
Programming Abstractions and Efficient

Compilation Techniques for Modern FPGAs

Luis Vega

A dissertation

submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2022

Reading Commitee:

Luis Ceze, Chair

Dan Grossman

Zachary Tatlock

Adrian Sampson

Visvesh Sathe

Program Authorized to Offer Degree:

Computer Science & Engineering

© Copyright 2022

Luis Vega

University of Washington

Abstract

Programming Abstractions and Efficient Compilation Techniques for Modern FPGAs

Luis Vega

Chair of the Supervisory Committee:

Luis Ceze

Paul G. Allen School of Computer Science & Engineering

Modern field-programmable gate arrays (FPGAs) have recently powered high-profile efficiency

gains in systems from datacenters to embedded devices by offering ensembles of heterogeneous,

reconfigurable hardware units. Programming stacks for FPGAs, however, are stuck in the past—

they are based on traditional hardware languages, which were appropriate when FPGAs were

simple, homogeneous fabrics of basic programmable lookup tables. Nowadays, FPGAs are highly

heterogeneous architectures that support a wide variety of compute operations such as scalar, vec-

tor, fused, and floating-point arithmetic together with different kinds of programmable memories.

Unfortunately, the behavioral semantics available in hardware languages today cannot effectively

capture these architectural advances, resulting in inefficient programs that are missing all the

benefits of specialization. An example of this abstraction gap is that vector operations cannot be

described behaviorally for targeting vector hardware (SIMD) available in modern FPGAs.

This thesis describes Reticle, a new low-level abstraction for FPGA programming that, unlike

existing languages, explicitly represents the special-purpose units available on a particular FPGA

device. Reticle has two levels: a portable intermediate language and a target-specific assembly

language. The design goal of the intermediate language is to describe behavior, while the assembly

i

language aims for layout. Furthermore, I demonstrate how to lower intermediate programs

to assembly programs, using instruction selection which can be both faster and deterministic

compared to existing technology mapping approaches. I use Reticle to implement compute centric

benchmarks, such as linear algebra operators and coroutines, and find that Reticle compilation

runs up to 100 times faster than current approaches while producing comparable or better run-time

and utilization. Additionally, I show how using Reticle’s memory instructions can lead to 5×

performance improvement on an existing encryption application (AES).

ii

Contents

1 Introduction 1

1.1 FPGA Programming Today . 3

1.2 The Future of FPGA Programming . 4

1.2.1 Virtual Instruction Set . 5

1.2.2 Resource Binding . 5

1.2.3 Fast Compilation . 5

1.3 Overview . 6

2 Background 7

2.1 Classic vs. Modern Architectures . 7

2.2 Hardware Synthesis . 8

3 Reticle: A Virtual Machine for Programming Modern FPGAs 12

3.1 The Language . 13

3.1.1 The Intermediate Language . 15

3.1.2 The Assembly Language . 18

3.1.3 Well-formedness . 19

3.2 The Compiler . 20

3.2.1 Instruction Lowering . 21

3.2.2 Layout Optimizations . 25

iii

3.2.3 Instruction Placement . 26

3.2.4 Code Generation . 27

4 Evaluation 29

4.1 Linear algebra and coroutine benchmarks . 29

4.1.1 Benchmark Description . 31

4.1.2 Results Comparison . 31

4.2 Memory Benchmarks . 34

4.2.1 Read-only Memories . 35

4.2.2 AES Encryption . 37

5 Related Work 38

5.1 Programming Languages for FPGAs . 39

5.1.1 Hardware Description Languages . 39

5.1.2 Layout Languages . 40

5.1.3 High-level Languages . 41

5.1.4 Intermediate Representations . 41

5.2 Compilation Techniques for FPGAs . 42

5.2.1 Hardware Synthesis . 43

5.2.2 Instruction Selection . 43

5.2.3 Layout Compilation . 44

6 Conclusion 45

6.1 Future work . 46

Bibliography 47

iv

Acknowledgments

This thesis covers work done during the last two years of my PhD. I am fortunate to have

experienced the mentorship of Luis Ceze and Dan Grossman throughout this journey, including

the darkest moments. I will be forever grateful for the guidance and support. I was extremely

lucky to also have the advising of Zach Tatlock and Adrian Sampson along the way, from which I

have learned tremendously.

Doing a PhD truly takes a village. Thanks to all my friends from SAMPA, SAMPL, and PLSE

groups. It certainly would not be the same without you. And finally, thanks to my family, Jorbelly

and Alejandra, for being there for me this whole time.

v

Chapter 1

Introduction

Field-programmable gate arrays (FPGAs) have emerged as a relief from stagnating performance

on CPUs and GPUs [PCC
+
14, FOP

+
18a, FOP

+
18b]. Their key advantage is their ASIC-like ability

to customize data paths, control logic, and memory hierarchies for specific applications. Unlike

an ASIC, however, deploying an FPGA-based accelerator merely requires buying off-the-shelf

parts—and not the astronomical investment that manufacturing custom silicon entails.

Early FPGAs were simple, homogeneous fabrics mostly based on lookup tables (LUTs), and

their toolchains could treat them as fluidly reconfigurable circuits. Modern FPGAs, however, no

longer resemble those simple, homogeneous architectures. Because real, specialized hardware

remains far more efficient than reconfigurable lookup tables, modern FPGAs incorporate an array

of heterogeneous, special-purpose “hardened” units that implement commonplace functionality:

memories, arithmetic units, and complex interconnects [Xil20c, Int20a]. To make these modern

FPGAs perform well, it is critical to exploit this fixed-function logic as much as possible—programs

that underutilize it can consume significantly more area and power [RF16].

On the other hand, the mainstream languages to program FPGAs is based on behavioral

hardware description languages (HDLs), which are not only used today for programming FPGAs

1

2

1980 1990 2000 2010 2020 2030
Timeline (Years)

Su
pp

or
te

d
op

er
at

io
ns

Ab
st

ra
ct

io
n

ga
p

boolean integer
LUTs

FMAs
SIMD

Flo
at

BF
loa

t1
6

??
?

