]. We use the term duplicate to refer to fuzzy

duplicates. In Table 3.1, records r1 and r2 are exact duplicates since they match exactly

on the data values for all four attributes. Row r3 is a fuzzy duplicate with either r1 or r2

since two of the attributes (Last Name and Phone) match perfectly on the data values, but

the other two (First Name and Address) attributes are close enough that they are likely to

be representing the same entity: “Jennifer” vs. “Jenny” and “123 Elm St.” vs. “123 Elm

Street”.

Deduplication (also known as entity matching, entity resolution, duplicate detection,

or record matching) has a long history in the databases literature (see [24, 34, 44] for the

basic principles and [37] for a recent survey). In the information retrieval literature, it is

known as near-duplicate detection [52], and is applied in the context of detecting duplicate
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Figure 3.2: Duplicate detection workflow steps for a relation R, which is suspected to contain
duplicates.

documents returned by (Web) search queries.

3.4.2 Steps in Deduplication

The high-level approach to deduplicating a set of records, R, takes the following steps. The

process requires as input a similarity function that takes a pair of tuples (t1, t2) from R

and produces a similarity score [33]. This similarity function, together with a similarity

threshold, can be applied to all pairs of records in R to determine which ones match [37].

Alternatively, a system may rely solely on users to indicate which tuples match [71, 14].

Multiple tuples can correspond to one entity and such clusters further need to be identi-

fied [2, 12, 129, 122, 130]. Once matching tuples are identified, they must be merged [51, 16].

To make the previous steps more compute-efficient by reducing the number of record com-

parisons, blocking techniques are used [13]. Blocking is an inexpensive heuristic filtering

step that either partitions the tuples that get compared or removes pairs with low similarity

scores.

Figure 3.2 shows a typical duplicate detection process. A set of records R is suspected

to contain duplicates. The key deduplication steps are as follows:
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Step 1: Define a similarity function. The promising record pairs are input to a

similarity function, which produces a quantitative value ∈ [0,1] that represents how close

the data values are to each other for individual attributes. These quantitative values (i.e.,

features) are stored in a feature vector for each pair, as shown for our running example

in Table 3.2. Commonly-used similarity measures for string typed attributes, for example,

include string equality, edit distance, jaccard, and cosine similarity [37]. For numeric types,

some functions include euclidean and manhattan distance.

Step 2: Define a matching function. Next, to compute the overall similarity between

two records (called the matching function), the building blocks are the similarity measures

between individual attributes in these records. The similarity function can be complex,

consisting of a weighted set of conjunctive and/or disjunctive terms of similarity functions.

The similarity function applies similarity thresholds to individual similarity measures, which

are used to decide whether the pair is indeed a duplicate or not [33].Alternatively, a system

may rely solely on users to indicate which tuples match [71, 14].

Step 3: Cluster together similar duplicate pairs. Multiple tuples can correspond

to one entity and such clusters further need to be identified [2, 12, 129, 122, 130]. One

common method is to compute the transitive closure among the duplicate pairs. This

dissertation does not apply clustering to pairs, but it could be augmented to do so to help

speed up the deduplication effort.

Step 4: Data fusion. Once duplicates have been identified, the next step is to combine

or merge them and thus produce a single, possibly more complete representation of that real-

world object. During this step, possible data conflicts among the multiple representations

must somehow be resolved. This step is called data fusion and is not covered in this

dissertation. Instead, we refer the reader to a recent survey on data fusion [16].

Blocking. To make the above steps more compute-efficient by reducing the number of

record comparisons, blocking techniques are used [13]. Blocking is an inexpensive heuristic

filtering step that either partitions the tuples that get compared or filters/eliminates pairs

with low similarity scores. The idea behind blocking by partitioning is to reduce the number

of comparison operations by restricting the matching comparisons to occur only between the

tuples in their given partition. Tuples are placed in partitions based on having similar data
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Table 3.2: Example table of feature vectors computed for R x R. String equality is applied
to the single-word attributes, First Name and Last Name. The jaccard similarity measure
is applied to Address and Phone, which each contain a set of strings.

StrEq(First Name) StrEq(Last Name) Jaccard(Address) Jaccard(Phone)

r1,r1 1.0 1.0 1.0 1.0

r1,r2 1.0 1.0 1.0 1.0

r1,r3 0.0 1.0 0.5 1.0

r2,r1 1.0 1.0 1.0 1.0

r2,r2 1.0 1.0 1.0 1.0

r2,r3 0.0 1.0 0.5 1.0

r3,r1 0.0 1.0 0.5 1.0

r3,r2 0.0 1.0 0.5 1.0

r3,r3 1.0 1.0 1.0 1.0

values on a particular attribute, so only the comparisons are applied to tuples that share

a common attribute. One example of this partitioning method is called locality sensitive

hashing [108]. A recent survey comparing all blocking methods can be found in [108].

Supervised learning. A simple approach to composing a matching function is to com-

pute the similarity between individual attributes for a pair of records and then compute

a weighted aggregate similarity between the records [33]. However, determining a good

weighting strategy requires an expert to build and tune. Thus, the current state-of-art

uses a learning based approach [23, 45, 52, 72, 73, 93, 116] to automatically generate an

appropriate matching function. These systems typically learn and return a classifier rather

than a function and threshold. To learn a classifier, these methods require a set of training

example pairs. A good set of training example pairs is difficult to generate, which is a

drawback of this approach.

Unsupervised learning. Supervised learners build a matching function from a labeled

training set. The unsupervised learners, in contrast, expect this function (created by a
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domain expert) as input to identify all the records that correspond to the same entity. This

line of work typically focuses on the cases where more than two records can correspond to

the same entity and the goal is to identify such clusters of matching records. There are two

primary bodies of work for unsupervised classification (in chronological order): probabilistic

matching [38, 140] and clustering [37].

The earliest work on deduplication, probabilistic matching, uses a Bayesian approach to

classify records [38]. This approach assumes that it is given a feature vector x for each pair

and a matching function as input and assigns each pair to a class (match or non match). The

matching function is based simply on probabilities for a given pair (α,β): if the probability

of the match class, given x, is greater than the probability of the non-match class, then (α,β)

is classified as a match. However, in order to build an accurate classifier this approach needs

to first compute these probabilities as probability distributions of each of the match classes

for the given dataset. To estimate these probability distributions, later work [140] applies

the general expectation maximization algorithm over a sample of the data. However, this

classification technique was shown to only work well in certain conditions, for example, when

the dataset is separable and has a large percentage of matches (i.e., greater than 5%) [139].

Since it is hard to construct accurate matching functions, the most recent work on clus-

tering [2, 12, 14, 50, 71, 122, 129, 130, 131, 134] assumes it is given a matching function as

input. The approach then is to use this function to identify all of the clusters of records that

correspond to the same entity, with the idea that similar records will be near each other. A

standard approach to generating the clusters is to compute the transitive closure on record

pairs (taken from the cross-product S) that have a similarity above a pre-specified global

threshold, t [129]. The hard part is that it can be computationally intensive to apply the

matching function to all the pairs. [136] addresses that problem with the goal to produce

cleaner datasets incrementally by first applying the matching function to the pairs of tuples

more likely to be a match, i.e., with similarities over a threshold t. However, since all clus-

tering techniques from related work require this matching function as input, it has limited

applicability to data enthusiasts and visual analytics systems.
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3.4.3 Learning a Classifier for Deduplication

Supervised learning: A supervised learning algorithm is a machine learning task that

builds a model from a sample of labeled examples. In the context of deduplication, these

examples are pairs that are sampled from the cross-product, S = R x R, of the input

relation, R, that we seek to clean. The algorithm produces a classifier, which is then used

for mapping new examples to either of the two output classes (match or not). Prior work on

supervised techniques has considered a variety of classifiers such as Support Vector Machines

(SVMs) [116, 93], decision trees [45], and naive Bayes [38]. The goal of a supervised learning

algorithm is to correctly assign the class labels for unseen instances by applying the learned

function. There are two main approaches to create such a function: passive and active

learning, which is discussed next.

Passive learning. The basic learning algorithm selects a random sample of pairs

from S, asks the user to label them as either duplicates or not, and then learns a classifier

using that training data. Passive learners for deduplication can be found in the databases

literature [23, 73] and in the information retrieval literature [52, 72]. One problem faced

by passive learners for deduplication is in obtaining enough or any examples of duplicates

in the samples due to their relative imbalance to non-duplicates in S. The state-of-the-art

techniques [23, 73] rely on blocking to reduce the relative representation of non-duplicates

in |S| before sampling. Even after blocking, however, the fraction of duplicate examples in

a random sample can remain small, leading to a poor classifier.

Active learning. Active learning improves on the above approach by iteratively train-

ing classifiers on increasingly large and carefully selected training examples. As above, the

initial step is to learn a classifier on a random sample of training examples. Active learn-

ing then selects additional training examples with the purpose of improving the classifier’s

quality. Several methods exist to select the additional examples that are most informative.

Current methods to assess the informativeness of training examples measure the disagree-

ment of the component classifiers in its prediction of labels. A component classifier is a

classifier that is trained on a random sample (with replacement) of the original training

dataset. There will be multiple component classifiers created. The intuition is that the
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more the component classifiers disagree on the label for an example pair in the unlabeled

set, the more likely that the classifier will learn something new from this example and

thus (on the re-training step) produce an improved classifier. One method applies the

bootstrap [36] to estimate the classifier’s uncertainty [93] in its predictions of labels. The

uncertainty is defined as the variance of the classifier in its predictions of labels for examples

in the testset/unlabeledset. The bootstrap estimates the overall uncertainty of a classifier

by considering the overall agreement among the component classifiers on predicting labels

for pairs in the unlabeled set. Another method measures the disagreement among an ensem-

ble of decision trees (called a random forest [17]) to estimate the classifier’s entropy [105]

in its label predictions in the unlabeled set [45]. The higher the entropy, the stronger the

disagreement, and the more informative the example pair is. Whatever the method, active

learning then retrains a new classifier and repeats the process. Learning stops when the

classifiers stop improving across iterations.

While existing methods produce high-quality classifiers, one key problem is that it often

comes at a cost to the user: requiring hundreds to thousands [45, 93] of labels to clean

entire datasets that contain hundreds to thousands of rows. This time-consuming labeling

effort imposed by existing approaches conflicts with the interactive, real-time constraints

exploratory visual analytics systems impose to support sensemaking. The focus of the

deduplication techniques in this thesis, in contrast, is to reduce the user’s labeling effort.

In Chapter 5, we develop a new method that addresses this problem. It is most similar to

the aforementioned state-of-the-art active learning systems with the key differences of 1)

only asking the user to label data that is currently being visualized, 2) selecting examples to

learn from that actually impact the visualization/view, and 3) stopping the cleaning process

when it detects that additional labels will not change the visualization further even if they

could yield a better overall classifier. This new method builds on the state-of-the-art active

learning algorithms [45, 93]. We describe these algorithms along with our modifications to

them in greater detail in Chapter 5.
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Chapter 4

MEASUREMENT STUDY OF VISUAL ANALYTICS SYSTEMS

Visual data analytics systems have been available for several years now [113, 63, 46].

Such systems let people upload data, create visualizations, and share them. The most

prominent, Many Eyes, started in early 2007, amid considerable attention from both the

academic community and the media. There is little information, however, on how and

how much these systems are actually used. Early studies of Many Eyes [27] indicated a

significant uptake, as well as collaboration between users; but there have been no follow-up

studies on usage, nor have there been comparable studies of other web-based or web-centric

visualization systems.

To answer these and other questions, we study Many Eyes and Tableau Public [90].

Many Eyes is the oldest system (now as part of IBM Watson Analytics [63]), and is also the

only one that has been studied by the visualization community so far. Tableau Public allows

users to download and use the Tableau Desktop application for free (with some limitations,

see Section 4.1.3). While Tableau provides more powerful features than Many Eyes, it

also presents a much more complex user interface and requires more experimentation and

learning. Furthermore, the system architecture (see Figure 2.1), integrates a visualization

front-end with a database management system (DBMS) back-end [132, 46]. Analytical

workload queries are federated across a variety of heterogeneous data sources (e.g., files,

cubes, data marts, and databases) to obtain the necessary data to render each visualization.

Please see Chapters 2 and 3 for details about Many Eyes and Tableau.

In spite of their growing popularity, little is known about how these systems are being

used. In most cases, even basic statistics such as the number of users are not published (e.g.,

Fusion Tables), let alone any details of user activity. As our society continues to become

“data-enabled”, it is important that we continue to improve data management and analysis

tools. If we are to build better online, data visualization and sharing systems, the first step



43

Figure 4.1: A common visualization type on Many Eyes is the word cloud (left); complex
multi-view dashboards are popular on Tableau Public (right).

is to understand how they are being used today. The key contribution of this chapter is to

shed light on this exact question: How are online data visualization and sharing systems

being used?

Research questions. We tackle the question of how both of these systems are being used

from the perspective of the database community. Our study is focused on three topics:

users, visualizations and the data sets they are based on, and advanced features.

We lack demographic and other information about users, but we can analyze their be-

havior as far as publishing visualizations and data sets are concerned. In particular, we ask

the following questions (Section 4.2.1):

• How is the number of authors (a user who creates a data visualization and, optionally,

shares it with others) growing over time?
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• How productive are users or authors?

• How well do both systems retain authors or users more generally?

• How do data sizes and query workloads impact the user experience?

Next, since these two systems were designed for sharing and collaboration, we assess the

degree of interaction with the online published content and how often users collaborate over

a common dataset or visualization. In Section 4.2.2 we answer the following questions:

• How do users interact with published content?

• Do authors collaborate over a common dataset or visualization to create new content?

Turning to the core, visualizations and data sets, we ask a number of questions about

the data people use and the visualizations they create (Section 4.2.3):

• How many rows of data do people work with?

• What dimensionality does the data have?

• How many of the data dimensions are used in visualizations?

• What types of data do people want to visualize?

• What visualization techniques do they use?

Finally, we consider advanced features that include multiple data sets and/or multiple

views, either as small multiples or as multi-view dashboards (Sections 4.2.4 and 4.2.5):

• Do users analyze multiple data sets when they can?

• How do they join/blend data sets?

• Do users create multiple views when they can?

• Can users construct interaction links between multiple views?

Background and method. The data was collected from each system, Many Eyes and

Tableau Public, from their inception up to December 31, 2012 (Table 4.1). For Many Eyes,

the data thus spans 24 quarters or six years: Q1/2007 through Q4/2012. For Tableau

Public, the collected data spans 12 quarters (three years): Q1/2010 through Q4/2012.
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System Start Date # Visualizations # Workbooks # Datasets Users

Many Eyes January 1, 2007 149,395 (3.2/user) n/a 358,880 (7.8/user) 46,048

Tableau Public February 10, 2010 269,609 (11/user) 73,404 (3/user) 107,596 (4.4/user) 24,563

Table 4.1: Summary of the collected data from Many Eyes and Tableau Public, from each
system’s inception until December 31, 2012.

The data contains 46,048 Many Eyes user accounts and 24,563 accounts from Tableau

Public (only counting users who have published at least one visualization or data set).

For Tableau Public, each workbook specifies the data sources analyzed (including all of

the schema metadata), the types of visualizations produced, and all of the specific VizQL

definitions [109] that produce each visualization. For Many Eyes, data was collected on the

visualization types used as well as a heuristics-based classification of data into data types.

4.1 Related work

In this section, we present a high-level overview of the two visual analytics systems that

we study in this section, Many Eyes and Tableau. For more details on these two systems

please see Chapters 2 and 3.

