
c©Copyright 2014

Michael F. Ringenburg

Dynamic Analyses of Result Quality in Energy-Aware

Approximate Programs

Michael F. Ringenburg

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2014

Reading Committee:

Luis Ceze, Chair

Dan Grossman, Chair

Mark Oskin

Program Authorized to Offer Degree:
Computer Science and Engineering

University of Washington

Abstract

Dynamic Analyses of Result Quality in Energy-Aware Approximate Programs

Michael F. Ringenburg

Co-Chairs of the Supervisory Committee:

Dr. Luis Ceze

Computer Science and Engineering

Dr. Dan Grossman

Computer Science and Engineering

Energy efficiency is a key concern in the design of modern computer systems. One

promising approach to energy-efficient computation, approximate computing, trades

off output precision for energy efficiency. However, this tradeoff can have unexpected

effects on computation quality. This thesis presents dynamic analysis tools to study,

debug, and monitor the quality and energy efficiency of approximate computations.

We propose three styles of tools: prototyping tools that allow developers to exper-

iment with approximation in their applications, offline tools that instrument code

to determine the key sources of error, and online tools that monitor the quality of

deployed applications in real time.

Our prototyping tool is based on an extension to the functional language OCaml.

We add approximation constructs to the language, an approximation simulator to

the runtime, and profiling and auto-tuning tools for studying and experimenting with

energy–quality tradeoffs. We also present two offline debugging tools and three online

monitoring tools. The first offline tool identifies correlations between output quality

and the total number of executions of, and errors in, individual approximate oper-

ations. The second tracks the number of approximate operations that flow into a

particular value. Our online tools comprise three low-cost approaches to dynamic

quality monitoring. They are designed to monitor quality in deployed applications

without spending more energy than is saved by approximation. Online monitors can

be used to perform real time adjustments to energy usage in order to meet specific

quality goals.

We present prototype implementations of all of these tools and describe their usage

with several applications. Our prototyping, profiling, and autotuning tools allow us

to experiment with approximation strategies and identify new strategies, our offline

tools succeed in providing new insights into the effects of approximation on output

quality, and our monitors succeed in controlling output quality while still maintaining

significant energy efficiency gains.

TABLE OF CONTENTS

Page

List of Figures . iv

Chapter 1: Introduction . 1

Chapter 2: Approximate Programming: Background and Related Work . . 6

2.1 Approximate Programming . 6

2.2 Measuring Quality of Result . 8

2.3 The EnerJ Language . 11

Chapter 3: EnerCaml: Prototyping, Profiling, and Autotuning Energy-Aware
Approximate Computations in OCaml 15

3.1 Introduction . 15

3.1.1 Outline . 16

3.2 The EnerCaml Approximation Layer 17

3.2.1 EnerCaml’s Approximation Model 17

3.2.2 New Approximation Primitives 20

3.2.3 Implementation of the Approximate Simulator 22

3.3 The EnerCaml Profiling Layer . 24

3.3.1 Overview of EnerCaml Profiling 25

3.3.2 User-Specified Approximation 28

3.3.3 Profiler Implementation . 29

3.4 The EnerCaml Autotuning Layer . 31

3.4.1 Implementation of Autotuning 36

3.5 Case Studies . 36

3.5.1 Ray Tracer . 37

3.5.2 N-Body Simulation . 41

3.5.3 Collision Detector . 43

i

3.6 A Monad-Based Approach to Data-Centric Approximation 45

3.6.1 Approximation Monads . 45

3.6.2 Example . 50

3.7 Related Work . 53

Chapter 4: Offline Analysis of Approximate Programs 56

4.1 Introduction . 56

4.2 Dataflow Instrumentation . 57

4.3 Correlation Instrumentation . 60

4.4 APIs and Usage . 63

4.5 Implementation Issues . 64

4.5.1 Shadow Memories . 65

4.5.2 Instrumentation Timing . 65

4.6 Use Cases . 66

4.7 Related Work . 70

Chapter 5: Online Quality Monitoring of Approximate Applications 72

5.1 Introduction . 72

5.2 Offline vs. Online Quality Monitoring 73

5.3 Approaches to Online Quality Monitoring 75

5.3.1 Precise Sampling . 76

5.3.2 Verification Functions . 77

5.3.3 Fuzzy Memoization . 78

5.4 The Design Space . 80

5.4.1 Design Space Dimensions . 80

5.4.2 The Code-Centric Nature of Quality Measurement 81

5.4.3 Dealing With Side Effects . 85

5.5 A Monitoring API for EnerJ . 87

5.5.1 The checkApprox Function . 89

5.5.2 Quality Monitors . 90

5.5.3 Precise Sampling . 92

5.5.4 Verification Functions . 92

5.5.5 Fuzzy Memoization . 93

ii

5.6 Implementing the Monitoring API . 95

5.6.1 Handling Side Effects: Restricting and Buffering 95

5.6.2 Precise Sampling . 96

5.6.3 Verification Checking . 97

5.6.4 Fuzzy Memoization . 98

5.7 Evaluation . 98

5.7.1 Energy Model . 102

5.7.2 Ray Tracer . 103

5.7.3 Ray Tracer: End-to-end System 104

5.7.4 Asteroids . 105

5.7.5 Triangle Intersection . 106

5.7.6 Sobel Filter . 107

5.7.7 FFT Kernel . 108

5.7.8 Black Scholes. 109

5.8 Related Work . 109

Chapter 6: Conclusions and Future Work 111

6.1 Conclusions . 111

6.2 Future Work . 111

Bibliography . 115

iii

LIST OF FIGURES

Figure Number Page

3.1 The output from running the simple profiler on a ray tracer with a
0.5% error rate. 26

3.2 Static call trees illustrating the various strategies we use to search
the precise-approximate decompositions of EnerCaml programs for im-
proved quality of result versus efficiency tradeoffs. A black node repre-
sents an approximate function application and a white node represents
a precise application. Figure (a) shows the originally specified approxi-
mation. Figure (b) shows the result of treating one of the approximate
applications as if it were called inside a precise thunk. Figure (c) shows
the result of narrowing the approximation to just that same call site.
Finally, figure (d) illustrates the result of making two sibling call sites
precise. 32

3.3 Textual output from autotuning a ray tracer application. The tool pro-
duces a textual (excerpted here) and graphical (Figure 3.4) depiction
of the best results (frontier curve) among the profiled executions. Note
that the last two results listed on the left achieve nearly the same ap-
proximation levels as the original (94.8% approximate), but with better
QoR (28.4 and 28.2 versus 26.9 for the original annotation). 34

3.4 Graphical output from autotuning a ray tracer application. The tool
produces a textual (Figure 3.3) and graphical represenation (depicted
here) of the best results (frontier curve) among the profiled executions.
The graphical depiction plots the results on axes of approximation
(proportion of approximable operations executed approximately) and
quality of result (here, peak signal-to-noise ratio), labeling each point
with “N” for narrowing approximation to a call site (i.e., leaving that
call site and its children approximate, but making everything else pre-
cise) or “E” for excluding approximation at call sites (i.e., making that
call site and it’s children precise, but leaving the rest of the approxi-
mation untouched). 35

iv

3.5 The images generated by our ray tracer with various mixtures of ap-
proximate and precise execution. Image a (PSNR 26.9) represents the
result of approximating the entire ray tracing and scene creation com-
putations. Image b (PSNR 36.9) limits the approximation to a single
dot product inside the ray sphere function. Image c (PSNR 33.5)
approximates the ray sphere function, but executes two of its dot
products precisely. It has slightly lower quality than image c, but al-
most twice as much approximation. 38

4.1 Graphs showing correlations between code points and QoR in (a) sim-
ulated annealing, (b) Sobel filtering, and (c) Black Scholes. The x-axes
represent source lines, and the y-axes represent QoR correlations. The
x-axes are sorted by correlation value to show how the correlations
are distributed: a small and informative number of approximate code
points have high correlation to QoR. 68

5.1 This table shows how each of our monitoring approaches fits into the
design space and discusses its applicability. We have left off the side
effects dimension as it is orthogonal. 82

5.2 The architecture of our monitoring framework prototype. Solid arrows
indicate inheritance; dashed arrows indicate parameters to invocations. 88

v

ACKNOWLEDGMENTS

I would like to thank my advisers, Dan Grossman and Luis Ceze, for their guidance

and support. Thanks as well to Adrian Sampson for helping me get started with

EnerJ, and for collaborating on the projects described in this thesis. I would also

like to thank Tom Cormen for inspiring me to enter the field of Computer Science. I

am very appreciative of the flexibility shown to me by Cray, Inc., in allowing me to

continue to work for them part time while completing this thesis. And of course I am

extremely grateful to my family for their love and support.

vi

DEDICATION

To my wife, Severine, and my daughters, Emilie and Sarah

vii

1

Chapter 1

INTRODUCTION

Energy efficiency has become a critical component of computer system design [8,

21]. The dark silicon problem limits the amount of chip area that will be usable in

future chip generations due to power constraints: at the 22 nm process step, 21% of

the chip must be powered down at any time [21]. Furthermore, battery life is a major

concern in mobile devices and power and cooling bills represent large parts of the costs

of running data centers and supercomputers. For example, as of November 2013, the

average power consumption of a top 10 system from the Top 500 supercomputer

list was 6.50 megawatts [44]. These power costs can run into the millions of dollars

annually.

Approximate computing is a promising technique for reducing the power consump-

tion and improving the performance of computing systems [1,5,9,17,22,27,40,48,49,

52,53]. For example, Sidiroglou et al. [53] describe loop perforation, which reduces the

amount of work performed by an application by skipping the execution of some loop

iterations. Perforation can significantly improve the performance of various bench-

marks without introducing unreasonable distortion. Another example is the EnerJ

compiler, runtime, and Java language extensions [52]. EnerJ takes a more disciplined

approach to approximate computing. Programmers annotate data that can be ap-

proximated; the compiler and hardware (or simulator) then cooperate to execute in a

low-power, approximate mode when dealing with this data. For example, the system

could store data in DRAM with a lower refresh rate that occasionally experiences

data corruption, or utilize a lower-powered processor pipeline that suffers from infre-

quent errors. The EnerJ type system ensures that approximate data does not flow

2

into non-approximate data unless the programmer explicitly endorses (approves) the

flow. This allows developers to take advantage of the benefits of approximate com-

puting without sacrificing safety. The EnerJ approach can yield significant energy

savings across a variety of benchmarks using custom hardware [22].

However, imprecise computation must be used carefully to avoid compromising

too much on software quality. Previous work has given programmers control over the

use of approximation [5, 9, 17, 40, 52]. In Relax [17], programmers mark regions of

code where hardware errors can safely go uncorrected. In EnerJ [52], a type system

distinguishes data that can tolerate errors from data that requires full precision and

typing rules prevent approximate-to-precise information flow. Carbin et al [9] propose

a proof system for reasoning about acceptability properties in the face of imprecision.

The Rely system [10] statically determines the probability that values produced by

an approximate computation are correct.

These static approaches are valuable and help bound the negative effects of approx-

imation. However, even with static safety guarantees that prevent outright crashes

and bound error margins (such as Relax’s spatial error bounding or EnerJ’s non-

interference), some approximations can be more pernicious than others in terms of

their effect on the program’s quality of result (or QoR). In light of this, we contend

that dynamic tools should also play an important role in addressing quality concerns.

This is analogous to conventional (non-approximate) software development, where

static tools like Coverity [14] or Lint [28] and dynamic tools like Valgrind [43] all play

important roles in ensuring software quality.

Based on this observation, this thesis proposes the use of dynamic tools in the

context of developing programs with approximation. Specifically, we design tools that

can provide more precise understanding of, and control over, the QoR of approximate

applications.

We first propose an approximation prototyping system called EnerCaml. Ener-

Caml extends the OCaml programming language [45] (an ML variant) with constructs

3

for approximate computing, and adds an approximation simulator to the OCaml run-

time. OCaml is known for its strengths as a prototyping language, and these exten-

sions allow it to be used for prototyping approximate applications. The EnerCaml

prototyping toolkit also contains two tools for assessing and improving the quality of

the prototyped applications and algorithms. The first is an approximation profiler

that allows developers to estimate the output quality and energy savings of the ap-

proximations they introduced. The second is an autotuner for EnerCaml programs

that suggests alternate approximation strategies and points out which strategies lie

at optimal points on the quality–efficiency Pareto curve.

We then propose two offline tools for approximation aware programming environ-

ments that instrument programs to determine the critical data locations and code

points that have the most impact on quality of result. We implemented these tools

as LLVM [31] compiler passes for an approximate version of C and C++. Our offline

tools can track approximate dataflow into variables and expression results, and can

determine correlations between the final output quality of an approximate application

or algorithm and the executions of, and errors in, specific approximate instructions.

These tools can help debug the quality of approximate applications, and can also

provide new insights into the safety and effectiveness of various approximations.

Finally, we propose online tools that dynamically monitor quality and can let

programs self-heal by adjusting approximation (or energy) levels or re-executing code

in response to quality degradations. We implemented our monitors on top of the

EnerJ [52] language, runtime, and simulator. These monitors are specifically designed

to have low enough overhead to run during approximate executions while still retaining

significant energy savings. This allows the programs to dynamically react to new

and unanticipated input patterns or environmental conditions that might otherwise

negatively impact quality.

We argue that all three styles (prototyping, offline instrumentation, and online

monitoring tools) are important pieces of an approximate programming ecosystem.

4

Prototyping allows developers to explore candidate applications for approximate pro-

gramming, and to estimate the energy saving benefits and quality of result tradeoffs.

Our prototyping toolkit can also suggest alternate approximation strategies that may

improve these tradeoffs. Our offline tools, while too heavyweight for usage in deploy-

ment (the costs would more than overwhelm the savings from approximation), are

excellent tools for pre-deployment debugging and understanding of quality issues in

the application. They help programmers better understand where they can safely

use approximation. The online monitoring tools, on the other hand, are lightweight

enough to run in deployed code and constantly adjust approximation levels or correct

erroneous results when faced with quality issues that arise post-deployment (due, for

example, to unanticipated program inputs or variations in approximate hardware).

However, they are unable to provide the detailed analyses and important insights into

program behavior that our offline tools provide. Taken together, the various tools pro-

posed in this thesis can greatly enhance developers ability to produce high-quality,

energy-efficient, approximate applications.

Our contributions include:

• a system for prototyping, experimenting with, and tuning approximation strate-

gies (Chapter 3),

• a tool for dynamically tracking approximate dataflow (Chapter 4),

• a tool for determining correlations between approximate operations and output

quality (Chapter 4),

• three approaches to online quality monitoring (Chapter 5), and

• a framework for online monitoring and side effect management (Chapter 5),

Prior to discussing our main contributions, we will provide more background on ap-

proximate programming, with a focus on the EnerJ model of approximation (Chap-

5

ter 2). All of the tool implementations described in this thesis use an approximation

model similar to EnerJ. However, the ideas behind them are applicable to alternate

models of, and strategies for, approximate computing.

6

Chapter 2

APPROXIMATE PROGRAMMING: BACKGROUND
AND RELATED WORK

This chapter presents background material and related work on approximate pro-

gramming (Section 2.1) and Quality of Result, or QoR (Section 2.2). Further related

work that is more specific to our various tools and techniques will be described in the

relevant chapters. We also present a more in-depth discussion of the EnerJ language,

simulator, and approximation model, as all of our tools were built on top of similar

systems (Section 2.3). The principles behind the tools, however, can be applied to

other approximation models.

2.1 Approximate Programming

Approximate programming is a model that allows programmers to trade computa-

tion accuracy for energy efficiency or performance. In a language with support for

approximate programming, programmers distinguish parts of a program—variables,

operations, methods, loops, and so on—that are tolerant to error. The semantics of

approximate data and operations are relaxed to allow the execution substrate, in the

form of either software [1, 5, 27, 48, 49, 53, 61] or hardware [12, 17, 22, 32, 37, 42, 52],

to permit errors to occur where they would otherwise need to be prevented. Sev-

eral studies have shown that a wide variety of applications can tolerate the resulting

imprecision with acceptable results [18,33,34,60].

Many applications have kernels that are amenable to approximation. For example,

applications that work with audio, video, or images are inherently tolerant of some

error. In fact, the most common storage formats for these media involve lossy com-

7

pression schemes. Any code that involves a randomized or approximate algorithm

is also an excellent choice for approximate programming.1 Simulations of physical

systems are also sometimes good candidates for approximation as they may already

involve rounding (i.e., approximation) of various physical quantities such as position

and velocity.

Several hardware and software techniques exist that take advantage of the relaxed

semantics of approximation-annotated programs to increase their energy efficiency or

performance: for example, Flikker [37] reduces the DRAM refresh rate for memory

used to store approximate data at the expense of occasional bit flips in the data and

several systems [5,27,53] reduce the iteration count of loops in approximate code. Be-

cause of the diversity of approaches to exploiting approximation for efficiency gains, a

suitably general approximation-aware programming language must allow a wide range

of “incorrect” behavior. For example, the semantics of EnerJ [52] define approximate

computations to behave arbitrarily, giving no formal guarantees on the output of ap-

proximate operations or the consistency of approximate variables. (Informally, the

programmer can expect each approximate operation to be faulty but to bear some

resemblance to its precise counterpart: for example, an approximate addition may be

expected to perform addition with occasional faults, or it may be expected to always

produces answers “close” to the correct result.) This “chaotic” definition of approx-

imation allows EnerJ-like languages to generalize to a broad range of hardware and

software optimizations, but it hinders programmers’ understanding of approximate

code and their ability to write reliable programs.

In addition, even the most approximable applications require some code to exe-

cute precisely. For example, memory allocation, control flow, and bounds checking

calculations usually need to execute precisely to avoid faults. Particular applications

1In fact, one of the sample applications we looked at for EnerCaml was a genetic algorithm, but
it turned out that when we added approximation the results were a better fit for the data than
when we ran it precisely.

8

may also have certain phases that must execute precisely. For instance, an application

that saves an image may be able to tolerate some approximation in the pixels of the

image, but any approximation in the image header will result in at best a severely

distorted image and at worst a completely unreadable image.

2.2 Measuring Quality of Result

These issues motivated us to investigate the problem of understanding and controlling

the output quality of approximate applications. While resource usage—time or power,

for example—can be measured directly, quality must be assessed using a program-

specific metric. We refer to this application-defined notion of output quality as the

quality of result or QoR. For example, in an object recognition application the QoR

metric may be the number of correct classifications.

One way to measure QoR is to run the application (or its approximate portions)

twice with identical inputs—once approximately, and once precisely—and compare

results. In an offline setting, this could be done repeatedly in a controlled test en-

vironment, using a variety of expected inputs. We refer to this as approximation

profiling. In an online setting, we could do this in real time with every input seen

“in the wild”. We refer to this as complete online monitoring. This section argues

why complete online monitoring is inappropriate for the online setting and why ap-

proximation profiling (by itself) is insufficient for the offline setting (although it may

be useful as part of a package of tools like our EnerCaml system, described in Chap-

ter 3). Along the way, we also discuss some of the key issues that any QoR tool must

address. These approaches thus serve as “quality strawmen” to motivate the rest of

this dissertation.

The high-level goal of any approximate QoR tool is to measure the effects of

approximation on a piece of approximate code or data. For instance, if the code

contains approximate arithmetic, we want to detect when arithmetic errors cause

the code’s output to differ too much from what the results would have been if only

9

precise arithmetic had been used. For example, consider a ray tracer, where we wish

to evaluate the approximate computation of each pixel:

evaluate { tracePx(x, y); }

The strawman approach mentioned above would run this code twice, and compare

the results to see if they are within an acceptable threshold:

approx = tracePx(x, y);

precise = runPrecise { tracePx(x, y); }

if (abs(approx - precise) > Threshold)

throw new FailedQoR();

This approach provides exactly what we would like in an online tool: real-time

updates (as each approximate computation completes) on the quality of the approx-

imation. This enables programs to respond immediately, e.g., by adjusting param-

eters to improve future approximations, or by reexecuting erroneous computations.

Unfortunately, there are four problems with this approach. First, the code assumes

idempotency of the monitored code block. Except in a purely functional setting,

approximate computations can and often do have side effects. If we wish to run a

non-idempotent code block twice, we need to buffer or roll back side effects. Second,

even if we provide some form of side effect buffering or rollback, this approach does

not deal with the issue of side effects’ impact on quality, which we cover in much

more detail in Section 5.4.3 of Chapter 5. Briefly, approximate computations may

have side effects that are not directly reflected in the returned result, but may have

an impact on perceived quality. Any online approach must address this issue. Third,

comparing numeric return values is insufficient for measuring the QoR of many appli-

cations. QoR is inherently domain-specific, so we must support application-specific

metrics. For example, a video application may prefer neighboring frames that are dis-

torted in the same way (thus preventing jitter) over neighboring frames with smaller

average distortion but which are distorted in different ways. Another example is a

10

greedy algorithm that searches for local optima. An approximate version that se-

lects a different optimum from the precise version can have equal—or possibly even

superior—result quality. Lastly, and most importantly, an online monitoring scheme

must not cost more than the savings provided by the original approximation. By ex-

ecuting the code approximately, and then reexecuting it precisely, we spend strictly

more energy than the original, non-approximate code. Chapter 5 shows three ways

that we can relax this strawman monitoring approach to provide flexible and light-

weight online monitors that effectively control side effects and provide customizable

quality metrics.

In the offline case, on the other hand, the cost of this strawman approach is not

prohibitive. Offline tools are intended for predeployment usage, during quality testing

and debugging, where spending extra time and energy to improve performance in the

field is wise. On the other hand, freed from these cost constraints, there is much

more that we could do than a simple quality profiler to provide programmers more

information about the behavior of approximate programs. The strawman tells us only

what the final QoR was, and does not indicate why it was high or low. It gives us no

indication of which approximate operations or data are critical to QoR. Developers

need more program introspection, especially when working with approximation. It

also gives us no recommendation for how to improve the quality–energy tradeoffs of

the application.

This thesis addresses the shortcomings of simple offline profiling. In particular,

Chapter 3 proposes a complete offline prototyping system that includes an approxi-

mation simulator and profiler, in addition to an autotuner that leverage the profiler to

provide approximation recommendations that may improve quality–energy tradeoffs.