HDLs (Verilog/VHDL)
FPGAs

Figure 1.1: FPGA and HDLs evolution over the years. Traditional HDLs are falling behind on
capturing latest architectural advances in FPGAs, making programming modern FPGAs efficiently
really hard.

but also for designing ASICs. In fact, FPGAs are designed and programmed with the same

programming language (e.g., Verilog). Moreover, these languages are part of an IEEE standard,

designed and maintained by a committee mostly concerned with the task of modelling and

describing hardware circuits efficiently, which has little to do with optimally programming FPGAs.

Figure 1.1 describes how FPGA primitives have evolved over the years in terms of supported

operations compared to HDLswhich has stayedmostly stagnant. This in turn creates an abstraction

gap between the programming language and the underlying hardware, making it really hard, and

in some cases impossible, to express newer operations (e.g., bfloat16 multiplication) behaviorally.

1.1. FPGA Programming Today 3

1.1 FPGA Programming Today

Currently, FPGAs are programmed using HDLs, either by describing hardware circuits by hand or

generating them from higher level languages [Xil20d, Int20b, NAT
+
20, NTLS21, DTS20, BVR

+
12].

These languages, however, rely on behavioral HDLs as ad hoc IRs, because programs can be

ported to multiple targets without the burden of directly programming low-level and target-

specific primitives. Instead, the complex task of compiling traditional hardware languages to these

primitives is normally performed by proprietary vendor toolchains.

Moreover, behavioral HDLs like Verilog and VHDL do not have a way to efficiently represent

operations supported bymodern FPGAs’ primitives. Alternatively, vendor toolchains use heuristics

that attempt to guess when a program’s logic can efficiently map to a device’s available hardened

units. For example, a Verilog expression a + b would need to compile to an adder circuit when

generating a customASIC; in an FPGA toolchain, it might instead map onto a specific configuration

of an FPGA’s digital signal processing slice (DSP) that includes a range of built-in integer arithmetic

units.

Relying on heuristics for performing this mapping results in unpredictable and poor perfor-

mance. As authors from Xilinx, a major FPGA vendor, observed [LK18]:

The necessity of breadth coverage by commercial tools often leads to implemen-

tations that do not take full advantage of the underlying hardware. For example,

UltraScale+ devices employ DSP blocks that are rated at 891MHz for the fastest speed

grade. Nonetheless, large designs implemented on FPGAs typically achieve system

frequencies lower than 400MHz.

1.2. The Future of FPGA Programming 4

1.2 The Future of FPGA Programming

The fact that FPGAs were initially created for emulating hardware behavior, instead of a CPU

alternative for efficient computing, has greatly shaped their programming foundation from the

beginning. The programming challenge, since their invention, was based on how to compile an

existing language used for designing and modeling hardware into an array of compute primitives.

This approach has greatly limited the opportunity for unlocking the potential available in modern

FPGAs, because the core language was never designed to get the most out of the architecture.

Instead, the goal was to support an already existing language that has nothing to do with pro-

gramming FPGAs. In fact, today FPGAs are designed using Verilog, then manufactured into a

chip, and finally programmed in Verilog again.

The abstraction used to program FPGAs should, at a minimum, be different from the one used

to design them. For example, other hardware architectures such as CPUs and GPUs have greatly

benefited from taking this approach. Today, CPUs and GPUs are both designed in Verilog but

their low-level programming language has nothing to do with Verilog. Instead, CPUs and GPUs

are programmed with assembly languages based on instruction sets that reflect the primitives

available in them. Therefore, higher-level languages can use these instructions to build highly

productive programming stacks on top.

The work presented in this thesis addresses the concerns raised above by proposing a new

programming foundation that, compared to the traditional approach, captures the advances

achieved in FPGA architectures over the last several decades and supports the requirements

needed by higher-level languages. These requirements include: virtual instruction set, resource

binding, and fast compilation. In the following paragraphs, we cover why these requirements are

crucial for future FPGA programming stacks.

1.2. The Future of FPGA Programming 5

1.2.1 Virtual Instruction Set

The number of specialized primitives available in multiple FPGA architectures is constantly

increasing and becoming more complex. FPGAs now support primitives that are no longer based

on boolean operations, such as bfloat16 multiplication, that cannot be expressed using traditional

HDLs. Future high-level compilers will require an efficient instruction set with value types and

operations that captures new FPGA primitives in a target independent way, allowing compilers to

perform optimizations that can target multiple architectures.

1.2.2 Resource Binding

The programming complexity of new primitives keeps increasing, making it difficult to assess

the optimizations available in current FPGA toolchains. There is more than one way to perform

an operation in these devices, each with its own set of tradeoffs. For example, a multiplication

can be performed by either DSPs or LUTs, but their availability and performance are vastly

different. Future high-level compilers require an ergonomic mechanism to promote, and constrain

if necessary, the mapping of primitives that can enable structured performance, power, and area

optimizations.

1.2.3 Fast Compilation

The size of FPGAs continues to grow over time, lately requiring multiple silicon dies to fully

accommodate them inside a chip. This is causing traditional toolchains to take considerable time,

in most cases several hours, for compiling source code into binaries. The heuristics used in these

toolchains are performing search on a large space to try to find a global optimal solution. This

approach was reasonable back when FPGAs were small devices, but that is no longer the case.

Future programming stacks require compilers that do not perform search, but rather find a solution

1.3. Overview 6

quickly by ranking more explicit directions from the source language.

1.3 Overview

The work presented in this thesis focuses on programming abstractions and efficient compilation

techniques for modern FPGAs. Furthermore, I propose a low-level abstraction for FPGA program-

ming, called Reticle, that capture high-performance operations supported in recent architectures.