4.1.1 Visualization for the masses

In the wake of highly successful “web 2.0” websites like YouTube, the idea of socially-driven

visualization websites [75] spawned a number of experiments, both from large, established

enterprises (like IBM’s Many Eyes) and small start-ups (like the now-defunct Swivel). Simi-

lar to YouTube, the goal was to enable anybody to create and publish visualizations, embed

them in blogs, comment, and collaborate by sharing data.

Collaboration was a driving force behind Many Eyes and also similar systems like the

short-lived experiment sense.us [58]. Later work extended the idea of commenting to more

structured collaboration for sense-making [138].

Crowd-sourcing and citizen science experiments have a longer history in the sciences,
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such as with the Pathfinder experiment [81]. Both sites studied in this chapter rely on users

organically creating content, though this has been called into question recently; a more

goal-oriented approach creates more and higher-quality responses [137].

4.1.2 Many Eyes

Many Eyes [83, 125] is a Web-based visualization service that allows users to upload datasets

and create visualizations. Unlike Tableau Public, all visualizations are created and published

directly through a Web browser. The site was launched in early 2007 by IBM’s Visual

Communication Lab as the first online service that provided ways to not only create static

charts, but interactive visualizations that could easily be embedded in blogs and other

websites. While both systems share many of the same view types (i.e., bar, line, text,

pie, area, scatter, and maps), Many Eyes includes a number of unique techniques that are

not available in any other software. In particular, Many Eyes’ text views – including word

clouds [123], phrase nets [121], and word trees – let users experiment with text data in ways

that are still unmatched in most other visualization tools and services.

In addition to the visualization tools themselves, Many Eyes also pioneered the notion

of social visualization. The typical Web 2.0 feature of leaving a comment has the added

twist that it also contains a live thumbnail reflecting the configuration of the visualization

the user was looking at when writing the comment. Users can also browse existing data

sets and visualizations and create new ones from what others have uploaded. Many users

can thus benefit from the work of somebody scraping or otherwise collecting data.

Other than the original papers by the people behind Many Eyes [27], we are aware of only

one other study that looked into visualization activity on the site. The Guardian published

an informal analysis of Many Eyes in April 2012 [114]. They studied the provenance of the

data sources, and reported that the US Census Bureau was one of the most widely used

sources. They also presented the most common topic tags for visualizations, most active

users, and the number of data sets uploaded per user.
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4.1.3 Tableau Public

Tableau Public [112] is a Web-based visualization platform that launched in February of

2010 (Figure 4.1(right)). In contrast to Many Eyes, visualization views are created in

(currently Windows-only) Desktop client and then published to the web. Tableau Public is a

variation of the commercial Tableau Desktop, with the following restrictions: visualizations

are limited to 100,000 rows of data, accounts are limited to 50 MB of storage, and content

can only be saved by publishing to the Web-facing Tableau Public servers.

Similar to Many Eyes, all content published on Tableau Public can be downloaded

by anybody, including the data and the workbook containing all visualization definitions.

Visualizations can also be embedded on other websites or shared through social media or

email. Tableau Public, however, was designed to have a low “author to consumer” ratio

whereas Many Eyes focused more on collaboration and conversation between author and

viewer. As of late February 2013, Tableau Public visualizations have been viewed over 100

million times.

Tableau Public allows for more flexibility in the creation of visualization, though it lacks

some of the visualization types that Many Eyes has (in particular ones for text visualization).

Interaction is generally richer, with control over mouse-over tooltips, selection, etc. It is

also possible to build multiple-view dashboards that can have actions between the views to

filter or highlight data based on user interaction.

4.1.4 Terminology

Many Eyes and Tableau Public differ in their terminology and the way data and visu-

alizations are organized. Many Eyes treats data sets and visualizations as independent

units: users can publish data without creating visualizations, and create visualizations

from existing data already on the site (their own or others’) without the need to upload

first. Tableau Public, on the other hand, packages data and visualization definitions into

workbooks. Workbooks typically contain multiple worksheets that each contain one type of

visualization. Worksheets can be combined into multi-view dashboards that can also include

interaction (highlighting, filtering) between the individual views.
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Workbooks can include multiple data sets, and individual visualizations can be created

with a single data source or by joining multiple data sources together; the latter is referred to

as blending [92] and is described in detail in Chapter 2. To review, the data blending feature

combines data on the fly from multiple heterogeneous sources without having write a query

or specify a data schema with dependencies. A user authors a visualization by selecting the

columns from an initial (primary) data source which establishes the context for subsequent

blending operations in that visualization. Data blending happens when the user drags in

fields from a different data source, known as a secondary data source. Additionally, the

visualization can be further modified by, for example, adding more secondary data sources

or drilling down to finer-grained details.

4.2 Analysis results

We present the key results of our analysis, organized around our five core questions about

overall workload and author behavior, collaborations, single-dataset analytics, multi-dataset

analytics, and multi-view visualizations.

4.2.1 Author behavior

In the following, authors are defined as users who have published at least one data set or

visualization. Due to the nature of the data collection, users who never publish anything

are not included.

New authors. To better understand the long-term behavior of authors on these systems,

in this section we first answer the question, what is the growth of new authors until the

end of 2012? Since its inception in January 2007, Many Eyes, has grown to over 46,000

authors who have published over 358,000 data sources and more than 149,000 visualizations.

For Tableau Public, its user-base includes 24,500 authors who have contributed over 73,000

workbooks, 107,500 datasets, and 269,000 visualizations (Table 4.1).

Figure 4.2 shows how the systems are growing over time in terms of the number of

opened accounts. As the figure shows, since its inception in January 2007, Many Eyes, has

grown to over 46,000 authors who have published over 358,000 data sources and more than

149,000 visualizations. For Tableau Public, its user-base includes 24,500 authors who have



49

2007 2008 2009 2010 2011 2012 2013
Activation Date (Year)

0K

10K

20K

30K

40K

50K

R
un

ni
ng

 S
um

 o
f A

ct
iv

at
ed

 A
cc

ou
nt

s System
Many Eyes (max = 46,048)

Tableau Public (max = 24,563)

Figure 4.2: Cumulative growth of Many Eyes and Tableau Public activated user accounts.
This graph shows the running count of active user accounts since the inception of Many
Eyes (Q1, 2007) and Tableau Public (Q1, 2010). By the end of Q4, 2012 (total time span of
6 years for Many Eyes and 3 years for Tableau Public), Many Eyes had 46,048 user accounts
and Tableau Public had 24,563.

contributed over 73,000 workbooks, 107,500 datasets, and 269,000 visualizations (Table 4.1).

We define authors to be users who have published at least one data set or visualization.

These systems thus have moderate numbers of users today, but their popularity

is continuing to grow significantly each year.

Author productivity. How productive are authors in publishing content? Two types of

content can be published to Many Eyes and Tableau Public: data sources and visualizations.

Figure 4.3 shows the Probability Distribution Functions (PDFs) of the number of published

data sources (top) and visualizations (bottom) per author on Many Eyes and Tableau

Public. The publication trends for authors on both systems are quite similar:

Overall these statistics reveal that most authors on Many Eyes and Tableau Public pub-

lish only a few data sources and visualizations. As Table 4.2 shows, half the users (or

almost half) are one-time users who publish only one dataset or visualization.

The remaining users are mostly light users who publish two to four visualiza-

tions. Only 10% to 17% are prolific users who publish five or more data sets
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Number of Data Sources Published

1 ≤2 ≤3 ≤4 ≤5

Many Eyes 44% 65% 76% 83% 86%

Tabeau Public 45% 63% 73% 79% 83%

Number of Visualizations Published

1 ≤2 ≤3 ≤4 ≤5

Many Eyes 52% 72% 82% 87% 90%

Tabeau Public 53% 71% 80% 85% 88%

Table 4.2: Cumulative fraction of users who publish up to a given number of data sources
or visualizations (e.g., 80% of Tableau users publish 3 visualizations or less).

or visualizations. Furthermore, the long tail starting around 14 data sources shows that

while these most prolific authors are the minority (with 2–5% representation), their contri-

butions are quite varied (ranging up to 555 data sources for Many Eyes and 715 for Tableau

Public). Similarly, for visualizations published, there is a long tail of the remaining top 10%

contributing authors. The number of workbooks (visualizations for Many Eyes) published

for these authors range from six to 553 for Tableau Public and five to 13,284 for Many Eyes.

The latter number is an outlier caused by the fact that Many Eyes allows users to create

visualizations without logging in, so the most prolific user on that system is Anonymous.

The second-most productive user has only created just over 1,000 visualizations, with the

number rapidly decreasing in a typical power-law distribution from there. Among the top

20 users, we find only one member of the Many Eyes team. Tableau Public does not have

the notion of anonymous users and thus also does not have a clear outlier like Many Eyes.

It does have more active participation from its own employees though, with four of the top

20 contributors being Tableau employees.

Given these results, we categorize Many Eyes and Tableau Public authors into three

main groups based on their publication activity: 1) one-time users publish one dataset or
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Figure 4.3: PDFs of Many Eyes and Tableau Public per author publications of data (top)
and visualizations (bottom). Most authors on both systems have one or a small number of
data sources and content, while a small number are prolific. The x-axis was cropped for
readability, there are authors with hundreds of visualizations and data sets.

visualization; 2) light users publish two to four; 3) prolific users publish five or more data

sets or visualizations (Figure 4.4). The user-base on Many Eyes and Tableau Public is

dominated by one-time and light users.

Author retention and churn. How well do both systems retain authors? Figure 4.5

presents the trends of author retention and churn. We group users into cohorts based on

the quarter in which they published their first visualization (workbook on Tableau Public)
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System
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Percent of Authors
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44%
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prolific users

light users

one time users

Figure 4.4: Percent of authors who publish data and visualizations on Many Eyes and
Tableau Public (grouped by author cohort). Authors are divided into three main cohorts:
one-time users publish one dataset or visualization light users publish two to four; prolific
users publish five or more data sets or visualizations.

and track their publications. In comparing the activities of authors on these two systems,

we trace each cohort of authors for their first 12 quarters (three years).

Figure 4.5(b) shows that by the end of the 12th quarter, Many Eyes has 2,100 actively

publishing authors and Tableau Public has over 4,000 active accounts. Additionally, over

6,800 new visualizations are published on Many Eyes in its 12th quarter, (12,000 on Tableau

Public), as shown in Figure 4.5(a). Even though the total number of users and visualizations

is greater in Tableau Public than Many Eyes, both systems show a strikingly similar pattern

in terms of workload distribution between new and returning users in Figure 4.5(c). In the

graph all author accounts are new in the first quarter and thus not returning users. This

corresponds to the authors who joined Many Eyes and Tableau Public in the first quarter

that the systems were deployed on the Web (i.e., the 2007 Q1 cohort on Many Eyes and 2010

Q1 on Tableau Public). Among all of the authors who published in Q2, only 12% of these

authors on Many Eyes and 24% on Tableau Public had come from Q1 and had returned to

publish. In other words, by Q2 88% of the authors on Many Eyes were new and 76% of

the authors on Tableau Public were new. For Many Eyes, we see that by the last (12th)

quarter, only 15% are returning authors; for Tableau Public, however, 37% of all authors are

returning authors. Furthermore, these returning authors contributed 25% of the published

visualizations that quarter on Many Eyes (51% for Tableau Public). Overall, both systems
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Figure 4.5: Many Eyes (left) and Tableau Public (right) author cohorts for the first 12
quarters (3 years). Authors are grouped into cohorts based on the quarter in which they
published their first visualization or workbook. Every cohort contains a set of prolific
authors, which suggests that (a) overall usage will grow over time as (b) more people use
these systems. Tableau Public also has a high rate of prolific authors and a higher rate
of author retention than Many Eyes, as shown in (c), which suggests that users value the
richer visualizations.

exhibit the trend of high author turn-over. Looking at the percent of actively publishing

accounts by returning authors for each quarter in Figure 4.5(c), Many Eyes averages 17%

and Tableau Public averages 31% (not taking the first quarter into account).

To better understand this trend of author retention, Figure 4.6 shows the publication

activity of each author cohort group over time (i.e., percentage of workbooks contributed by

each cohort as that cohort ages). We compute the per quarter publication activity of each

author cohort group as the ratio of the number of workbooks published by a single cohort

in that quarter divided by the total number of workbooks published that quarter. After the

first quarter of activity, we see a significant drop off in the next quarter; no single cohort

contributed more than 27% of the workbooks on Tableau Public. Many Eyes has a similar
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Figure 4.6: Publication activity over time: % of workbooks contributed by author cohorts
on Many Eyes (left) and Tableau Public (right). In their second quarter of activity, no
cohort contributed more than 19% of the workbooks on Many Eyes. Similarly, on Tableau
Public less than 27% of workbooks came from returning authors in their second quarter of
activity. Over time, each cohort group publishes fewer workbooks on each system. However,
on Tableau Public the cohorts are more productive overall in publishing visualizations.

publication activity trend: in their second quarter of activity, no cohort contributed more

than 19% of the workbooks. As each cohort group ages on each system, we see that they

publish fewer workbooks overall. However, the author cohorts on Tableau Public exhibit a

higher overall publishing activity as the accounts age.

Low retention after initial use is common for free, Web-based services. According to a

2009 Nielsen report [84] only 40% of Twitter users returned to use the site after the first

month. However, other websites like MySpace and Facebook achieved retention rates closer

to 60%. This result was measured for these other three systems at the same point in their

respective user growth curves.

Account size limit. According to Figure 4.7 (top), we see that 90% of user accounts use

less than half of their 50MB quotas. Since each account contains datasets and workbooks

consisting of a collection of visualizations, we further study the sizes of workbooks published

on the site (see bottom of Figure 4.7) to see if the sizes of the visualizations are a limiting

factor. The figure shows that 90% of all workbooks are less than 762KB in size – which

means that most authors can publish multiple workbooks to their accounts and still be well

under the 50MB quota.
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Figure 4.7: Cumulative Distribution Function (CDF) of account quota usage (top) and
workbook file size (bottom) on Tableau Public

Query load. According to a study published on Web users’ tolerable waiting time [94],

2 seconds is considered an acceptable waiting time for loading Web pages. In Figure 4.8

we see that 84% of all visualizations on Tableau Public take less than 2 seconds to load

(includes both query and rendering time) and 98% are under 10 seconds (the accepted limit

for keeping a user’s attention focused on a given task [88]). Although attitudes and ex-

pectations change over time, the basic capability of human attention has not changed over

the decades [20, 88]. Thus, our results indicate that the majority of load times should not

negatively impact Tableau Public’s users.

Discussion. Overall, the results thus show a continued growth in users but a low retention

rate of these users. The overwhelming majority of users are either “one-time users” or
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Figure 4.8: CDF of worksheet load times on Tableau Public

“light” users. At the same time, users do not appear to be hindered by constraints on the

size of their accounts or the size of their visualizations. Similarly, query performance is

below well-known thresholds for user attention. A few direct implications of these results

are that (1) online visual analytics systems today have a user-base primarily comprised of

users with little to no experience. At the same time, (2) while attracting new users to

these systems is not a problem (Figure 4.2), retaining them beyond their first visualization

appears to be a critical challenge. While users are not limited by the performance of these

systems nor data sizes, there must be other more fundamental causes (perhaps relating to

usability or the fact that users tend to not be regular visualization creators) that lead users

to abandon the site. Finally, these systems focus strictly on small-data users. It would be

interesting to see if the above trends would change if the systems had support for big-data

users.
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Figure 4.9: CDF of workbook popularity on Tableau Public (max # user cookies = 52.0
Million )

4.2.2 User interaction and collaboration

Since both systems are designed for sharing visualizations and collaboratively analyzing

data, we explore the frequency of viewership, collaboration, and sharing in this section.