Then, Chapter 4 proposes approaches that let us track degrees of approximation, as

well as executions and errors of approximate calculations, at a much finer grain (in-

dividual operations or variables). We can then correlate these with output quality.

These tools thus help us find the source of the quality issue, rather than merely to

11

determine that an issue exists.

2.3 The EnerJ Language

The EnerJ language [52] is an extension to Java that provides support for disciplined

approximate programming. This is accomplished via a type qualifier for variables con-

taining approximate data, and typing rules that prevent dataflow from approximate

variables to precise variables without an explicit endorsement of the safety of such

flow from the programmer. Operations on precise data are guaranteed to return the

correct result. Operations on approximate data may return arbitrary results (but for

the sake of usability, they should “usually” return the correct answer, or something

close to correct). For example, if we store the value 42 to an approximate integer,

and then later load it, we will probably get back 42, but we may get back any integer.

Similarly, if we add two approximate integers containing the values 1 and 2, it will

probably return 3, but may return any integer. This approach also supports approxi-

mation hardware that approximates floating point values by shortening the mantissa

length. For example, we could perform a floating point calculation that normally

returns the value 3.14159 and instead get back a rounded value such as 3.142. The

EnerJ system [52] also includes a type checker that verifies the typing rules, and an

approximation simulator (built into the Java runtime) that simulates the effects of

approximate hardware for operations performed on approximate data.

Programmers indicate approximate data by using the @Approx type qualifier. (A

@Precise qualifier is also provided, but it is not usually used as it is the default if

no qualifiers are present.) For example, to indicate that a pixel value is approximate,

a developer could write:

@Approx int pixelValue = 0;

Any loads from, stores to, or operations involving pixelVal may then be executed

approximately by the underlying compiler, runtime, and/or hardware. If we try to

12

assign an approximate value to a non-approximate (i.e., precise) variable, the type

checker will issue an error. For example,

int brighterPixel = pixelValue + 10;

generates the error:

error: incompatible types.

int brighterPixel = pixelValue + 10;

found : @Approx int

required: @Precise int

Similarly, using an approximate result as a control flow condition, such as in the

following example, will generate an error:

error: The type in a conditional operation cannot be approximate!

if (pixelValue > 100) {

ˆ

Found @Approx boolean.

In order to use an approximate result to set a precise variable, or as a control flow

condition, the programmer must explicitly make the result precise by endorsing it,

via the endorse operation:

if (endorse(pixelValue > 100)) {

pixelValue = 100;

}

The endorse operation can be thought of as an identity function which takes an

approximate value, and returns the equivalent precise value. Equivalently, it can be

viewed as a type cast from a type @Approx T to a type @Precise T.

In the absence of endorsements, this system provides a non-interference property,

as shown in [52]. Specifically, changing approximate values or results during execution

will not result in a change to any precise values or results. This allows developers to

13

reason about their approximate applications, and gain confidence that approximation

will not effect values they wish to keep precise unless they explicitly endorse the flow.

The hardware modeled by the EnerJ simulator contains the following enhance-

ments to trade off precision for energy savings when appropriate:

• Lowering the DRAM refresh rate: We can significantly lower the refresh

rate of dynamic RAM, and still achieve mostly correct operation, as shown by

Flikker [37]. The EnerJ model (like Flikker) assumes that the hardware will

lower the refresh rate of cache lines that store approximate values. Errors due

to a lower refresh rate are modeled by the EnerJ simulator as random bit flips

in the stored values.

• Narrower mantissa widths: Ignoring part of the mantissa can reduce energy

usage of floating point calculations, as shown in [58]. Errors from mantissa

rounding will manifest as increased rounding of floating point values. The EnerJ

simulator models this by masking off lower order mantissa bits.

• Processor voltage scaling: By scaling the voltage to the logic circuits of the

processor, we can save energy at the expense of occasional errors. For example,

the work described in [20] shows that we can reduce the energy allocated to the

circuit by 22% with an expected error rate of just 0.01%. Errors can manifest as

bit flips, random values, or reusing the last value computed by the pipeline. The

EnerJ simulator can model all of these, but by default uses random single-bit

flips.

• SRAM voltage scaling: Lowering the voltage to registers and cache can also

save energy, at the cost of occasional read and write failures (which manifest as

bit flips), as shown in [24] and [30]. The EnerJ model assumes that approximate

data may be stored in approximate registers and cache, and the simulator models

this as well.

14

For all four of the above approximation strategies, the EnerJ simulator provides mild,

medium, and aggressive levels of approximation. The higher levels are modeled by

either smaller mantissas or higher error probabilities, as described in more detail

in [52]. They are meant to model more aggressive approximation as well as larger

potential energy savings. In some of the systems described in Chapter 5, we switch

between levels based on dynamically monitored QoR.

The Truffle hardware proposed in [22] provides approximation that fits this model

and provides approximate versions of most ISA instructions. The Truffle processor

can switch between high-voltage (precise) and low-voltage (approximate) operation

as dictated by the instruction.

The results in this thesis all assume a similar hardware model, and the monitoring

work described in Chapter 5 directly uses the EnerJ language and simulator as its

base. The other systems are implemented in different languages (OCaml and C), but

their approximation models are based on EnerJ’s model.

15

Chapter 3

ENERCAML: PROTOTYPING, PROFILING, AND
AUTOTUNING ENERGY-AWARE APPROXIMATE

COMPUTATIONS IN OCAML

3.1 Introduction

This chapter considers the challenge of quickly prototyping approximate algorithms

and applications, and exploring their quality–energy tradeoffs. We tackle this prob-

lem by proposing a system that allows approximate programming and simulation

in a mostly functional language known for its strengths as a base for prototyping.

We then take advantage of the pure and function-oriented nature of functional code

to develop a powerful profiler and autotuner that help users better manage, under-

stand, and explore the approximate semantics of their prototyped applications. It

quickly identifies portions of the code that must execute precisely to avoid severe

quality of result degradation, and suggests code that can be profitably approximated.

This automatic discovery of good places to approximate code is complementary to

emerging approaches to verify (statically) that a program with approximation retains

application-specific correctness properties [9].

This work is the first (to our knowledge) use of a mostly functional language—

OCaml [45] in this case—for approximate programming, and the first autotuner that

allows developers to explore quality–energy relationships in this manner. Our sys-

tem runs entirely on conventional, commodity hardware and is intended as a tool

for prototyping and investigating the potential quality of result and energy efficiency

impacts of approximation on future approximate hardware. We show that the func-

tional nature of OCaml lends itself well to a code-centric approach to approximation

16

(i.e., indicating approximating by annotating approximate computations—e.g., func-

tion applications/calls—rather than approximate data) and that this in turn leads to

a natural implementation of an approximation autotuner. Our autotuner investigates

the quality–efficiency tradeoffs of each approximate function application site. For ex-

ample, if the application contained calls to an approximate dot product function, the

autotuner would investigate the quality and energy efficiency impacts of individually

converting each of those calls to a precise version of the dot product function. Based

on this information, we are able to recommend potential code changes that improve

efficiency and/or quality of result. We have implemented this system, which we call

EnerCaml, as a set of modifications to the OCaml bytecode compiler and interpreter

(available for download at our website [19]). The functional, code-centric approach to

approximation that we take in EnerCaml could also lend itself nicely to future hard-

ware models with coarse-grained approximation. For example, architectures with

low-energy approximate cores, as we mention in Section 6.2 of Chapter 6.

We also consider an alternative to our code-centric approximation strategy for

OCaml that reformulates data-centric approximation as a monad. We show how this

formulation can be used to achieve the same data-centric approximation style and

safety guarantees as EnerJ but with a much simpler implementation. In particular,

our monad-based system can be entirely implemented as a simple OCaml module

without changes to the compiler or runtime.

3.1.1 Outline

We begin by describing the user interface and implementation of the three layers of

the EnerCaml system:

• The approximation layer and EnerCaml language extensions, which allow pro-

grammers to specify which portions of their code should execute approximately

(Section 3.2).

17

• The profiling layer and its associated APIs, which track quality of result and

the proportion of approximated operations (a proxy for the potential energy

savings on future approximate hardware) and allow the developer to specify

how operations should be approximated (Section 3.3).

• The autotuning layer, which helps programmers identify code changes that could

improve their quality–efficiency tradeoffs (Section 3.4).

Section 3.5 discusses three sample applications that we approximated, profiled, and

autotuned with EnerCaml. We describe our monadic approach to data-centric ap-

proximation in Section 3.6. Finally, Section 3.7 describes related work.

3.2 The EnerCaml Approximation Layer

The EnerCaml approximation layer adds approximation semantics to OCaml [45]. De-

velopers create approximation by using EnerCaml-specific primitives in their OCaml

programs. These primitives provide a code-centric model for specifying approxima-

tion, i.e., approximation is specified over blocks of code (as in Relax [17]). This is in

contrast to data-centric models (such as EnerJ [52]), where approximation is specified

for individual pieces of data. Later, in Section 3.6, we will describe how data-centric

approximation can be implemented in OCaml with a monad-based approach.

This section first describes and motivates our code-centric approximation ap-

proach (Section 3.2.1). We then list the primitives for specifying approximation (Sec-

tion 3.2.2). Finally, we describe the implementation of approximation in EnerCaml

(Section 3.2.3).

3.2.1 EnerCaml’s Approximation Model

Users create approximation in EnerCaml programs by passing a thunked code block to

the primitive EnerCaml.approximate, which has type (unit -> ’a) -> ’a

approx. The EnerCaml system then executes the thunk approximately and returns

18

the result wrapped inside an approximate type. Before using the approximately-typed

result in a precise computation, the user must endorse it with a call to a function

EnerCaml.endorse of type ’a approx -> ’a. The use of approximate types

and explicit endorsements is modeled after EnerJ. It enforces a boundary between

approximate and precise computations and requires users to explicitly acknowledge

every location where data crosses the boundary from the approximate realm into the

precise realm.

For example, consider the following code snippet from a ray-tracer (downloaded

from the website of Flying Frog Consultancy [25]), where the function intersect

is used to determine where a ray intersects a scene:

let x, n = intersect zero dir (inf, zero) scene in

let g = dot n light in ...

To execute the intersection approximately, we simply write:

let x, n = EnerCaml.endorse(EnerCaml.approximate(

fun () -> intersect zero dir (inf, zero) scene))

in

let g = dot n light in ...

The call to EnerCaml.approximate causes the EnerCaml system to simulate ex-

ecuting the intersection computation on approximate hardware (we discuss this in

more depth in Section 3.2.3). The call to EnerCaml.endorse allows the values re-

turned from the approximate intersection to be used in future precise computations.

Alternatively, approximate values can be passed to future approximate computations

via the continue approx primitive. The continue approx primitive has type

’a approx -> (’a->’b) -> ’b approx. It takes an approximate value and

a function and approximately applies the function to the value, returning another

approximate value.

The current version of EnerCaml approximately executes floating point arithmetic

19

operations, integer arithmetic and comparison operations, and floating-point and inte-

ger array loads. Throughout the rest of this chapter, we refer to the above operations

as the approximable operations. We discuss how this approximation can be specified

and controlled (including allowing developers to define their own arbitrary approx-

imation functions) in Section 3.3. For safety, certain operations such as memory

allocation and garbage collection must always be done precisely. We assume that any

future approximate hardware will have the ability to do some critical operations such

as these precisely.

In programs written with the basic EnerCaml system described here, we typically

see endorsements coupled tightly with approximation calls as seen in the above exam-

ple. This might seem to suggest eliminating the approximate types and endorsements

altogether, which would allow us to write the previous example as simply:

let l, n = EnerCaml.approximate (fun () ->

intersect zero dir (inf, zero) scene) in

let g = dot n light in

if g <= 0. then 0. else

...

However, as we shall see in Section 3.6, the approximate data types and endorse-

ments of EnerCaml allow us to combine it nicely with our monad-based data-centric

approach. This allows us to combine code-centric and data-centric approximation in

the same programs.

Code-centric approximation as described above is a natural fit for a mostly func-

tional language such as OCaml. In a functional programming style, functions gener-

ally do not modify state or arguments. If a developer wishes to compute the result

of such a pure function approximately, she or he should be able to execute the entire

function approximately without worrying about any approximated effects. It is also

easy to introduce approximation anywhere via our code-centric method, because in

a functional language, almost everything is modeled as a function call—even small

20

operations like arithmetic.

Data-centric approximation, on the other hand, does not fit as well with a func-

tional programming style. Because of the lack of mutability, functional code tends

to introduce new variables instead of computing on existing variables. Thus it is not

always easy to determine which data to annotate. With the code-centric approach,

in contrast, we can simply annotate the function call corresponding to the compu-

tation we wish to approximate. Imperative languages are better fits for data-centric

approaches because their computations tend to be more focused on the data than on

the functions.

Code-centric approximation designs such as what we have described above also

map naturally to hypothetical future processor designs where approximate code is ex-

ecuted on a lower-powered, approximate core. An underlying runtime implementation

of EnerCaml.approximate would simply execute the thunk on an approximate

core and return to the precise core when the thunk completes. While the thunk is

executing, the precise core could either power down or execute code from another

process or thread. Our design can also be mapped easily to processors that support

per-instruction approximation such as Truffle [22]. The compiler can simply output

an approximate version of every function that is called approximately and output

approximate instructions when compiling this approximate version.

3.2.2 New Approximation Primitives

Table 3.1 lists the EnerCaml approximation primitives. We already described the

approximate, continue approx, and endorse primitives in Section 3.2.1. The

precise primitive allows programmers to specify that certain code should always be

executed precisely, even inside an approximate dynamic context. precise takes a

thunked block of code as its argument and executes it precisely, returning the return

value of the thunk. Outside of an approximate dynamic context (or directly nested

inside another precise context), the precise primitive is simply a direct application

21

a
p
p
r
o
x
i
m
a
t
e

(
u
n
i
t
-
>
’
a
)
-
>
’
a
a
p
p
r
o
x

E
x
ec

u
te

s
it

s
th

u
n
ke

d
ar

gu
m

en
t

ap
p
ro

x
i-

m
at

el
y,

w
ra

p
s

th
e

re
su

lt
in

an
ap

p
ro

x
im

at
e

ty
p

e,
an

d
re

tu
rn

s
it

.

c
o
n
t
i
n
u
e
a
p
p
r
o
x

’
a
a
p
p
r
o
x
-
>
(
’
a
-
>
’
b
)
-
>
’
b
a
p
p
r
o
x

T
ak

es
an

ap
p
ro

x
im

at
e

va
lu

e
an

d
a

fu
n
ct

io
n
,

an
d

ap
p
ro

x
im

at
el

y
ap

p
li
es

th
e

fu
n
ct

io
n

to

th
e

va
lu

e.

e
n
d
o
r
s
e

’
a
a
p
p
r
o
x
-
>
’
a

T
ra

n
sf

or
m

s
it

s
ap

p
ro

x
im

at
el

y
-t

y
p

ed
ar

gu
-

m
en

t
in

to
a

p
re

ci
se

ly
-t

y
p

ed
re

tu
rn

va
lu

e.

p
r
e
c
i
s
e

(
u
n
i
t
-
>
’
a
)
-
>
’
a

E
x
ec

u
te

s
it

s
th

u
n
ke

d
ar

gu
m

en
t

p
re

ci
se

ly
,
an

d

re
tu

rn
s

th
e

th
u
n
k
’s

re
su

lt
.

l
i
f
t

’
a
a
p
p
r
o
x
a
p
p
r
o
x
-
>
’
a
a
p
p
r
o
x

L
if

ts
an

a
p
p
r
o
x

a
p
p
r
o
x

ty
p

e
to

an

a
p
p
r
o
x

ty
p

e.

T
ab

le
3.

1:
T

h
e

E
n
er

C
am

l
ap

p
ro

x
im

at
io

n
p
ri

m
it

iv
es

.

22

of the thunk. We also provide a lift primitive that converts an approx approx

type into an approx type. This is useful when an approximate thunk returns the

result of a nested approximate thunk, resulting in an ’a approx approx when

we would prefer an ’a approx. This could be handled by the endorse primitive,

but that would be misleading because we are not really endorsing a flow as much as

saying that multiple levels of approx are equivalent to a single level.

3.2.3 Implementation of the Approximate Simulator

The EnerCaml approximate simulator implementation is designed around the idea of

tracking precise and approximate execution by using dual versions of each function—a

precise version and an approximate version. The precise version is called whenever

we apply the function in a precise context (i.e., inside precise code) or execute the

thunked argument of an EnerCaml.precise call. The approximate version is called

whenever we apply the function in an approximate context (i.e., inside approximate

code) or execute the thunked argument of an EnerCaml.approximate call. We

track the two versions of each function by adding a second code pointer to each

function closure. We also create approximate versions of some of the OCaml primitives

by adding the approx suffix to their names and placing pointers to them in the

approximate slots of their original primitives’ closures. This is useful for handling

approximation of floating point operations and array loads because these operations

are all handled by calls to primitives in the OCaml runtime.

This approach works well for prototyping and profiling, which is the goal of En-

erCaml. On real energy-saving approximate hardware, however, it may be less com-

pelling because the extra space required for dual closures would use more energy.

Thus designers of such systems should consider alternate approaches that send code

to an approximate core when an approximate call is encountered or track the current

approximate state (e.g., via a bit in hardware) and execute either approximate or

precise instructions based on that state.

23

The changes to the bytecode compiler to support prototyping approximate com-

putations were straightforward and localized. No changes had to be made to the front

end of the compiler, since the EnerCaml functionality is entirely defined by calls to

primitives in our new EnerCaml module. We had to modify a few data structures

and instructions in the back end to track the additional code pointer (to the approx-

imate version of the function) present in EnerCaml closures. We also had to modify

the compiler to output two versions of each function. When it outputs the approx-

imate version of a function, the compiler replaces integer arithmetic and function

application bytecodes with new approx versions of those bytecodes. The approx

versions of the integer arithmetic bytecodes specify that the interpreter should apply

the integer approximation function (see below) to the result of the computation. For

function applications, the approx version of the bytecode specifies that the approx-

imate code pointer should be followed (rather than the precise pointer). This includes

applications of primitive functions, which results in the approximate versions of the

floating point and array load primitives being called where appropriate.

We also changed the bytecode interpreter to support approximation in EnerCaml.

As with the compiler, we modified a few data structures and instructions to track the

dual function closures. We also added approximate versions of every function appli-

cation bytecode and made them follow the approximate code pointer. We modified

the code that constructs closures for primitives to search for approx versions of the

primitives. If found, we place the pointer to the approx version of a primitive in the

approximate code pointer slot of the original primitive’s closure. Otherwise, we place

a pointer to the standard version of the primitive in both code pointer slots (precise

computation is always a legal approximation). To simulate integer arithmetic ap-

proximation, we added cases for the approx version of each integer operation to the

main interpreter loop. These cases all call the approx int arith routine, which in

turn applies either a user-specified integer approximation function (see Section 3.3) or

a default bit-flip approximator. To simulate approximation of array loads and floating

24

point operations, we added approx versions of the appropriate primitives. Like the

approximate integer bytecodes, these approximate primitives pass their results to a

routine that applies either the default approximator or a user-specified approximator.

The final piece of the approximation layer is the implementation of the applica-

tion approximation primitives (Table 3.1). The precise primitive simply passes its

argument to the callback routines that are provided as part of the OCaml-C inter-

face. For the approximate primitive, we create new approximate versions of these

callback routines that follow the approximate code pointer rather than the precise

code pointer. The endorse primitive does not require a C implementation. The

approximate type is implemented as an abstract type (type ’a approx = ’a) in

the EnerCaml module, so endorse is simply the identity function:

let endorse (x : ’a approx) = (x : ’a)

The lift primitive is identical. The continue approx primitive is also imple-

mented in the EnerCaml module:

let continue_approx (x: ’a approx) (fn: ’a->’b) =

approximate(fun () -> fn x)

3.3 The EnerCaml Profiling Layer

The EnerCaml profiling layer evaluates the quality of result and potential energy effi-

ciency gains of approximate programs prototyped with the EnerCaml approximation

primitives. It also allows developers and researchers to simulate and experiment with

different potential types of future approximate hardware by using EnerCaml prim-

itives that specify how operations are approximated. In particular, developers can

write their own OCaml approximation functions for integer, floating point, and array

load operations. This section first gives an overview of the profiler and how it is used

(Section 3.3.1). We then describe how users can specify their own approximation

functions in Section 3.3.2. Finally, we describe our implementation of profiling inside

25

the EnerCaml system in Section 3.3.3.

3.3.1 Overview of EnerCaml Profiling

In its normal mode of operation (specified by running the EnerCaml interpreter with

the -profile simple command-line option), the EnerCaml profiler runs the spec-

ified program twice. During the first run, the profiler executes everything precisely

(even code inside approximate thunks). During the second run, the profiler executes

all approximable operations that appear in an approximate context approximately.

After the approximate run, the profiler outputs the quality of result, the total num-

ber of operations that were approximated, and the total number of approximable

operations (i.e., the number of operations that would have been approximated if the

whole program was executed in an approximate context). We can use the number

of approximated operations as a proxy for the amount of energy saved by approxi-

mation. The number of approximable operations represents an upper bound on the

savings. We also output the percent of approximable operations that were approx-

imated, which tells users how much of the maximum possible efficiency gains they

managed to achieve. Figure 3.3.1 shows the output of a simple profile of our earlier

ray tracer example [25].

To calculate the quality of result of each approximate run, the profiler must collect

data from the precise run, store it, and compare it with corresponding data collected

during each approximate run. The developer tells the profiler what data to collect

and how to compare that data by inserting calls to the EnerCaml module func-

tions record profile output and eval qor. The record profile output

function records its argument in a list of data to be compared across runs (as de-

scribed below). In the current version of EnerCaml, this argument must be a float

(i.e., record profile output has type float -> unit).1 For example, if we

1In future versions, we would like to explore using the OCaml data marshalling library to allow
the profiler to record arbitrarily-typed data. However, in the applications we have seen so far,

26

-------------Beginning precise run--------------

--------Beginning full approximate run--------

PSNR = 26.929870

Approximated operations: 149012123 (0 integer,

149012123 float, 0 array load)

Approximable operations: 157188070

Percent approximated: 94.798621

Figure 3.1: The output from running the simple profiler on a ray tracer with a 0.5%
error rate.