Additionally, I show how this intermediate abstraction is lowered to a target-dependent represen-

tation, also known as assembly language, that can be used to spatially accommodate operations

into the FPGA fabric. While designing languages and compilers for FPGAs is an active area of

research, this thesis makes the claim that we need a new low-level programming abstraction

for effectively using all the architectural advances available in modern FPGAs. Innovation in

high-level FPGA programming models is accelerating [DFH
+
20, NAT

+
20, NTLS21, KFP

+
18], and

these new compilers need a better target than current hardware languages. In this thesis, I focus

on two different aspects of this problem: language design and compiler infrastructure.

Chapter 2

Background

2.1 Classic vs. Modern Architectures

Although LUTs are the main building block that classically dominated FPGAs as shown in Fig-

ure 2.1a, they are not the only programmable resource available on modern FPGAs. Over the years,

FPGAs have added other kinds of primitives: most prominently, digital signal processing slices

(DSPs) that can execute more involved operations as described in Figure 2.1b. In modern FPGAs,

DSPs are a source of heterogeneity because they support a wide variety of complex operations,

such as scalar, vector, and fused integer operations and, in recent architectures, even floating-point

arithmetic [CNM
+
18]. Although LUTs can implement arbitrary Boolean logic formulas, DSPs can

perform operations faster and far more efficiently [LK18]. For example, an 8-bit and operation

can typically be implemented using a single DSP or 8 LUTs.

In addition to compute operations, FPGA architectures have also evolved in terms of memory

primitives. FPGAs now support multiple types of addressable memories with different capacity

and bandwidth features [Xil20b]. Memories can be implemented using one or more primitives,

similarly to how compute operations can be composed of multiple DSPs or LUTs. Moreover,

7

2.2. Hardware Synthesis 8

LUTs LUTs LUTs LUTs DSPs LRAMs BRAMs URAMs

(a) Classic FPGAs.

LUTs LUTs LUTs LUTs DSPs LRAMs BRAMs URAMs
(b) Modern FPGAs.

Figure 2.1: FPGA architecture evolution over the years.

memory bandwidth varies based on the capacity available in memory primitives [RBL
+
09]. For

example, smaller-sized memory primitives, based on LUTs, have less memory bandwidth compared

to larger-sized memories [Xil20b]. Therefore, the number of primitives used to implement a

particular addressable memory description can vary significantly, impacting the performance of a

design [AI19].

2.2 Hardware Synthesis

The first major program transformation that FPGA compilers perform today is hardware synthesis.

This transformation rewrites a hardware program described behaviorally into an equivalent struc-

tural representation. Hardware languages use behavioral expressions to define what operations

compute, whereas structural expressions defines concretely how they are implemented from

primitive components.

Moreover, hardware languages like Verilog support these two representations: behavioral and

structural. For example, consider the behavioral Verilog program in Figure 2.2a. This program uses

a binary expression that performs the and operation. One valid transformation of this program is

2.2. Hardware Synthesis 9

1 module bit_and(input a, input b, output y);
2 assign y = a & b;
3 endmodule

(a) Behavioral Verilog.

1 module bit_and(input a, input b, output y);
2 LUT2 # (.INIT(4’h8)) i0 (.I0(a), .I1(b), .O(y));
3 endmodule

(b) Structural Verilog.

1 module bit_and(input a, input b, output y);
2 (* LOC = "SLICE_X0Y0", BEL = "A6LUT" *)
3 LUT2 # (.INIT(4’h8)) i0 (.I0(a), .I1(b), .O(y));
4 endmodule

(c) Structural Verilog with layout annotations.

Figure 2.2: Three Verilog representations of and program.

shown in Figure 2.2b, where the and operation is lowered to a LUT, the traditional programmable

logic unit of FPGAs. The behavioral program is the standard, portable way to program FPGAs

today; the structural implementation addresses the specific LUT resources on a specific family of

FPGA devices. Additionally, structural implementations can capture layout semantics via Verilog

attributes as shown in Figure 2.2c, including the location LOC of a slice and the basic element

of logic BEL for a primitive. In this case, the LOC value represents a specific slice located at the

Cartesian coordinate (0, 0) and the BEL value denotes an unique LUT A6LUT within this slice.

Modern FPGA hardware synthesizers heuristically map behavioral HDLs onto LUTs and DSPs

based on a cost model and resource availability. The cost model is normally based on the type

of the operation and integer type of the operands. For example, a synthesizer might prefer to

map integer multiplications to DSPs because of the poor size and speed trade-off of a LUT-based

multiplier, but a small-integer additions might map to LUTs because the speed difference is small

and FPGAs typically have more LUTs than DSPs. In addition to cost models, synthesizers also

support hint annotations in HDLs to suggest the use of DSPs over LUTs.

2.2. Hardware Synthesis 10

1 (* use_dsp = "yes" *)
2 module dsp_add(...);
3 genvar i;
4 for (i=0; i<N; i++) begin
5 assign y[i] = a[i] + b[i];
6 end
7 endmodule

(a) Behavioral Verilog program

8 16 32 64 128 256 512 1024
Loop bound (N)

0

50

100

150

200

250

300

350

DS
Ps

 u
se

d

behavioral, scalar
structural, vectorized (hand-optimized)

(b) DSP utilization.

8 16 32 64 128 256 512 1024
Loop bound (N)

0.0

1.0K

2.0K

3.0K

4.0K

5.0K

LU
Ts

 u
se

d

behavioral, scalar
structural, vectorized (hand-optimized)

(c) LUT utilization.

Figure 2.3: DSP (b) and LUT (c) resource utilization for multiple loop bounds (𝑁) of the behavioral
program described in (a) for adding two arrays of 𝑁 elements in parallel versus a hand-optimized
and structural version of the same program. Even though a compiler hint in the behavioral program
requests the use of DSPs, a more optimal DSP configuration exists, leading to under-utilization
of the resource potential (the behavioral program runs out of DSP resources and must resort to
LUTs).

Even with cost models and hints, however, behavioral HDLs are insufficient to fully exploit

resources like DSPs available in modern FPGAs. Consider the program in Figure 2.3a, which

consists of a loop that performs the summation of two arrays of 𝑁 elements in parallel. We

performed hardware synthesis on this program for different values of 𝑁 targeting an FPGA that

contains 360 DSPs. Figure 2.3b and 2.3c show the number of resources consumed by this program

when using the behavioral HDL description versus a hand-optimized structural implementation.