User interaction with published content. Based on a distinct count of user cookies, we

found that there are around 52.0 million unique visitors to Tableau Public. The visitors are

thus several orders of magnitude more numerous than the authors (only 24,500 authors).

Additionally, we found that the top 50% of all Tableau Public traffic is attributed to 244

distinct workbooks (or 0.3% of all workbooks). For the results presented in this subsection,

we did not have access to the equivalent traffic and viewership information for Many Eyes.

Figure 4.9 shows the distribution of workbooks by their viewing popularity. In this graph,

we split the workbooks into two groups to compare their relative popularity distributions:

those that were an author’s first publication and those that were a later publication. Since

first-time publications make up a sizable fraction of the overall total number of publications

(29%), we observe the viewership trends of this group of workbooks in comparison to the

trends of subsequent published workbooks. In this figure, we see that 42% of workbooks

that were an author’s first publication on Tableau Public are only viewed by a single user.
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Figure 4.10: Derived Tableau Public workbooks partitioned by publication time (top) and
nature of collaboration (bottom)

Interestingly, we see that, likewise, 53% of subsequently published workbooks are viewed

by one user. As expected, the curve for the most popular workbooks that were an author’s

first publication is sharper than workbooks that were not first publications (i.e., popular

workbooks tend to not come from first-time authors): At the 90th percentile, we see al-

most an order of magnitude difference in viewership with only 15 unique users for first-time

publications compared to as many as 151 for workbooks that were not the author’s first

publication. The top 1% of first-time publications received at least 1,500 views, with a

maximum viewership of over 1.7 million. In contrast, the top 1% of subsequent publications

received at least 10,000 views with a maximum viewership of 3.0 million.

Collaborations and new content published. To get a sense of the degree of collab-

oration between authors, where multiple authors edit the same visualization, on Tableau
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Public, we first explore how often authors take existing content and evolve it for their own

analytical needs (e.g., by changing the visualization content to explore some other dimen-

sion or measure) and then republish it with their insights. In our approach, we traced the

provenance of workbooks that were created by one author and edited and republished by a

different author (called a derivation). We initially found that a small fraction of workbooks

(only 6.4%) contain visualizations that were derived from other workbooks. Since so few

workbooks are derived, we tested to see if this was due to the fact that a lot of authors (55%)

simply publish a single workbook and never return. Figure 4.10(top) shows the breakdown

of workbook derivations grouped by whether or not it was the author’s first publication.

We see that although a workbook is about five times more likely to be derived if it is not

the author’s first publication, the probability of derivation remains minuscule.

Finally, Figure 4.10(bottom) shows the extent of the derivations behavior: most derived

workbooks are not derived again by other authors, but some workbooks have been exten-

sively evolved by different authors (e.g., 28 workbooks were derived > 4 times). We thus

categorize workbooks into two main groups: 1) those that were derived multiple times, but

by alternating between the same two authors as in a Direct Collaboration and 2) those with

one or more derivations, but by a different author each time as in an Indirect Collabora-

tion. Interestingly, this figure provides evidence that some authors actually are directly

collaborating back and forth with each other and publishing new derived workbooks. This

finding on direct collaboration demonstrates that interesting visualizations can spark cre-

ative discussions amongst authors. And since there is no feature in Tableau Public that

supports such direct collaborations, authors are forced to manually search for visualizations

using a search engine and collaborate through some third party website (such as a blog)

or through email. We see a need, therefore, for online visual analytics systems to better

support collaborative analytics.

Unfortunately, no such equivalent derivation information is available for Many Eyes.

However, in order to get a sense of the degree of influence one author’s contributions have

on other authors, we show in Figure 4.11 how often authors reuse datasets uploaded and

shared by others for their visual analysis in Many Eyes. In this figure, we see that only

6% of datasets are used by multiple authors and that 20% of datasets are used in multiple
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visualizations. Some users are publishing multiple visualizations for a given dataset. We

similarly cannot plot Figure 4.11 for Tableau Public because published workbooks make a

copy of the data being visualized.

Overall, however, the frequency of reuse of other authors’ data on Many Eyes is consis-

tent with the derivation results presented for Tableau Public.

Discussion. The clear conclusion from the above results is that online visual analytics

systems are read-heavy today: Orders of magnitude more people are viewers compared to

authors. Additionally, as is typically the case for database access patterns, viewership is

skewed toward a small fraction of hot visualizations. Furthermore, as expected, first-time

publications, which account for a large fraction of all publications, are less likely to be

shared, derived, or viewed by a large audience than subsequent publications. At the same

time, however, some first-time publications can be extremely popular. Also, in general

workbooks are not likely to be derived from other workbooks and republished. Hence, true

collaboration remains limited between users. Incentivizing and supporting collaborations

remain critical challenges for today’s online, visual data analytics systems.

Overall, we find that authors tend to bring their own data and do not leverage the

contributions of content from other authors. Since one of the main points of these online

analysis systems is collaboration, we need to develop tools that can help them find and

connect to other good quality data contributed by other users.

4.2.3 Single-dataset analytics

A potential limitation when using online systems are dataset sizes, because both Many Eyes

and Tableau Public impose restrictions on the amount of data that can be used. We wanted

to find out what sizes of data users work with, and whether they run into the size limits.

Data set size (number of rows). Today’s online visual analytics systems are designed

for small data. Most of these systems put a bound on the size of datasets that can be

processed. On Many Eyes, data sizes are limited to 5MB, while on Tableau Public, each



61

4 6 8 10 12
Distinct  Count  of  Users/Dataset  and  Visualizations/Dataset

Measure  Names
Distinct  Users  per  dataset

Distinct  Visualizations  per  da  per  dataset

� � � � � �� �� ��

��	
���
����
���	��	���
�	�
�����	������
���	���
�	�


��

���

���

���

���

����

�
��
��
�

��
�
�
�
�
�
�

�	
�

	

���	����	
���
�	��	�����
�	�
�����	������
���	�����
�	�


��	
���
�	��	�����
�	�


��	
���
��	������
���	�����
�	�


Figure 4.11: Cumulative distribution of Many Eyes users per dataset and Many Eyes visu-
alizations per dataset

Number of Rows in Visualizations

System ≤100 ≤1K ≤10K ≤50K ≤100K

Many Eyes 63% 90% 98% 99% 100%

Tabeau Public 28% 53% 84% 95% 100%

Table 4.3: Cardinality of visualized relations (i.e., number of rows in visualization/view).

user gets a 50MB account and a visualization/view can have at most 100,000 rows.

Given these restrictions, we see from the Cumulative Distribution Functions (CDFs) in

Figure 4.12 that the median number of rows in a visualization is low. We also see that

there is a significant shift in the curves for these two systems indicating a greater demand

for authors on Tableau Public to create visualizations with larger data.

Tableau Public also offers a paid tier, Tableau Public Premium, which allows a small num-
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Figure 4.12: CDF of number of rows in visualizations on Many Eyes and Tableau Public.
50% of datasets on Many Eyes are 50 rows or less, while that number is just under 900 for
Tableau Public.

Number of Columns in Data Source

System ≤2 ≤10 ≤20 ≤100 ≤300

Many Eyes 49% 84% 93% 99% 100%

Tabeau Public 2% 28% 52% 90% 99%

Table 4.4: Degree of base relations.

ber of accounts to go beyond the 100,000 rows limit. These accounts (along with some

accounts on Many Eyes) visualize more than an order of magnitude more data, which seems

to imply the need for the online visualization of bigger data too.

Data set dimensionality. Just like with the number of rows, there is also a large variation

in the number of data columns (Figure 4.15 and Table 4.4).

Clearly, data sets are not only larger but also contain many more dimensions on Tableau
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Figure 4.13: CDF of the number of columns in visualizations with one vs. multiple (joined)
data sources on Tableau Public. As expected, the distribution of the columns available is
much broader, indicating that there are many more columns available that are not being
leveraged by the visualization.

Public than Many Eyes. This is presumably due to the fact that individual visualizations

on Many Eyes are typically limited to a small number of dimensions that can be shown at

the same time, while Tableau Public allows users to build complex multi-view dashboards.

Both systems let the user pick the dimensions to be displayed from the available ones for

exploration, however.

View dimensionality on Tableau Public. Since the data sets uploaded to Tableau

Public tend to be multi-dimensional, is it also the case that the visualizations are multi-

dimensional? Figure 4.13 shows the breakdown of data columns used versus available in

visualizations with a single data source versus multiple (joined) data sources on Tableau

Public (no equivalent information was available for Many Eyes). First, we see that 52% of

visualizations with a single data source use at most 3 columns and 90% use at most 6. As
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Number of Number of columns in visualization

data sets 1 2 3 4 5 6 7 8 9 10 11 12 13 14

One Text Bar Bar Bar Map* Map Map* Map* Bar* Line Map* Circle Bar Bar

(68%) (53%) (47%) (32%) (27%) (32%) (27%) (26%) (25%) (32%) (24%) (34%) (30%) (20%)

Bar Bar Bar Map Bar

Multiple Text Bar Bar Bar Map* Map Map Text Map Map Scatter* Scatter* Circle Map

(75%) (48%) (50%) (41%) (22%) (35%) (40%) (46%) (49%) (56%) (38%) (36%) (64%) (42%)

Bar Map Bar

Table 4.5: Most common visualization types vs. number of columns in the visualization on
Tableau Public. For 1–6 columns, the same visualization techniques are used for single and
multiple (joined) data sets: text, bar, and map indicating that certain visualization types
depend greatly on the dimensionality of the underlying data.

expected, the distribution of the columns available is much broader, indicating that there

are many more columns available that are not being leveraged by the visualization. For

example, 50% of single data sources contain 25 or more columns.

Table 4.5 shows the breakdown of the most common visualization types used for a given

number of columns. The values denoted with a ‘*’ in Table 4.5 show that a second visual-

ization type was within 5% from the top choice for that given number of columns. For single

data sources, we see that the text table is the most common type when there is only one

data column present in the visualization. As the number of columns increases, we see a shift

in visualization techniques used: bar views become the dominant technique for 2–4 columns

and maps are the most popular for 5–8 columns. This behavior is not too surprising since

map views have a minimum requirement of two geographic dimensions (i.e., latitude and

longitude).

Visualization types. We study the visualization types most commonly used in both

systems. Figure 4.14 shows the results for Many Eyes (left) and Tableau Public (right). We

first focus on the visualizations that are common between the two systems: bar, line, map,

pie, and scatter. Our first observation is that bar, map, pie, and area views have the same

relative order in both systems. On Tableau Public, for example, there are over three times

as many bars (38%) than maps (10%), three times as many maps than pies (3%), and three
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Figure 4.14: Common visualization types for single datasets on Many Eyes (left) and
Tableau Public (right). Many Eyes is dominated by text visualizations, while bar charts
are the most popular type on Tableau Public.

times as many pies than area views (1%). On Many Eyes, bar views (9%) are almost as

frequent as maps (8%) and maps are twice as likely to be found than pie (4%) or area views

(3%). Overall, the most common visualization type that exists in both systems is the bar

view (38% on Tableau Public and 9% on Many Eyes).

The right half of Figure 4.14 shows that the most common visualization techniques with a

single data source on Tableau Public are the bar view (38%), text table (18%), and line view

(14%). This result is consistent with Table 4.5, in which the bar and text table dominate

for visualizations containing 1 to 4 columns, and Figure 4.15 where 86% of visualizations

use 5 or fewer columns. For Many Eyes the most common ones are the word view (40%),

bubble view (13%) and bar view (9%).

One of the main differences between these systems worth noting is with regard to text

data (Figure 4.14, left). The large number of word views is due to the variety and qual-

ity of text visualization views on Many Eyes, most which are not available anywhere else

(Tableau Public’s text table is just a table, unlike the rich interactive text views on Many

Eyes). Similarly, bubble views are attractive but also rather uncommon in visualization and

spreadsheet software.
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Figure 4.15: CDFs of the number of columns in data sets on Many Eyes and Tableau Public.
Almost 50% of data sets on Many Eyes have one or two dimensions, while that number is
25 for Tableau Public.

We thus see consistent results for the two most common visualization types used on

Tableau Public; the bar view and text table are the most common. Many Eyes, with its

stronger focus on text data, has more popular word views than any other type. Hence some

types of visualizations are clearly preferred by users over other types of visualizations but

there is room for innovative and specialized visualizations.

Data types. We next consider whether the most appropriate type of visualization depends

on the visualized data. For this, we look at the most common visualizations used when

viewing attributes with different types. First, in Figure 4.16(a), we see that Number (51%)

and String (44%) are the most common data types in visualizations of a single dataset

on Tableau Public. It is interesting that their use is fairly balanced, while intuition would

indicate that numbers might be more common due to the quantitative nature of business

analytics. The Number data type includes both integers and reals. Finally, we see fewer

specialized types such as Datetime and Date, which indicates that visualizations of time-

based data are less prevalent.

Many Eyes, however, has a skewed distribution of String/Categorical types. In Fig-
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Figure 4.16: Data types of columns in visualizations on Tableau Public (a) and Many Eyes
(b). Tableau Public is split between numbers and strings, and word-oriented Many Eyes is
heavily skewed toward strings.

ure 4.16(b), we see that 91% of columns on Many Eyes are of this type. This finding is

consistent with the previous one regarding the dominance of text-based visualizations on

Many Eyes.

Data sets per view on Many Eyes. Many Eyes treats data sets and visualizations as

entirely different entities, while Tableau Public packages the data into the workbook. The

goal of Many Eyes’s approach is to share interesting data sets that many users can build

visualizations from.

Interestingly, the number of data sets is much larger than the number of visualizations,

and the number of data sets per visualization has increased dramatically over time (Fig-

ure 4.17). While there were about 1.2 data sets per visualization in the first quarter of Many

Eyes’s existence, that number more than doubled to 3.2 during the last quarter of 2012. A

sampling of recent data sets shows that many are uploaded multiple times, either because

of upload errors or because users are not aware that the data is already in the system. It is

unclear, however, why that number has increased over time.

Discussion. In summary, most visualizations have modest data sizes, and seem to not be
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Figure 4.17: Number of datasets per visualization on Many Eyes. This number is steadily
rising, which means that users are uploading increasing numbers of datasets compared to
the number of visualizations created.

limited by the 100,000 rows restriction, although some users with special privileges visualize

datasets with more than one million rows. Additionally, the data sources uploaded to these

systems are multi-dimensional. There is thus potential in these systems to support an en-

tirely different class of users with much greater visualization requirements. Furthermore we

see that as the number of columns used increases, so does the complexity of the visualiza-

tion type (e.g., maps require more columns than other types like bar views.) Additionally,

visualizations of single datasets tend to use many fewer columns than available. One expla-

nation for this gulf can be drawn from the use of map visualizations in Tableau Public; 62%

of such visualizations rely on a Tableau-supplied geocoding database for translating location

names into latitude and longitude, since many data sources do not include this necessary

context. Finally, visualizations on Tableau Public and Many Eyes contain columns of type

Number or String; the split is very even between these two data types for Tableau Public,

and Many Eyes is dominated by Strings due to the prevalence of text-based visualizations.
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Figure 4.18: Common semantic entities of join keys in visualizations with multiple (joined)
data sources. Tableau Public authors tend to combine data sets on the same object entities
(as in unique identifiers for product codes) or on the same location (as in zip codes on a
map).

4.2.4 Integrating multiple data sets

In this section we study the trends in data and visualization on Tableau Public in the con-

text of blending data from multiple data sources. We omit Many Eyes from this section

because the platform currently does not support blending data.