27

wanted to compare the pixel values output by our ray tracer, we could insert calls to

record profile output right before we output each pixel:

(* Cap pixel brightness at 255 for PGM format*)

let g = if (gt > 255.) then 255. else gt in

let () = EnerCaml.record_profile_output g in

Printf.fprintf pgm_file "%c" (char_of_int

(int_of_float g))

The developer then inserts a call to eval qor after all of the data has been collected

and passes it a quality of result evaluation function. The evaluation function should

process two lists, one of precise data and one of approximate data, and output a

floating point quality of result value.2 Since we are measuring quality rather than

error, higher is better (this only matters if the developer plans to use the autotuning

tool, however). For example, if we wanted to use peak-signal-to-noise ratio (PSNR)

as our quality of result metric for the ray tracer, we could add the following code after

we output the last pixel:

let rec se_sum prec_l app_l =

match prec_l, app_l with

prc_hd::prc_tl, app_hd::app_tl ->

(app_hd -. prc_hd) *. (app_hd -. prc_hd) +.

(se_sum prc_tl app_tl)

| _ -> 0.

in

let mse prec app = (se_sum prec app) /.

this has not been a significant restriction. The data we wished to record for quality of result
computations was always either floating point or easily convertible to floating point (e.g., via
float of int).

2We currently require the output to be floating-point so that the autotuner can compare the
quality of result of multiple approximate runs. Future versions could allow the output to be
arbitrarily typed, and simply require the developer to specify a comparison function for the chosen
type. Once again, we have not found this to be a significant restriction in the examples we have
investigated.

28

(float_of_int (List.length prec)) in

let psnr prec_l app_l = 10. *. (log10

((255. *. 255.)/.(mse prec_l app_l))) in

EnerCaml.eval_qor psnr

During the precise execution, eval qor simply stores the precise data collected via

calls to record profile output. During the subsequent approximate execution,

eval qor applies the evaluation function to two lists, one containing the stored

precise run data, and the other containing the data from the current approximate

run. The evaluation function may assume that both lists will be temporally ordered.

After executing the evaluation function, the profiler outputs the computed quality

of result as well as the approximate/approximable operation breakdown mentioned

earlier.

3.3.2 User-Specified Approximation

The EnerCaml profiling layer also provides primitives that allow developers to pass

arbitrary approximation routines to the approximation layer. These approximation

routines specify how the approximable operations should be approximated. For ex-

ample, if a developer wants to simulate an approximate integer pipeline that supplies

less power to low order bits, they can specify an approximation routine that flips

low-order bits 10% of the time:

let random_low_order_flip pct i =

(if ((Random.float 1.0) < pct) then (i lxor 1)

else i)

in

EnerCaml.set_integer_approximation

(random_low_order_flip 0.10)

29

The EnerCaml profiler supports this functionality for all types of approximable op-

erations, which in the current version includes integer arithmetic operations, floating

point operations, and integer and floating point array loads.

The EnerCaml primitives that specify approximation routines are listed in Ta-

ble 3.2. They all take an approximation routine of the appropriate type (e.g., int

-> int for the integer approximation routines) and return unit. If no approxi-

mation functions are specified with these primitives, the EnerCaml system uses its

built-in, default approximators:

• For array loads and integer arithmetic, EnerCaml will randomly decide (with

a configurable probability, defaulting to 1%) whether or not to inject an ap-

proximation error. If so, it will randomly select one bit of the result and flip

it.

• For floating point calculations, EnerCaml will also randomly decide (with config-

urable probability defaulting to 1%) whether or not to inject an approximation

error. If so, it will randomly select a result within a small, configurable window

around the actual computed result.

We provide additional primitives to set the probability of these bit flip and floating

point errors (as well as the size of the floating point errors) for the default approxi-

mators.

3.3.3 Profiler Implementation

The code changes required to implement the EnerCaml profiler were once again

straightforward. We modified the interpreter to run the code multiple times. In

simple profiling mode, there are only two runs: one fully precise run and one run

with all user-specified approximation enabled. Section 3.4 describes our autotuning

layer, which adds additional runs. During the fully precise run, the interpreter simply

30

s
e
t
f
l
o
a
t
a
p
p
r
o
x
i
m
a
t
i
o
n

(
f
l
o
a
t
-
>
f
l
o
a
t
)
-
>
u
n
i
t

S
p

ec
ifi

es
th

e
fl
oa

t
ap

p
ro

x
im

at
io

n
fu

n
ct

io
n
.

s
e
t
i
n
t
e
g
e
r
a
p
p
r
o
x
i
m
a
t
i
o
n

(
i
n
t
-
>
i
n
t
)
-
>
u
n
i
t

S
p

ec
ifi

es
th

e
in

te
ge

r
ap

p
ro

x
im

at
io

n
fu

n
ct

io
n
.

s
e
t
l
o
a
d
a
p
p
r
o
x
i
m
a
t
i
o
n

(
i
n
t
-
>
i
n
t
)
-
>
u
n
i
t

S
p

ec
ifi

es
th

e
in

te
ge

r
ar

ra
y

lo
ad

ap
p
ro

x
im

a-

ti
on

fu
n
ct

io
n
.

s
e
t
l
o
a
d
f
l
o
a
t
a
p
p
r
o
x
i
m
a
t
i
o
n

(
f
l
o
a
t
-
>
f
l
o
a
t
)
-
>
u
n
i
t

S
p

ec
ifi

es
th

e
fl
oa

t
ar

ra
y

lo
ad

ap
p
ro

x
im

at
io

n

fu
n
ct

io
n
.

T
ab

le
3.

2:
E

n
er

C
am

l
p
ri

m
it

iv
es

fo
r

sp
ec

if
y
in

g
h
ow

op
er

at
io

n
s

sh
ou

ld
b

e
ap

p
ro

x
im

at
ed

.

31

follows the precise code pointer at every function application bytecode (including the

approx application bytecodes). The only other change required for profiling Ener-

Caml programs was to implement the EnerCaml.eval qor primitive. For this to

work we had to ensure that the list of output data from the precise run did not get

moved or deleted by the garbage collector once we started subsequent approximate

runs. To accomplish this, we take advantage of the fact that eval qor is called after

all of the data is produced. From the user’s perspective, eval qor does nothing

during a precise run. However, behind the scenes, we modified it to copy the precise

output data list from the OCaml heap to the C heap. We store a pointer to the copied

list. On subsequent approximate runs, eval qor computes the quality of result by

applying the passed-in QoR function to this previously-stored precise output list and

the approximate output list collected during the approximate run.

3.4 The EnerCaml Autotuning Layer

The final layer of the EnerCaml system is the autotuner. The autotuner searches for

alternative precise/approximate decompositions of user programs that improve their

efficiency versus quality of result tradeoffs. It outputs the best potential code changes

it is able to identify along with their impact on the quality of result and efficiency of

the application.

Developers invoke autotuning by running the interpreter with the -autotune

flag. When autotuning is requested, the interpreter and profiler first run the code fully

precisely and then run it with all user-specified approximation (similar to the simple

profiler). Next, we search for approximation that can be removed from the original

specification and perform additional runs to evaluate the impact of the removal.3 The

domain of our search is the set of static call sites that were executed approximately

3Note that we never add approximation to code that was originally specified as precise because
doing so may be unsafe. If the programmer wants to attempt approximation over the whole
program, she or he can wrap the entire program in a call to EnerCaml.approximate.

32

(a) (b)

(c) (d)

Figure 3.2: Static call trees illustrating the various strategies we use to search the
precise-approximate decompositions of EnerCaml programs for improved quality of
result versus efficiency tradeoffs. A black node represents an approximate function
application and a white node represents a precise application. Figure (a) shows the
originally specified approximation. Figure (b) shows the result of treating one of the
approximate applications as if it were called inside a precise thunk. Figure (c) shows
the result of narrowing the approximation to just that same call site. Finally, figure
(d) illustrates the result of making two sibling call sites precise.

33

in the original approximate run. Figure 3.2 uses call trees to illustrate the various

strategies we use to search this space. For each of the originally approximate call sites,

the autotuner first attempts a run where it treats the call site as if it were enclosed

in a call to the precise primitive (Figure 3.2b)—i.e., the call and any calls under

it will follow their precise code pointers. The autotuner then attempts a run where

we narrow the approximation to just that call site and its descendants (Figure 3.2c).

In other words, that call site will act as if it was surrounded by an approximate

call, but any other approximate calls will be removed. Finally, we search for pairs

of function applications that appear in the same calling function, and perform a run

that makes them both precise (Figure 3.2d). If we were to attempt all combinations

of call sites, we would end up with an exponential explosion of our search space. The

intuition behind looking at just the pairs in the same calling function is that these

pairs are more likely to have a synergistic effect—i.e., the benefit of making them

both precise might be more than the sum of the benefits of making them individually

precise. For example, the two may pass data from one to the other or both may pass

data to a third function.

The autotuner outputs the quality of result and approximate operation counts

for each of the partial approximate runs it attempts. If one result has both better

quality of result and better efficiency (as measured by approximate operation count)

than another result, we say that the former result dominates the latter. Once all runs

have been completed, the autotuner reports all runs that are not dominated by other

runs. This report represents a frontier curve of the best discovered quality versus

efficiency tradeoffs. In addition to reporting detailed measurements for each point on

this frontier curve, the tool plots the runs graphically to help the programmer visualize

the discovered space of quality–efficiency tradeoffs. Figures 3.3 and 3.4 depict the

autotuner’s textual and graphical output for our ray tracer example (Section 3.5.1).

34

BEST RESULTS:

Narrowing approximation to ray_trace_orig.ml,

line 16, character 10:

QoR: 37.644753, Approximated/approximable operations:

35382840/158794029 (22.282223)

Narrowing approximation to ray_trace_orig.ml,

line 36, character 13:

QoR: 32.663749, Approximated/approximable operations:

100324605/158144874 (63.438417)

Making precise ray_trace_orig.ml, line 55,

character 47:

QoR: 28.351986, Approximated/approximable operations:

148988255/157164711 (94.797524)

Making pair precise:

ray_trace_orig.ml, line 47, character 39

ray_trace_orig.ml, line 46, character 39

QoR: 28.240102, Approximated/approximable operations:

149001041/157177354 (94.798034)

Figure 3.3: Textual output from autotuning a ray tracer application. The tool pro-
duces a textual (excerpted here) and graphical (Figure 3.4) depiction of the best
results (frontier curve) among the profiled executions. Note that the last two re-
sults listed on the left achieve nearly the same approximation levels as the original
(94.8% approximate), but with better QoR (28.4 and 28.2 versus 26.9 for the original
annotation).

35

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 25 30 35 40 45 50 55 60 65 70 75

ap
pr

ox
im

at
io

n

quality

E ray_trace_orig.ml:47,39 & ray_trace_orig.ml:46,20

N ray_trace_orig.ml:31,41

N ray_trace_orig.ml:31,21

N ray_trace_orig.ml:36,13

N ray_trace_orig.ml:40,11

N ray_trace_orig.ml:16,10

N ray_trace_orig.ml:15,10

Figure 3.4: Graphical output from autotuning a ray tracer application. The tool
produces a textual (Figure 3.3) and graphical represenation (depicted here) of the best
results (frontier curve) among the profiled executions. The graphical depiction plots
the results on axes of approximation (proportion of approximable operations executed
approximately) and quality of result (here, peak signal-to-noise ratio), labeling each
point with “N” for narrowing approximation to a call site (i.e., leaving that call site
and its children approximate, but making everything else precise) or “E” for excluding
approximation at call sites (i.e., making that call site and it’s children precise, but
leaving the rest of the approximation untouched).

36

3.4.1 Implementation of Autotuning

The code changes required to implement the EnerCaml autotuning layer were straight-

forward and localized. In particular, the only compiler change that was necessary was

to track and record the source location of every function application bytecode. We

were able to reuse code that supports the OCaml debugger to do this, with a few

small additions. The bytecode offset and corresponding source location are stored in

a file which is read in by the interpreter when it executes in autotuning mode. This

allows the autotuner to map function applications back to locations in the source,

which in turn allows it to report the changes it made for each partial approximate

run in a user-readable form.

We also changed the interpreter to implement the autotuner’s search strategies.

In autotuning mode, our interpreter records each approximate function application

that it executes during the original approximate run as well as the calling function

that contains it (necessary for the final strategy that pairs function applications with

the same parent). The program counters of these applications are stored in a simple

hash table with no duplicates. After the fully approximate run we gather all of the

application PCs into an array and use it to determine which function applications

should be precise and which should be approximate in the subsequent partially ap-

proximate runs. We then check the current PC every time we execute an approximate

function application bytecode in a partial approximate run to see if we need to follow

the precise code pointer.

3.5 Case Studies

We used the EnerCaml system to profile and tune the approximation properties of

three existing OCaml applications, none of which were written by us. This section

discusses our experiences with those applications. First, Section 3.5.1 describes profil-

ing the ray tracer application mentioned previously. Next, Section 3.5.2 discusses our

37

experiences with profiling an N-body simulation application. Finally, section 3.5.3

discusses a collision detection kernel.

3.5.1 Ray Tracer

Our initial experience with the EnerCaml system involved adding approximation to

a ray tracer (downloaded from the website of Flying Frog Consultancy [25]). The

ray tracer has two phases: scene creation and ray tracing. The scene creation phase

creates a scene consisting of a number of spheres of different sizes. The ray tracing

phase then generates an image by sending a series of rays at the scene.

We started by approximating both phases of the computation. To approximate

scene creation, we simply added a call to EnerCaml.approximate around a thunk

containing the call to create:

let app_scene = EnerCaml.approximate(fun () ->

create level {x=0.; y= -1.; z=4.} 1.);;

To approximate the ray tracing phase, we wrapped the calls to ray trace (which

traces an individual ray) inside another thunk and passed it to approximate:

let approx_g = EnerCaml.approximate(fun () ->

ray_trace dir scene) in

We used the default EnerCaml approximation routines, with an error rate set to

0.5%4 (i.e., one out of every 200 approximable operations returns an incorrect result).

Figure 3.5a shows an image generated by this approximation of the the ray tracer.

We next instrumented the program for profiling and autotuning so that we could

search for ways to improve the quality of the initial image (Figure 3.5a). Recall that

profiling in EnerCaml involves specifying a quality of result evaluation function and

adding calls to collect the data required for the evaluation. We chose peak signal-to-

noise ratio (PSNR) for our quality of result. We pass the quality of result function

4Lower error rates did not add enough error to make the investigation interesting.

38

(a) (b)

(c)

Figure 3.5: The images generated by our ray tracer with various mixtures of approx-
imate and precise execution. Image a (PSNR 26.9) represents the result of approxi-
mating the entire ray tracing and scene creation computations. Image b (PSNR 36.9)
limits the approximation to a single dot product inside the ray sphere function.
Image c (PSNR 33.5) approximates the ray sphere function, but executes two of
its dot products precisely. It has slightly lower quality than image c, but almost twice
as much approximation.

39

to the eval qor routine, which in turn passes it lists of data from precise and

approximate runs:

let rec se_sum prec_l app_l =

match prec_l, app_l with

prc_hd::prc_tl, app_hd::app_tl ->

(app_hd -. prc_hd) *. (app_hd -. prc_hd) +.

(se_sum prc_tl app_tl)

| _ -> 0.

in

let mse prec app = (se_sum prec app) /.

(float_of_int (List.length prec)) in

let psnr prec_l app_l = 10. *. (log10

((255. *. 255.)/.(mse prec_l app_l))) in

EnerCaml.eval_qor psnr

The data points for our PSNR calculation are the pixels of the output image. We

collect the data as it is written to the image file:

let () = EnerCaml.record_profile_output g in

Printf.fprintf file "%c" (char_of_int

(int_of_float g))

After instrumenting the code, we ran it through the simple profiler to determine

the quality of result and efficiency of our initial attempt at approximation. Fig-

ure 3.3.1 shows the result of simple profiling. The PSNR was 26.9, and 94.8% of the

approximable operations were executed in an approximate context. We next ran our

autotuner to see if we could improve on these results. Figure 3.4 shows a plot of

the best results (i.e., the quality of result/efficiency frontier curve), and Figure 3.3

displays the textual output for a selection of these results. The first thing that jumps

out of these results is that we can obtain better quality (PSNR of 28.4), while only

giving up a very small amount of approximation by making the scene creation precise.

40

Intuitively, small changes in the positions of spheres can have significant impacts on

the errors of some pixels because they can move the boundary between shadowed

(dark) and non-shadowed (bright) pixels. These errors may not be as noticeable to a

human viewer as the random errors generated by approximating rays, but they have

a significant impact on our chosen metric, PSNR. These types of errors would also be

more noticeable to humans in a video setting, where small shifts in the positions of

objects could create inter-frame jitter. Since approximating scene creation also had a

negligible impact on efficiency (most of the energy is spent on tracing the scene, not

creating it), we removed it and reran the autotuner.

On our second autotuning run, the most interesting results consisted of a PSNR

of 29.9 with 86.3% of approximable operations approximated, and of a PSNR of

36.9 with 22.3% of approximable operations approximated (Figure 3.5b). The 29.9

PSNR result was obtained by narrowing the approximation to just the call to the

ray sphere function (which computes the first intersection of a ray and a sphere).

The 36.9 PSNR result was obtained by narrowing the approximation to a particular

dot product computation inside of the ray sphere function. These results led us

to focus our approximation efforts on the ray-sphere intersection code. We moved

the approximation primitive in the ray tracer code to just the ray sphere call site,

and reran the profiler. This gave us a number of new interesting points along our

frontier curve, including a PSNR of 33.6 with 41.8% approximation, a PSNR of 32.9

with 50.7% approximation, and a PSNR of 31.5 with 64.1% approximation. All three

of these results were obtained by making either individual calculations or pairs of

calculations inside ray sphere precise. Our favorite result, with PSNR 33.5 and

41.8% approximation, is shown in Figure 3.5c. It has slightly lower quality than

the PSNR 36.9 result in Figure 3.5b, but nearly twice the number of approximated

operations.

It would have required significantly more effort to characterize the effects of ap-

proximation without the assistance of our profiling and autotuning tool. The auto-

41

tuner allowed us to quickly remove scene creation from consideration due to its poor

tradeoff between quality and efficiency. It then pointed us to the importance of the

ray sphere function and allowed us to focus our efforts there.

3.5.2 N-Body Simulation

The next application that we looked at was an N-body simulation (downloaded from

the Computer Language Benchmarks Game website [59]). We started by adding a

simple quality of result metric that calculates the inverse of the average error. The

simulation first initializes the N-body system with a call to offset momentum and

then calls advance in a loop to advance the state of the simulation one step at a

time. We wrapped both calls in approximate thunks:

EnerCaml.approximate

(fun () -> offset_momentum bodies);

...

for i = 1 to n do

EnerCaml.approximate

(fun () -> advance bodies 0.01)

done;

When we first ran our approximated N-body simulation, it threw an index out of

bounds exception. The offending array indices were calculated by integer arithmetic

that was approximated. We could have chosen to wrap the relevant calculations in a

precise thunk, but we instead decided to see if our autotuner could help us. When the

autotuner encounters an uncaught exception on one run, it simply terminates that

run (without recording it as a potential best result) and continues to explore alternate

approximations of the code. Another possibility that we intend to explore further is

to modify future versions of the EnerCaml runtime to convert out-of-bounds array

references in approximate code to in-bounds references.

42

Initially, our autotuner was not able to tell us very much because the only function

applications it identified were the two outer-level calls to offset momentum and

advance that we had wrapped in approximate thunks. We looked at the code

and discovered that the simulation code was written in a very imperative style. A

doubly-nested loop over the bodies calculates the effect of each body on every other

body. We were quickly able to convert the code to the more functional style that our

autotuner is designed for by identifying various subcomponents of the calculation,

and wrapping them in function calls. When we reran the autotuner, we found that

two of the subcomponents of the calculation could be profitably approximated with

no out-of-bounds exceptions and very low impact on the quality of result:

QoR = 5562.919330

Approximated operations: 45000007

Approximable operations: 184000490

Percent approximated: 24.456460

...

QoR = 7436.822960

Approximated operations: 45000007

Approximable operations: 184000490

Percent approximated: 24.456460

Both of these are significantly better than the original approximation. With integer

approximation temporarily turned off (via setting its probability to 0) to avoid the

exceptions, the original approximation had a QoR of 0.009556—so low as to be un-

usable (although it did achieve 94.3% approximation). We also tried approximating

both of the identified computations to see if we could still get good quality of result

with a larger fraction of operations approximated. Our results were promising:

QoR = 3821.292285

Approximated operations: 90000007

43

Approximable operations: 184000490

Percent approximated: 48.912917

In the case of the N-body simulation code, the autotuner allowed us to work around

the initial errors that were caused by attempting to approximate calculations that

needed to be performed precisely. It then allowed us to identify (after straightforward

code modifications) portions of the simulation calculation that could be profitably

approximated without significantly impacting the quality of result. The whole process

took roughly one hour for someone unfamiliar with the code.

3.5.3 Collision Detector

Our final example is a simple collision detection kernel (downloaded from [46]) that

checks whether or not two triangles in 3D space intersect each other. Our quality

of result metric calculates the percentage of the intersection tests where we correctly

detect whether or not the triangles intersect. Based on our experiences with the

previous examples, we did not attempt to approximate the initialization. Instead, we

just surrounded the call to the intersection routine with an approximate thunk. We

then passed the result of the intersection routine to a function that parses the result

and records it for the profiler:

let intersects = EnerCaml.endorse(

EnerCaml.approximate(

fun () -> tri_tri_intersect tri1 tri2))

in

record_output_coll intersects

As usual, we started by running the simple profiler to get a baseline:

Percent correct = 97.810000

Approximated operations: 4038704 (0 integer,

1830788 float, 2207916 array load)

44

Approximable operations: 4298283

Percent approximated: 93.960868

Our initial results were reasonable—97.81% of collisions were correctly detected and

almost 94% of approximable operations were approximated. We then ran the auto-

tuner to see if we could do even better. Most of the interesting results along the

frontier curve involved making some combination of the function applications from

four different source lines approximate. These four lines can be split into two pairs.

The first pair test whether all three points of one triangle lie on the same side of the

plane of the other triangle (indicating no intersection):

if ((sign da1) = (sign da2) &&

(sign da2) = (sign da3)) then

NoIntersection

...

if ((sign db1) = (sign db2) &&

(sign db2) = (sign db3)) then

NoIntersection

...