This experiment demonstrates three challenges of current hardware synthesizers and languages

2.2. Hardware Synthesis 11

when targeting FPGAs. First, using the behavioral representation together with compiler hints to

force the use of DSPs over LUTs only covers one of the many configurations available in the DSP,

resulting in the underutilization of resources. For example, Figure 2.3b shows that the total number

of DSPs in this particular device is already reached for size 𝑁 = 512, although the maximum

number of parallel additions allowed in this device is 1440 because of DSP vectorization (360

DSPs each performing 4 parallel additions). Nevertheless, the synthesizer starts rewriting add

expression to LUTs for 𝑁 ≥ 512 as shown in Figure 2.3c.

A second challenge is that, in HDLs, hints are merely suggestions—not constraints. Behavioral-

to-structural synthesis heuristics make it difficult to deterministically respect constraints, so

toolchains silently ignore hints that they are unable to fulfill. The consequence is that programming

with hints is unpredictable in both area and performance.

The third challenge is that directly programming at the structural level, while necessary for

peak efficiency, is impractical. It requires understanding the complex, device-specific semantics of

DSP configuration parameters. Structurally programming the DSP in Xilinx UltraScale+ FPGAs,

for example, can entail setting up to 96 parameters. This representation is verbose, brittle, and

vendor-specific—no structural representation is portable across FPGA families.

Chapter 3

Reticle: A Virtual Machine for

Programming Modern FPGAs

Reticle [VMS
+
21] is an intermediate representation (IR) and compiler for FPGAs that addresses the

challenges outlined in the previous chapters. Reticle aims to directly represent and optimize for

the heterogeneous programmable resources available in modern FPGAs. Its goal is to target the

efficiency of structural FPGA implementations while adding abstraction and portability. Reticle is

an instruction-based IR that decouples the low-level details of the underlying hardware from a

higher-level instruction set that can generate code for different hardware targets. More importantly,

Reticle presents an alternative approach for programming FPGAs and is not a drop-in replacement

for any stage in the traditional compilation flow (i.e., the goal is not to support traditional HDLs

like Verilog). Alternatively, higher-level languages can use Reticle as a compiler target.

Reticle addresses the challenges described in Chapter 2 by using a more expressive type system

that supports vector types, which enable programs to promote particular hardware resources

over others when they are available. Additionally, the intermediate language makes primitive

constraints part of the language semantics, so the Reticle compiler can reject programs with

12

3.1. The Language 13

unsatisfiable constraints instead of silently ignoring them as in HDL hints. Therefore, programs

are more predictable in terms of resource usage and performance. We show how to use instruction

selection to map a portable representation onto a device-specific representation, while achieving

the same optimization results as manual and target-specific structural implementations.

The following Sections describes the Reticle language design and compiler implementation.

Section 3.1 describes the two forms of Reticle: a portable, high-level intermediate language and

a low-level, device-specific assembly language that can be parameterized for a specific FPGA

device. Subsection 3.2.1 describes how the Reticle compiler lowers from the intermediate language

to an assembly language. We show how to use standard instruction selection to efficiently and

deterministically lower intermediate programs to assembly programs—a sharp departure from

traditional FPGA toolchains, which must resort to expensive, often randomized metaheuristics

to perform similar lowering [MCB07]. Subsection 3.2.4 show how our compiler implementation

emits structural hardware descriptions for a specific FPGA target.

3.1 The Language

This section describes the Reticle language. Reticle has two variants: the high-level intermediate

language, where operations are abstract and portable across FPGA devices, and a low-level

assembly language, where operations correspond to physical primitives available on a specific

device. Figure 3.1 lists the syntax for the two languages, which share a common structure and

differ in the kinds of operations that are available. We first describe the intermediate language

and then show how the assembly language differs.

3.1. The Language 14

𝑓 𝑢𝑛 ∈ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 F 𝑛(a : 𝜏)∗ → (a : 𝜏)+{𝑖𝑛𝑠+}
𝑖𝑛𝑠 ∈ 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 F 𝑤𝑖𝑟𝑒 | 𝑝𝑟𝑖𝑚

𝑤𝑖𝑟𝑒 ∈𝑊𝑖𝑟𝑒 F a : 𝜏 = ⊗[𝑖∗] (a∗)
𝑝𝑟𝑖𝑚 ∈ 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 F a : 𝜏 = ⊞[𝑖∗] (a+)@ 𝑟𝑒𝑠

(a) The Intermediate Language

𝑓 𝑢𝑛 ∈ 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 F 𝑛(a : 𝜏)∗ → (a : 𝜏)+{𝑖𝑛𝑠+}
𝑖𝑛𝑠 ∈ 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 F 𝑤𝑖𝑟𝑒 | 𝑎𝑠𝑚

𝑤𝑖𝑟𝑒 ∈𝑊𝑖𝑟𝑒 F a : 𝜏 = ⊗[𝑖∗] (a∗)
𝑎𝑠𝑚 ∈ 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦 F a : 𝜏 = ⊠[𝑖∗] (a+)@ 𝑙𝑜𝑐

(b) The Assembly Language

𝑟𝑒𝑠 ∈ 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 F ?? | 𝜌
𝑙𝑜𝑐 ∈ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 F 𝜌 (\, \)
\ ∈ 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 F ?? | 𝑒

𝜌 ∈ 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑇𝑦𝑝𝑒 F lut | dsp | lram | bram | uram
𝑒 ∈ 𝐶𝑜𝑜𝑟𝑑𝐸𝑥𝑝𝑟 F 𝑖 | a | 𝑒 + 𝑒

⊗ ∈𝑊𝑖𝑟𝑒𝑂𝑝 ⊞ ∈ 𝑃𝑟𝑖𝑚𝑂𝑝 ⊠ ∈ 𝐴𝑠𝑚𝑂𝑝

?? ∈𝑊𝑖𝑙𝑑𝑐𝑎𝑟𝑑 𝑛 ∈ 𝑁𝑎𝑚𝑒 a ∈ 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒

𝜏 ∈ 𝑏𝑜𝑜𝑙, 𝑖𝑛𝑡,
−→
𝑖𝑛𝑡 𝑖 ∈ Z

Figure 3.1: The Intermediate and Assembly Languages.