Semantic entities for data blending. On Tableau Public, there are 5,532 visualizations

that were created by joining multiple data sets. Of these visualizations, we ask how do

authors combine data sets for their analysis? To answer this question we manually cate-

gorized all of the join keys for the 5,532 visualizations (2%) that have blended data to get

a sense of the most popular semantic entities. This process entailed inspecting the column

name, data type, and data values of each join key. In the case where the column name was

in a foreign language, we used Google Translate on the name and (in some cases) values of

that column. If we were still unsure, we opened the workbook to inspect the visualization

that was associated with that join key. Figure 4.18 summarizes the semantic entities of the

join keys in five different categories: people, places, time, objects, and other. The people

category contains any information pertaining to people, including names and demographics.

The places category is restricted to geolocations and other identifying characteristics such
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as zip codes, regions, states, countries, continents, etc. As expected, the time category

refers to dates and date times and objects refer to any physical entity that is not a per-

son, place, or time. Objects consist mainly of opaque identifiers like alphanumeric product

codes as well as more well-known, descriptive entities such as “university”, “department”,

or “team”. Finally, Figure 4.18 shows that visualizations of multiple data sources tend to

join on objects (30%), places (28%), and time (18%).

Data columns per visualization. Figure 4.13 shows the breakdown of data columns

used versus available in visualizations with a single data source versus multiple (joined)

data sources on Tableau Public. From this CDF, we see that visualizations with columns

from multiple (joined) datasets tend to be more complex than those containing columns

from a single dataset. For example, 43% of the blended views contain 5 or more columns,

while only 15% of views with columns from a single dataset contain 5 or more attributes.

Furthermore, we see a familiar trend as with single data sources: there is a sizable gulf

between the number of columns used and the number of columns available in the blended

data sources. Additionally, Table 4.5 shows that, like for single data sources, that visual-

izations containing a single column tend to be text tables (75%). We also see that the bar

view dominates for visualizations containing 2–4 columns and map views for 5–7 columns.

This finding is consistent with the distribution of visualization types for single data sources.

This behavior is not too surprising since map views have a minimum requirement of two

geographic dimensions (i.e., latitude and longitude).

Finally, for visualizations of multiple datasets, the maximum available columns is 793

and the maximum used columns is 29. Similarly for visualizations of a single dataset, the

maximum available columns is 792 and the maximum used columns is 133 (this workbook

has a poorly designed dataset that contains one column for each day for 4.5 months).

Data types in blended data. Recall from the previous section that Figure 4.16(a) shows

that Number (51%) and String (44%) are the most common data types for visualizations

with a single data source on Tableau Public. Additionally, the stacked orange bars represent

the data types of the join keys, and String (18%) and Number (3%) types are the most
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Figure 4.19: Common visualization types on Tableau Public for single and multiple (joined)
data sources. Single dataset visualizations are more prevalent as bar, text table, and line
views. Blended views are found more often as map views and scatter views (which require
higher dimensional data).

common overall.

View types for blended data. Figure 4.19 shows that the most common ways to visualize

blended data are with a bar view (27%), map view (21%), or text table (17%). Compared

to the distribution for single data sets (recall bar views made up 38%, 18% for text tables,

and 14% for line views), we see fewer bar views and more maps. This result is consistent

with Table 4.5, in which the text table and map view dominate for visualizations containing

5–10 columns, and Figure 4.13 where 42% of blended visualizations use 5 or more columns.

Figure 4.19 also shows the visualization types with higher percentages of blended views:

(in order) map views, scatter views, and text tables. Map views are a special case in Tableau

Public, because prior to Tableau version 7 (i.e., before January of 2012), filled maps re-

quired tricks involving polygon shapes that were placed using blending. This inflates the

number of blended views using maps somewhat, though there are also many other use cases

where maps can be used as part of blended views. For example, a common blending pat-
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tern for maps is to join on a secondary datasource containing detailed latitude/longitude

values. Scatter views are generally used for visualizing correlations, and for authors on

Tableau Public, this visualization type is useful for showing correlations between measures

from two different data sources. Finally, text tables are often used as a trial/debugging tool

for checking out the resulting values from the join operation (e.g., how many Null values

appear?).

Discussion. In summary, data blending occurs primarily by combining multiple attributes

about the same uniquely identified entities from different data sources. This type of blending

is more common than simply placing multiple entities at the same location or at the same

point in time, although the latter two dominate when considered together. This finding

is especially interesting for data integration tools. For example, a recent tool provides

recommendations of potentially useful data to integrate with a given database [29]. This

tool does not consider joining on place or time. It only considers extending semantic entities

with additional attributes. With our study, it becomes clear that such a tool would ignore

more than half of all blending scenarios. Additionally, blended visualizations tend to be

more complex (i.e., use more columns and have more columns available) than unblended

ones. However, the distribution of the most common visualization types for a given number

of columns is similar for blended visualizations and those using only single datasets. We

also see different trends in visualization techniques for those containing blended data versus

single data. Blended views tend to be more prevalent in map views and scatter views; these

visualization types tend to be more complex (i.e., use more columns).

4.2.5 Multi-view visualizations

In contrast to Many Eyes, Tableau Public supports visualizations with multiple views, in-

cluding small multiples as well as multi-view dashboards. These are typically used for

creating more complex displays of multi-dimensional data than would be possible with a

single view. These are clearly advanced features, so we were wondering how often they are

actually used by authors.
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Small multiples. With small multiple views, the user can compare a quantitative measure

across the members of a (categorical) dimension. Figures 4.5 and 4.19 are examples of small

multiple views. To create a small multiples view, the user has to move a dimension field onto

a shelf that already contains a dimension or measure. There is no built-in mechanism to

suggest how to do this, and Tableau’s Show Me feature also does not contain small multiples

as an option.

We found that 39% of the visualizations published on Tableau Public are small multiple

views.

Multi-view dashboards. Dashboards are a complementary technique to small multiple

views, providing multiple coordinated displays of data. In contrast to small multiples, where

the individual views are identical, dashboards can contain any combination of different

visualizations. While adding fields to a single data view tends to make the view more

complex and harder to work with, multiple coordinated displays can help split such views

into separate displays, which makes it easier to follow.

Each display is explicitly linked to the other views and this allows users to simultaneously

explore multiple dimensions of a data source. For example, a link can be defined between

views to filter or highlight the members of a dimension that are common to the views. This

technique can also be used to explore data from multiple, heterogeneous data sources.

Overall, we found that a majority (74%) of Tableau Public visualizations are featured

on a dashboard. Of these dashboard views, we found that 62% are actually true multi-

view displays (the rest were using the dashboard for special formatting features of a single

visualization), and 42% of those contain actions between views (highlighting, filtering, etc.).

Discussion. The number of both small multiple views and dashboards on Tableau Public

was surprising to us. Both require a fairly sophisticated user, or at least considerable

experimentation for users without training (which is the vast majority of Tableau Public

users). But motivated users with burning questions will not only learn to use tools to be

able to answer them, but also explore and make use of advanced features.
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This result clearly demonstrates the need for, and usefulness of, advanced features like

multi-view visualizations in online visualization tools, which are currently missing from the

majority of them.

4.3 Conclusions

In this chapter, we studied five primary dimensions of two popular online visual analytics

systems: (1) what types of users are leveraging these systems and what are their workloads,

(2) how are users collaborating and interacting with the published content, (3) what are

the trends for doing visual analysis over a single-dataset, (4) how do users analyze data

joined from multiple sources, and (5) how often are advanced visualization techniques such

as multi-view displays utilized.

First, we found that current systems need to effectively support novice users with small

datasets. These findings also point to the lack of online, visual analytics tools that would

better support users with larger datasets and more sustained data analysis, visualization,

and sharing needs.

Second, we showed that in today’s collaborative analytics systems, authors tend to bring

their own data and do not leverage the contributions of content from other authors. We

also discovered that most visualizations of single-dataset (and multi-datasets) tend to use

far fewer columns than available. Since both systems have a large repository of potentially

useful data sets, we need tools that can help connect users to other good quality data to aid

them in their analysis (and in the case where additional data context is necessary to take

advantage of a column that would otherwise go unused).

Finally, the use of advanced analytics features like data blending, multiple views, and

actions should be encouraging to the data and visualization communities; when turned into

usable tools, these features get picked up by users even when they are provided with little

guidance, but are self-motivated to answer questions about data.
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Chapter 5

DEDUPLICATION FOR VISUAL ANALYTICS SYSTEMS

Visual analytics systems such as Tableau are increasingly popular for interactive data

exploration. These tools, however, do not currently assist users with detecting or resolving

potential data quality problems including the well-known deduplication problem. Recent

approaches for deduplication focus on cleaning entire datasets and commonly require hun-

dreds to thousands of user labels. In this chapter, we address the problem of deduplication

in the context of visual data analytics. We present a new approach for record deduplication

that strives to produce the cleanest view possible with a limited budget for data labeling.

The key idea behind our approach is to consider the impact that individual tuples have on

a visualization and to monitor how the view changes during cleaning. With experiments on

nine different visualizations for two real-world datasets, we show that our approach produces

significantly cleaner views for small labeling budgets than state-of-the-art alternatives and

that it also stops the cleaning process after requesting fewer labels.

5.1 Requirements, challenges, and contributions

Visual analytic systems such as Tableau [109] are becoming increasingly popular for data

exploration and analysis. These tools enable users to interactively query data through a

drag-and-drop interface, and the results are rendered on-the-fly as visualizations. These

visualizations are represented internally as database views. Users can create sophisticated

views that combine multiple heterogeneous data sets (e.g., Excel spreadsheets, relational

databases, data cubes, delimited text files, etc.) along a common dimension or set of

dimensions.

Today’s visual analytics systems assume that the data sets being consumed are clean

and consistent with respect to each other (e.g., all entities in canonical form). However,

data (especially on the Web) is often subject to data quality problems. Deduplication is one
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Figure 5.1: Views, dirty (left) and cleaned after 25 labels (right), over Fodor ∪ Zagat
restaurant datasets.

kind of dirty data problem. This problem manifests when there are different representations

of the same real world entity or object in the data sources being integrated. For example,

the same restaurant may appear under two different phone numbers. The same product

may use different abbreviations in its name or may include a different description.

Duplicate records may affect a visualization. Figure 5.1 shows an example. The figure

shows the top three types of cuisines by quantity of restaurants in San Francisco over

a restaurant dataset created from the union of the Fodor and Zagat restaurant ratings

datasets in the RIDDLE repository [101]. The figure shows the visualization using either

the dirty or clean data. Duplicate records affect results and should therefore be cleaned.

The problem, however, is that data cleaning is a disruptive process. It interrupts the user

during his primary data exploration task. Our goal is to clean a user’s visualization with

minimal interruption.

The high-level approach to deduplicating a set of records, R, takes the following steps.

The process requires as input a similarity function that takes a pair of tuples (t1, t2) from

R and produces a similarity score [33]. This similarity function, together with a similarity

threshold, can be applied to all pairs of records in R to determine which ones match [37].

Alternatively, a system may rely solely on users to indicate which tuples match [71, 14].

Multiple tuples can correspond to one entity and such clusters further need to be identi-

fied [2, 12, 129, 122, 130]. Once matching tuples are identified, they must be merged [51, 16].

To make the previous steps more compute-efficient by reducing the number of record com-
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parisons, blocking techniques are used [13]. Blocking is an inexpensive heuristic filtering

step that either partitions the tuples that get compared or removes pairs with low similarity

scores.

Since manually devising an accurate similarity function requires an expert, state-of-the-

art techniques for deduplication use active learning instead [93, 45], where one or more users

label training examples (i.e., pairs of tuples) as either duplicates or not, which enables the

system to learn a classifier that categorizes the remaining pairs of tuples. Active learning

iteratively asks users for additional, carefully selected labels and re-trains the classifier until

the classifier stops improving.

Active-learning-based deduplication is a promising approach for cleaning data visualiza-

tions. As a simple example, consider a typical data enthusiast, a food journalist, who wants

to publish some visualizations that tell a story about restaurants in San Francisco by the

end of the workday. After downloading a US restaurant ratings dataset from the Web that

has duplicate entities and before visually exploring it using Tableau (or some other system),

the journalist may choose to clean the data. The active learning method [9, 7, 11] would

select pairs of records and would ask the user to label them as either duplicates or not. It

would then use the labels to build a classifier. Active learning repeats the process until the

classifier stops improving. The classifier then serves to label all remaining pairs. After the

classification completes, matching records can be merged to yield the clean dataset.

Existing active learning methods produce high-quality classifiers, but at great cost to

the user – requiring hundreds to thousands [93, 45] of labels during the data cleaning

process, which is a lot for a data enthusiast who most likely just wants to create one or

a few visualizations [90]. Several systems use the crowd to perform the cleaning [45], but

that approach takes days to complete, which is also inconsistent with our data enthusiast

scenario.

In this chapter, we develop an approach that addresses the above problem. Our approach

develops a new active-learning-based method to classify tuples as either duplicates or not. In

contrast to prior work described above, our approach (1) focuses on producing the cleanest

visualization (2) with a small budget of labels from the user (no crowd). We do not address

the problem of how best to merge duplicate tuples [16] (we simply drop one of the tuples
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from each duplicate pair), nor how to handle labeling errors [93] (we assume correct labels).

These additional techniques are complementary to the approach developed in this chapter.

Additionally, our approach relies on the data enthusiast to provide labels directly. We do

not use the crowd.

Our method, called View Impact Cleaning, performs deduplication in a manner that

focuses on a user’s current visualization (or dashboard of visualizations). View Impact

Cleaning yields a significantly cleaner view than active learning alone when given a small

labeling budget. It only asks the user to label data that is currently being visualized and

it automatically stops the cleaning process when it believes that additional labels will not

change the visualization further even if they could yield a better overall classifier.

By developing the View Impact Cleaning method, we make the following specific con-

tributions:

1. We define a new notion of view sensitivity to duplicate tuples. View sensitivity cap-

tures the extent to which a view is affected by duplicate tuples. We also define a new

notion of view impact score of individual tuples on a visualization. The view impact

score measures the extent to which a view will change if a given tuple is found to be

a duplicate and is removed (Section 5.3.1).

2. We develop an active-learning-based method that builds an initial classifier and then

iteratively improves that classifier. The classifier categorizes pairs of base tuples as

either duplicates or not. The novelty of our approach is in the selection of the training

examples. Our approach uses both the view impact scores of individual tuples and

the potential of a training example to improve the classifier quality (Section 5.3.2).

3. We develop a new stopping condition for view cleaning that considers not the quality of

the classifier but instead considers how the view has been evolving during the cleaning

process. An important implication of our approach is that it stops cleaning a view

both in the case where a sufficient number of tuples have been removed and in the

case where a view is not sensitive to duplicate tuples and cleaning has little effect on

the view (Section 5.3.3).

We evaluate our approach on nine different views specified on two real-world datasets.
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We find that, when given a small cleaning budget, our approach yields significantly cleaner

views than active learning without consideration for the users’s view. It also effectively

stops cleaning earlier than active learning alone while delivering cleaner views. Finally, we

evaluate and discuss the problem of cleaning a dashboard comprising multiple visualizations.

Our results show that cleaning one view with our approach effectively helps to clean other

views even though cleaning is view-driven. As such, our approach helps to make data

cleaning a pay-as-you-go task.

5.2 Background

Consider a relation R with attributes (a1, . . . , an). Two tuples t1 and t2 in R are duplicates

if they refer to the same real-world entity such as the same restaurant, product, or citation.

These tuples, however, are not necessarily identical. For example, the same restaurant may

appear twice but with different phone numbers. To clean the data, one needs to identify

duplicate tuples and reconcile them. In this paper, we focus on the problem of identifying

duplicate tuples and assume any of the existing techniques [44] to reconcile the duplicates

once they have been identified.