The other pair compute the normals of the planes containing the two triangles, which

is an essential input to the computation we just described:

let na = vnormal a.(0) a.(1) a.(2)

and nb = vnormal b.(0) b.(1) b.(2) in

We experimented with making these computations precise. When we made both

of the plane normal calculations precise, our quality of result increased to 98.88%

correct, but our approximation percentage dropped a bit, to 67.1%. When we instead

made the no-intersection checks precise, our quality of result did not increase by as

much, only rising to 97.94%. However, our approximation was almost unchanged at

93.0%. When we combined both changes we were able detect 98.93% of collisions

45

correctly and still approximate 66.1% of the approximable operations. Compared

to the original annotation, we were able to eliminate over 51% of the errors while

losing less than 30% of the approximation. This whole process took under an hour

for someone unfamiliar with the code.

3.6 A Monad-Based Approach to Data-Centric Approximation

The EnerCaml system described above provides a code-centric approach to approx-

imation for OCaml programs. As we discussed earlier (Section 3.2.1), this approach

works well for mostly functional programs. However, OCaml also supports an imper-

ative programming style and mutable references. For imperative code, a data-centric

approach to approximation (such as EnerJ [52]) is often preferable. This section

shows how monads can be used to implement data-centric approximation in OCaml

with no changes to the compiler, runtime, or interpreter. Section 3.6.1 describes our

monad-based approach. Section 3.6.2 gives a short example.

3.6.1 Approximation Monads

We can formulate data-centric approximation as a monad. OCaml has no special

language support for monads, but one can still define them with the module system.

We let the monadic value store both an approximate value and an approximation

function that we apply every time we read the value:

module ApproxMonad =

struct

type ’a approx = Approx of ’a * (’a->’a)

...

We can then define the standard bind and return functions as follows:

let bind (Approx(x, appr)) (f:’a -> ’b approx) =

f (appr x)

46

let return x fn = Approx(x, fn)

The bind function applies the approximation function appr to the data x prior to

passing it to the function f. This preserves the invariant that the stored approximate

data may only be accessed via the approximation function. The return function

creates a new monadic value. We store the data x and the approximation function

fn but we do not immediately apply the approximation function. The approximation

function will be applied before any use of the data, so if we were to apply it here as

well, it would be applied twice before any use.

As with EnerCaml and EnerJ [52], we require an explicit endorsement to use

approximate data in a precise calculation:

let endorse (Approx(x, appr)) = appr x

As was the case with bind, endorse must call the approximation function appr

on the approximate data x before returning it. This is necessary to maintain the

invariant that the data is accessed only via the approximation function.

We can also use bind and return to define a number of other useful functions for

dealing with values in our approximate monad. A monad join function is useful for

our monad because an ’a approx approx should be equivalent to an ’a approx:

let join apm = bind apm (fun x -> x)

As usual, the join function converts a doubly approximate type to a single approxi-

mate type (i.e., it has type ’a approx approx -> ’a approx). A map function

is also useful to allow us to apply arbitrary functions to our approximate data. We

define our map in terms of bind to ensure that the access-via-approximation function

invariant is obeyed. We need to supply an approximation function for the result of

the map because the return type of the mapped function may not be the same as the

input type. Thus the approximation function for the input may not be applicable to

the output.

47

let map x f app_fn =

bind x (fun x -> return (f x) app_fn)

As expected, this has type ’a approx -> (’a -> ’b) -> (’b -> ’b) ->

’b approx. The arguments are the input monadic value of type ’a approx,

the mapped function of type ’a -> ’b, and a new approximation function for the

output type of the mapped function (’b -> ’b). Our map returns a ’b approx

containing the new approximation function and the result of applying the mapped

function to the approximated input. We also provide a means for reusing the input’s

approximation function when the input and output types of the mapped function are

identical. We call this version map st (“st” stands for same type):

let map_st (Approx(d, appr) as x) f =

bind x (fun x -> return (f x) appr)

This has the expected type ’a approx -> (’a -> ’a) -> ’a approx (the

third argument from map is omitted because we are reusing the approximation func-

tion from the input monadic value). We can also define bind and map operations for

two-argument functions:

let bind2 x1 x2 f =

bind x1 (fun x -> bind x2 (f x))

let map2 x1 x2 f appr =

map x1 (fun x -> endorse (map x2 (f x)

(fun x -> x)))

appr

Note that the presence of the endorse call in the above definition of map2 does

not result in an extra layer of approximation because we apply the endorsement to

an intermediate value whose approximation function is the identity function. Thus,

the approximation introduced by the endorsement is a no-op. We execute two “real”

48

approximations, one on x1, and one on x2, when we execute their respective map

calls. Once again, map2 requires an approximation function as an argument because

the output type of the mapped function may not be identical to either of the input

types. We provide alternate implementations for the case where the output type does

match one of the input types. For mapped functions of type ’a -> ’b -> ’a, we

provide:

let map2_st1 (Approx(d, appr) as x1) x2 f =

map x1 (fun x -> endorse (map x2 (f x)

(fun x->x)))

appr

and for mapped functions of type ’a -> ’b -> ’b, we provide:

let map2_st2 x1 (Approx(d, appr) as x2) f =

map x1 (fun x -> endorse (map x2 (f x)

(fun x->x)))

appr

We can now use this map functionality to define approximate operations that

compute approximately over our approximate data. We first define a helper function:

let m2_and_approx (Approx(x, appr) as x1) x2 f =

map2_st1 x1 x2 (fun x y -> appr (f x y))

The m2 and approx function performs a two-argument map with a mapped function

whose first argument and return type match, and applies an approximation function

to the result of the mapped function. Note that the map call will also apply approxi-

mation functions to the input data as it is being read in. This is intended to simulate

the effect of performing an operation approximately over two values stored in approx-

imate memory. We use this helper function to define approximate operations such as

integer and floating point arithmetic:

let app_plus x y = m2_and_approx x y (+)

49

let app_sub x y = m2_and_approx x y (-)

let app_mult x y = m2_and_approx x y (*)

let app_div x y = m2_and_approx x y (/)

let app_plus_f x y = m2_and_approx x y (+.)

let app_sub_f x y = m2_and_approx x y (-.)

let app_mult_f x y = m2_and_approx x y (*.)

let app_div_f x y = m2_and_approx x y (/.)

We can also define infix syntactic sugar for the above operations:

let (+$) a b = app_plus a b

let (+$.) a b = app_plus_f a b

let (-$) a b = app_sub a b

let (-$.) a b = app_sub_f a b

let (*$) a b = app_mult a b

let (*$.) a b = app_mult_f a b

let (/$) a b = app_div a b

let (/$.) a b = app_div_f a b

It is also useful to be able to flatten approximate values that contain data struc-

tures (e.g., an approximate monadic value containing a list) into structures that in-

stead contain monadic values (e.g., a list of approximate monadic values). This can

arise when we map functions that produce structures from simpler input. For exam-

ple, if we were to map a function n copies that produces a list containing n copies

of an integer, we would end up with an output of type int list approx where

we likely want an int approx list. We can write simple functions to perform

these types of transformations for different data structures. For example, we added

the following code to ApproxMonad to flatten lists:

let flatten_list (Approx(lst,f)) appr =

List.map (fun x -> return x appr) lst

50

As expected, this function has the type ’a list approx -> (’a -> ’a) ->

’a approx list. Note that we need to supply a new approximation function (’a

-> ’a) because we are changing the type of the data contained in the monad from

an ’a list to an ’a.

This monad-based approach for OCaml provides many of the same capabilities

that EnerJ [52] provides for Java. The programmer can mark data as approximate

and perform approximate operations on it. The type system ensures that approximate

data does not flow into precise variables without an explicit endorsement from the

programmer. Unlike EnerJ, however, we were able to do all of this with a simple

module written entirely in OCaml. No changes to the compiler, runtime, or interpreter

were required.

Our current monad-based data-centric approximation system does not include a

profiling capability like the code-centric EnerCaml system that we discussed previ-

ously. In Section 6.2, we discuss ideas for implementing an approximation profiler

and autotuner for approximate monads.

3.6.2 Example

To demonstrate this monad-based approach, consider our previous ray tracer exam-

ple (from [25]). As we mentioned in Section 3.2.1, data-centric approximation is a

better fit for an imperative programming style than a functional programming style.

Thus, to demonstrate our data-centric, monad-based approach we consider the one

imperative piece of the ray tracer: the loop which computes the pixel values for the

generated image. Each iteration of the loop defines a mutable reference g that sums

the contributions of every ray to the pixel we are currently considering:

for y = n - 1 downto 0 do

for x = 0 to n - 1 do

let g = ref 0. in

for dx = 0 to ss - 1 do

51

for dy = 0 to ss - 1 do

let aux x d =

float x -. float n /. 2. +.

float d /. float ss

in

let dir = unitise {x=aux x dx;

y=aux y dy;

z=float n}

in

g := !g +. ray_trace dir scene;

done;

done;

(* Output pixel value g to image file *)

...

done;

done;

A data-centric approximation approach allows us to model the effect of storing the

mutable reference g in approximate memory and performing operations on it approx-

imately. We simply make g an Approx with an appropriate approximation function,

and route all operations on g through the appropriate monadic operators:

let float_error pct1 pct2 i =

(if ((Random.float 1.0) < pct1)

then (i *. ((Random.float (pct2 *. 2.)) +.

1. -. pct2))

else i);;

let appfn = float_error 0.001 0.01;;

for y = n - 1 downto 0 do

52

for x = 0 to n - 1 do

let g = ref Approx(0., appfn) in

for dx = 0 to ss - 1 do

for dy = 0 to ss - 1 do

let aux x d =

float x -. float n /. 2. +.

float d /. float ss

in

let dir = unitise {x=aux x dx;

y=aux y dy;

z=float n}

in

g := !g +$. (return (ray_trace dir scene)

appfn);

done;

done;

(* Output pixel value g to image file *)

...

done;

done;

We define appfn to be a float approximation function that returns the precise result

99.9% of the time, and returns a result approximated by up to 1% the rest of the

time. We then replace the mutable float reference g with a mutable reference to an

approximate monadic value containing a float (and the float approximator appfn).

Finally, we wrap the float returned from ray trace in an approximate monadic

value and use our floating point approximate addition routine (+$.) to add it to g.

53

3.7 Related Work

Some language-level techniques seek to help programmers mitigate the negative ef-

fects of relaxed semantics to achieve a reasonable balance between execution quality

and resource consumption. These techniques are complementary to EnerCaml’s au-

totuner, which seeks to identify at a high-level (and during the protoyping phase

of development) which portions of an application have the most potential for good

energy–quality trade-offs. For example, Carbin et al. [9] propose a proof system for

verifying programmer-specified correctness properties in relaxed programs. Misailovic

et al. [39] use probabilistic reasoning to prove accuracy bounds on relaxed program

transformations. EnerJ [52] provides a simple noninterference guarantee. These tech-

niques are all static and conservatively bound imprecision. Programmers writing to

a relaxed programming model should use these static techniques in tandem with dy-

namic tools like Enercaml (and the others we propose in Chapters 4 and 5) to obtain

an empirical picture of quality loss.

Quality-of-service profiling [40] is a similar technique that identifies code that has

little influence on application output quality and that the programmer should consider

relaxing to improve performance. In contrast, our tool uses a priori programmer

annotations to identify approximate portions of programs that should be made more

accurate to achieve a desired QoR level. EnerCaml is a closed-loop system that

suggests specific code modifications to achieve better energy–quality tradeoffs.

The SAGE system [51] implements approximation for CUDA GPU kernels. On

of their two phases is a runtime tuning phase that bears some similarities to our

autotuning. Their system target a much later phase of the development workflow

than ours—they are looking at runtime tuning of deployed applications in a specific

target environment, rather than exploration of approximation strategies in a proto-

type. Thus, their tuning focuses on tweaking approximation parameters, rather than

exploring which parts of a computation are most amenable to approximation.

54

Ansel et al. [4] describe the PetaBricks language extensions and compiler features

that allow developers to auto-tune what they call variable-accuracy algorithms, a cat-

egory which includes approximate algorithms. Their focus is on performance rather

than the quality–energy trade-offs we are looking at, but some of the language exten-

sions they propose may be useful in the energy-aware approximate computing arena

as well.

This chapter focuses on the use of functional languages for profiling and prototyp-

ing approximate computations, but we also briefly touch on hardware considerations

for implementing code-centric approximation for a language like EnerCaml. We hope

to pursue this further in future research. Along these lines, there is a long history

of research at the intersection of hardware design and functional languages. In fact,

one of the predecessors of the well-known International Conference on Functional

Programming (ICFP) was the FPCA conference: Functional Programming and Com-

puter Architecture. More recently, the Lava project [6] used Haskell to design circuits.

HML [36] (or Hardware ML) is a hardware description language based on Standard

ML. The FLaSH project [41] developed their own functional specification language,

SAFL, that could be compiled directly (behaviorally) into hardware. Frankau and

Mycroft [26] developed an extension to SAFL called SASL that added support for

stream processing.

Our implementation of EnerCaml borrows from techniques employed by other

projects. Our dual closure approach to tracking the approximate versus precise con-

text is derived from previous work that we did—specifically, the dual closures that

we used to track atomicity context and provide transactional memory semantics for

OCaml in our AtomCaml [50] project. That work is not included in this thesis as

it is not germane to our topic, but it formed the basis for many of the ideas that

went into the EnerCaml system. Others have discussed the use of monads in OCaml

libraries. The pa monad system [11] adds Haskell-like monad syntax to OCaml. The

lwt library (available at [38]) and the async library from Jane Street (available at [3])

55

are both based on monads. F# [56] has built-in support for monads (which it calls

workflows).

56

Chapter 4

OFFLINE ANALYSIS OF APPROXIMATE PROGRAMS

4.1 Introduction

The previous chapter proposed a tool for prototyping approximate algorithms and

exploring their QoR–energy tradeoffs (Chapter 3). This chapter focuses instead on a

later stage of approximate application development: quality testing and debugging. In

particular, it presents two dynamic, offline tools that can provide a more fine-grained

look at the nature of the QoR of approximate applications. The next chapter will

discuss an even later stage: post-deployment online quality monitoring and real-time

adjustments. All of these tools are important pieces of an approximate programming

ecosystem. The prototyping tools allow developers to explore algorithms at a high-

level, and determine the key quality–energy tradeoffs. The fine-grained offline tools

(discussed in this Chapter), while too heavyweight for usage in deployment (the costs

would more than overwhelm the savings from approximation), are excellent tools for

pre-deployment debugging and understanding of quality issues in the application.

They help programmers better understand where they can safely use approximation.

The online monitoring tools, on the other hand, are lightweight enough to run in

deployed code and can allow applications to constantly adjust approximation levels

or correct erroneous results when faced with quality issues that arise post-deployment

(due, for example, to unanticipated program inputs or variations in approximate

hardware).

The tools proposed in this chapter instrument programs to determine the critical

data locations and code points that have the most impact on QoR. Our first tool tracks

approximate data-flow, and allows developers to determine which results and data

57

depend on the largest number of approximate operations. Since each approximate

operation has a non-zero chance of returning a wrong answer, this is a good proxy

for the likelihood that a result or value may be incorrect. Our second tool tracks

the number of times each approximate operation executes, as well as the number of

times it produces an incorrect result. If we run the instrumented program multiple

times, we can calculate which operations and errors are most correlated with QoR.

This can help developers identify key operations that impact the final QoR of the

application. Both tools of our tools are implemented as LLVM [31] compiler passes

that add code instrumentation to C and C++ programs extended with EnerJ-style

qualifiers, combined with runtime libraries that collect and output the data generated

by the instrumentation.

This rest of this chapter is organized as follows:

• Section 4.2 describes our dataflow tracking tool.

• Section 4.3 presents our correlation finding tool.

• Section 4.4 discusses the usage and APIs for our tools.

• Section 4.5 describes some of the most interesting implementation details of our

tools.

• Section 4.6 discusses the use cases we used to validate the usefulness of our

tools.

• Section 4.7 describes related work.

4.2 Dataflow Instrumentation

In many approximate applications, there can be a wide variance in the number of

approximate operations that flow into the computation of different results. Results

58

that depend on more approximate operations will typically have a higher chance of

being incorrect. However, the number of approximate operations that go into the

computation of these results is not always proportional to the savings provided by

computing the results approximately. In such cases, the approximate computation

of these results can have far greater impact on the probability of poor QoR (if they

depend on many approximate operations) than would be justified by the amount of

savings they provide. For example, an image transform may compute a scaling factor

for its output by traversing the input and determining the difference between the

maximum and minimum pixels (cf. the Sobel filter application in Section 5.7). If

the input image is approximate data, computing the minimum and maximum values

will require a large number of approximate operations. If any of these operations go

wrong, then the scaling factor (and hence every output pixel) will be incorrect. Thus,

even though this computation may comprise only a small portion of the energy usage

of the program, it may have a very large impact on expected QoR. We may thus be

better off executing it precisely.

This type of scenario motivates our dataflow instrumentation tool. Given an

approximate operation O1, and a second operation O2 with inputs i1, ..., in and result

R, we say that O1 flows into R if O1 = O2 or if O1 flows into one of i1, ..., in. Our tool

is built on a version of LLVM enhanced with approximate versions of the IR operations

for arithmetic and memory access. We use a compiler pass to add code after every IR

operation to compute the number of approximate operations that flow into the result

of the operation. For each IR data location (e.g., user variable, memory address,

SSA name), we create a shadow counter that tracks the approximate flow into the

result held in that location. For most operations (everything except loads, stores, and

calls), we simply sum the shadow counters associated with the operands, add 1 if the

operation is approximate, and assign the result into the shadow counter for the result

of the operation. Note that if our IR is in SSA form, it may be possible to optimize

away much of the arithmetic generated by this process via constant propagation,

59

constant folding, and dead store elimination.1 For store operations, we add code that

stores the counter associated with the store’s value operand into a shadow memory

(e.g., a hash table keyed on memory addresses—see Section 4.5.1). If the store is

approximate, we add one to the counter value that we place in the shadow memory.

For load operations, we look up the load’s address in our shadow memory, retrieve

the associated counter, and add one if the load operation is approximate. Finally, for

calls, we utilize a shadow parameter-return stack to keep track of counts for function

parameters and returns. Prior to the call, we push the counter values corresponding

to every parameter onto the stack. At function entry, we pop these counter values off,

and assign them to the parameter’s shadow counter. At function return, we push the

counter value associated with the return value onto the stack. The caller than pops

this value and assigns it to the shadow counter associated with the location storing

the call result.

For example, consider the following code snippet:

%3 = %1 + %2 ; approximate

%store %3, %x ; approximate

%4 = load %x ; approximate

%5 = call foo(%4)

Our instrumentation would change this to the following. Note that for clarity in this

example we denote the shadow counter of a location x as x shadow, but in reality

the instrumentation just introduces a fresh variable:

%3 = %1 + %2 ; approximate

%3_shadow = 1 + %1_shadow + %2_shadow

%store %3, %x ; approximate

%6 = %3_shadow + 1

%call _recordShadowMemory(%x, %6)

1Performance of the instrumented code is not a high order goal of this work, but anything we
can do to reduce the time it takes to use the tool helps increase the likelihood of user adoption.

60

%4 = load %x ; approximate

%4_shadow = call _fetchShadowMemory(%x) + 1

%call pushPRStack(%4_shadow)

%5 = call foo(%4)

%5_shadow = call popPRStack()

As mentioned above, if %3 is not used again, standard optimizations could eliminate

%3 shadow and replace the first four lines of the instrumented code with:

%3 = %1 + %2 ; approximate

%store %3, %x ; approximate

%6 = %1_shadow + %2_shadow + 2

In order to utilize the information gleaned from this dynamic flow analysis, we

provide an API for developers to access the shadow counter values of user variables

and expression results. This API is described in Section 4.4.

4.3 Correlation Instrumentation

In many approximate applications, particular approximate code points (operations

that are executed approximately) are more likely to cause poor quality of result than

others. For example, a code point that impacts every pixel may have much more

impact than one which impacts only a single pixel. Our second offline approach,

correlation instrumentation, helps developers identify those critical points by tracking

the execution and error frequencies of every approximate code point during multiple

program executions with varied QoRs. The result is a series of correlation vectors,

where each vector consists of an application execution QoR and a series of execution

and error counts for every approximate code point in the application. Off-the-shelf

tools can then determine which coordinates of the vector are most highly correlated

with QoR.

Our instrumentation proceeds by adding two counters for every approximate code

61

point (approximate LLVM byecodes in our implementation). The first counter simply

counts the number of times the code point executes. The second counter is an error

counter. We assume an approximation model where every approximate operation has

some probability of returning an incorrect result. For most approximate operations

(except memory references), we reexecute the operation precisely and compare the

precise and approximate results. For stores, we precisely store an identical value into a

shadow memory (e.g., a hash table keyed on memory addresses—see Section 4.5.1), as

well as a pointer to the store’s error counter. At loads, we look up the loaded address

in the shadow memory and compare the result stored there with the approximately

loaded value. If there is an error, we can charge the error counters of either the

store (obtained from the shadow memory), the load, or both. This decision can be

programmer-driven or chosen by the tool implementation.2 We are assuming a model

where approximate loads and stores always access an approximate memory and all

accesses to approximate memory are approximate. If these conditions do not hold,

we would instead need to utilize the shadow memory for every store, rather than just

approximate stores.

For an example of our instrumentation process, consider the following intermediate

instructions:

%3 = %1 + %2 ; approximate

%store %3, %x ; approximate

%4 = load %x ; approximate

We would instrument this as:

%execCnt1 += 1

%3 = %1 + %2 ; approximate

%5 = %1 + %2

%6 = cmp equal %3, %5

2Note our design assumes that the only side effecting approximate operations are stores, but this
can easily be adapted to other models.

62

%7 = select %6, 0, 1

%errorCnt1 += %7

%execCnt2 += 1

%call recordShadowPair(%x, %3, &%errorCnt2)

%store %3, %x ; approximate

%execCnt3 += 1

%4 = load %x ; approximate

%8 = call checkShadowMemory(%x, %4)

%errorCnt3 += %8

In this example, we have chosen to charge both loads and stores in the event of errors

in the approximate store. The call to checkShadowMemory will return 1 if the

value found in the shadow memory does not match the value passed in by the second

parameter, or 0 otherwise. The next line of the instrumentation uses this to update

the load’s error counter. To charge the store, checkShadowMemory will directly

increment the store’s error counter when it looks up the address in the shadow memory

(the recordShadowPair routine records both the correct memory value and the

store’s error counter in the shadow memory).