3.1. The Language 15

1 t0: i8 = const[5];
2 t1: i8 = sll[1](t0);
3 t2: i8 = add(t0, t1) @??;

Figure 3.2: Reticle instructions to compute the expression 5 × 2 + 5. The constant 5 and shift-
left-logical operation consume no compute resources (wire operations), while the add instruction
does (compute operation).

3.1.1 The Intermediate Language

Figure 3.1a lists the Reticle intermediate language. A program is a function with a name n, a

number of inputs and outputs (a : 𝜏), and a sequence of instructions ins. Function bodies are in

A-normal form (ANF) [SF92]: they consist of a flat list of instructions whose arguments are always

variables a .

Wire & primitive instructions

There are two types of instructions in the language: wire and primitive instructions. While both

share a common format, primitive instructions are the ones that consume device resources and

therefore consume area; wire instructions are area-free and only involve wiring. Both kinds of

instructions support static integer attributes 𝑖 , argument variables a , and always produce a single

output value (a : 𝜏).

Wire instructions consist of operations ⊗, while primitive instructions are based on an opera-

tion ⊞ that are performed by a resource type 𝜌 . Therefore, primitive instructions are candidate for

optimizations. Figure 3.2 shows an example of wire and primitive instructions.

Primitive instructions also have an annotation@ 𝑟𝑒𝑠 that can optionally control which kind

of resource to use on the target device, from compute resources (𝑙𝑢𝑡 or 𝑑𝑠𝑝) to memory resources

(𝑙𝑟𝑎𝑚, 𝑏𝑟𝑎𝑚, and 𝑢𝑟𝑎𝑚). Additionally, the 𝑟𝑒𝑠 annotation may be the wildcard ??, in which case

the compiler has the freedom to choose which resource to use for the instruction.

3.1. The Language 16

Interestingly, other operations besides simple bit extraction and slicing can be implemented as

wire instructions i.e., static shift instructions. Consider the implementation of the logical left shift

instruction sll described in Figure 3.2, which consist of taking the lower 7-bit wires of t0 and

appending a 1-bit wire assigned to the value zero in order to produce t1. Curiously, single-bit

constant values such as zero and one can be created with electrical ground and voltage available

throughout the device without consuming any resources. Therefore, we leverage this knowledge

to define these and other operations i.e., constants as wire instructions.

Instruction set

Figure 3.3a lists the full set of primitive and wire instructions in the intermediate language. Most

primitive instructions are pure, i.e., they have no side effects. The only exception is memory in-

structions. In the absence of memory instructions, programs can leverage referential transparency.

An add instruction, for example, takes two arguments and writes to an output of a given type,

as shown in Figure 3.3b. On the other hand, a reg instruction described in Figure 3.3c looks similar

to add, but it is stateful in its operation. Furthermore, the add instruction will write a new value

to y each cycle (based on inputs a and b), whereas the reg instruction will hold its value until

overwritten. For example, the following register instruction will produce a 0 as long as b is False.

Similarly, once b is True, then the value of a will be bound to y every cycle.

The stateful reg instruction is essential for allowing cycles in programs. Registers “break up”

combinational cycles by stopping them from looping back within the same cycle. As we discuss in

Subsection 3.1.3, a program with a cycle and without register is considered ill-formed and will be

rejected.

The register instruction, however, is not the only stateful instruction. There are four more

memory instructions available for accessing indexed memory locations, including ram, rom, sram,

and srom. More importantly, the differences between these instructions are based on two features:

3.1. The Language 17

Instruction Type Operation

Primitive

Arithmetic add, sub, mul

Bitwise not, and, or, xor,

Comparison eq, neq, lt, gt, le, ge

Control mux

Memory reg, ram, rom, sram, srom

Wire

Shift sll, srl, sra

Misc ext, cat, id, const

(a) The instruction set.

y:i8 = add(a,b) @??;

(b) Addition instruction.

y:i8 = reg[0](a,b) @??;

(c) Register instruction.

y:i8 = rom(a) @??;

(d) ROM instruction.

y:i8 = ram(a,b,c) @??;

(e) RAM instruction.

Figure 3.3: The IR instruction set (a) with usage examples (b,c,d,e).

mutation and timing behavior. For example, the rom and ram instructions differ in mutability—rom

being a read-only memory and ram being a read-write memory respectively. Another feature,

based on timing behavior and denoted with the s prefix, describe when the instruction output is

valid. For example, the rom and ram will write a new value to y each cycle (based on the input

address a), whereas the sram and srom instructions will bound such value after one cycle of

operation.

Semantics

The primary goal behind the intermediate language is to capture the semantics of operations

available in modern FPGA, while removing details of the primitives used to implement such

instructions. This is accomplished by using dataflow and synchronous semantics [BC13]. The

dataflow semantics are used to describe the behavior of pure combinational instructions [TH19],

whereas the synchronous model abstracts away the details about how stateful instructions are

updated. For example, a synchronous design is defined as a hardware program in which all stateful

elements i.e., registers can only be updated on a single event trigger, i.e., a positive clock edge.

Therefore, the syntax for describing such timing details is not required for programming FPGAs,

3.1. The Language 18

resulting in a more compact representation.

3.1.2 The Assembly Language

The Reticle assembly language resembles the intermediate language, but it replaces high-level,

abstract operators like add with target-specific primitives available on a particular FPGA device.

The design goal of the assembly language is to provide an abstraction for laying out programs,

based on the fact that placing operations is more efficient than using primitives directly. Figure 3.1b

lists the syntax for the assembly language, in which compute instructions 𝑐𝑜𝑚𝑝 are replaced with

assembly instructions 𝑎𝑠𝑚. (Reticle assembly retains the same wire instructions as the intermediate

language.) As we lower to hardware targets, special-purpose hardware becomes available that can

handle specialized operations, such as multiply-add, with known implementation costs (area and

latency.) Although 𝑎𝑠𝑚 instructions are considered specialized instructions, they are still portable

within an FPGA family. Devices within a family share the same primitives, varying only the total

number of primitives available in them.