Learning a Classifier: One can apply machine learning techniques to build a classifier

to identify duplicate records [7, 9, 45, 73, 93, 122, 135] in a relation. The approach works

as follows. Consider the cartesian product S = R × R. For each tuple in S, compute a

feature vector that captures distance information between the individual attributes of the

two R tuples that form the S tuple. One can use zero, one, or more distance functions for

each attribute. Our implementation uses one function per attribute. The feature vector

thus takes the form: ∀i ∈ [1, n] disti1(ai, ai), . . . , distim(ai, ai). Commonly used distance

functions include edit distance, Jaccard, Jaccard Containment, and Cosine distance (see [26,

37] for detailed descriptions) for string attributes and Euclidean distance for numerical

attributes. Other functions are possible [26].

The basic learning algorithm selects a random sample of pairs from S, asks the user to

label them as either duplicates or not, and then learns a classifier using that training data.

Because |S| can be large and because the number of positive examples is typically small

compared with the number of negative examples, a blocking function serves to reduce |S|
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before the selection of the training examples. The blocking function takes the form of

a selection predicate on S, where the predicate retains only pairs with distance between

specific attributes below a pre-defined threshold. For example, a blocking function can

retain only pairs of restaurants whose names have an edit distance below some threshold.

Active Learning: Active learning improves on the above approach by iteratively train-

ing classifiers on increasingly large and carefully selected training examples. As above, the

initial step is to learn a classifier on a random sample of training examples. Active learning

then selects additional training examples with the purpose of improving the classifier. Sev-

eral methods exist to select the additional examples that are most informative. Common

methods to measure the informativeness of training examples try to measure the disagree-

ment of the component classifiers using uncertainty [93] or entropy [45]. Whatever the

method, active learning then retrains a new classifier and repeats the process. Learning

stops when the classifiers stop improving across iterations.

5.3 Approach

The goal of our approach is to clean a user’s current visualization (or dashboard of visu-

alizations) to the point where duplicate tuples no longer affect it, while making the user

do the least amount of work. We employ an active-learning-based approach with the same

fundamental setting as presented in Section 5.2: We consider a relation R that contains

duplicate tuples. The relation may be the result of the integration of two or more datasets

or may contain duplicate tuples for other reasons. We assume R to be given and we do not

require knowledge of where individual tuples in R come from. The user builds a view, V (R),

and a visualization that displays it. We do not consider the details of the visualization it-

self. Instead, we focus on the relation V (R) and consider that any change to V (R) affects

the visualization. Our approach currently supports views that correspond to select-project

queries with optionally aggregation, grouping, sorting, and top-K restrictions.

To clean V (R), our approach is to build a classifier that takes as input all pairs of tuples

(t1, t2) with t1 6= t2 ∧ t1 ∈ R ∧ t2 ∈ R and classifies each one as either a duplicate pair or a

non-duplicate pair. To clean the view, one tuple from each duplicate pair is removed, but

any tuple-merging algorithm can be applied with our approach. Our goal is to produce the
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cleanest possible view for a given label budget l. Additionally, we require that l be small in

the order of tens or low hundreds of labels rather than the thousands of labels commonly

used in prior work [45, 93].

In this section, we first describe our model to reason about the quality of a view and

the impact of individual tuples on that quality (Section 5.3.1). We then present our active-

learning approach to view cleaning, which is based on this model (Sections 5.3.2 and 5.3.3).

5.3.1 Modeling view quality

Consider a relation R and a view, V (R), defined on that relation. Our goal is to clean V (R).

We define Rclean to be the relation R with all duplicate tuples removed. For convenience,

we refer to the original view, V (R), as Vdirty, to V (Rclean) as Vclean, and to the same view

V computed on a partially cleaned relation as Vcurr. We define the quality of a view as

follows:

Definition 5.3.1 Quality(V) of any view V is 1 - Distance(V, Vclean), for some dis-

tance function, Distance ∈ [0, 1].

The quality of a view thus depends on the distance to the view computed on clean data.

In our implementation, we use the well-known Earth Mover’s Distance [103] to compute

distances between views as we describe in Section 5.4.

We observe that the quality of a view can also capture its sensitivity to duplicate tuples.

Some views can be resilient to duplicate tuples. For example, a view that displays median

values is not easily affected by duplicate results. These views change little as a result of data

cleaning. Other views, in contrast, such as those displaying top-k results for example, can

change significantly when the data is dirty. We thus use the value of Distance(V,Vclean)

as proxy for the sensitivity of a view to duplicate tuples.

During the view cleaning process, the quality of a view can never be measured directly

because the system does not have access to Rclean and thus Vclean. Instead, our approach

operates on distances between either consecutive views obtained during the iterative view

cleaning process, Distance(Vcurr,Vcurr+1) or the distance from the original, dirty view to

the current view: Distance(Vdirty,Vcurr).
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An important component of the cleaning process is the identification of pairs of tuples

to show to the user for labeling. To select these tuple pairs, our approach takes into

consideration how much each tuple affects the view V (R). We call this the view impact

score of a tuple:

Definition 5.3.2 The view impact score of a tuple t ∈ R on a view V (R) denoted as

Impact(V,t) is Distance(V(R),V(R-t))

The impact of a tuple is important during cleaning because it captures the potential

improvement in quality if the tuple is determined to be a duplicate and is removed. For

example, consider the top-k view of cuisine types by quantity of restaurants in Figure 5.1:

a tuple whose cuisine attribute is ‘American’, ‘Asian’, ‘French’, or ‘Italian’ would have a

higher impact score than one with a rare type such as ‘Indonesian’.

5.3.2 View cleaning

In this section, we present our active-learning-based algorithm for cleaning views by taking

into account changes in view quality and view impact scores of individual tuples.

Initial classifier. The first step in the active learning process is to select a set, L0, of

training examples, ask the user to label them, and train an initial classifier using those

labels. A training example is a pair of tuples, (t1, t2) with t1 ∈ R ∧ t2 ∈ R ∧ t1 6= t2. When

a pair has duplicate tuples, it is a positive example. Otherwise, it is a negative example.

Recent prior work [93] randomly selects a 3% sample of such pairs to train the initial

classifier. A known challenge with record deduplication, however, is that the number of

positive examples is extremely small even when a dataset contains many duplicate tuples.

For example, if each duplicate tuple in a relation of size |R| participates in one positive

example it also participates in |R| − 2 negative examples. As a result, a small random

sample of training examples can easily fail to include any positive examples, leading to a

poor initial classifier, especially when |R| is large. A common approach to alleviate this

problem is to use blocking, where all tuple-pairs with low similarity scores for one or more
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features are discarded before the data cleaning process even begins. For example, pairs of

restaurants with names that are not at all similar should be discarded. We further use a

second blocking method: We focus only on tuples that participate in the view. Instead

of cleaning |R|, we clean only those tuples in |R| that pass the selection condition in the

query. We denote these tuples with Provenance(V (R)) since they correspond to the why-

provenance [18] of V (R) if we ignore any top-k clauses in the query. Table 5.2 shows the

fraction of duplicates for two datasets that we describe further in Section 5.5. The table

shows the result for both the dataset as a whole and for the subset of the data in the views

that we use in the evaluation. Even after applying both types of blocking (blocking on the

view and the features), the fraction of positive examples is only 2.3% and 9.4% for the two

views (we describe the exact blocking function in Section 5.5).

The second challenge with learning a classifier for record deduplication is that the fea-

tures themselves used to train the classifier may be poor. In our application domain, in

particular, the user’s goal is to create and analyze a given set of visualizations. The user is

not seeking to clean the data. As a result, the system cannot rely on the user to determine

a good set of features. Instead, the feature selection process must be automated, which

complicates the identification of a good set of features as we describe further in Section 5.4.

Poor features make it difficult to learn a good classifier.

The above two challenges make it difficult to build high quality classifiers as we show in

the evaluation, and lead us to develop a different strategy for training an initial classifier.

Our key idea is to get the user to label tuple-pairs where at least one tuple has a high

view impact score. The intuition is that these pairs will not necessarily be worse training

examples than random pairs. At the same time, correct labels for these pairs have the

highest potential to improve the quality of the view. For example, in Figure 5.1, tuples

that correspond to American, French, Asian, and Italian restaurants will have higher view

impact scores than others and pairs containing such tuples should be weighted more heavily

when selecting examples to label.

The approach to learn the initial classifier has three main steps: view impact score

computation (Algorithm 1), training-example selection, and training of the initial classifier

(Algorithm 2 lines 1 through 14). The view impact computation proceeds as follows:
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Algorithm 1 View Impact Scores (V (R))

1: Input: Base relation R and view V (R)

2: Output: PairScores, map of pairs to view impact scores

3: Let TupleScores = PairScores = ∅

4: for each tuple t ∈ Provenance(V(R)) do

5: score = Distance(V (R), V (R− t))

6: TupleScores = TupleScores ∪ (t, score)

7: end for

8: for each pair (t, score) ∈ TupleScores do

9: for each u ∈ Provenance(V (R)) - {t} do

10: PairScores = PairScores ∪ ((t,u), score)

11: end for

12: end for

13: Return PairScores

1. For each tuple t ∈ Provenance(V (R)), we compute its view impact score, score, as

per Definition 5.3.2. For example, in the view in Figure 5.1, we only compute the view

impact for restaurants in San Francisco. Other tuples necessarily have a view impact

score of zero. We store the results in a relation called TupleScores.

2. For each tuple t ∈ TupleScores, we generate |Provenance(V (R))|−1 potential train-

ing examples of the form ((t, u), score), where u ∈ Provenance(V (R))−{t} and score

is the view impact score for t. We store the results in a relation called PairScores.

Selecting the initial training examples proceeds as follows:

1. First, we apply a blocking function that removes obvious non-matches from the pre-

viously computed PairScores. The blocking function drops all pairs with at least

one attribute that has a similarity below a pre-defined threshold (or distance above a

pre-defined threshold). Section 5.5 describes the blocking function that we use in the

experiments. This step corresponds to function block on line 6 of Algorithm 2.

2. Second, we select |L0| examples from the filtered PairScores by using weighted ran-

dom sampling with weights equal to the view impact scores. To train a new classifier,
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we need a set of examples that are not only informative but also diverse [45], and

hence as prior work [93, 45], we use weighted random sampling rather than selecting

the top-k pairs with highest view impact. This approach heavily weighs the pairs

with high scores while randomly breaking ties between pairs that have the same score,

such as pairs generated from the same initial tuple. This step corresponds to function

Selectbias on line 7 of Algorithm 2.

Finally, the user labels the selected pairs and these labels serve as training examples

for the initial classifier (lines 8 through 10 in Algorithm 2). The duplicate tuples identified

explicitly by the user or implicitly by the classifier are then removed from the input data

and the view is recomputed as shown in lines 11 and 12 in Algorithm 2.

Subsequent training examples. To improve the initial classifier, the active learning

method selects additional training examples for the user to label. As described in Section 5.2,

active learning strives to select examples that are most informative and thus have the highest

potential to help improve the classifier. It then learns a new classifier on the expanded

training data.

As in the case of the initial classifier, we propose to take a different approach and leverage

view impact scores when selecting additional training examples. We propose the following

two approaches:

1) View Impact Method (ViewImpact): As in the case of learning the initial

classifier, this approach favors training examples where at least one tuple has a high view

impact score. Instead of breaking ties randomly, however, in the case of these subsequent

iterations, we select those samples that can help improve the current classifier the most.

The tie breaker is to select the samples with small margin distance i.e., the samples with the

minimum absolute confidence score from the classifier. If the margin distance is small, the

classifier is less confident. Therefore, the sample is better chosen for labeling as it should

help fine-tune the classifier. This tie-breaker is similar to the uncertainty method, in which

the examples that are closest to the decision boundary are selected. In our case, however,

uncertainty is secondary to view impact. This selection algorithm corresponds to method
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Algorithm 2 View Impact Cleaning(l,b,bL0,V (R))

1: Input: l is the total labeling budget,

2: Input: b is the batch size, bL0 is L0 size

3: Vdirty = V (R) is the view to clean

4: Output: Vcurr the current cleaned view

5: PS = ViewImpactScores(Vdirty) // PS is a map of pairs to their view impact scores

6: PS = block(PS) // filter candidate pairs with blocking function

7: L0 = Selectbias(bL0,PS) // select pairs for user to label

8: L0 = Label(L0) // label the L0 pairs

9: PS = PS - L0 // remove labeled pairs from the score map

10: VL = θL0
(PS) //train θ on L0 & label remaining pairs

11: dups = matches(L0 ∪ VL) //get dups from L0 & VL

12: Vcurr = V (R− {dups})

13: view change = Distance(Vcurr, Vdirty)

14: l = l - | L0 | // remove user labeled pairs from budget

15: while l > 0 & NOT Converged(view change) do

16: T = Selecttop(b,PS) //top scoring pairs, applies tie breaker

17: T = Label(T ) // label the T pairs

18: Tacc = Tacc ∪ T // accumulate the T pairs

19: PS = PS - T // remove user-labeled pairs from PS

20: VL = θL0∪Tacc(PS) // train θ on L0 ∪ Tacc & use it to label PS

21: dups = matches(L0 ∪ VL) // get dups from L0 & VL

22: Vprev = Vcurr

23: Vcurr = V (R− {dups})
24: view change = Distance(Vcurr,Vprev)

25: l = l - | T | // remove user labeled pairs from budget

26: end while

27: Return Vcurr

Selecttop(b,PS) in Algorithm 2 and Algorithm 3 and it works as follows:

• The function takes as input the PairScores data structure. For each subset of pairs

{((t, u), s)} ∈ PairScores associated with the same original tuple t, the approach

retains only the entry with the lowest margin distance, which it appends to a new
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Algorithm 3 Selecttop(b,PS)

1: Input: b is the batch size,

2: PS is a map of pairs to their view impact score

3: Output: TopPairScores is a map of pairs to their view impact score

4: TopPairScores = ∅

5: BestPairs = ∅

6: PM = getAbsMarginDistance(PS) //map each pair in PS to its absolute margin distance

7: UPM = getCandidateUids(PS) //group pairs by the candidate duplicate tuple UID

8: for uid ∈ UPM do

9: pairs = UPM[uid]

10: bestPair = ∅

11: bestMargDist = 0

12: //for each UID, find the pair with the min margin distance

13: for pair ∈ pairs do

14: if bestPair == ∅ or PM[pair]<bestMargDist then

15: bestPair = pair

16: bestMaginDist = PM[pair]

17: end if

18: end for

19: BestPairs = BestPairs ∪ bestPair

20: end for

21: for (pair, impactScore) ∈ PS do

22: //keep only pairs with the smallest margin distances

23: if pair ∈ BestPairs then

24: TopPairScores = TopPairScores ∪ (pair, impactScore)

25: end if

26: end for

27: TopPairScores = weightedSampling(b,TopPairScores)

28: Return TopPairScores

data structure, TopPairScores.

• The algorithm then selects b pairs from TopPairScores using weighted sampling where
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the view impact score s serves as the weight.

Hybrid Method (Hybrid): We also explore a second approach that is a hybrid

between the traditional method of selecting the most “informative” training examples and

the ViewImpact method. The hybrid approach computes the same TopPairScores structure

as the ViewImpact method above. However, it then assigns the following hybrid weight to

each pair of tuples in that set before selecting the next batch of b examples using weighted

sampling. ClassifierUncertainty measures the classifier uncertainty as in state-of-the-art

active learning methods for record deduplication [93] (See Section 5.2).

HybridScore = αViewImpactScore + (1− α)ClassifierUncertainty (5.1)

Hence, in contrast to ViewImpact, which weighs samples based on their view impact score

alone, Hybrid can weigh both the ClassifierUncertainty and ViewImpactScore with an ad-

justable relative weight, α.