This approach is not context-sensitive—we are merely tracking correlations to indi-

vidual program counters, rather than tracking correlations to code points in particular

calling contexts. Nothing conceptually prevents us from adding context sensitivity,

but we have not yet found it necessary for any of the applications we studied. In addi-

tion, the benefits of context-sensitivity are highly application-specific. In some cases,

adding context sensitivity could help us identify more precise correlations by identify-

ing code points that are highly correlated to quality only in specific calling contexts.

In other cases, however, context-sensitivity could obscure important correlations by

splitting error-causing code points into multiple components of the correlation vector.

We also provide APIs that let developers create and store execution and error

vectors along with associated QoR values. This can be done for the computation as

63

a whole or for subcomputations. These APIs are described in Section 4.4.

4.4 APIs and Usage

This section describes the usage of our offline instrumentation-based QoR tools. Our

offline tools are implemented as LLVM compiler passes that add the appropriate

instrumentation to the LLVM IR. We also provide APIs to access and output the

counter data produced by the instrumentation.

Our dataflow instrumentation tool tracks the number of approximate operations

that dynamically flow into the computation of every result. Users may access these

results via the counters associated with each user variable and expression result in the

program. The following varargs function dumps the data counters associated with

the count variable arguments to the file fname:

void dumpDataCounters(char *fname,

int count, ...);

The variable arguments in the argument list can be either user variables or expres-

sions (should the developer wish to track the number of approximations involved in

computing an expression rather than just a variable). Developers merely need to

pass the variables by value. The compiler automatically replaces the variables with

their associated data flow counter values, and the library function then simply dumps

them to the named file. Expressions work similarly: the instrumentation pass auto-

matically generates a temporary dataflow counter for the result of every operation in

the program, and the compiler replaces any expressions in the above argument list

with their associated counter. Developers can also access the counter values with the

following routine:

int dataCounterSum(int count, ...);

This returns the sum of the data counters associated with the count variable ar-

guments (note that we can call this with count of 1 to access the value of a single

64

counter).

Our correlation instrumentation keeps counters which track the number of exe-

cutions of, and errors in, each approximate operation in the IR. We primarily access

these via the following APIs:

void recordAndResetVector(double qor);

void dumpVectors(char *fileName);

void appendVectors(char *fileName);

The first routine records a vector consisting of all of the execution and error counters,

as well as a floating-point QoR. It also resets the counters to 0, in case we wish to

track correlations and quality of results for multiple iterations of a calculation in the

same execution. The latter two routines dump the stored vector or vectors to the

specified file. The former overwrites the file and the latter appends to it (in case

we are attempting to track correlations over multiple executions). In all cases, the

vectors are output with descriptive coordinate labels that describe which source line

each vector coordinate corresponds to as well as whether it is an execution or error

counter. Off-the-shelf tools can then be used to calculate the correlation between each

counter and the application’s QoR.3

4.5 Implementation Issues

This section describes a couple of the most interesting details of our QoR tool im-

plementations. First, Section 4.5.1 describes implementing shadow memories for our

offline approaches. Then Section 4.5.2 describes how we chose appropriate ordering

of the instrumentation passes relative to other LLVM passes.

3In our experiments, we simply imported these vectors as a table into an open-source spreadsheet
application and used it to calculate the correlation between each counter column and the QoR
column.

65

4.5.1 Shadow Memories

Both of our offline tools require a shadow memory. Dataflow instrumentation uses

the shadow memory to track dataflow counts across loads and stores. When a value

is stored, we store its current approximate dataflow in the corresponding location of

the shadow memory. Similarly, when a value is loaded, we look up its approximate

dataflow in the shadow memory. Correlation instrumentation, on the other hand,

uses the shadow memory to track the actual values stored in approximate memory.

When we load from an address in approximate memory, we check the corresponding

shadow memory address to see if the loaded value is correct (if it is not correct, we

increment the appropriate error counter).

Both forms of shadow memory are implemented as hash tables keyed on the real

memory address. The values are either the dataflow counter for dataflow instrumen-

tation or the stored value and the address of the store’s error counter for correlation

instrumentation.4 Stores correspond to hash table inserts and loads to table lookups.

Reinsertions of the same key (i.e., stores to a previously stored-to address) replace

the old value.

4.5.2 Instrumentation Timing

The LLVM compiler infrastructure [31] offers great flexibility in adding, removing,

and reordering back-end compiler passes. For the purposes of our offline analyses,

we found that most optimizations had very little effect. However, for both styles of

instrumentation, performing memory-to-register promotion prior to instrumentation

proved critical.

In both cases, the key issue was the presence of many approximate loads and stores

that would never be present in an actual execution. This lead to excessive use of the

4We track the store’s error counter so that we can assign “blame” to the store in the event of an
error due to the approximate memory.

66

shadow memories. Prior to promotion, every read of an approximate variable results

in an approximate load, and every write an approximate store. After promotion, most

of these loads and stores are removed because the values are stored in registers. If we

instrument prior to register promotion, our tool must add instrumentation for all of

these memory accesses. This greatly distorts our dataflow tracking results, because

each approximate load and store results in an additional approximate operation to

count. For correlation tracking, the problems are not as severe, but they do result in

many more approximate operations to track, which can cause the number of entries

in the execution/error count vectors to explode. This in turn can make the the corre-

lations more difficult to identify and can also impact scaling of our instrumentation.

Alternately, we could assume that the entire stack is stored in precise memory. In

this case, loads and stores of approximate stack variables would not be treated as ap-

proximate operations, and thus would not need to be instrumented in the correlation

case (they would still require instrumentation in the dataflow case, however, because

approximate data can flow into precise values via endorsements). This is a reasonable

assumption if you are modelling an architecture where the granularity of approximate

storage is relatively coarse, because it may not make sense to keep separate precise

and approximate stack regions if there are not likely to be enough approximate stack

variables in a given frame to fill the minimal-sized approximate memory region.

4.6 Use Cases

To evaluate our instrumentation-based offline QoR analysis tools, we experimented

with four approximate applications. Our offline tools allowed us to narrow in on the

key quality issues in our applications and to better understand their characteristics:

• We used both dataflow and correlation instrumentation to analyze an approxi-

mate Sobel filter application. The application was approximated by declaring

the two image arrays (input and working/output), as well as a number of tem-

67

porary variables, to be approximate data. This analysis allowed us to debug an

intermittent crash under approximation, as well as frequent severe QoR degra-

dations.

• We used dataflow instrumentation to better understand the approximation pat-

terns of an approximate FFT kernel (from [52]) and used this to inform our

design of the application-specific portions of the FFT kernel online monitors

described in Chapter 5.

• We used correlation instrumentation to better understand the approximation

present in an approximate version of the PARSEC canneal simulated an-

nealing benchmark. This convinced us that the error patterns were such that

further refinements (or the addition of a monitor) was not necessary.

• We used correlation instrumentation to debug the quality of an approximate

version of the PARSEC Black Scholes benchmark.

This section describes our experiences with these applications in more detail. The

graphs in Figure 4.1 show how correlations are distributed in the applications that

used correlation instrumentation.

Sobel filter. Our instrumentation of the approximate Sobel filter enabled us to

debug two problems: an intermittent segmentation fault and frequent poor quality

filter results (e.g., no edges). To track down the crash, we created correlation vectors

where the QoR component was determined entirely by whether or not we crashed.

These vectors quickly pointed us to an array access code point. Dataflow instrumen-

tation confirmed that this array index could be influenced by approximate operations,

leading to the potential for out-of-bounds accesses. To investigate the poor quality

results, we created correlation vectors whose QoR was based on the number of cor-

rect elements of the result and determined that the highest correlation was with code

68
Sheet2

Page 103

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Code point

C
o

rr
e

la
tio

n

(a)
Sheet2

Page 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)
Sheet2

Page 1

0

0.05

0.1

0.15

0.2

0.25

(c)

Figure 4.1: Graphs showing correlations between code points and QoR in (a) simu-
lated annealing, (b) Sobel filtering, and (c) Black Scholes. The x-axes represent source
lines, and the y-axes represent QoR correlations. The x-axes are sorted by correlation
value to show how the correlations are distributed: a small and informative number
of approximate code points have high correlation to QoR.

69

that computed a scaling factor which was later applied to every pixel. This scaling

factor was being computed approximately by scanning the initial image. Dataflow

instrumentation confirmed that there were a large number of approximate operations

in this scan. Since this value impacts every output pixel, it was causing our frequent

garbage results.

FFT. Our primary insights with the FFT came from dataflow instrumentation. We

checked the approximate dataflow into each element of the result and determined that,

even with the relatively small FFT we used in testing (32K elements), each element

of the output vector was dependent on a large number of approximate operations

(almost 180K). Due to the structure of the FFT, if an error corrupts an intermediate

array value early in the computation, it can lead to errors that propagate through the

rest of the FFT result. This insight led us to design a monitor for the FFT application

in such a way that it would catch any errors early so that we could either attempt to

correct them or simply restart the computation. This is described in further detail in

Chapter 5.

Simulated annealing. For canneal, we created correlation vectors where the

QoR component was determined by the difference in route length from the precisely

computed version. When we plugged our vectors into a spreadsheet to compute cor-

relations, we determined that the results with lower quality were strongly correlated

with errors in approximate operations inside the random number generation routines,

and not very correlated with anything else. The random number generation is used

to compute random steps in the simulation, and these errors appeared to effectively

be altering the randomization. This was causing our annealer to simply find different

local minima. In fact, a number of these different minima were better than the one

found by the precise version. This investigation gave us increased confidence in the

results of our approximation.

70

Black Scholes. In Black Scholes, our correlation instrumentation identified two

locations with particularly high correlation to QoR. In both cases, we were loading a

value from a location in approximate storage that had not been accessed in a long time.

In our EnerJ-based approximation model, the decay of an approximate memory value

is based on the amount of time since it was last accessed (since an access refreshes

the memory). Situations like this suggest that future approximate languages may

want a language feature that forces a refresh of approximate storage. Without this,

developers must either avoid approximating these variables, or add artificial accesses

to force a refresh (and do it in such a way that the compiler does not optimize the

accesses away).

4.7 Related Work

This work proposes instrumentation-based approaches that pinpoint precise program

points that lead to poor output quality dynamically. These techniques complement

prior static approaches and improve on more basic dynamic approaches.

Static approaches conservatively bound the quality impacts of approximate com-

puting. Carbin et al. [9] propose a proof system for verifying programmer-specified

correctness properties and other work [39, 61] uses probabilistic reasoning to prove

accuracy bounds on program transformations. EnerJ [52] provides a simple nonin-

terference guarantee. The Rely system [10] bounds the probability that values pro-

duced by an approximate computation are correct by examining the static data flow

of nondeterministic operations. In this sense, it represents a static complement to

our dataflow instrumentation technique. Static techniques provide important safety

properties but are necessarily conservative; our dynamic techniques are critical to

addressing run-time events that static analyses cannot rule out.

The quality-of-service profiling work described in [40] describes an exhaustive

search process for identifying program loops that do not need full precision. Our

EnerCaml profiler and autotuner (Chapter 3) searches for approximate function appli-

71

cations that can be made precise to improve quality. In contrast, our instrumentation

approaches apply to finer-grained sources of error without resorting to brute-force

search.

72

Chapter 5

ONLINE QUALITY MONITORING OF APPROXIMATE
APPLICATIONS

5.1 Introduction

The previous two chapters discussed offline, predeployment tools to help developers

understand and improve the quality–energy tradeoffs of their approximate applica-

tions. We have shown how these tools can be valuable aids to programmers working

to optimize and debug approximate programs. However, as with all offline tools, they

depend on developers’ ability to anticipate the range of possible inputs that might

be seen “in the wild”. In addition, offline tools cannot dynamically react to chang-

ing conditions (e.g., environmental conditions that might impact the error rate of

approximate hardware).

In this chapter we tackle these issues by proposing online quality monitoring, which

allows applications to dynamically detect and adapt to approximation’s effects. It is

the first work (to our knowledge) to consider the design challenges of online monitoring

of approximate computations and to architect and implement a flexible framework for

online monitoring of approximate applications. With online monitoring, approximate

programs can self-adapt to cope with changing error rates and/or input patterns that

are not anticipated during development.

The key challenge to realizing practical online monitoring is making it cheap

enough that its overheads do not obviate the efficiency benefits of approximation.

This chapter considers the design space of low-overhead, online QoR monitors. We

propose three general approaches corresponding to different classes of algorithms and

approximation patterns. We present implementations of these monitoring techniques

73

and evaluate their effectiveness in the context of six sample applications and eight

monitors (two of the applications were implemented with two different monitors).

With monitoring enabled, our applications retain between 44% and 78% of the orig-

inal energy savings from approximation. These savings suggest that approximate

applications can take advantage of online QoR monitoring to control the negative

effects of approximate computing while still preserving significant energy-saving ben-

efits. We also use monitoring to build a self-adapting ray tracer that adjusts approx-

imation parameters at run time to find their best settings on the fly. This adaptation

substantially reduces the tracer’s error rate without negating the energy efficiency

benefits of approximation.

In Section 5.2, we begin by revisiting the strawman we discussed in Section 2.2 in

order to frame the online problem in contrast to the simpler offline monitoring prob-

lem. Section 5.3 then introduces three approaches to low-overhead online monitoring.

Section 5.4 generalizes these approaches to map the design space of online monitors.

Next, Sections 5.5 and 5.6 detail the API and implementation of our monitoring pro-

totype. Finally, Section 5.7 describes our experiences using the prototype to monitor

and control the QoR of six approximate applications.

5.2 Offline vs. Online Quality Monitoring

When writing code that trades off accuracy for resource usage, it is essential to un-

derstand how this trade-off affects computation quality. While resource usage—time

or power, for example—can be measured directly, quality must be assessed using a

program-specific metric. We refer to this application-defined notion of output quality

as the quality of result or QoR. For an object recognition application, for example,

the QoR metric may be the number of correct classifications. One way to measure

QoR is to run the program repeatedly in a controlled test environment and collect

and compare the outputs of precise and approximate computations. We refer to this

profiling-based approach as offline monitoring.

74

This section defines the offline monitoring problem to contrast it with the on-

line approaches that comprise this chapter’s contribution. Like any technique based

on pre-deployment test executions, offline monitoring relies on the assumption that

program behavior in deployment will resemble test runs. The purpose of online mon-

itoring is to relax this assumption and directly assess dynamic behavior in the field.

The goal of any QoR monitor is to measure the effects of approximation on a

piece of approximate code (e.g., a block, kernel, or function). For instance, if the code

contains approximate arithmetic, we want to detect when arithmetic errors cause the

code’s output to differ too much from what the results would have been if only precise

arithmetic had been used. If the outputs are too degraded, the monitor should report

a quality violation.

To measure output quality, an offline monitor can execute the monitored block

twice—once approximately and once precisely—and compare outputs. For example,

consider a ray tracer, where we wish to monitor the computation of each pixel:

monitor_block { tracePx(x, y); }

An offline monitor would effectively execute this as:

approx = tracePx(x, y);

precise = runPrecise { tracePx(x, y); }

if (abs(approx - precise) > Threshold)

throw new FailedQoR();

This approach reveals two problems that must be solved to make any monitoring

scheme—online or offline—feasible.

First, the code above assumes idempotency of the monitored code block. Except

in a purely functional setting, approximate computations can and often do have side

effects. If we wish to run a non-idempotent code block twice, we need to buffer or roll

back these side effects. In addition, side effects can differ arbitrarily between different

executions of the same approximate code and may impact QoR.

75

Second, comparing numeric return values is insufficient for measuring the output

quality of many applications. QoR is inherently domain-specific, so we must support

arbitrary, application-specific metrics. For example, a video application may prefer

neighboring frames that are distorted in the same way (thus preventing jitter) over

neighboring frames with smaller average distortion but which are distorted in different

ways. Another example is a greedy algorithm that searches for local optima. An

approximate version that selects a different optimum from the precise version can

have equal—or possibly even superior—result quality.

Any approach to QoR monitoring will need to address side effects and provide

flexible QoR metrics. We address these needs with a flexible monitoring API that

provides hooks for programmer-specified quality metrics (Section 5.5) and transparent

side effect isolation (Sections 5.4.3 and 5.6.1).

But, aside from these concerns, the above monitoring approach is inherently tied to

the offline monitoring problem. Fundamentally, precise re-execution of approximate

code does more work (and uses more energy) than the original, non-approximated

code. To detect unanticipated behavior in the field and adapt on the fly, we need

monitoring that does not obviate the efficiency benefits of approximate computing.

Unlike the offline case, there is no single, efficient, general-purpose solution to the

problem of online quality monitoring. This chapter explores techniques that achieve

low overhead at the cost of generality and precision. The next section enumerates

three techniques that relax offline monitoring and are cheap enough to run “always-

on” in production.

5.3 Approaches to Online Quality Monitoring

This section presents three realistic approaches that limit their generality to achieve

tenable overheads. Section 5.4 analyzes these ideas to describe the design space of

QoR monitors.

76

5.3.1 Precise Sampling

The first approach we consider is precise sampling. Like offline monitoring, precise

sampling compares the results of the precise and approximate versions of the moni-

tored code. Unlike offline monitoring, this strategy checks only a random subset of

the executions. In the sampled executions, a developer-provided function compares

the output of the two executions. The developer can tune the sampling frequency to

manage the trade-off between overhead and monitoring precision. Higher rates de-

tect bad approximations with higher probability but approach the overhead of offline

monitoring.

In a ray tracer, a sampling monitor might execute as follows:

result = tracePx(x, y);

if (random() < sampleFreq) {

precise = runPrecise { tracePx(x, y); }

if (!compare(result, precise, approxOutput,

preciseOutput))

throw new FailedQoR();

}

image[x][y] = result;

Here compare is a developer-supplied function that returns true if the comparison

between the precise results and the approximate results indicates acceptable QoR.

The approxOutput and preciseOutput arguments capture any memory side

effects of the approximate and precise executions. This is left intentionally vague

here; side effects are an orthogonal issue discussed in Section 5.4.3.

Precise sampling is appropriate for applications where quality properties can be

checked by looking at a random subset of the output. We can monitor—with prob-

abilistic guarantees—the fraction of correct executions of a code block or its average

error. We cannot use precise sampling for applications that require a bound on the

77

worst-case error. For example, in an asteroid dodging game (Section 5.7.4), precise

sampling could not guarantee that asteroids never jump across the screen.1

When implementing a precise sampling style online monitor, we must keep in

mind that the granularity of checked code may not always match the granularity

of approximation. For example, we may want to approximate a ray tracer at the

granularity of individual rays. However, a more reasonable granularity for checking

is likely at the level of pixels (which are the sum of multiple rays): we may not care

that a ray which only contributes a small amount to a pixel’s brightness is off by 50%

if other much brighter rays completely dominate it. Thus implementations of precise

sampling require a way to specify precise execution of a block of code, as well as of

any code that it calls. In our prototype, this is accomplished by the checkApprox

infrastructure described in Section 5.5.1.

5.3.2 Verification Functions

Our second approach to quality monitoring is verification functions. Verification func-

tions are routines supplied by the developer that can check the QoR of a computation.

Verification functions are useful whenever we can check the correctness of a result at

significantly lower cost than computing the result. In contrast to precise sampling,

this approach relaxes offline monitoring by reducing the cost of each check rather than

reducing the number of checks.

We consider three forms of verification functions, each of which requires different

inputs. The first form, which we term traditional verification, verifies the outputs of

the current execution based on its inputs. For example, a 3-SAT verifier could check

that the outputs (the variable assignments) satisfy the inputs (the formula clauses).

The second form, streaming verification, verifies the output of the current execution

based on the output of past executions. For example, a video decoder could check

1Although perhaps “teleporting asteroids” could be considered a feature rather than a bug at
higher difficulty levels...

78

that the current frame bears a sufficient resemblance to past frames (possibly modulo

motion estimation). The final form, consistent output verification, looks only at the

output of the current computation and verifies that it holds some desired property:

for example, that a computed probability distribution sums to 1.0 or that a number

lies within an expected range.

For example, a verification function monitor running our ray tracer might utilize

a consistent output verification function that checks properties such as whether the

pixel brightness is within an expected range. Alternatively, an animated application

could use streaming verification to check that most pixels’ values are usually similar

to their values in previous frames.

5.3.3 Fuzzy Memoization

Our third approach to quality monitoring is fuzzy memoization. Fuzzy memoization

records previous inputs and outputs of the checked code and predicts the output of

the current execution from past executions with similar inputs. Analogous ideas were

previously used by Chaudhuri et al. [13] and Alvarez et al. [2] to provide approximate

execution rather than to check the quality of the execution. We estimate the QoR by

checking how different the current output is from the predicted output.

We identify several variations distinguished by their prediction mechanisms. The

simplest predicts the previously recorded output with the most similar input. We

call this approach simple fuzzy memoization. Another variation performs interpola-

tion between a set of similar previous inputs. We refer to this as interpolated fuzzy

memoization. More complex variations could attempt to perform curve fitting or

apply machine learning techniques (e.g., support vector machines) to learn the rela-

tion between inputs and outputs. We term this extension learned fuzzy memoization.

Like verification functions, fuzzy memoization solves the overhead issue with frequent

cheap checks rather than rare expensive checks. It is applicable when the function

computed by the checked code is relatively continuous (or easily learnable).

79

QoR monitors based on fuzzy memoization become more accurate as they observe

more executions of the monitored code. In the early stages, the prediction model

contains few inputs. As execution proceeds, the monitor adds more results to the

model and predictions improve. However, if a poorly approximated result is added to

the model, it can hurt future estimates. Also, depending on the memoization imple-

mentation, adding results may increase memory overheads and eventually outweigh

the energy savings from approximation. In addition, even after many results have

been added to the model, new results in poorly sampled (or discontinuous) regions of

the input space may have poor predictions.