To capture the semantics of these varied operations, each is defined in terms of a sequence of

intermediate language operations, which are then automatically composed in the compilation

process. (This means that assembly operations ⊠ can be composed of one or more intermediate

operations in a single instruction.) Therefore, the number of 𝑎𝑠𝑚 instructions is far greater than

𝑝𝑟𝑖𝑚 instructions, allowing different FPGA architectures to be targeted with a simpler intermediate

language. For example, two intermediate operations consisting of a multiplication followed by

an addition can be fused into a muladd (if it supported by the hardware target) and it can be

expressed in assembly as shown Figure 3.4a.

Assembly instructions also differ from primitive instructions because they support location

semantics 𝑙𝑜𝑐 . A location includes not only a resource type (LUTs or DSPs), but also a Cartesian

3.1. The Language 19

y:i8 = muladd(a,b,c) @dsp(??, ??);

(a) Multiply-Add instruction.

Figure 3.4: Example of an assembly instruction.

1 t0:i8 = const[4];
2 t1:i8 = add(t1,t0) @??;

(a) Ill-formed.

1 t0:bool = const[1];
2 t1:i8 = const[4];
3 t2:i8 = add(t3,t1) @??;
4 t3:i8 = reg[0](t2,t0) @??;

(b) Well-formed.

Figure 3.5: Example of an ill and well formed program. A well-formed program only allows cycles
when stateful instructions such as reg are present in the path of the cycle.

𝑥,𝑦 coordinate describing the physical placement of the operation. Each coordinate can be either a

concrete expression 𝑒 or a wildcard ??, indicating that the compiler is responsible for determining

the placement. While the wildcard gives the compiler the greatest flexibility, placing explicit

constraints on coordinates with expressions gives front-end tools greater control over programs

(and its ultimate performance). An expression can refer to variables defined in other coordinate

expressions to place constraints between the placement of the two instructions. For example,

an instruction location could be specified using unconstrained variables like (x0_loc,y0_loc),

while another instruction is constrained to always be adjacent (right after) within the same column:

(x0_loc,y0_loc+1). Because we used the same variables, the two instructions have a placement

relationship: they have the same x_loc (column), and the second instruction is right after the

first.

3.1.3 Well-formedness

In hardware design, programs typically need to avoid combinational loops: memory-free cycles

in the wiring graph that would produce undefined behavior [RT06]. In Reticle, this constraint

manifests as a well-formedness criterion. The dependency graph for a well-formed program, in

3.2. The Compiler 20

both the intermediate and assembly language variants, must be acyclic (a dag) when memory

instructions are removed. The following paragraph describes how we define and check this

criterion.

Figure 3.5 shows examples of ill-formed and well-formed Reticle intermediate language pro-

grams. Both programs attempt to increment a stored value by a constant value 4. And both

programs contain dependence cycles: in general, cycles are required for instructions to reuse their

own outputs as arguments later in time. However, Figure 3.5b’s cycle includes a reg instruction

while Figure 3.5a’s has a combinational (register-free) loop.

The Reticle implementation checks well-formedness by forming a dependence graph for a

given function, where the vertices are instructions and the edges are definition–use relationships.

It then sorts nodes in topological order, excluding memory instructions. If the sort procedure

succeeds, the program is well-formed.

Reticle differs from many traditional hardware tools in rejecting programs with combinational

loops. Many interpreters (a.k.a. simulators) for hardware description languages (HDLs) such as

Verilog and VHDL silently produce undefined or x-values instead of producing errors [Tur03].

Hardware engineers must therefore carefully avoid creating these cycles or risk obscuring serious

bugs. We instead opt to reject these programs ahead of time to avoid the need to handle this

undesired behavior during compilation and interpretation.

3.2 The Compiler

The Reticle compiler performs a series of transformations to convert and optimize a source

intermediate program into a target structural representation. The transformations in the compiler

are described in Figure 3.6, including instruction selection, layout optimizations, instruction

placement, and code generation. Each of these program transformations progressively increases

3.2. The Compiler 21

DSP

a

b

c

co

y

ci

DSP

a

b

c

co

y

ci

DSP

a

b

c

co

y

ci

DSP

a

b

c

co

y

ci

a

b

c

in

d

t0

t1t1

t0

c

d

a

b

in

instruction
selection

instruction
placement

assembly
(c)

layout
optimizations

IR
(a)

assembly
(e)

IR

build
dataflow graph

tree
partitioning

target
description

(b)

selection

assembly

code
generation

device
layout
(d)

structural
verilog

target-independent family-specific device-specific

routing and
bitgen bitstream

Reticle Traditional tools

target
description

High-level
Languages

Behavioral
HDLs

DSL
compiler

FPGA
compiler

FPGA
bitstream

target-independent (FPGA or ASIC) device-specific (FPGA)

compilation
time (seconds or minutes) (hours or days)

ASIC
programming

Designing
new

hardware

FPGA
programming

Programming
existing
hardware

Figure 3.6: Reticle compilation pipeline. (a) The intermediate program (Figure 3.1a). (b) The target
description specification (Figure 3.8). (c) The compiled assembly program (Figure 3.1b). (d) The
device layout specification. (e) The placed assembly program with known locations (Figure 3.1b).

the level of detail of the compiler target such as: target-independent, family-specific, and device-

specific transformations.

3.2.1 Instruction Lowering

The Reticle compiler is responsible for lowering the abstract intermediate language to the concrete

assembly language. The core problem is instruction selection, i.e., choosing a high-quality sequence

of assembly instructions that have the same semantics as the original intermediate instructions.

A key consequence of Reticle’s design is that the problem is similar to instruction selection in a

traditional software compiler [AG85] but applied to the hardware domain. This is not the first

time instruction selection has been proposed for hardware compilation [Joh83, KW88, CCDW98].