Hence, in contrast to ViewImpact, which weighs samples based on their view impact score

alone, Hybrid can weigh both the ClassifierUncertainty and ViewImpactScore with an ad-

justable relative weight, α.

Algorithm 2, lines 12 and following capture how the above methods fit within the overall

active learning part of the cleaning process.

5.3.3 Stopping condition

The state-of-the-art stopping condition for deduplication [45] is based on when the classifier

stops improving in accuracy. The idea is to check the confidence, or agreement among

classifiers on a set of example pairs, over a fixed window of time. Before active learning, a

small (3%) random sample of pairs from the underlying data is set aside as a holdoutset for

evaluating classifier quality. As the classifier learns from more informative examples, the

confidence values will increase. However, when there are few informative examples left to

learn from the confidences level off. Once the confidence values have stabilized within +/-

epsilon = 0.01, over a window size of nconverge = 20 iterations, then the training stops.
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Our approach, in contrast, is to check the convergence of the view quality. Intuitively,

the view cleaning process should stop when the view stops improving or when the user has

exhausted her labeling budget. A view stops changing as a result of cleaning either because

the data has been cleaned or because the view is no longer sensitive to the remaining

duplicate tuples. We say that a view has converged :

Definition 5.3.3 A view has converged if Distance(Vcurr, Vprev) ≤ ε for nconverged iterations.

The condition for stopping the process of cleaning a view is thus based on the convergence

– within some ε– of the Distance function computed between consecutive views during

cleaning.

5.4 Implementation

Different implementations of the View Impact Cleaning approach are possible. In this sec-

tion, we discuss our choices for the distance function for views, the classifier, and the features.

Distance function for views We use the Earth Mover’s Distance (EMD) [103] to compute

distances between views. Other distance measures could be used as well. EMD is a method

to evaluate dissimilarity between two multi-dimensional distributions. Intuitively, given two

distributions, one can be seen as a mass of earth spread in space, the other as a collection

of holes in that same space. Then, the EMD measures the least amount of work needed to

fill the holes with earth. Here, a unit of work corresponds to transporting a unit of earth

by a unit of ground distance.

To compute the EMD between two views V1 and V2, we need a distance function for

individual tuples in these views and a weight for each tuple. For the weight, we assign each

tuple in a view V the same weight equal to 1
|V| . Following prior work [77], we consider each

tuple t with n attributes as an n-dimensional vector and use Euclidean distance to compute

the distance between two tuples i ∈ V1 and j ∈ V2. For individual attributes in a tuple,

we use Euclidean distance to compute the distance between numeric attributes (normalized
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Figure 5.2: (top) The EMD is computed for each tuple t in Provenance(Vtop−3(R)) from
Figure 5.1 denoted RSF to assess the tuple’s view impact. (bottom) The EMD between
Vtop−3(R) and Vtop−3(R− t1) is 0.01.

to the [0, 1] range) and 1 - string equality as the distance between categorical attributes.

To illustrate the distance computation consider the following two views (in Figure 5.2): (1)

Vtop−3(R), a top-3 view of cuisines in San Francisco over a dirty restaurants dataset, R, and

(2) the same top-3 view but over a cleaner relation R′ where one duplicate tuple t has been

removed.

The SQL statement for this view appears in Table 5.3. The distances are then calcu-

lated between all combinations of tuples (i, j) where i ∈ Vtop−3(R) and j ∈ Vtop−3(R− t), as

shown in Table 5.1. Each tuple is given the same weight of 1/|Vtop−3| and we call the library

from [35] to solve the linear program that computes the minimum flow to move the earth

between the views using the pre-computed distances. The solution to the linear program-

ming problem is shown bolded in Table 5.1. The EMD returned is 0∗1/3+0∗1/3+0.043∗1/3
1/3+1/3+1/3 ,
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i ∈ V (RSF ) j ∈ V (RSF − t1) Attribute dist(i,j) = Tuple dist(i,j) = flow(i,j)

[iCuisine, iCount] [jCuisine, jCount] [1-StrEq(iCuisine,jCuisine),normEuclid(iCount,jCount)] Euclid(Attribute dist(i,j))

[“American”, 23] [“American”, 23] [ 0.0, 0.0 ] 0.0 1/3

[“American”, 23] [“French”, 18] [ 1.0, 0.217 ] 1.023 0.0

[“American”, 23] [“Asian”, 17] [ 1.0, 0.261 ] 1.033 0.0

[“French”, 18] [“American”, 23] [ 1.0, 0.217 ] 1.023 0.0

[“French”, 18] [“French”, 18] [ 0.0, 0.0 ] 0.0 1/3

[“French”, 18] [“Asian”, 17] [ 1.0, 0.043 ] 1.001 0.0

[“Asian”, 18] [“American”, 23] [ 1.0, 0.217 ] 1.023 0.0

[“Asian”, 18] [“French”, 18] [ 1.0, 0.0 ] 1.0 0.0

[“Asian”, 18] [“Asian”, 17] [ 0.0, 0.043 ] 0.043 1/3

Table 5.1: EMD computation details for tuple, t1, and the views, V (RSF ) and V (RSF − t1),
from Figure 5.2. ∀ pairs (i,j) ∈ V (RSF )×V (RSF − t1) dist(i,j) is computed by applying the
Euclidean distance to the set of attribute distances, Attribute dist(i,j). For example, the
tuple distance for the third row in this table is computed as:

√
(1.0)2 + (0.261)2 ≈ 1.033.

Each attribute has one type-based distance function applied to it, e.g., since Count is a num

type, the Euclidean distance is used (and normalized by the max value in the table so that

the result is in the [0,1] range). For example, the normEuclid(23, 17) =

√
(23−17)2

23 ≈ 0.261.
With the tuple dist(i,j) and per-view tuple weights = 1/|V | = 1/3 as input, we call the
EMD library in [35] to solve for the flow(i,j)that minimizes movement of earth between the
two views, or dist(i,j)*flow(i,j).

which is 0.01.

Classifier. We use a common choice for classification, support vector machines, to build

the classifier. Our implementation uses libsvm [22]. We use either linear kernels or Gaussian

kernels by tuning over the data. Because the number of positive and negative examples is

imbalanced, we set the weights for the positive and negative label classes to the reciprocals

of their respective cardinalities.

Features: Selecting the right features to give to a machine learning algorithm (or feature

engineering) is a well-known, challenging problem. Recent prior work leaves the feature

selection decision to an expert user [4], or in the case of Corleone [45], the system randomly

selects a subset of attributes as features. For the applications that we target, we cannot

require that users define features. In our implementation, we use generic, type-based fea-

tures. We find, however, that such generic features do not always work well, complicating
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Dataset Rows Pairs Cols Dup Dups

with blocking method Pairs (%)

Restaurants:(Fodor ∪ Zagat) 864 7.4x105 5 224 0.03

block on view:SFrestaurants 148 2.1x104 5 36 0.17

block on view & features:SFrestaurants 148 384 5 36 9.4

Products:(Amazon ∪ Google ) 4,589 2.1x107 4 1,300 0.006

block on view:MfrProducts 291 8.3x104 4 162 0.19

block on view: & features:MfrProducts 291 6.9x103 4 162 2.3

Table 5.2: Datasets used in evaluation. Table shows the cardinality, number of pairs, degree,
number of duplicate (matching) pairs, and fraction of pairs that are duplicates for the base
data and after view and feature blocking.

the problem of building a good classifier and emphasizing the benefit of View Impact Clean-

ing. In the experiments, we manually select one type-based distance function to serve as

feature for each pair of attributes. We leave the full automation of the feature selection step

as future work.

5.5 Experiments

We evaluate the effectiveness of our View Impact Cleaning approach by measuring the view

quality that it achieves (we measure and show Distance(Vcurr, Vclean) where Distance =

EMD) as compared with view-agnostic active-learning. We focus on the results that each

approach achieves for small numbers of labels since our main goal is to limit the amount of

work that the user needs to perform.

Data sets. We use two datasets (Table 5.2) that differ in their degrees of difficulty to

build a good classifier for duplicate tuples. The restaurants dataset was collected from

the culinary rating sites, Fodor and Zagat. Both tables have the following five attributes:

name, address, city, cuisine, and phone. Figure 5.2 shows example records. The restaurant

dataset retains this schema and comprises the union of the Fodor (533 tuples) and Zagat
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(331 tuples) tables.

Products, a more challenging dataset to deduplicate, combines electronics products from

Amazon (1,363 rows) and Google (3,226 rows) [3] with schema (name, description, man-

ufacturer, price). An example record is: [‘learning quickbooks 2007’,‘learning quickbooks

2007’,‘intuit’,38.99 ]. There are more than 21 million tuple pairs in the union of these ta-

bles, among which only 1,300 pairs refer to the same entity (0.006% matches).

Features. We compute the features only for tuples in the provenance of the view. For

restaurants we compute the following four features: jaccard(name), jaccard(address),

jaccardContainment(name), and jaccardContainment(address). For products we com-

pute the following five features: cosine(description), normEuclidean(price), jaccard(name),

jaccard(name numeric), and cosine(name alpha), where name numeric contains only the

numeric values extracted from the product name and name alpha retains only the strings.

We found this separation to be important because product names in this dataset contained

both model numbers and English-language descriptions. We do not use the manufacturer

attribute because our views select only tuples that belong to one of three manufacturers.

Views. We study SELECT, PROJECT, and AGGREGATE (e.g., GROUP/ORDER BY LIMIT based

views. Queries containing joins have not been evaluated, but there is no theoretical lim-

itation to applying the View Impact Cleaning method to such views. Recent prior work

on deduplicating views [2] only applies to simple, non-aggregate SELECT/PROJECT views,

while others such as SampleClean [128, 76] are designed only for aggregate queries without

ordering nor top-k clauses. We evaluate our approaches over 9 views (Table 5.3) that we

choose for the following reasons: (1) variety of impact that individual duplicates have on

the view and (2) variety of the overall view’s sensitivity to duplicates.

Blocking methods. When considering the cross-product of tuples in each dataset, the

number of positive examples (pairs that match) grows linearly with the size of the data while

the number of negative examples grows as the square of the relation size. We use two types

of blocking strategies to reduce this class imbalance: view-based and feature-based blocking.
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Table 5.2 shows how each type of blocking increases the fraction of positive examples by

an order of magnitude. For the restaurants dataset, our views select restaurants in San

Francisco (shown as SFrestaurants). For the products dataset, the views include products

sold by Microsoft, Apple, and, Adobe (shown as MfrProducts). For feature-based blocking,

for restaurants, we drop pairs whose jaccard or jaccardContainment match scores on the

name and address attributes are less than 0.2. For products, we block on price and name

when the normalized euclidean distance on price is greater than 0.54 and jaccard scores

are less than 0.17 or jaccardContainment scores are less than 0.27.

For all experiments in this section, all approaches (including view-agnostic active learn-

ing) select pairs from the two views that include both blocking strategies, or SFrestaurants

and MfrProducts.

Machine learning settings. As indicated in Section 5.4, we use the libsvm [22] libraries

for the implementation of the learner. All restaurants experiments use a linear kernel and

a cost factor of 10. For the products dataset, all experiments use a Gaussian kernel with a

cost factor of 1000 and the default gamma. For both datasets, the weights for the positive

and negative label classes were set to the reciprocals of their respective cardinalities.

Experimental setup. We run the restaurants experiments 20 times and the products ex-

periments 100 times. For each experiment, we create a randomly-selected holdoutset, which

is not used for training. It serves to evaluate the quality of the classifiers. The size of the

holdoutset is approximately equal to half of the size of the initial unlabeled set.

Methods compared. We apply two state-of-the-art active learning methods, which we

refer to as Uncertainty and Entropy, as a baseline. For each of these methods, we use

an uncertainty or entropy measure to select the subsequent batches of examples for active

learning. Our implementation is based on the description in [93]: uncertainty [93, 105] and

entropy [45] scores are computed over 10 bootstraps that are sampled with replacement

from the trainingset. The examples are ranked by either their uncertainty or entropy scores

and selected by applying biased weighted sampling. Both Uncertainty and Entropy measure
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Figure 5.3: All product views are cleaned by View Impact (monotonically decreasing) in
less than 18 batches with an L0 size of 100 pairs and subsequent batch size of 20. View
cleanliness (left) is shown with AVG Distance(V iewcurr, V iewclean) and (right) classifier
accuracy with avg. F1. Entropy and Uncertainty have similar results for both cleaning
ability and classifier accuracy: both require more than 42 batches to completely clean any
of the product views and exhibit non-monotonic behavior for the PriceBins view.

the disagreement of the classifiers over the holdoutset example labels. Thus, the higher the

uncertainty, the stronger the disagreement, and the more informative the example is to the

learner.

5.5.1 End-to-End Results

We first compare the overall ability of our approach, View Impact Cleaning, and the two

state-of-the-art active learning algorithms, Entropy and Uncertainty, to clean views with a

small number of user labels. Figures 5.3, 5.4, and 5.5 show Distance(Vcur, Vclean) before

cleaning (value shown under “Initial distance”), after cleaning with the initial classifier (la-

beled L0), and after the maximum budget of user labels. Each point represents the average

of either 20 runs (Restaurant dataset) or 100 runs (Products dataset) and the standard

deviation, σ. Since Figure 5.3 shows that Uncertainty and Entropy achieve similar cleaning

results and classifier accuracies, we present only Uncertainty in future graphs.

Main result for products. As shown in Figures 5.3 and 5.4(left), all product views are



96

L0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Select*

Count*

Top3

PriceBins

0.0
0.1

0.2

0.3
A

vg
. D

is
ta

nc
e

0.0
0.1

0.2

0.3

A
vg

. D
is

ta
nc

e

0.0
0.1

0.2

0.3

A
vg

. D
is

ta
nc

e

0.0
0.1

0.2

0.3

A
vg

. D
is

ta
nc

e

L0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.0

0.5

1.0

A
vg

. F
1

0.0

0.5

1.0

A
vg

. F
1

0.0

0.5

1.0

A
vg

. F
1

0.0

0.5

1.0

A
vg

. F
1

view impact entropy

L0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Select*

Count*

Top3

PriceBins

0.0
0.1

0.2

0.3

A
vg

. D
is

ta
nc

e

0.0
0.1

0.2

0.3

A
vg

. D
is

ta
nc

e

0.0
0.1

0.2

0.3

A
vg

. D
is

ta
nc

e

0.0
0.1

0.2

0.3

A
vg

. D
is

ta
nc

e

L0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.0

0.5

1.0

A
vg

. F
1

0.0

0.5

1.0

A
vg

. F
1

0.0

0.5

1.0

A
vg

. F
1

0.0

0.5

1.0

A
vg

. F
1

view impact uncertainty

Initial
distance

 
 

0.47
 
 
 
 

0.30
 
 
 
 

0.28
 
 
 
 
 

0.15

L0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.0

0.5

1.0

A
vg

. F
1

0.0

0.5

1.0

A
vg

. F
1

0.0

0.5

1.0

A
vg

. F
1

0.0

0.5

1.0

A
vg

. F
1

L0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Select*

Count*

Top3

PriceBins

0.0

0.1

0.2
A

vg
. D

is
ta

nc
e

0.0

0.1

0.2

A
vg

. D
is

ta
nc

e

0.0

0.1

0.2

A
vg

. D
is

ta
nc

e

0.0

0.1

0.2

A
vg

. D
is

ta
nc

e

Alphas 1.0 0.0
Initial
distance

 
 

0.47
 
 
 
 

0.30
 
 
 
 

0.28
 
 
 
 
 

0.15

L0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.0

0.5

1.0

A
vg

. F
1

0.0

0.5

1.0

A
vg

. F
1

0.0

0.5

1.0

A
vg

. F
1

0.0

0.5

1.0

A
vg

. F
1

L0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Select*

Count*

Top3

PriceBins

0.0

0.1

0.2
A

vg
. D

is
ta

nc
e

0.0

0.1

0.2

A
vg

. D
is

ta
nc

e

0.0

0.1

0.2

A
vg

. D
is

ta
nc

e

0.0

0.1

0.2

A
vg

. D
is

ta
nc

e
Alphas 1.0 0.0

Figure 5.4: All product views are cleaned by View Impact (monotonically decreasing) in
less than 18 batches with an L0 size of 100 pairs and subsequent batch size of 20. View
cleanliness (left) is shown with AVG Distance(V iewcurr, V iewclean) +/- σ and (right) clas-
sifier accuracy with avg. F1 +/- σ. Uncertainty, however, requires more than 20 batches
to completely clean any of the product views and exhibits non-monotonic behavior for the
PriceBins view.

completely cleaned by View Impact in fewer than 18 batches, or 440 labels (including the

initial L0 batch of size 100 and subsequent batches of size 20). Top3 and PriceBins are

cleaned in only three and four batches, respectively (140 to 160 labels). These views are

cleaned faster with View Impact than the Select* and Count* views because only a small

number of tuples impacts these view. These are the only tuples with non-zero view impact

scores and View Impact biases the selection of tuple-pairs for the user to label toward these

tuples. In contrast, all tuples impact Select* and Count* views and do so equally, leading

to a longer cleaning process. Most importantly, for all views, the View Impact Cleaning

approach yields rapid improvements in view quality early on in the cleaning process. For

the Select* view, our approach cuts the distance to the clean view by 4X after the initial

classifier (from 0.47 to 0.11). The first subsequent batch cuts the distance by another 50%.