To solve these issues, we propose a three-pronged approach. First, the monitor

should use some precise runs to ensure that the model is seeded with known-good

values. Precise runs should be used at the beginning of program execution to seed

the model with some initial values, and may also be sampled randomly throughout

execution to ensure that the model contains data from all regions of the input space.

Second, the monitor should limit the number of approximate results added to the

model and add only those whose QoR estimates meet a developer-specified threshold.

This prevents the model from growing too large and may keep some bad data from

corrupting the model. However, as mentioned above, it is also possible that a negative

prediction is due to a poor model rather than poor QoR. This may be caused, for

example, by a sparsely sampled input region. Thus, our third proposal is that some

failed checks lead to precise re-execution in order to improve the model’s accuracy.

For example, a simple fuzzy memoization monitor running our ray tracer might

execute as follows:

if (preciseSeedingRun()) {

result = runPrecise { tracePx(x, y); }

addMemo(x, y, result, output);

} else {

result = tracePx(x, y);

80

if (!compNearestMemos(x,y,result,output))

if (updateModel()) {

result = runPrecise { tracePx(x, y); }

addMemo(x, y, result, output);

}

else throw new FailedQoR();

}

image[x][y] = result;

Here, addMemo adds a new result to the model and compNearestMemos finds

nearby memoized results to compare with our current result. This example works

best if we expect the image to contain large regions of similar color.

Simple fuzzy memoization can be implemented with a data structure that stores

previous results as input–output (key–value) pairs that can be efficiently retrieved

when we encounter nearby inputs (keys). We propose a self-balanced binary search

tree. Given an input key, we can identify neighboring keys in O(log n) time. The space

overhead of storing results mandates that we not allow the record of past results to

become too large, so O(log n) should remain small.

5.4 The Design Space

We now consider the broader design space of quality monitoring. We begin with a

discussion of the dimensions of the design space (Section 5.4.1). We then mention

a possible additional dimension—code-centric versus data-centric annotation—and

argue why code-centric is the better choice (Section 5.4.2). Finally, we discuss the

side-effect dimension in more depth (Section 5.4.3).

5.4.1 Design Space Dimensions

We can describe the design space of QoR monitoring algorithms in terms of four

(mostly) orthogonal dimensions:

81

• What is Checked: Do we check every execution, or a sample? If we sample,

what is the distribution?

• Checkable Quality Properties: What can we verify? Do we want every

execution to be within some error bound? Or do we want the average error over

all executions to be within the bound? Do we want at least some percentage of

the executions to match the precise result? Also, how configurable is the QoR

metric? Does it need to be reducible to a floating point number that we verify is

within an epsilon of expected, or can developers create arbitrary code to check

correctness?

• Checking Parameters: What inputs are supplied to the checking algorithm?

Do we look only at the outputs of the current execution? Or do we look at the

inputs as well? Can we also look at inputs and outputs of past executions? Or

at the results of a precise execution?

• Side Effects: How do we deal with the side effects of approximate compu-

tations? This is a significant issue, so we devote Section 5.4.3 to discussing

it.

Certain regions of this space are clearly less desirable than others. For example,

requiring the results of a precise computation combined with checking every execution

leads to the prohibitive overhead of offline monitoring. Similarly, combining sampling

with error bounds on every execution is impossible.

Figure 5.1 fits the approaches form Section 5.3 into this space.

5.4.2 The Code-Centric Nature of Quality Measurement

QoR monitoring can be expressed in either a code-centric or a data-centric style.

In this section, we describe and contrast both styles and argue for the benefits of a

code-centric style.

82

Figure 5.1: This table shows how each of our monitoring approaches fits into the
design space and discusses its applicability. We have left off the side effects dimension
as it is orthogonal.

83

A
p

p
ro

a
ch

W
h

a
t

Is
C

h
e
ck

e
d

C
h
e
ck

in
g

P
a
ra

m
e
te

rs
A

p
p
li

ca
b
il

it
y

&
C

h
e
ck

-

a
b
le

Q
u
a
li

ty
P

ro
p

e
rt

ie
s

P
re

ci
se

S
a
m

p
li
n
g

S
am

p
le

d
ex

ec
u
ti

on
s

A
p
p
ro

x
im

at
e

an
d

p
re

ci
se

ou
tp

u
ts

A
p
p
li
ca

b
le

to
co

d
e

th
at

ca
n

b
e

re
-e

x
ec

u
te

d
(p

os
si

-

b
ly

w
it

h
ro

ll
b
ac

k
).

D
es

ir
ed

p
ro

p
er

ti
es

m
u
st

b
e

ch
ec

k
-

ab
le

w
it

h
a

ra
n
d
om

ex
ec

u
-

ti
on

sa
m

p
le

.

V
e
ri

fi
ca

ti
o
n

F
u

n
ct

io
n
s

E
ve

ry
ex

ec
u
ti

on
A

p
p
li
ca

b
le

w
h
en

ch
ec

k
in

g

is
ch

ea
p

er
th

an
co

m
p
u
ti

n
g.

T
ra

d
it

io
n
al

A
p
p
ro

x
im

at
e

in
p
u
ts

an
d

ou
tp

u
ts

S
tr

ea
m

in
g

C
u
rr

en
t

&
ol

d
ap

p
ro

x
im

at
e

ou
tp

u
ts

C
on

si
st

en
cy

A
p
p
ro

x
im

at
e

ou
tp

u
ts

F
u

zz
y

M
e
m

o
iz

a
ti

o
n

E
ve

ry
ex

ec
u
ti

on
C

u
rr

en
t

an
d

ol
d

in
p
u
ts

an
d

ou
tp

u
ts

A
p
p
li
ca

b
le

to
le

ar
n
ab

le

co
m

p
u
ta

ti
on

s.
Q

u
al

it
y

m
et

ri
c

m
u
st

b
e

re
p
re

-

se
n
ta

b
le

as
a

d
is

ta
n
ce

.

84

Code-centric annotations specify requirements on regions of code. For example,

the following annotation might specify that the value of a pixel should be similar to

the previously computed pixel:

nextPixel = checkComp(computePixel, args, compareToPrevious);

Here checkComp will call computePixel(args) and pass its result to the check-

ing routine compareToPrevious, which will compare that result to the last result

it saw.

Data-centric annotations, in contrast, apply to pieces of approximate data. Such

requirements are typically relative to the corresponding value at the same time during

a precise execution of the program. For example, the following annotation could

specify that the value of pixelA should vary at most 5% compared to its value

during a precise execution:

@Approx<0.05> Double pixelA;

The two opposing annotation styles have two important similarities. First, the choice

of code-centric versus data-centric QoR measurement is orthogonal to the choice of

code-centric versus data-centric approximation. For instance, the computePixel

function in the code-centric example above may base its approximation on data-centric

annotations on values used to compute the pixel. Second, code-centric annotations

are not limited to checking return values: they can check any data that is live at the

end of the computation. The two approaches differ less in which data is checked and

more in the frequency and granularity of checks.

For the purposes of online monitoring, code-centric annotations offer a number

of advantages: they align better with developers’ ultimate goal; they permit more

flexibility in the kinds of monitors used; and they make low-overhead implementation

easier.

85

Goal-oriented annotations. Code-centric annotations apply to the result of a

computation, which is generally what programmers ultimately care about. Appropri-

ate QoR constraints are less obvious on intermediate values. Data-centric annotations

on intermediate values may also generate false positives. For example, a ray tracer

computes a pixel by adding the contributions of many rays. If the initial rays have

small contributions compared to later rays, even large relative errors in those rays

may have little impact on the final computed value.

Checking flexibility. Limiting checking to specific times lets code-centric annota-

tions perform more expensive checks. If we must constantly monitor all intermediate

values of a variable, the checks must be extremely cheap. Conversely, with a code-

centric specification, QoR requirements can be represented by arbitrary functions, as

long as they are cheap relative to the cost of the computation being checked. If this

computation is, for example, the tracing and summing of all of the rays that con-

tribute to a pixel value, the checking function can be fairly complex. If we attempt

to extend data-centric annotations to check the value at only certain points, they

essentially become code-centric annotations.

Implementation of monitoring and recovery. Limiting the checking to a single,

natural point in the computation simplifies the implementation of the monitoring

framework. Monitoring need only be invoked via explicit library calls; we do not need

to instrument variable accesses. In addition, code-centric annotations make it easy to

take recovery actions in response to quality monitoring. A system can, for example,

re-execute a marked block when it fails a QoR check.

5.4.3 Dealing With Side Effects

Code-centric monitors naturally have inputs (arguments) and outputs (return values)

that can be checked by a QoR monitor. But what if approximate computations mutate

86

other data or have other side effects? These side effects impact quality and may differ

in an approximate execution. For example, control flow changes in the approximate

execution may cause a write to execute that does not occur in the precise version.2

These sorts of unanticipated side effects can harm QoR in ways that the developer-

specified metrics, constraints, or comparisons do not account for. Side effects can thus

violate the expectation that quality monitoring catches all unacceptable precision

losses. Any monitoring solution needs to account for this difficulty. We propose three

general approaches:

• Ignore side effects: This is the simplest approach, but it shifts the burden

entirely to the developer. The monitor assumes that the inputs to the QoR

function or verifier are the only things that matter. Developers must ensure

that any other possible side effects are incidental and will not affect the overall

quality of the computation. This can be difficult, however, due to the possibility

of unanticipated side effects. It may be more appropriate in a mostly functional

language where side effects are less common.

• Ensure precise and approximate side effects are identical: In this ap-

proach, the compiler and runtime system ensure that, if an approximate ex-

ecution modifies any data that is not part of the input to the QoR function

or verifier, then an equivalent precise execution would have produced the same

modification. In the general case this requires significant dynamic cooperation

from the runtime system. The overheads required would likely overwhelm the

energy-saving benefits of approximation.

• Restrict side effects: Our final approach simply detects and forbids side

effects in monitored code except for data that is local to the computation or

2Note that EnerJ forbids using approximate data for control flow. However, control flow can still
vary in the approximate execution due to endorsements. Endorsements allow the programmer to
sign off on assigning an approximately-computed value to a precise variable.

87

explicitly marked as an output of the computation. The monitor can check

this explicitly marked output data and verify its quality. If the runtime detects

disallowed side effects, it raises an exception. This approach again requires

dynamic cooperation from the runtime but, as we demonstrate in Section 5.6.1,

can be done relatively cheaply.

We contend that ignoring side effects pushes too much of the burden on to the devel-

oper, and ensuring identical side effects creates too much overhead. Therefore, our

prototype monitor pursues the third option, as discussed in Sections 5.5.1 and 5.6.1.

The above discussion focused on side effects that cause incorrect writes. This

includes most forms of I/O, as they typically involve an initial write to a buffer.

However, the above approaches do not handle program completion or execution length

effects. For example, approximation may cause a program to enter a very long (or

even infinite) loop that would never occur during a precise execution. We have not

encountered approximate side effects of this sort in any of the programs that we have

explored. However, if necessary they could be handled by adding developer-specified

timeouts to our online monitors.

5.5 A Monitoring API for EnerJ

We have designed a runtime system for monitoring the quality of, and restricting

the side effects in, monitored code blocks. Our system is flexible enough to support

approaches within the design space outlined in Section 5.4, including the specific

approaches we advocate in Section 5.3. Our system is built on top of the EnerJ

language and simulator [52] (as previously described in Section 2.3 of Chapter 2).

Our system is divided into the three layers depicted in Figure 5.2. As in any

layered system, the orthogonality and clear separation of the layers provides impor-

tant benefits for extensibility and experimentation. The bottom layer is the EnerJ

runtime/simulator, which we extended with support for monitoring code blocks, main-

88

Monitoring Library

checkApprox() CheckMethod

PreciseSampleChecking

VerificationChecking

FuzzyMemoizationChecking

Application
Customized CheckChecked Code

VM/Runtime

Side effect control
Approximate hardware simulation

§ 5.1

§ 5.3

§ 5.2

§ 5.4

§ 5.5

Figure 5.2: The architecture of our monitoring framework prototype. Solid arrows
indicate inheritance; dashed arrows indicate parameters to invocations.

taining side-effect restrictions, and copying objects to support re-execution. The mid-

dle layer is a pure-Java library that provides classes for precise sampling, verification

functions, and fuzzy memoization. The top layer consists of monitors customized by

application developers using the middle-layer functionality. This section describes the

functionality of the layers and the interfaces between them. Sections 5.5.1 and 5.5.2

describe what the bottom layer provides the middle layer: a method for monitoring a

code block and an interface for describing how the monitoring needs to proceed. Sec-

tions 5.5.3, 5.5.4, and 5.5.5 then describe the interfaces that the middle layer provides

to the top layer for different forms of monitoring. Section 5.6 describes the salient

aspects of the implementations of the bottom and middle layers. In Section 5.7, we de-

scribe some sample developer-customized (i.e., application-specific) implementations

of the top layer.

89

5.5.1 The checkApprox Function

In our system, developers monitor code by passing it to the checkApprox API:

Object checkApprox(Object argList[],

Object outputObjs[],

CheckMethod checkM,

CheckApproxCodeBlock m)

Here m is an instance of the CheckApproxCodeBlock interface, whose method f

is the computation to check:

public interface CheckApproxCodeBlock {

Object f(Object[] args);

}

The argList array contains the inputs to the checked computation. The array

outputObjs contains the objects that may be written by side effects in the checked

computation (and checked by the monitor). Any stores to objects that are not either

allocated by the checked computation or members of this list are considered illegal

side effects and cause an exception. This style of allowable side effect specification

has been sufficient for the applications we have considered. However, a more flexible

API that allowed for dynamic additions to the output list would be straightforward

to implement, and useful for situations where the computation may traverse a data

structure and potentially modify pieces of it. Finally, the checkM argument contains

a quality monitor as described below (in Section 5.5.2).

For example, consider monitoring a pixel value computation in a ray tracer:

Integer pixel = computePixel(xCoord, yCoord);

If computePixel has no side effects, the appropriate checkApprox call is:

// Create CheckApproxCodeBlock containing code to be checked

CheckApproxCodeBlock cacb =

90

new CheckApproxCodeBlock() {

public Object f(Object[] argL) {

return computePixel((int)argL[0], (int)argL[1]);

}

};

Object arg[] = { xCoord, yCoord };

Object out[] = { };

// Call checkApprox, passing code block, arguments, permissible

// side effects, and the monitor

pixel = (Integer)checkApprox(arg, out, pSampler, cacb);

The checkApprox function executes the f method of cacb, passing it the arg

argument array. Note that f may execute arbitrary code, not just a simple function

call as shown here. Our framework ensures that the computation modifies only objects

that are locally allocated (since out is empty). While executing f, checkApprox

uses the quality monitor pSampler to monitor the QoR.

If our ray tracer maintains an array nInt to track the number of times each object

is intersected by a ray, we can simply add nInt to the output list out. Our framework

passes out to the verifier, so we can monitor the quality of any modifications to nInt.

5.5.2 Quality Monitors

We created a CheckMethod interface whose implementations correspond to moni-

toring approaches. It specifies a set of methods that our framework may call during

monitoring:

public interface CheckMethod {

boolean runTwice();

boolean needPrecise();

boolean recordPast();

91

void recordInputs(Object[] inp);

void recordOutputs(Object[] outp);

void recordReturn(Object ret);

boolean evaluate(Object[] in, Object[] out, Object returnV,

Object[] preOut, Object preReturnV);

}

The runTwice method returns true if the monitor should run the checked code

both approximately and precisely. If so, our framework ensures that side effects

are buffered during the first execution (see Section 5.6.1). Precise sampling uses

this during sampled runs. The needPrecise method returns true if the monitor

requires the checked code to be run precisely. Fuzzy memoization uses this to seed

the model with precise values. The recordPast method returns true if the monitor

needs to record past input, output, and return values. If so, checkApprox makes

shallow copies of these values and passes them to the appropriate record* methods.

Streaming verification uses this to compare with previous executions. We also allow

developers to override the default shallow copying with their own copying methods.

This can serve two purposes. First, a full copy may be unnecessary and create extra

space, performance, and energy overhead if the monitor only needs to examine pieces

of the input, output, or returned data structures. Second, developers may need

the monitor to create customized deep copies to prevent corruption of recorded past

results.3

Finally, checkApprox calls the evaluate method of the CheckMethod inter-

face to determine whether the checked code block met the QoR requirements. It is

3However, developers should be aware that deep copying adds additional overhead and may
indicate that streaming verification is not the ideal monitoring strategy for the application in
question.

92

passed the input, output, and return values. If a second precise run was performed,

it is also passed its outputs and return value. The implementation of this checking

varies among the different approaches, but for all of our approaches the implemen-

tation of CheckMethod contains additional interfaces that allow the developer to

specify how the evaluation should determine QoR. The following sections describe

these interfaces.

5.5.3 Precise Sampling

The PreciseSampleChecking class (an implementation of the CheckMethod

interface) provides precise sampling online monitoring. The constructor specifies op-

tions such as the sampling frequency as well as an implementation of an interface

encapsulating a QoR constraint:

public interface QoREval<T> {

T QoR(Object[] out, Object ret, Object[] appOut,

Object appRet);

boolean constraint(T q);

}

The QoR method computes the QoR by comparing the precise outputs and return

value (out, ret) with the approximate outputs and return value (appOut, appRet).

The constraint method returns true if quality returned by QoR is acceptable. The

constraint method may optionally store information about previous QoR values (e.g.,

a running average) to help decide if quality is acceptable. This is why we separate it

out from the QoR method, which is intended to compute a single QoR.

5.5.4 Verification Functions

Similarly, developers can create an instance of the VerificationChecking class

(another implementation of CheckMethod) to utilize verification function monitor-

93

ing. Developers pass the constructor an implementation of one of three interfaces,

each of which specifies a different type of verification function. Each interface contains

a qualityVerify method that computes QoR based on the inputs appropriate to

the type of verification function and a constraint method that returns true if the

quality is acceptable:

• VerifierStreaming for streaming verification. We pass the outputs and

the return values of the current and last executions to the qualityVerify

method.

• VerifierConsistentOutput for consistent output verification. We pass

the current outputs and return value.

• VerifierTraditional for traditional verification. We pass current input,

output, and return values.

In streaming verification, the overhead of copying and storing the output of every

execution can be high. Thus, we allow the developer to optionally specify that the

monitor should record only every nth execution and pass that to the next n verifer

calls. In this case, the monitor also passes a distance argument to the checking

function that specifies how long ago the recorded output occurred. Larger variance

may be expected when comparing with older outputs. For example, a simulated

asteroid may have moved farther. Developers can also provide custom output copiers.

These are a useful to reduce data copying overheads if the output contains data not

needed to evaluate QoR.

5.5.5 Fuzzy Memoization

Finally, to utilize fuzzy memoization monitors, developers can create an instance of

the FuzzyMemoizationChecking class (which also implements CheckMethod).

94

They must pass the constructor options specifying when to use precise runs to seed the

model, and implementations of two interfaces. The first interface converts the inputs

and outputs of the checked code into a point in the space that we are memoizing

over. Our prototype uses 2D linear interpolation, so our interface specifies methods

to convert the input to an x-coordinate and the output to a y-coordinate:

public interface ResultMemoizer {

Number keyFromInputs(Object[] inputs);

Number valueFromOutputs(Object[] outputs, Object returnVal);

}

The second interface specifies various error thresholds:

public interface MemoConstraints {

boolean accept(float actual, float predict, float distPrev,

float distNext);

boolean addToModel(float actual, float predict, float distPrev,

float distNext);

boolean adjustModel(float actual, float predict, float distPrev,

float distNext);

}

In the above, actual and predict represent the computed and predicted values

of y (representing the output). Similarly, distNext and distPrev represent the

distance of the actual input key x from the keys of the points that were used to

interpolate. Prediction may be fuzzier if we are farther from these points, so a larger

error may be reasonable.

The accept method returns true if we should accept the QoR of the current

execution. The addToModel method lets the developer specify that they would like

to add the current result to the interpolation model. If the developer is confident that

the QoR is high, then we may improve the model by adding new points. However,

developers should also be aware that adding points may increase overhead. The

95

adjustModel method, in contrast, is typically used when we see low QoR and

think that it may be due to problems with the model. For example, there could be

discontinuities that are not captured by previous data. If adjustModel returns

true, we execute additional precise runs to improve the model (possibly including

rerunning the current computation).

5.6 Implementing the Monitoring API

This section discusses the implementation of the monitoring prototype described in

Section 5.5. First, Section 5.6.1 describes our changes to the EnerJ runtime to handle

side effects. We then describe salient details of our implementations of the three

monitoring approaches (Sections 5.6.2, 5.6.3, and 5.6.4).

5.6.1 Handling Side Effects: Restricting and Buffering

Our monitoring system restricts side effects by allowing checked blocks to write only to

objects that are either part of the output list or local to the checked code. Any other

memory write results in an exception. Possible implementation strategies include

reusing existing memory protection mechanisms or keeping per-object data indicating

which checked computations may write to the object. Our prototype uses the latter

since the EnerJ simulator already tracks per-object state.

Specifically, our prototype tracks whether objects are writable by augmenting

heap-allocated objects with per-object state containing a region number. When

checkApprox is called, it enters a new region by incrementing a global region

counter. To support nested calls, each call to checkApprox records the region

number of the parent call and restores the counter when it returns. Thus, as we re-

turn from the checkApprox invocations on the call stack, we also unwind the region

number stack. Any object allocated inside a checked region sets its region number to

the number of the current region. In addition, any objects specified as output data

have their region number updated to the current region number. When entering a

96

nested region, we first check that the output object was writable by the parent region.

(It is unsafe to make an object writable by the child when it is not writable by the

parent.) Before returning, we reset the output objects’ region number to the parent

region number.

To enforce the side effect restrictions, all stores to heap objects inside monitored

code check the destination object’s region number against the current region number.

If there is a mismatch, we throw an exception.

In addition to restricting side effects, our implementation needs to buffer and roll

back side effects for monitoring approaches that incorporate re-execution (e.g., precise

sampling). We provide buffering using a copy-on-write policy for non-local objects.

To implement copy-on-write, we add a boolean to each object indicating whether it

should be copied when written and a pointer (initially null) to the copy. When we

enter checkApprox, we call the monitor’s runTwice method to check if copy-on-

write is necessary. Currently this call returns true only if the monitoring method is

precise sampling and this is the first (approximate) run of a sampled execution (i.e.,

we will re-execute it), so we incur overhead only in sampled executions. If copy-on

write is necessary, we iterate through the output list and set the copy-on-write flag.