Whereas today’s RTL toolchains rely on slow, unpredictable metaheuristics to do a similar logical-

to-physical mapping [MCB07], the Reticle compiler can leverage the large body of work on

efficient, deterministic instruction selection algorithms to achieve the same effect.

Figure 3.7a shows an example of instruction selection in Reticle. The intermediate-language

program in Figure 3.7a is semantically equivalent to both assembly programs in Figures 3.7b

3.2. The Compiler 22

and 3.7c, assuming a target architecture that supports mul, add, and muladd assembly instructions.

The choice of the best implementation depends on the target-specific costs of these instructions.

Reticle’s instruction selector uses a target definition that describes the instructions available for

a specific FPGA family. The target description gives the area and latency costs for each assembly

instruction along with its semantics in terms of intermediate language instructions.

1 t0:i8 = mul(a,b) @??;
2 t1:i8 = add(t0,c) @??;

(a) Intermediate pro-
gram

1 t0:i8 = mul(a,b) @dsp(??,??);
2 t1:i8 = add(t0,c) @dsp(??,??);

(b) Assembly program, cost=2
1 t0:i8 = muladd(a,b,c) @dsp(??,??);

(c) Assembly program, cost=1

Figure 3.7: Example of an intermediate program (a) and two equivalent assembly programs (b,c)
with different costs.

Target Description Language

Because the availability of different low-level hardware operations (and their costs) can vary

across FPGA families, the Reticle compiler needs a mechanism for describing a target platform. We

designed a target description language that allows succinct specification of assembly instructions

supported by a given FPGA target; it is specified in Figure 3.8.

𝑑𝑒𝑠 ∈ 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 F 𝑎𝑠𝑚+

𝑎𝑠𝑚 ∈ 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦 F 𝑛[𝜌, 𝑖, 𝑖] (a : 𝜏)∗ → (a : 𝜏){𝑖𝑛𝑠+}
𝑖𝑛𝑠 ∈ 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 F a : 𝜏 = ⊞ | ⊗ [𝑖∗] (a+)

𝜌 ∈ 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 F lut | dsp

⊗ ∈𝑊𝑖𝑟𝑒𝑂𝑝 ⊞ ∈ 𝐶𝑜𝑚𝑝𝑂𝑝

𝑛 ∈ 𝑁𝑎𝑚𝑒 a ∈ 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝜏 ∈ 𝑇𝑦𝑝𝑒 𝑖 ∈ Z

Figure 3.8: The Target Description Language.

3.2. The Compiler 23

1 reg[lut,1,2](a:i8,en:bool) -> (y:i8) {
2 y:i8 = reg[0](a,en);
3 }
4

5 add[lut,1,2](a:i8,b:i8) -> (y:i8) {
6 y:i8 = add(a,b);
7 }
8

9 add_reg[lut,1,2](a:i8,b:i8,en:bool) -> (y:i8) {
10 t0:i8 = add(a,b);
11 y:i8 = reg[0](t0,en);
12 }

Figure 3.9: Example of an FPGA target described using the target description language (Figure 3.8).
This hypothetical target supports three assembly instructions (reg, add, and add_reg), which
are implemented using LUTs and have area and latency cost of 1 and 2 respectively.

In FPGA terms, a target is defined as a set of devices that support the same kinds of primitives,

and it is often referred as an FPGA family or series. Devices within a family can be programmed

with the same set of assembly instructions, and only differ on the number of instructions that

are capable to accommodate spatially. Moreover, devices only differ on the number of DSPs and

LUTs supported (columns and rows) and how their columns are arranged i.e., six columns of LUTs

followed by one column of DSPs.

Concretely, a target description is defined as a list of assembly definitions 𝑎𝑠𝑚 that represents

all the assembly instructions supported by a specific family. Each definition has an operation name

𝑛, a hardware resource 𝜌 that the operation occupies, and area and latency costs as integers 𝑖 , and

the (typed) inputs and outputs to the operation. The definition also has a body that defines its

semantics in terms of intermediate instructions. The body consists of a sequence of instructions

that resemble an intermediate language program, without cycles (DAG) or 𝑝𝑙𝑎𝑐𝑒 information.

The instruction selection algorithm uses the body and costs to determine when a fragment of

an intermediate language program can be replaced with an equivalent target-specific assembly

instruction.

Figure 3.9 lists an example target in this specification language. This hypothetical target

3.2. The Compiler 24

supports three assembly instructions: reg, add, and add_reg.

Instruction Selection

The steps for performing instruction selection include: data-flow graph (DFG) generation, tree-

partitioning and selection. Initially, the intermediate program is converted to a DFG, where nodes

represent instructions and inputs, and edges correspond to how data flow through the program.

Once the DFG is created, the graph is partitioned into trees of intermediate instructions. The

reason behind this partitioning is the fact that the DFG might contains cycles, which are not

supported by tree-covering algorithms. Because the Reticle definition of well-formed programs

excludes combinational cycles (see Section 3.1.3), we know that simply cutting on register opera-

tions is sufficient to make valid trees. The procedure for partitioning the DFG into trees consists

on finding the nodes in the graph that are root candidates to make a cut. There are two conditions

required to be a root node, (1) the node must be a compute instruction, and (2) its outgoing edges

must be greater than one or none; compute nodes without outgoing edges represent outputs,

meanwhile compute nodes with more than one outgoing edge can contain cycles and therefore

they are considered as root nodes.

After tree-partitioning, the next step is selection, whose goal is to transform and optimize these

trees of compute instructions into assembly instructions using the target description specification.

Instruction selection is performed using a linear-time tree-covering algorithm originally developed

for code generation in compilers [AG85]. The procedure is based on dynamic programming, using

previous solutions to create better solutions at every node while traversing the tree in a postorder

fashion. Then, the solutions (assembly instructions) from every tree are composed to produce

a final assembly program. The assembly instructions in this program have unknown locations

(coordinate holes) that are further optimized spatially (if necessary), and later resolved by the

instruction placement stage in the compiler for a specific device.