In contrast, the Classifier Uncertainty and Entropy methods are unable to completely clean

any views in 40 batches.

Figures 5.3 and 5.4(right) show the classifier accuracy (F1) scores achieved by all meth-

ods. It is difficult to build a quality classifier for the products dataset as evidenced by the
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Figure 5.5: All restaurant views are completely cleaned after three batches with view
impact and four batches with related work. View cleanliness (left) is shown with avg.
Distance(V iewcurr, V iewclean) +/- σ and (right) classifier accuracy with avg. F1. Related
work is Uncertainty. The initial classifier is trained on 13 pairs and subsequent batches are
of size 20 pairs.

low average F1 scores for all methods. The products dataset contains many data quality

problems including missing and wrong values, which complicates feature selection. For ex-

ample, name values were inconsistent even for matching pairs. We thus used this attribute

for blocking but not for learning. We observe, however, that as expected the View Impact

Cleaning method yields, on average, a classifier with a lower F1 score than the Uncertainty

or Entropy methods. This method focuses on the quality of the view rather than the quality

of the classifier itself.

Interestingly, all views are cleaned monotonically with the View Impact Cleaning ap-

proach, while some aggregate views such as PriceBins exhibit non-monotonic behavior for

the other methods. We see this undesirable behavior with Uncertainty and Entropy because

they focus on selecting examples that improve the classifier’s quality and not the view. Since

the classifier’s accuracy is low, it is unable to correctly label the pairs that impact the view.

The View Impact Cleaning approach, in contrast, favors as training examples those pairs

that have a high impact on the view. Since these labels are not the most informative, the

classifier it learns is not as good as Uncertainty, but these labels are useful for cleaning the
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view.

Main result for restaurants. Figure 5.5(right) shows that all approaches exhibit higher

average F1 scores on the holdoutset for restaurants than products, which suggests that

duplicates in this dataset are much easier to classify. We thus expect that the results for

cleaning with all approaches should be similar. We observe, in Figure 5.5(left), that the

View Impact Cleaning method cleans all restaurant views in three batches, while Uncer-

tainty needs four batches. Assuming that the initial classifier is learned over a batch of 13

pairs and subsequent batches contain 20 pairs, view impact can clean all views one batch

faster than Uncertainty. Furthermore, for the Top3 view, view impact only requested two

batches (33 labels), while Uncertainty required two additional batches of 20. These results

indicate that even when a good classifier can be learned with a small number of labeled

examples, our technique does not hurt the quality of the view compared with Uncertainty.

5.5.2 Learning an initial classifier

We now study the individual components of the View Impact Cleaning approach. The first

component of the approach is the selection of the initial training examples (see Section 5.3.2

for details). The selection occurs after both view-based and feature-based blocking.

We measure the quality of the view obtained after cleaning using the initial classifier

learned with View Impact Cleaning. We compare the results to cleaning when using a clas-

sifier learned on a strictly random sample of the data taken also after both view-based and

feature-based blocking. As discussed in Section 5.3.2 and as shown in Table 5.2, because

the number of positive examples is extremely small compared with the number of negative

examples, an initial classifier learned on a random data sample may have no positive exam-

ples to learn from. We thus also compare with a third approach that biases the selection

of the training examples to select a larger fraction of positive examples. We call this last

method per-feature round-robin. This approach sorts the tuple pairs by decreasing value of

each of their features. It creates as many sorted lists as there are features and each pair
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0.0 0.1 0.2 0.3 0.4
Avg Distance(current,clean)

Select* random
per feature
view impact

Count* random
per feature
view impact

Top3 random
per feature
view impact

AvgScore random
per feature
view impact

GroupByCuisine random
per feature
view impact

0.0 0.1 0.2 0.3 0.4
Avg. Distance(current,clean)

Select* random
per feature
view impact

Count* random
per feature
view impact

Top3 random
per feature
view impact

PriceBins random
per feature
view impact

classifier + user labels
user labels

Average F1

Dataset View Random Per feature View impact

Products Select* 29% 32% 27%

Products Count* 29% 32% 28%

Products Top3 29% 32% 28%

Products PriceBins 29% 32% 17%

Restaurants Select* 84% 84% 71%

Restaurants Count* 84% 84% 65%

Restaurants Top3 84% 84% 94%

Restaurants AvgScore 84% 84% 73%

Restaurants GroupByCuisine 84% 84% 74%

Figure 5.6: Impact of biasing the initial classifier on avg. Distance to the true clean view
for products (top) and restaurants (bottom) and avg. F1 (table below). Initial L0 batch
size is 100 for products and 13 for restaurants.

appears once in each list. It then uses weighted sampling to select the pairs using the rank

in the lists as weight.
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Products. Figure 5.6 (top) shows the results for the four views over the Products

dataset. As the figure shows, the View Impact Cleaning method yields the cleanest views

after this initial cleaning step. Because View Impact Cleaning focuses on labeling and clean-

ing pairs with tuples that have high-impact on the view, an important question that arises

is whether a classifier is at all useful or whether all the benefits come from the user labels.

The figure also shows the quality of the view if we clean it using only the user labels. As the

figure shows, with all three methods, building and using a classifier is critical to cleaning

the view. Interestingly, the classifiers help to clean the view even though their average F1

accuracies are low for all sampling approaches (see Figure 5.6’s table). This result implies

that, for the purpose of quickly cleaning a view, it is not necessary to learn a high-quality

classifier; rather it is more important to have the user resolve the most impactful tuples

first, and train a classifier using these biased labels.

Restaurants. We see in Figure 5.6(bottom) that all sampling strategies have similar

behaviors when cleaning the views for a small L0 batch of 13 example pairs, which corre-

sponds approximately to 3% of the data (a commonly used initial training set size [45]).

Since the restaurants dataset is easier to classify, View Impact Cleaning does not have as

much of an advantage as before. However, for three out of five views, view impact still

produces a cleaner view than the other approaches.

5.5.3 Tuning the parameter settings

In this section, we study the effect of tuning various settings for the View Impact Cleaning

and Uncertainty approaches. We first present the impact of weighting the two cleaning

approaches using the α parameter in Equation 5.1 for the Hybrid method that combines

View Impact Cleaning with ClassifierUncertainty. We also study the impact of varying the

batch sizes.
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α values. Since a good quality classifier can help save the user in cleaning effort, we

study the effect of the weighting factor α in the Hybrid method described in Section 5.3.2.

Recall that this method selects pairs for labeling by assigning them the following weight:

α ∗ V iewImpactScore + (1 − α) ∗ ClassifierUncertainty. We consider the two extremes:

prioritizing pairs that will improve the classifier (α = 0) and prioritizing pairs that impact

the view (α = 1). We also consider the hybrid method with α = 0.5. Our analysis focuses

on the products dataset, since the quality of its classifiers was much lower than those for

restaurants. Furthermore, we zoom in to the details for two views, which exhibit very dif-

ferent sensitivities to duplicates. Other views showed similar trends.

View with higher relative sensitivity to dups. Figure 5.7 shows the result for

the Select* view, which has the highest initial sensitivity to duplicates, 0.47. All initial

classifiers are trained on 100 example pairs with View Impact Cleaning. The choice of α

affects only subsequent batches. As the figure shows, the View Impact Cleaning approach

(i.e., α = 1.0) is still able to make more progress cleaning than both the hybrid (α =

0.5) and ClassifierUncertainty (α = 0.0), despite having consistently lower overall classifier

accuracy. In fact, View Impact Cleaning is the only technique that completely cleans this

view within the budget of 500 labels (20 batches). This result suggests that heavily biasing

the selection strategy toward the most impactful pairs is better for cleaning views that are

highly sensitive to duplicates and defined over a dataset for which it is difficult to build a

high quality classifier.

View with lower relative sensitivity to dups. Figure 5.7 shows the results for the

PriceBins view, which is close to half as sensitive to duplicates as the Select* view. Once

again, View Impact Cleaning outperforms the other approaches. It is able to completely

deduplicate the PriceBins view by batch 5, neither of the other two approaches could to

do so by the end of the 500 label budget (20 batches).

Tie breaking strategies. As described in Section 5.3.2, when selecting the next batch

of example pairs for active learning, View Impact Cleaning uses the view impact score as

sampling weights and the minimum margin distance to the classifier [118] as tie-breaker.
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α = 0.0 α = 0.5 α = 1.0

View σL0
σ20 σL0

σ20 σL0
σ20

Select* 0.05 0.04 0.02 0.02 0.05 0

Count* 0.03 0.03 0.03 0.01 0.03 0

Top3 0.01 0.01 0.01 0 0.01 0

PriceBins 0.02 0.007 0.02 0.01 0.02 0

Figure 5.7: Impact of α on AVG Distance(Vcurr,Vclean) and AVG F1 for product views with dif-
ferent sensitivities. Select* (top) has a high initial sensitivity to duplicates (0.47) and PriceBins

view has a lower sensitivity (0.15). Initial classifier training set is 100 pairs. Subsequent batches
contain 20 pairs each with a total budget of 500.

In this section, we compare the benefits of using margin distance as opposed to randomly

breaking ties. Since the results for the views on restaurants exhibited the same behavior as

for the products, we present the findings on products for this experiment.

Products. Figure 5.8 shows the results. Recall from Figure 5.4(right) that the quality

of the classifiers learned for all the views on products dataset is low. Since the margin
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Figure 5.8: Impact of tie-breaking schemes on product views: AVG Distance(Vcurr,Vclean)
(left) +/- σ and AVG F1 (right)+/- σ. Initial classifier training set is 100 pairs. Subsequent
batches contain 20 pairs each with a total budget of 500.

distance approach relies on selecting points that are closest to the classifier, it is sensitive

to the classifier’s accuracy. However, for all views, margin distance was either the fastest

approach to cleaning or just as good as random. For the most sensitive view to duplicates,

Select*, View Impact Cleaning with margin distance was able to completely clean the

view with one batch less than View Impact Cleaning with random. For all other views with

lower sensitivities such as PriceBins, the tie breaking strategies are able to clean the views

within the same number of batches.

Batch size. We study the effect of cleaning views with different batch sizes (10, 20, 50, and

100 example pairs) and budgets (400 and 200) with View Impact Cleaning and Uncertainty.
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Figure 5.9: For all product views, we see the impact of batch size on average
Distance(Vcurr,Vclean) +/- σ with a budget of 200 (left) and budget of 400 (right).

We show the result for products in Figure 5.9. We observed similar results for restaurants.

Overall, the batch size does not significantly influence the results. For all configurations,

View Impact Cleaning is able to clean more than Uncertainty on average. Additionally,

the variance for Uncertainty is much higher than for View Impact Cleaning. This result

suggests that View Impact Cleaning is a more stable approach to deduplication and that it

is not sensitive to the batch size.

5.5.4 Runtime and scalability

View Impact Cleaning complexity. There are two primary sources of computational

complexity for the View Impact Cleaning algorithm. First, computing the feature vectors

for all pairs is O(n2), where n is the input dataset. Second, computing the Distance as EMD

in View Impact Scores (from Algorithm 1) takes worst-case O(n ×m2) because the EMD
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has O(m2) complexity where m is the size of the view [78] and can be called (worst-case)

n times if |Provenance(V (R))| = |R| = n. Since computing the EMD grows quadratically

with the view size, this approach works best with small views. Interestingly, a recent study

of visualizations/views created on Tableau Public and Many Eyes [90] showed that 53% of

views have fewer than 1,000 rows. We discuss the empirical findings next.

Empirical runtimes. We run View Impact Cleaning on a desktop machine with dual 2.4

GHz quad-core Intel Xeon processors and 11GB of memory. We use SQLite as our backend

database to compute the feature vector table. We present the detailed measurement of

runtimes for our approach on the view, Select* from products, as this view is the largest

of all from Table 5.3 (with 291 rows) and takes the most time. We assume the same

experiment settings as prior experiments on this view, where the initial L0 batch has 100

pairs and subsequent batches have each 20 pairs. We time each of the key steps as follows:

(1) Compute view impact scores for all tuples: three minutes, (2) Compute feature vector

with four features with view blocking and feature blocking: three minutes (without feature

blocking the time is 53 minutes) (3) Pick examples to label per batch: under one second,

(4) Learn a new classifier per batch: under one sec, (5) Labels all pairs as either duplicates

or not per batch: under three seconds.

As expected, steps (1) and (2) are the only steps that take a significant amount of time.

To help with overall interactivity, these steps can be done as a background process while

the user first explores the data. Interestingly, these two steps only need to be performed

once before the cleaning process begins. Over the course of cleaning a view, the tuple view

impact scores tend to not change.

5.5.5 Stopping condition

Recall that in practice Vclean is not known. We thus do not know exactly when to stop

cleaning. The heuristic used is to stop after little to no progress has been made for some

interval of time. All we can do is show empirically that this heuristic is effective. The

Entropy method does this based on the stability of the confidence values of the classifier.
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Figure 5.10: For product views, larger window sizes produce cleaner results (left is avg.
Distance(Vdirty,Vclean)+/- σ). Smaller window sizes save the user in labeling effort (shown
right), but result in a less than perfect clean view. View Impact Cleaning converges to a
perfect clean view when the window size is 16 (18 - 37 batches of user labels). A window
size of 7 is a good compromise. For all views, Uncertainty does not converge for any window
size, as its classifier is too unstable. Initial L0 is 100 pairs, subsequent batches contain 20
pairs. Total budget is 900 pairs.

Since the Uncertainty approach does not specify when learning can stop, we apply the same

approach as used in the Entropy work to monitor the stability of the uncertainty values of

the classifier. The View Impact Cleaning approach has a more natural and direct way to

measure “little change” based on the Distance(Vcurr,Vprev). The idea is to stop cleaning

once we observe that the distances computed between the current view, Vcurr, and the view
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cleaned from the previous iteration, Vprev, have plateaued (within +/- epsilon = 0.01) over

a window of size nconverge batches. For the product views, shown in Figure 5.10, we evaluate

the impact of the window size on the convergence to the true clean view. The figure shows

the distance values when cleaning stops (left) and the corresponding labeling effort (right).