If a store occurs to an object whose flag is set, we check the copy pointer and create a

copy if it is null. We then perform the store to the copy instead of the original object.

When we load from an object with the copy-on-write boolean set, we again check the

copy pointer and read the copy if it is present. After the first execution completes, we

remove all of the copies and unset the copy-on-write flag. This allows the subsequent

run to start as if from scratch.

5.6.2 Precise Sampling

At the beginning of every execution of checkApprox, we call the passed-in verifier’s

runTwice method. For precise sampling, this method returns true if we should sam-

ple the current execution. If so, checkApprox performs the approximate execution

97

while buffering side effects. It stores the outputs and return value and clears the buffer.

It then disables approximation and re-executes the code precisely. Since the precise

execution is the final execution, we do not need to buffer writes. After the precise ex-

ecution completes, we call the evaluate method of preciseSampleChecking,

passing it the precise and approximate outputs and return values. The evaluate

method calls the QoR and constraint methods from the developer-provided qual-

ity interface (see Section 5.5.3) to determine whether to accept the execution. If the

execution quality is acceptable, checkApprox returns the value returned by the

precise execution.4 If the QoR of the execution is not acceptable, checkApprox will

instead throw an exception.

5.6.3 Verification Checking

When an approximate application calls the VerificationChecking construc-

tor, it sets the verification style based on the particular type of verifier passed in.

When we call checkApprox with this checker, it executes the checked code block

and then calls evaluate. The evaluate method checks the verification style

and passes the appropriate arguments to the developer-specified qualityVerify

method (see Section 5.5.4). If the style is streaming, recordPast will return true

and checkApprox will utilize the runtime layer’s copying functionality to copy the

outputs and return value and pass them to the verification layer via recordOutputs

and recordReturn. The verification layer stores these and passes them to the next

quality evaluation.

4We could return the approximate value instead, but it is no more expensive to return the precise
value since we have already computed it. And the precise value is guaranteed to have quality as
good or better than the approximate value.

98

5.6.4 Fuzzy Memoization

Our prototype implementation of fuzzy memoization uses simple 2D linear interpo-

lation between neighboring memoized inputs to predict the precise output. We then

use the developer-provided functions described in Section 5.5.5 to compare the actual

output with the predicted output and determine whether to accept the actual output.

As mentioned in Section 5.3.3, this requires a data structure that can store previous

results as input–output pairs and retrieve them efficiently when we encounter nearby

inputs. We use a red–black tree.

Other possible implementations of fuzzy memoization include higher dimensional

linear interpolation, curve fitting, and what we refer to as memo binning. In a memo

binning approach, inputs are rounded off and placed into bins. For example, the

input (1.1, 2.2, 3.9) might get placed into the (1.0, 2.0, 4.0)-bin. The outputs of all

items placed in a bin are combined (e.g., by averaging) to produce a prediction for

future inputs that land in the same bin. 2D linear interpolation was sufficient for the

applications we describe in Section 5.7, but memo binning is more general.

5.7 Evaluation

To evaluate our quality monitoring tools, we experimented with adding monitoring to

six approximate programs. For two programs, we created two versions using different

monitoring techniques. For each of the eight configurations, we quantify the overhead

of monitoring in terms of time (instructions), space (memory footprint), and modeled

energy (see Section 5.7.1). We also measure the precision of each monitor with respect

to an offline (ideal) quality monitor.

Table 5.1 shows the instruction and memory overheads of each quality monitor.

Instruction overheads ranged from 3% to 55%, with five configurations having over-

head under 10%, and memory overheads ranged from under 1% to 43%. Using a

fairly conservative model of energy savings from approximation, described in the next

99

In
st

ru
ct

io
n

In
st

ru
ct

io
n

In
st

ru
ct

io
n

M
e
m

o
ry

M
e
m

o
ry

M
e
m

o
ry

A
p

p
li
ca

ti
o
n

C
o
m

p
u
te

C
h
e
ck

O
v
e
rh

e
a
d

C
o
m

p
u
te

C
h
e
ck

O
v
e
rh

e
a
d

T
ri

an
gl

e
in

te
rs

ec
t,

95
.8

%
4.

2%
4
.4

%
99

.0
%

1.
0%

1
.0

%

tr
ad

it
io

n
al

ve
ri

fi
er

A
st

er
oi

d
s,

st
re

am
in

g
ve

ri
fi
er

64
.7

%
35

.3
%

5
4
.6

%
89

.1
%

10
.9

%
1
2
.3

%

A
st

er
oi

d
s,

co
n
si

st
en

cy
ve

ri
fi
er

74
.1

%
25

.9
%

3
5
.0

%
94

.8
%

5.
2%

5
.5

%

S
im

p
le

ra
y

tr
ac

er
,

85
.7

%
14

.7
%

1
7
.2

%
69

.9
%

30
.1

%
4
3
.1

%

p
re

ci
se

sa
m

p
li
n
g

S
ob

el
fi
lt

er
,

fu
zz

y
m

em
oi

za
ti

on
93

.2
%

6.
8%

7
.3

%
75

.4
%

24
.7

%
3
2
.7

%

F
F

T
,

co
n
si

st
en

cy
ve

ri
fi
er

93
.5

%
6.

5%
7
.0

%
90

.9
%

9.
1%

1
0
.0

%

F
F

T
,

fu
zz

y
m

em
oi

za
ti

on
92

.3
%

7.
7%

8
.3

%
99

.7
%

0.
3%

0
.3

%

B
la

ck
S
ch

ol
es

,
96

.7
%

3.
3%

3
.4

%
74

.2
%

24
.8

%
3
4
.8

%

co
n
si

st
en

cy
ve

ri
fi
er

T
ab

le
5.

1:
T

h
e

p
er

ce
n
ta

ge
of

in
st

ru
ct

io
n
s

an
d

m
em

or
y

d
ed

ic
at

ed
to

th
e

or
ig

in
al

co
m

p
u
ta

ti
on

(c
om

p
u
te

)
an

d
th

e
m

on
it

or
in

g
(c

h
ec

k
)

fo
r

ea
ch

ap
p
li
ca

ti
on

an
d

ea
ch

m
on

it
or

.
W

e
al

so
li
st

th
e

in
st

ru
ct

io
n

an
d

m
em

or
y

m
on

it
or

in
g

ov
er

h
ea

d
s,

co
m

p
u
te

d
b
y

d
iv

id
in

g
th

e
ch

ec
k

co
lu

m
n
s

b
y

th
e

co
m

p
u
te

co
lu

m
n
s.

100
P

re
ci

se
A

p
p
ro

x
S
a
v
in

g
s

A
p

p
li
ca

ti
o
n

T
y
p

e
o
f

M
o
n
it

o
r

P
re

ci
se

A
p
p
ro

x
M

o
n
it

o
re

d
M

o
n
it

o
re

d
R

e
ta

in
e
d

S
im

p
le

R
ay

T
ra

ce
r

P
re

ci
se

S
am

p
li
n
g

10
0%

67
.3

%
11

7.
2%

85
.5

%
4
4
.3

%

A
st

er
oi

d
s,

10
k

fr
am

es
S
tr

ea
m

in
g

V
er

ifi
er

10
0%

91
.2

%
10

3.
7%

(1
30

.0
%

)
95

.0
%

(1
21

.5
%

)
5
6
.8

%

A
st

er
oi

d
s,

10
k

fr
am

es
C

on
si

st
en

cy
V

er
ifi

er
10

0%
91

.2
%

10
4.

8%
(1

19
.2

%
)

95
.2

%
(1

07
.4

%
)

5
4
.5

%

T
ri

an
gl

e
In

te
rs

ec
ti

on
T

ra
d
it

io
n
al

V
er

ifi
er

10
0%

83
.2

%
10

4.
3%

86
.8

%
7
7
.7

%

S
ob

el
F

il
te

r
F

u
zz

y
M

em
oi

za
ti

on
10

0%
85

.6
%

10
7.

0%
92

.9
%

4
9
.0

%

F
F

T
C

on
si

st
en

cy
V

er
ifi

er
10

0%
72

.8
%

10
6.

9%
82

.5
%

6
4
.3

%

F
F

T
F

u
zz

y
M

em
oi

za
ti

on
10

0%
73

.4
%

10
8.

4%
81

.6
%

6
9
.2

%

B
la

ck
S
ch

ol
es

C
on

si
st

en
cy

V
er

ifi
er

10
0%

73
.1

%
11

7.
0%

88
.1

%
4
4
.4

%

T
ab

le
5.

2:
T

h
e

m
o
d
el

ed
en

er
gy

co
n
su

m
p
ti

on
of

ea
ch

m
on

it
or

ed
ap

p
li
ca

ti
on

.
W

e
u
se

co
n
se

rv
at

iv
e

en
er

gy
sa

v
in

gs
an

d
ap

p
ro

x
im

at
io

n
p
ar

am
et

er
s.

E
n
er

gy
is

m
ea

su
re

d
as

th
e

p
er

ce
n
ta

ge
of

th
e

p
re

ci
se

,
u
n
m

on
it

or
ed

ex
ec

u
ti

on
en

er
gy

(t
h
e

P
re

ci
se

co
lu

m
n
).

T
h
e

A
p
p
ro

x
co

lu
m

n
sh

ow
s

th
e

en
er

gy
u
sa

ge
of

an
u
n
m

on
it

or
ed

ap
p
ro

x
im

at
e

ex
ec

u
ti

on
.

T
h
e

P
re

ci
se

M
o
n

it
o
re

d
co

lu
m

n
sh

ow
s

th
e

en
er

gy
u
sa

ge
of

a
p
re

ci
se

,
m

on
it

or
ed

ex
ec

u
ti

on
(t

h
is

w
ou

ld
n
ot

b
e

u
se

fu
l

in
p
ra

ct
ic

e,
b
u
t

is
in

cl
u
d
ed

to
sh

ow
th

e
ov

er
al

l
en

er
gy

ov
er

h
ea

d
of

m
on

it
or

in
g)

.
A

p
p
ro

x
M

o
n
it

o
re

d
sh

ow
s

th
e

en
er

gy
u
sa

ge
of

an
ap

p
ro

x
im

at
e

m
on

it
or

ed
ex

ec
u
ti

on
an

d
S
a
v
in

g
s

R
e
ta

in
e
d

is
th

e
p

er
ce

n
ta

ge
of

th
e

u
n
m

on
it

or
ed

en
er

gy
sa

v
in

gs
th

at
ar

e
re

ta
in

ed
af

te
r

w
e

ad
d

m
on

it
or

in
g.

A
ll

ap
p
li
ca

ti
on

s
w

er
e

ru
n

fi
ve

ti
m

es
an

d
th

e
en

er
gy

av
er

ag
ed

.
A

s
d
es

cr
ib

ed
in

S
ec

ti
on

5.
7.

4,
w

e
m

ea
su

re
d

th
e

A
st

er
oi

d
s

ap
p
li
ca

ti
on

fo
r

10
,0

00
fr

am
es

.
B

ec
au

se
th

es
e

fr
am

es
in

cl
u
d
e

u
n
m

on
it

or
ed

p
os

t-
tr

ai
n
in

g
fr

am
es

,
th

e
p
re

ci
se

m
on

it
or

ed
co

lu
m

n
d
o
es

n
ot

re
fl
ec

t
th

e
tr

u
e

ov
er

h
ea

d
of

co
m

p
le

te
ly

m
on

it
or

in
g

A
st

er
oi

d
s.

T
h
u
s,

w
e

h
av

e
in

cl
u
d
ed

th
e

re
la

ti
ve

co
st

s
of

th
e

tr
ai

n
in

g
(m

on
it

or
ed

)
p

or
ti

on
of

as
te

ro
id

s
in

p
ar

en
th

es
es

in
th

e
ap

p
ro

p
ri

at
e

co
lu

m
n
s.

101

A
p
p
li
ca

ti
o
n

T
y
p

e
o
f

M
o
n
it

o
r

E
rr

o
rs

ca
u
g
h
t

v
s.

p
e
rf

e
ct

m
o
n
it

o
r

F
a
ls

e
P

o
si

ti
v
e
s

S
im

p
le

R
ay

T
ra

ce
r

P
re

ci
se

S
am

p
li
n
g

S
am

p
li
n
g

ra
te

(w
it

h
a

9.
6%

M
A

E
)

0.
0%

A
st

er
oi

d
s,

10
k

fr
am

es
S
tr

ea
m

in
g

V
er

ifi
er

54
.8

%
0.

0%

A
st

er
oi

d
s,

10
k

fr
am

es
C

on
si

st
en

cy
V

er
ifi

er
8.

0%
0.

0%

T
ri

an
gl

e
In

te
rs

ec
ti

on
T

ra
d
it

io
n
al

V
er

ifi
er

47
.7

%
0.

2%

S
ob

el
F

il
te

r
F

u
zz

y
M

em
oi

za
ti

on
86

.7
%

2.
5%

F
F

T
C

on
si

st
en

cy
V

er
ifi

er
10

0.
0%

0.
0%

F
F

T
F

u
zz

y
M

em
oi

za
ti

on
90

.1
%

1.
3%

B
la

ck
S
ch

ol
es

C
on

si
st

en
cy

V
er

ifi
er

65
.8

%
0.

0%

T
ab

le
5.

3:
T

h
e

p
er

ce
n
ta

ge
of

er
ro

rs
ca

u
gh

t
b
y

ou
r

ex
am

p
le

m
on

it
or

s,
w

h
en

co
m

p
ar

ed
w

it
h

p
er

fe
ct

,
offl

in
e

m
on

it
or

s.
F

or
p
re

ci
se

sa
m

p
li
n
g,

th
e

p
er

ce
n
ta

ge
of

er
ro

rs
ca

u
gh

t
w

il
l

b
e

ap
p
ro

x
im

at
el

y
th

e
sa

m
p
li
n
g

ra
te

,
w

it
h

so
m

e
le

ve
l

of
er

ro
r.

W
e

ac
co

u
n
t

fo
r

th
is

in
th

e
ta

b
le

ab
ov

e
b
y

in
d
ic

at
in

g
th

at
th

e
p

er
ce

n
ta

ge
ca

u
gh

t
w

il
l

b
e

th
e

sa
m

p
li
n
g

ra
te

,
p
lu

s
or

m
in

u
s

th
e

m
ea

n
av

er
ag

e
er

ro
r

of
th

e
ra

te
of

er
ro

rs
in

sa
m

p
le

d
ex

ec
u
ti

on
s

ve
rs

u
s

th
e

ra
te

of
er

ro
rs

th
at

w
ou

ld
h
av

e
b

ee
n

d
et

ec
te

d
b
y

th
e

p
er

fe
ct

m
on

it
or

.
W

e
al

so
sh

ow
th

e
p

er
ce

n
ta

ge
of

ex
ec

u
ti

on
s

th
at

re
su

lt
ed

in
a

fa
ls

e
p

os
it

iv
e—

i.
e.

,
w

h
en

th
e

m
on

it
or

re
p

or
ts

a
Q

oR
er

ro
r

th
at

d
id

n
ot

o
cc

u
r.

102

section, we translate these performance and memory numbers into estimated energy

consumption in Table 5.2. Even with this conservative model, our monitored appli-

cations retain between 44% and 78% of the original, unmonitored energy savings.

Finally, Table 5.3 shows the accuracy of each monitor. The monitors detect 8–100%

of the errors caught by a high-overhead offline monitor with low false positive rates

(at most 2.5%).

The rest of this section describes the model for energy consumption and then

discusses each application and monitoring scheme in detail.

5.7.1 Energy Model

To evaluate the energy overhead of quality monitoring, we reuse the energy model

from the evaluation of EnerJ [52]. The model quantifies the normalized energy con-

sumed by the CPU and memory systems during an entire program execution. Our

modeling technique assumes a hardware substrate capable of enabling approximation

for each instruction and each cache line as in Truffle [22]. Unless otherwise mentioned,

examples use EnerJ’s default (medium) energy settings—or, in the cases where ap-

plications attempt to train their ideal energy level, this is the initial setting.

The model assumes a fixed energy balance between the processor core, the on-chip

SRAM structures (registers and cache), and DRAM (main memory). Each type of

instruction—integer, floating point, load, and store—is assigned a cost, a fraction of

which is reduced when the instruction is approximate. The energy reduction from

approximate SRAM and DRAM is proportional to the fraction of the application’s

memory footprint that is approximate. Details can be found in [52].

For each program, we consider four configurations: fully precise (the baseline),

approximate without monitoring, fully precise with monitoring, and approximate with

monitoring. The difference between the approximate executions with and without

monitoring reflects the energy “given back” to enable quality monitoring. Although

a monitored precise execution is not useful in practice, it shows the overall energy

103

overhead of monitoring.

To compute the relative energy usage of these configurations, we start by com-

puting the energy usage of the unmonitored exections as in [52]. We then record the

additional instruction counts from the monitored executions. We scale the processor

energy by the increase in the number of instructions executed and scale the memory

energy by the increase in the time that the memory must remain active. In most

cases, the latter is also represented by the increase in instruction count. However, in

one case (the Asteroids application), the execution time does not increase because

the application uses sleep calls to maintain the proper frame rate. Thus we did not

scale its memory energy. We apply the above energy scaling factors to the precise

unmonitored execution to determine the energy usage of the precise monitored execu-

tion. We then apply the approximation scaling factors from the EnerJ model to the

precise monitored energy to determine the approximate monitored energy level. We

do this using the precise-approximate instruction and memory breakdown from the

monitored execution, since this may differ from the breakdown of the unmonitored

execution.5

5.7.2 Ray Tracer

We first investigated the approximate ray tracer from [52], which renders a scene

consisting of a plane with a checkerboard texture. We applied precise sampling with

a sampling rate of 1% around the computation of each pixel. We use RGB color

distance [47] to measure QoR and a constraint function that requires that the distance

be at most 5% of the maximum RGB color distance.

Our monitor had an energy overhead of 17.2% (see Table 5.2). The pixel com-

putation kernel is very small in this simple ray tracer because it assumes that the

5Note that this difference in instruction and memory mix is also the reason that we cannot
determine the approximate monitored energy levels by simply applying the scaling factors to the
approximate unmonitored energy.

104

scene consists of a single plane at a known position. A more complex ray tracing

kernel would have better justified the cost of the call to checkApprox and resulted

in lower overheads. Yet, despite this overhead, our monitored ray tracer managed to

retain 44% of the energy savings of an unmonitored execution.

Our precise sampling approach also gave an accurate estimate of the QoR of the

approximate ray tracer. The mean average error of the monitor’s estimate of the

number of pixels that were off by more than 5% was 9.6%. The range of error across

all runs was between 0.3% and 17.6%. Our false positive rate was 0%, as expected.

5.7.3 Ray Tracer: End-to-end System

To demonstrate the utility of monitoring in practice, we also built an end-to-end

system on top of our monitored ray tracer. This system takes advantage of the fact

that certain areas of the image are more susceptible to errors than other areas (e.g.,

areas with smaller features). Our end-to-end monitored application increases the

energy whenever the error rate of sampled pixels gets above a configurable maximum

threshold over a window of samples. Similarly, we lower the energy if the error rate

drops below a configurable minimum threshold. It might also be beneficial to modify

the thresholds (or lengthen the windows) if ping-ponging between energy levels is

detected, but we did not implement this for our proof-of-concept.

Our end-to-end system reduced the error rate to 4.6%, compared with a rate

of 8.6% for the monitored ray tracer without automatic adjustments. In addition,

the end-to-end system used slightly less energy than the regular monitored system

(84.8% of the precise energy usage, compared with 85.5% for the system with just

monitoring). Different strategies for adjusting energy would clearly have led to differ-

ent results. For example, choosing different error thresholds could result in reduced

energy and increased errors, or vice versa.

105

5.7.4 Asteroids

Our next application was a version of the classic Asteroids game [29]. We added

approximation by allowing the array that stores positions and velocities to be stored

in approximate memory. This approximation reduced the energy usage by 8.8%.6

We placed the kernel that updates positions inside a CheckApproxCodeBlock and

referenced the position-velocity array in the output argument to checkApprox.

We tried two varieties of verification functions to monitor our approximate As-

teroids game: a streaming verifier and a consistent output verifier. The streaming

verifier compares the positions of the asteroids and the ship with their last known

positions and verifies that they have not moved by more than the maximum velocity.

To reduce overhead, we record only every fifth output and multiply the maximum

allowed move distance by the number of frames since the frame we are comparing

against. We also used a custom output copier that copies only the necessary pieces of

the position array. Our consistent output verifier, on the other hand, merely checks

that the velocities are in the allowable range and that the positions are within the

screen bounds.

We also explored an end-to-end use case of monitoring in the context of the Aster-

oids game. To do this, we added hooks to the EnerJ runtime that allow developers to

adjust the simulated energy levels of the processor and memory. We then set up our

constraint function to check whether the detected error rate was higher than 0.002% of

positions. Subjectively, we found that this error rate was sufficient to make the game

very playable: most games had no noticeable errors, and the games that did have

noticeable errors had only one or two non-fatal (to the player’s ship) errors. When

our constraint function detected a higher error rate, we raised the energy. Once our

monitor detected that the error rate had stayed below the desired rate for 1000 (for

streaming verification) or 2000 (for consistent output verification) frames, we declared

6More aggressive approximation could have saved more energy. E.g., we could have approximated
some of the calculations in addition to the storage.

106

the training phase over. The higher count was necessary for consistent output verifi-

cation because it detects fewer errors (see Table 5.3) and would occasionally declare

that we were done too quickly.

After declaring training complete, we turned the monitor off. We let the game

run for 10,000 frames to capture an adequate mix of of pre- and post-training energy

savings. We were able to retain about 55% of the original energy savings with both

verifiers. In the limit (as we increase the number of frames executed) the savings

retained will approach 100%. Streaming verification did slightly better than consistent

output verification (despite a higher overhead, as seen in Table 5.1) because it was

able to settle on the correct energy level more quickly and thus turn off monitoring

sooner. If we look at just the overhead during the training phase, consistent output

verification’s overhead of 19.2% was better than streaming verification’s overhead of

30.0%. Both approaches had no false positives.