Given a much larger budget this time (900 labels, 41 batches total) and using the same

nconverge = window size = 20 batches and ε as reported in the Entropy evaluation section,

Uncertainty still fails to converge to the true clean view for all product views. The result

on the right indicates that the Uncertainty approach is unstable for a long time: all window

sizes require many more batches to stop for Uncertainty than View Impact. This result

suggests that the Uncertainty classifier learned is not stable enough to stop given even a

large labeling budget of 900. For View Impact Cleaning, we see that a window size of

16 achieves the objective of converging to the true clean view (i.e., Distance = 0) for all

views. However, each view requires between 18 to 37 batches of labels given this window

size. While this result is consistent with the time period in which the Select* and Count*

views actually converge to the true clean view (see Figure 5.4), the Top3 and PriceBins

views require significantly less cleaning effort (only three to four batches). If the user is

willing to trade off cleaning quality for effort, a window size of 7 would be an appropriate

compromise, as half of the views are completely cleaned and the other half have a small

average Distance, 0.002, from the true clean view (99% clean).

5.5.6 Multi-view deduplication

A dashboard is a collection of related visualizations or views typically over a common

dataset. In this section, we study the performance of three techniques for data cleaning in

the context of such dashboards.

We study three different orderings strategies of the set of four views on the products

dataset. We focus on products rather than restaurants because it is a more challenging

dataset to classify duplicates. We answer the question: is it faster to deduplicate each view

at-a-time in isolation or collectively across all views?
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Figure 5.11: Result of fully cleaning each view in products on cleaning the other views given
a budget of 500 labels: resolving the duplicates in the Select* view (far left) helps clean all
the other views the fastest in 460 labels. However, the views are not cleaned monotonically.
If we instead clean Top3 or PriceBins first, we see smoother curves but the views are not
cleaned as quickly as before. Distance = Distance(Vcurr,Vclean) and all batches contain 20
pairs.
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Figure 5.12: The most sensitive view first approach (left) monotonically cleans the other
product views except for PriceBins with a budget of 500 user labels. Cleaning Select*

cleans all other views the quickest (460 labels). If we instead clean PriceBins first, we
see smoother curves but the views are not cleaned as quickly as before. Distance =
Distance(Vcurr,Vclean) and all batches contain 20 pairs.
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Figure 5.13: View Impact cleans 100 tuples from each view in a round-robin fashion: select
the most impactful 100 tuples from each view based on sensitivity to duplicates. This
approach cleans all of the other product views monotonically except for PriceBins, but
requires a bigger budget (580 labels) than the previous approach to clean based on the most
sensitive view first. Distance = Distance(Vcurr,Vclean) and all batches contain 20 pairs.

(1) Fully clean one view at-a-time. We first study how much cleaning one view in

a dashboard can help to clean the other views. Figure 5.11 shows the average distance,

Distance(Vcurr,Vclean), across all four views for products as we clean one of the four views

only. As the figure shows, when cleaning one of the two views with the greatest sensitivity to

duplicates, Select* and Count*, the most progress can be made on simultaneously cleaning

the other views: Select* cleans all other views in 460 labels and Count* cleans them in 480

labels. In these views, all tuples have the same view impact scores and the cleaning process

treats them all in the same way helping to clean all views the fastest. Interestingly, as

shown in Figure 5.12, deduplicating the Select* view using View Impact Cleaning causes

temporary, non-monotonic behavior in one view, PriceBins, which is possible given that

the quality of the classifiers is low and subsequently learned classifiers may change how they

classify the most impactful tuples for the PriceBins view.

Thus, cleaning one view helps to make progress on other views. However, in the context

of cleaning an entire dashboard, the at-a-time method must be done with careful attention

to the order in which the views are cleaned.

2) Partially clean one view at-a-time: round-robin view sensitivity ordering.
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Figure 5.14: Clean all views simultaneously using MAX and SUM across all product views:
MAX fully cleans all views together in 460 labels and SUM cleans all views in 480 labels (one
batch later). SUM and MAX produce smoother curves for cleaning all views than the compa-
rable first approach studied with Select* being cleaned. Distance = Distance(Vcurr,Vclean)
and all batches contain 20 pairs.

We select batches of the 100 most impactful pairs from each of the views in a round-robin

fashion. The batches selected from each view are ordered by the initial overall view sensitiv-

ities to duplicates (i.e., Distance(Vdirty,Vclean) with the most sensitive one first: Select*,

Count*, PriceBins, and Top3. We found that this approach required 100 more label re-

quests than the previous approach (i.e., just cleaning Select* fully) to clean all views and

exhibited temporary, non-monotonic behavior cleaning the PriceBins view.

3) Clean across all views simultaneously using an aggregate measure of sensi-

tivity across all views, MAX and SUM We also evaluate the performance of cleaning

a dashboard of visualization as a single view. In this approach, the View Impact score for

each tuple in the base relation is either the max or the sum of its impact across all the views.

Figure 5.14 shows the results. The results are similar when using either MAX or SUM and

the total number of labels required to clean all views is the same as cleaning just Select*

or count. However, the curves for both MAX and SUM are smoother than when cleaning

only Select* (Figure 5.11). This approach has the double benefit of yielding more stable

results across batches and avoiding the problem of selecting which view to clean first.
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Discussion. View-ordering is a challenging problem because different orderings have dif-

ferent effects on other views. For example, the strategy that cleaned just the Select*

view produced non-monotonic behavior in cleaning PriceBins, a top-k view. Such non-

monotonic behavior can happen in cleaning views that, for example, require an ordering

of a small subset of k rows (e.g., any top-k view queries) since the cost of a mistake for a

single row is a much higher proportion of the Distance score. For such views, some duplicate

tuples may not impact the view at all, while others have a much higher impact. However,

for views like Select* and Count*, each tuple has a similar impact on the view and thus

has a small proportion of the Distance score. One challenge we address is to make the View

Impact Cleaning approach more robust to of any inter-view ordering constraints that can

slow down the progress of cleaning across the views. One idea presented to address this

challenge is to order the batches of pairs by their aggregate overall impact (MAX or SUM)

across each view being cleaned. This approach achieves the fastest cleaning result of all,

only requiring 460 labels to clean the four views collectively.

5.6 Related work

Deduplication has a long history in the literature (see [34, 44]). The state-of-the-art dedu-

plication approaches that are closely related to this work fall into the following categories:

Active learning. Active learning systems for record deduplication [7, 9, 45, 93] focus on

cleaning an entire dataset at-a-time. Our work also uses active learning but our focus is

doing a minimum amount of work (in the form of user labels) to clean one or more specific

views over the dirty data rather than focusing on producing the cleanest base data. All

of these systems (except Corleone [45]) require a developer/expert to manage the common

learning tasks such as writing the blocking rules. Corelone pushes this expert work to

the crowd. In our work, we do not focus on automating the generation of the blocking

rules and our approach could be extended with such techniques. Active learning methods

carefully select additional training examples at each iteration that are most informative.

Common methods to measure the informativeness of training examples try to measure the

disagreement of the component classifiers using uncertainty [93] or entropy [45]. In contrast,

we use our new notion of View Impact for sampling the initial set and selecting additional
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training examples. As a result, while related systems often require the user to provide

thousands of labels to clean entire datasets, we show that View Impact Cleaning can yield

clean views with only tens to hundreds of labels.

Using crowd workers. Several entity resolution systems rely on feedback from a set of

crowd workers (who may provide incorrect or conflicting labels). These systems strive to

limit the number of unnecessary label requests to the crowd of resolving duplicates [45, 93,

122, 127]. In contrast, we focus on a single data enthusiast performing the cleaning in the

context of his or her data exploration task.

Passive learning. Passive learners for deduplication can be found in the databases liter-

ature [23, 73] and in the information retrieval literature [52, 72]. However, we showed in

Section 5.5.2 that passive learners are insufficient in completely cleaning any of the views

in one shot.

Incremental deduplication. Some techniques focus on the problem of deduplicating

newly inserted records once an original dataset had been deduplicated [50, 131, 134]. In

contrast, we focus only on the initial data deduplication problem.

Clustering. Several deduplication approaches consider the setting where each tuple can

match multiple other tuples [2, 12, 129, 122, 130]. They either leverage the transitive prop-

erty of the match relation [2, 129, 122] or correlation clustering [12, 130] to infer matching

and non-matching pairs based on previously labeled pairs and reduce the labeling effort by

users. These approaches are complementary to ours and could be added to our method to

further speed-up view cleaning.

5.7 Conclusions

We proposed an active learning algorithm for deduplicating records in an exploratory visual

analytic systems, which strives to produce the cleanest view possible within a limited budget.

Our key idea is to consider the impact that individual tuples have on a visualization and

to monitor how the view changes during cleaning. We demonstrated over a set of nine

views that our approach produces significantly cleaner views for small labeling budgets

than state-of-the-art alternatives and that it also stops the cleaning process after requesting

fewer labels.
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View View SQL View Description Rows % Rows Initial Distance

affected by dups (Vdirty , Vclean)

SFrestaurants: SELECT cuisine, COUNT(*) Top 3 restaurants in San Francisco 3 33 0.44

Top3 FROM SFrestaurantsSelect* by type of cuisine

GROUP BY cuisine

ORDER BY COUNT(*) DESC LIMIT 3

SFrestaurants: SELECT * All restaurants in San Francisco 148 12 0.31

Select* FROM restaurants

WHERE city = ‘SF’

SFrestaurants: SELECT COUNT(*) Count of restaurants in San Francisco 1 100 0.17

Count* FROM SFrestaurantsSelect*

SFrestaurants: SELECT cuisine, AVG(score) Restaurants by cuisine & AVG inspection score 29 31 0.13

JoinAvgScore FROM SFrestaurantsSelect-scores from the San Francisco Health Department’s

GROUP BY cuisine restaurant inspection scores DB [104]

SFrestaurants: SELECT cuisine, COUNT(*) A histogram-like view of restaurants 29 31 0.08

GroupByCuisine FROM SFrestaurantsSelect* in San Francisco grouped by cuisine

GROUP BY cuisine

MfrProducts: SELECT * Products manufactured by 291 27 0.47

Select* FROM products Apple, Microsoft, or Adobe

WHERE name LIKE ‘%Apple%’

OR name LIKE ‘%Microsoft%’

OR name LIKE ‘%Adobe%’

MfrProducts: SELECT COUNT(*) Count of products manufactured 1 100 0.30

Count* FROM MfrProductsSelect* by Apple, Microsoft, and Adobe

MfrProducts: SELECT mfr, CASE For each manufacturer, tally the products 5 20 0.28

PriceBins WHEN price < 10 then ’Bin 1: [0,10)’ in various price ranges limited to the first

WHEN price <100 then ’Bin 2: [10,100)’ 5 groupings

WHEN price < 1000 then ’Bin 3: [100,1000)’

ELSE ’Bin 4: 1000+’

END AS priceRange,

COUNT(*) FROM MfrProductsSelect*

GROUP BY mfr, priceRange

ORDER BY mfr ASC, priceRange ASC LIMIT 5

MfrProducts: SELECT mfr, COUNT(*) as cnt Top 3 manufacturers sorted on 3 33 0.15

Top3 FROM MfrProductsSelect* total count in descending order

GROUP BY mfr

ORDER BY cnt DESC LIMIT 3

Table 5.3: Views studied on restaurants and products: view sizes, fraction of rows impacted
by duplicate entities, and initial view sensitivities to duplicates using Distance(V iewdirty,
V iewclean) where V iewclean is the true clean view.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

Whether in industry or science, everyone today has a big data problem. While many tools

are being developed to support expert data scientists with the management and analysis

of this data, another class of users, data enthusiasts, are currently under-served. Data

enthusiasts are ordinary people who need to manage and analyze data but do not have the

skills of professional data scientists.

In this dissertation, we presented the following three contributions to the state-of-the-art

in supporting data enthusiasts with their data analysis tasks:

1) Usage study of two visual data analytics systems. In Chapter 4 we provided

the first study of how two popular visual analytics systems, Tableau and Many Eyes, were

being used. Our study focused on answering the following core set of questions: (1) How

popular are these systems? How many users do they attract and how active are these users?

(2) How heavily do users leverage the collaborative features of these tools? (3) What do

users actually do with the data? How do they analyze it? How much data (in terms of

relation cardinality and degree) do users choose to visualize at any given time? And finally

(4) Do users integrate multiple data sources in their visualizations? And how do they

perform these integrations? The results from this study informed our next contribution,

cleaning data in the context of a visual analytics environment.

2) View-driven data cleaning. In the context of visual analytics systems, we devel-

oped a new approach to deduplication that builds on the active learning literature. We call

our approach View Impact Cleaning (in Chapter 5). Our method cleans only the data that

impacts the view (or set of views) and only if the view is sensitive to duplicates. We devel-

oped a new measure of view sensitivity to duplicates and consider the impact of each tuple

on the view (i.e., the view impact of each tuple) during the cleaning process. Our active

learning method biases the selection of training examples based on view impact. We also
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developed a new stopping condition for the algorithm: stop cleaning when the view (or set

of views) is no longer sensitive to duplicates. We showed in our evaluation over nine views

and two real-world data sets that this method cleans views faster than the state-of-the-art

work.

3) Data blending. Finally, in Chapter 2 we presented a simple approach for interactive

data integration in Tableau.

Future work: classifying duplicates. There are three primary pain-points in applying

an active-learning based approach to identify duplicate entities in a database. Active learn-

ing builds a classifier that takes pairs of records as input and labels each pair as either a

duplicate or not. First, in order to build a good quality classifier, the learner needs to have a

good set of features that can help separate the two classes (duplicates and non-duplicates).

This is a well-known problem (called feature engineering) and requires some technical ex-

pertise, which we cannot assume for our cohort of users, data enthusiasts. Moreover an

additional pain-point is in specifying the appropriate initial parameter settings (e.g., which

kernel to use), which are specific to the dataset being classified and hard to generalize to

other data sets. Finally, the classifier quality is subject to the class imbalance problem and

the state-of-the-art approach is to apply blocking rules to boost the fraction of the under-

represented class (i.e., duplicates). There are currently no tools that can help automate

any of the aforementioned pain-points.

Future work: data enrichment for visual analytics. While many data sources are

available on the Web or (more conveniently) shared by other users of the visual analyt-

ics service, identifying interesting data to enrich a visualization is challenging. Different

datasets have different schemas, different levels of granularity (e.g., we may have state-level

unemployment data but zip code-level income data), or different levels of cleanliness. They

may also contain different subsets of relevant data. Next-generation visual analytics services

should help users identify datasets that they can potentially leverage for their current data

analysis task. The recommendation needs to take into account the visualizations that the

user is creating and could create and not just the underlying data.



116

Future work: a common formalism. Most importantly, the following capabilities should

be seamlessly combined into a unified framework to support data enthusiasts and their work-

flows: data cleaning, data recommendation, data integration, and visual exploration. To the

user, it should be a visualization system that enables jumping among the tasks of exploring

data, finding new data, integrating data, and cleaning data in a consistent, integrated fash-

ion. Current systems require a mental context switch every time a user needs to integrate

another data source by forcing the user to deal with the details of cleaning and transform-

ing it. Presently, no single analytics system can accomplish this task: users must find and

learn to use separate secondary tools and then manually reload the cleaned results into the

primary analytics tool. We want to avoid these expensive context- and tool-switches.
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Brainwash: A data system for feature engineering. In CIDR, 2013.

[5] Apache Hadoop. https://hadoop.apache.org/.

[6] Apache Spark. http://spark.apache.org/.
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