5.7.5 Triangle Intersection

We also looked at the approximate version of the JME triangle intersection kernel

described in [52]. We used EnerJ’s aggressive approximation/energy levels to get

the error rates high enough to be interesting for our purposes. At these levels, we

saved about 17% of JME’s energy usage with an error rate of 5.2%. We surrounded

the triangle intersection code with a call to checkApprox that used a traditional

verification function. The key insight of the verification function was that triangles

that are close together are more likely to intersect than triangles that are far apart.

So, our first attempt at a traditional verifier picked a point on each of the two triangles

and computed the Euclidean distance between them. If the distance between them

was high, and the computation returned true (intersection), the monitor declared

a possible error. Similarly, if the distance was small, and the computation returned

false, we declared a possible error. This verifier retained 45% of the original energy

savings. Adding code to correct the errors (by re-executing) reduced the savings

107

retained to 29%. Our error rate with this correction applied dropped to 2.7%.

We noticed, however, that almost all of the monitor-flagged computations were

for cases where we declared an intersection between two triangles that were far apart.

These cases were almost always real errors. On the other hand, the few hits we got

for nearby triangles that the computation determined to not intersect were a mixed

bag—many were false positives. So, we changed our verifier to look only for the far-

apart/intersecting case. We then corrected errors we caught by declaring that they

did not intersect (since we only flag erroneous intersections). The combination of

cheaper monitoring and cheaper correction allowed us to retain 78% of the energy

savings, with a false positive rate of 0.2%. We detected 47.7% of errors, and our

correction reduced the error rate to 2.7%.

5.7.6 Sobel Filter

Our next application used fuzzy memoization to monitor a Sobel filter kernel. The

Sobel filter is a matrix convolution used to estimate an image’s intensity gradient and

is frequently used in edge detection. We approximated the local variables used in the

luminance and convolution computations and achieved an energy savings of 14.4%

relative to a precise execution. We surrounded the inner loop iteration that computes

the gradient at each point with our checkApprox monitoring call.

Our prototype fuzzy memoization implementation (Section 5.6.4) uses 2D (one

input and one output) linear interpolation between two nearby previous inputs to

determine a predicted output. We then compare this against the actual output to

estimate QoR. Thus we needed to reduce the output gradient vector to a single value

and reduce the 9-pixel input to a single input value that will correlate with the chosen

output value. For the output, we chose the magnitude of the gradient vector (this is

what edge detectors look at). For the input, we summed the absolute values of the

differences between the north and south neighbors and the east and west neighbors.

Our constraint accepted the computed value if it was within 60 of the predicted value

108

(we found empirically that this threshold gave good results). Whenever the monitor

indicated a potential quality violation, we re-executed the computation precisely.

Our monitor successfully identified and corrected 86.7% of the erroneous compu-

tations, reducing the error rate from 0.66% to 0.09%. This reduction was achieved

with an overhead of just 7%, and allowed us to retain nearly 50% of the original

energy savings. Our false positive rate was just 2.5%.

5.7.7 FFT Kernel

We created two monitors for the approximate version of the FFT kernel described

in [52]. We used the moderate energy savings levels for memory and mantissa width

but the mild settings for functional unit voltage, as the error rate is over 80% oth-

erwise. Our first monitor used consistent output verification. After every tenth it-

eration7 of the inner FFT kernel loop, we check that the elements of the vector are

within the maximum possible range, based on the size of the input. Our second mon-

itor used fuzzy memoization to predict the magnitude of the output of the FFT from

the magnitude of the input.

Both monitors caught most of the errors, with a low rate of false positives. In

particular, the consistent output verifier caught every error where the mean squared

error of the output was greater than 0.1,8 and had no false positives. Our fuzzy

memoization monitor was able to catch 90.1% of errors with a false positive rate of

just 1.3%. Both monitors had overheads in the 7–8% range, and retained 60–70% of

the energy savings.

7Our decision to check every ten iterations, rather than just at the end, was guided by the insight
we gleaned from our offline instrumentation (Chapter 4). Namely, an early error in the FFT
computation can cascade and cause many later errors.

8We have to pick some “good-enough” threshold, because using an approximation engine that
includes narrowing the floating point mantissa means you will never get an exact match on an
FFT computation.

109

5.7.8 Black Scholes.

Finally, we implemented consistency verification monitoring for a Java port of the

PARSEC Black Scholes benchmark. We simply check if the option value is within the

maximum possible range, and if not, declare an error. Our monitor caught over 65%

of the errors, and reduced the error rate from 3.68% to 1.26%. It retained 44.4% of

the original energy savings from approximation.

5.8 Related Work

Many systems have proposed to trade off output quality to improve performance or

energy consumption using both software [5,27,53,61] and hardware techniques [12,17,

22,23,32,37,42]. Run-time QoR monitoring helps make these approximate computing

techniques more applicable by controlling their resulting quality degradations.

This work is the first (to our knowledge) to explore the design space of dynamic

quality monitoring for approximate computations and to implement a framework

supporting multiple approaches to monitoring. Here we review related efforts to

understand or control the impacts of approximation on QoR.

Green [5] is a framework for controlling approximation that can, optionally, in-

voke user code on a sampling of executions to assess quality. The programmer must

provide an appropriate monitoring scheme. One example application uses a man-

ual implementation of precise sampling (with no support for controlling side effects).

Our work is complementary: it explores the design space of monitoring schemes and

provides reusable implementations for a variety of practical approaches.

PowerDial [27] also dynamically controls an application’s degree of approximation.

It monitors run-time conditions (e.g., real-time deadlines) and adjusts quality accord-

ingly. Similarly, Eon [54] adjusts system energy at runtime based on the availability

and cost of energy and computational resources. Whereas those systems monitor

resource consumption, this work focuses on monitoring quality.

110

Quality-of-service profiling [40] uses offline profiling runs during development to

examine the QoR impact of unsound code transformations. The offline calibration

steps in Green and PowerDial work similarly. Online quality monitoring, as in our

work, requires efficient mechanisms that do not overwhelm the benefits of approxi-

mation.

Recent work on modeling and analysis seeks to mitigate the quality impact of

approximate computation. Carbin et al. [9] propose a proof system for verifying

programmer-specified correctness properties in relaxed programs. Other work [39,61]

uses probabilistic reasoning to prove accuracy bounds on relaxed program transfor-

mations. EnerJ [52] provides a simple noninterference guarantee. These static tech-

niques protect fundamental safety properties. But dynamic monitoring is critical to

addressing run-time quality degradation that static techniques cannot rule out.

Previous work [2, 13] uses approximate (or fuzzy) memoization to provide ap-

proximation rather than to check the quality of approximation. In that setting, fuzzy

memoization can be more expensive—since it replaces a baseline computation instead

of augmenting it—but must also be more accurate.

Blum and Kannan’s program correctness checkers [7] bear some similarities to

our verification function monitors. Their checkers aim to prove the correctness of

a program output after the program has executed, rather than to check the quality

during execution. They are also mostly concerned with proving correctness rather

than maintaining low overhead. However, the basic principle is the same, and some

of their ideas may prove useful in designing developer-specified verification functions

for our monitors.

111

Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Dynamic tools can play key roles in providing and maintaining quality of result for ap-

proximate computations. These roles can span the entire lifecycle of an approximate

application. In Chapter 3, we demonstrated the utility of dynamic tools during the

prototyping phase. Our EnerCaml system allows users to prototype, experiment with,

and tune approximate algorithms. In Chapter 4, we showed how instrumentation-

based dynamic tools can aid in debugging and quality tuning of approximate applica-

tions. Our dataflow tool allows developers to determine the amount of approximation

that flows into the computation of results, and our correlation tool shows them which

approximate operations are most highly correlated with the quality (or lack thereof)

of the application’s results. Finally, Chapter 5 demonstrated that approximate ap-

plications can take advantage of real-time online quality monitoring without totally

sacrificing the energy-saving benefits of approximation. We proposed and prototyped

three approaches to monitoring, and mapped out the design space of monitors.

Just as static and dynamic tools complement each other in other aspects of soft-

ware development, we view our dynamic tools for approximate application quality as

a key addition, and complement, to the static tools currently available for controlling

and understanding the quality of approximate programs.

6.2 Future Work

The research described in this thesis suggests numerous interesting directions for

future work. We enumerate a few such ideas here:

112

• We propose further refinements to the approximation monad scheme described

in Section 3.6. In particular, we would like to add autotuning capabilities simi-

lar to those present in the EnerCaml code-centric system. Instead of turning off

approximation at function applications, a data-centric monad-based autotuner

could disable approximation for particular uses of the monad. This could be

implemented by either replacing the approximation function with the identity

function or by storing a flag in the monad that indicates that the approximation

function should be skipped at bind and endorse sites. Either of these approaches

could be taken by an automated profiler that experiments with various combi-

nations of precise and approximate data.

• We also propose investigating hardware models designed for the code-centric

approximation described in Chapter 3. If the hardware supported appropriate

sandboxing of data [15,16,35,55,57], it could be possible to safely approximate

many more operations than we currently do. For example, we could approximate

address calculations and control flow comparisons. We imagine future hardware

with low-powered approximate cores that execute most or all of their operations

approximately. With sufficient sandboxing, this could be done without danger

of corrupting the rest of the execution.

• The correlation vectors generated by the tool described in Section 4.3 could be

fed into a machine learning algorithm. This could in turn help developers better

understand the relationships between approximate operations in their code and

output quality, and suggest possible improvements.

• The correlation vectors (Section 4.3) and dataflow vectors (Section 4.2) could

potentially be used to guide autotuners (like that described in Section 3.4). Both

techniques point to potential sources of approximation quality problems. The

interesting challenges here would be figuring out how to automatically translate

113

this information into alternate annotations (and potentially endorsements) in a

data-centric approximation environment.

• For the verification function monitors described in Section 5.3.2, we propose

providing a domain-specific language for some common properties, such as a

specified range for the checked computation’s output, or a specified relation-

ship between the input parameters and the output. To provide full generality,

however, we will still need to allow verification routines to be written in the

language of the application (e.g., OCaml for EnerCaml or Java for EnerJ).

• We propose exploring the tradeoffs of alternate fuzzy memoization strategies

(Section 5.3.3). Our prototype utilized two-dimensional linear interpolation due

to its relatively low overhead, but other strategies may be able to effectively learn

approximate functions with fewer precise data points, thus making up for their

potentially higher overhead by requiring fewer precise runs and less storage.

One particularly intriguing technique is the memo-binning approach described

in Section 5.6.4.

• We also propose exploring additional monitoring approaches within the design

space described in Section 5.4. One approach that we considered but ultimately

did not try was Constraint Checking. In this approach, the developer would

specify various constraints on relationships between inputs and outputs (or just

outputs) of a monitored approximate computation. We did not attempt this

because we felt it was too similar to the verification function approach described

in Section 5.3.2. However, if we combined this with static or dynamic analy-

sis to automatically infer these constraints, it could potentially by a powerful

approach.

• We would also like to look at adding a more flexible API for specifying output

114

objects for our online monitors. The current API requires all objects that may

be modified to be specified up front, in an array. A more flexible API would

allow dynamic additions to the list during the computation, as we traverse paths

through data structures.

• Finally, we would like to enhance our online monitors to handle execution length

side effects. For example, an approximation may cause the program to enter an

infinite loop that would never occur during a precise execution.

115

BIBLIOGRAPHY

[1] Anant Agarwal, Martin Rinard, Stelios Sidiroglou, Sasa Misailovic, and Henry
Hoffman. Using code perforation to improve performance, reduce energy con-
sumption, and respond to failures. Technical Report MIT-CSAIL-TR-2009-042,
MIT, 2009.

[2] Carlos Alvarez, Jesus Corbal, and Mateo Valero. Fuzzy memoization for floating-
point multimedia applications. IEEE Transactions on Computers, 54(7):922 –
927, July 2005.

[3] https://ocaml.janestreet.com/?q=node/100, 2011.

[4] Jason Ansel, Yee Lok Wong, Cy Chan, Marek Olszewski, Alan Edelman, and
Saman Amarasinghe. Language and compiler support for auto-tuning variable-
accuracy algorithms. In Proceedings of the 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO ’11, pages 85–96, Wash-
ington, DC, 2011. IEEE Computer Society.

[5] Woongki Baek and Trishul M. Chilimbi. Green: a framework for supporting
energy-conscious programming using controlled approximation. In ACM SIG-
PLAN 2010 Conference on Programming Language Design and Implementation,
2010.

[6] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: hardware
design in Haskell. In 1998 International Conference on Functional Programming,
1998.

[7] Manuel Blum and Sampath Kannan. Designing programs that check their work.
In Proceedings of the Twenty-first Annual ACM Symposium on Theory of Com-
puting, STOC ’89, pages 86–97, New York, NY, 1989. ACM.

[8] Shekhar Borkar and Andrew A. Chien. The future of microprocessors. Commu-
nications of the ACM, 54(5):67–77, May 2011.

[9] Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Martin C. Rinard. Rea-
soning about relaxed programs. In 2012 Conference on Programming Language
Design and Implementation, June 2012.

116

[10] Michael Carbin, Sasa Misailovic, and Martin C. Rinard. Verifying quantitative
reliability for programs that execute on unreliable hardware. In 2013 ACM in-
ternational conference on Object oriented programming systems languages and
applications, 2013.

[11] Jacques Carette, Lydia E. van Dijk, and Oleg Kiselyov. Syntax extension for mon-
ads in OCaml. http://www.cas.mcmaster.ca/˜carette/pa_monad/,
2008.

[12] Lakshmi N. Chakrapani, Bilge E. S. Akgul, Suresh Cheemalavagu, Pinar Kork-
maz, Krishna V. Palem, and Balasubramanian Seshasayee. Ultra-efficient (em-
bedded) SOC architectures based on probabilistic CMOS (PCMOS) technology.
In Proceedings of the 2006 Conference on Design, Automation, and Test in Eu-
rope, 2006.

[13] Swarat Chaudhuri, Sumit Gulwani, Roberto Lublinerman, and Sara Navidpour.
Proving programs robust. In ACM SIGSOFT 2011 Symposium on the Founda-
tions of Software Engineering, 2011.

[14] www.coverity.com.

[15] Jedidiah R. Crandall and Frederic T. Chong. Minos: Control data attack
prevention orthogonal to memory model. In Proceedings of the 37th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 37, pages
221–232, Washington, DC, 2004. IEEE Computer Society.

[16] Michael Dalton, Hari Kannan, and Christos Kozyrakis. Raksha: A flexible infor-
mation flow architecture for software security. In Proceedings of the 34th Annual
International Symposium on Computer Architecture, ISCA ’07, pages 482–493,
New York, NY, 2007. ACM.

[17] Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. Relax: an
architectural framework for software recovery of hardware faults. In 2010
ACM/IEEE International Symposium on Computer Architecture, 2010.

[18] Marc de Kruijf and Karthikeyan Sankaralingam. Exploring the synergy of emerg-
ing workloads and silicon reliability trends. In Silicon Errors in Logic—System
Effects, 2009.

[19] http://www.cs.washington.edu/homes/miker/enercaml, March
2012.

117

[20] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, Toan
Pham, Conrad Ziesler, David Blaauw, Todd Austin, Krisztian Flautner, and
Trevor Mudge. Razor: a low-power pipeline based on circuit-level timing spec-
ulation. In The Thirty-sixth Annual IEEE/ACM International Symposium on
Microarchitecture, 2003.

[21] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. Dark silicon and the end of multicore scaling. In Thirty-eighth
International Symposium on Computer Architecture, 2011.

[22] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Architecture
support for disciplined approximate programming. In Seventeenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, 2012.

[23] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural ac-
celeration for general-purpose approximate programs. In The Forty-fifth Annual
IEEE/ACM International Symposium on Microarchitecture, 2012.

[24] Krisztian Flautner, Nam Sung Kim, Steve Martin, David Blaauw, and Trevor
Mudge. Drowsy caches: simple techniques for reducing leakage power. In The
Twenty-ninth International Symposium on Computer Architecture, 2002.

[25] http://www.ffconsultancy.com/languages/ray_tracer/
comparison.html, 2007.

[26] Simon Frankau and Alan Mycroft. Stream processing hardware from functional
language specifications. In Hawaii International Conference on System Sciences,
2003.

[27] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant
Agarwal, and Martin Rinard. Dynamic knobs for responsive power-aware com-
puting. In Sixteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2011.

[28] Steven Curtis Johnson. Lint, a C Program Checker. Unix Programmer’s Supple-
mentary Documents, Volume 1, 1986.

[29] Matthias Kalisch. Asteroid field. http://jcolorexpansion.
sourceforge.net/asteroid_field.html.

118

[30] Animesh Kumar. SRAM Leakage-Power Optimization Framework: a System
Level Approach. PhD thesis, EECS Department, University of California, Berke-
ley, Dec 2008.

[31] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis and transformation. In 2004 International Symposium on Code
Generation and Optimization with Special Emphasis on Feedback-Directed and
Runtime Optimization, San Jose, CA, Mar 2004.

[32] Larkhoon Leem, Hyungmin Cho, Jason Bau, Quinn A. Jacobson, and Subhasish
Mitra. ERSA: Error resilient system architecture for probabilistic applications. In
Proceedings of the 2010 Conference on Design, Automation, and Test in Europe,
2010.

[33] Xuanhua Li and Donald Yeung. Exploiting soft computing for increased fault
tolerance. In Workshop on Architectural Support for Gigascale Integration, 2006.

[34] Xuanhua Li and Donald Yeung. Application-level correctness and its impact on
fault tolerance. In Thirteenth International Symposium on High-Performance
Computer Architecture, 2007.

[35] Xun Li, Mohit Tiwari, Jason K. Oberg, Vineeth Kashyap, Frederic T. Chong,
Timothy Sherwood, and Ben Hardekopf. Caisson: A hardware description lan-
guage for secure information flow. In Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’11,
pages 109–120, New York, NY, 2011. ACM.

[36] Yanbing Li and Miriam Leeser. HML: An innovative hardware description lan-
guage and its translation to VHDL. In Conference on Hardware Description
Languages, 1995.

[37] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G. Zorn.
Flikker: Saving refresh-power in mobile devices through critical data partitioning.
In Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems, 2011.

[38] http://ocsigen.org/lwt/, 2008.

[39] Sasa Misailovic, Daniel M. Roy, and Martin C. Rinard. Probabilistically accu-
rate program transformations. In Eighteenth International Static Analysis Sym-
posium, 2011.

119

[40] Sasa Misailovic, Stelios Sidiroglou, Hank Hoffman, and Martin Rinard. Quality
of service profiling. In ACM/IEEE Thirty-second International Conference on
Software Engineering, 2010.

[41] Alan Mycroft and Richard Sharp. The FLaSH project: Resource-aware synthesis
of declarative specifications. In International Workshop on Logic Synthesis, 2000.

[42] Sriram Narayanan, John Sartori, Rakesh Kumar, and Douglas L. Jones. Scal-
able stochastic processors. In Proceedings of the 2010 Conference on Design,
Automation, and Test in Europe, 2010.

[43] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In The ACM SIGPLAN 2007 Conference on
Programming Language Design and Implementation, 2007.

[44] http://top500.org/lists/2013/11/, November 2013.

[45] http://caml.inria.fr/ocaml/index.en.html, March 2012.

[46] Elliott Oti. Collision detection: triangle-triangle intersection. http://www.
elliottoti.com/index.php?p=28, August 2007.

[47] Thiadmer Riemersma. Colour metric. http://www.compuphase.com/
cmetric.htm, 2012.

[48] Martin Rinard. Using early phase termination to eliminate load imbalances at
barrier synchronization points. In 2007 ACM international conference on Object
oriented programming systems languages and applications, 2007.

[49] Martin Rinard, Henry Hoffman, Sasa Misailovic, and Stelios Sidiroglou. Pat-
terns and statistical analysis for understanding reduced resource computation.
In Onward!, 2010.

[50] Michael F. Ringenburg and Dan Grossman. Atomcaml: first-class atomicity via
rollback. In 2005 International Conference on Functional Programming, 2005.

[51] Mehrzad Samadi, Janghaeng Lee, D. Anoushe Jamshidi, Amir Hormati, and
Scott Mahlke. Sage: Self-tuning approximation for graphics engines. In Proceed-
ings of the 46th Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO-46, pages 13–24, New York, NY, 2013. ACM.

120

[52] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis
Ceze, and Dan Grossman. EnerJ: Approximate data types for safe and gen-
eral low-power computation. In Thirty-second ACM SIGPLAN conference on
Programming Language Design and Implementation, 2011.

[53] Stelios Sidiroglou, Sasa Misailovic, Henry Hoffman, and Martin Rinard. Man-
aging performance vs. accuracy trade-offs with loop perforation. In 2011 ACM
SIGSOFT Symposium on the Foundations of Software Engineering, 2011.

[54] Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Brennan,
Mark D. Corner, and Emery D. Berger. Eon: a language and runtime sys-
tem for perpetual systems. In Proceedings of the 5th international conference on
Embedded networked sensor systems, 2007.

[55] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure program
execution via dynamic information flow tracking. In Proceedings of the 11th
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XI, pages 85–96, New York, NY, 2004. ACM.

[56] Don Syme. F#: Taking succinct, efficient, typed functional programming into
the mainstream. In 2010 ACM international conference on Object oriented pro-
gramming systems languages and applications, 2010.

[57] Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar Mysore, Fred-
eric T. Chong, and Timothy Sherwood. Complete information flow tracking from
the gates up. In Proceedings of the 14th International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS XIV,
pages 109–120, New York, NY, 2009. ACM.

[58] Jonathan Ying Fai Tong, David Nagle, and Rob A. Rutenbar. Reducing power
by optimizing the necessary precision/range of floating-point arithmetic. IEEE
Transactions on Very Large Scale Integration Systems, 8(3):273–285, June 2000.

[59] Cristophe Troestler. n-body OCaml program: Computer Language Bench-
marks Game. http://shootout.alioth.debian.org/u32/program.
php?test=nbody&lang=ocaml&id=1, January 2012.

[60] Vicky Wong and Mark Horowitz. Soft error resilience of probabilistic inference
applications. In Silicon Errors in Logic—System Effects, 2006.

[61] Zeyuan Allen Zhu, Sasa Misailovic, Jonathan A. Kelner, and Martin Rinard.
Randomized accuracy-aware program transformations for efficient approximate

121

computations. In Thirty-ninth ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, 2012.