3.2. The Compiler 25

1 t0:i8 = muladd(a,b,in) @dsp(??,??);
2 t1:i8 = muladd(c,d,t0) @dsp(??,??);

DSP

a

b

c

co

y

ci

DSP

a

b

c

co

y

ci

DSP

a

b

c

co

y

ci

DSP

a

b

c

co

y

ci

a

b

c

in

d

t0

t1t1

t0

c

d

a

b

in

(a) Without cascading, regular rout-
ing

1 t0:i8 = muladd_co(a,b,in) @dsp(x,y);
2 t1:i8 = muladd_ci(c,d,t0) @dsp(x,y+1);

DSP

a

b

c

co

y

ci

DSP

a

b

c

co

y

ci

DSP

a

b

c

co

y

ci

DSP

a

b

c

co

y

ci

a

b

c

in

d

t0

t1t1
t0

c

d

a

b

in

(b) With cascading, high-speed routing

Figure 3.10: Example of optimizing the layout of an assembly program (a) using instruction cas-
cading. In (b), the unknown location specifiers (“??”) have become parametric layout expressions
over 𝑥 and 𝑦 coordinates. They imply the adjacency constraint in 𝑦, while still being place-able
almost anywhere. These constraints can be solved later, during the instruction placement step, for
a given device.

3.2.2 Layout Optimizations

After instruction selection, the Reticle compiler can further optimize assembly programs by

placing them into high-performance spatial layouts. Layout optimizations can be expressed as

constraints in the assembly language, using coordinate expressions. The relative placement of

target-specific operations can have a large impact on the efficiency of a program. For example,

by placing DSP-mapped operations within the same column, programs can take advantage of

DSP cascading: leveraging high-speed routing resources available within DSP columns [SGKK19].

Hardware support for DSP cascading is widely available in most architectures today, including

FPGAs designed by Intel [Int20c], Xilinx [Xil20a], Lattice [Lat20], and Achronix [Ach19].

Figure 3.10a shows an example containing a pair of muladd instructions without any layout

constraints. There are multiple valid layout candidates for this program; however, the version in

Figure 3.10b, which places the operations vertically adjacent in the same DSP column, is far faster

than one that scatters the operations across different columns or more distant within the same

column.

3.2. The Compiler 26

A Reticle assembly program can express this layout optimization as a layout constraint using

expressions for the placement coordinates on each instruction. By using x as the column for both

operations and y and y+1 as the row expression, the assembly program describes a placement of

neighboring DSPs. Moreover, the semantic of the muladd_co assembly instruction means that

not only the DSP is configured to perform the muladd operation but must use the cascade port

(co) instead of the default port (y) for the result. Similarly, the muladd_ci instruction uses the

cascade input port (ci) instead of the default port (c) for the partial sum. Notably, this and other

parameterizable layout optimizations can be ported within an FPGA family using our assembly

language, and later solved in the compilation pipeline i.e., instruction placement, for maximum

portability.

3.2.3 Instruction Placement

After instruction selection and layout optimizations have taken place, all assembly instructions

must be placed in a valid position on the target device. Therefore, the placement procedure consists

of converting a family-specific program (unresolved locations) into an equivalent device-specific

program (resolved locations) as described in Figure 3.6; finding a unique value for each coordinate

variable used, as well as filling in all wildcards (??).

Deciding a physical layout consists of mapping all assembly instructions to specific FPGA

resources, for a specific target FPGA. Each instruction will already have undergone selection, so

the task is reduced to finding a mapping for each LUT instruction to an available LUT slice and

each DSP instruction to an available DSP slice. All modern FPGAs are constructed as columns of

resources; the layout engine takes as input the layout of the target FPGA — specifically, which

columns are DSPs and LUTs, and how many entries or slices those columns have.

Notably, LUT column slices are different from DSP slices, due to the fact that LUT slices host

3.2. The Compiler 27

more than one programmable resource. We formulate the placement problem in terms of these

slices. To solve and optimize layout, we use the Z3 SAT solver [DMB08]. The layout problem is

expressed as a series of constraints for each instruction, which are fed to the solver. Z3 quickly

finds a valid coordinate assignment for each instruction, subject to the following constraints:

• The 𝑦-coordinate must match a column of the appropriate resource (DSP vs LUT);

• The 𝑥-coordinate must be between 0 and the maximum number of resources for that type

of column;

• If there is a relative constraint placed (as described in Subsection 3.2.2) such that this

instruction must follow another at 𝑦1, then the 𝑦-coordinate must be at 𝑦1 + 1;

• All instruction resources are unique (this instruction’s coordinates cannot match any other

instruction’s coordinates).

If Z3 cannot find a valid placement for every instruction, placement fails.

Once a valid placement is found for each instruction, the layout engine optionally performs

a series of shrinking passes as an optimization. It computes the highest 𝑥- and 𝑦-coordinate for

each resource type, takes this as a maximum area, then uses a binary search to successively re-run

placement with an artificially reduced area. If it succeeds, the next iteration shrinks again; if it

fails, binary search is repeated in the new interval. The end result is a more compact physical

layout on the FPGA.

3.2.4 Code Generation

The goal of code generation is to expand assembly and wire instructions into structural Verilog

with layout annotations (Figure 2.2c). Because of the work of our prior compiler passes, this step

3.2. The Compiler 28

is purely one of generation — we simply need to create valid Verilog that reflects our accumulated

decisions. While this transformation is more complex than a conventional assembly to a binary

format, it conceptually serves the same role — converting to a format that can be given to program

a hardware target.

Instructions have been selected, optimized, and placed; now, based on the resources previously

chosen for each instruction, they are expanded to a set of primitive LUTs or DSPs. DSP-based

instructions are converted into a DSP primitive with a proper configuration in terms of ports and

attributes to execute the desired instruction. On the other hand, LUT-based instructions require

configuring a LUT for every bit of computation. The reason for this is that these primitives produce

a single-bit output and not a full word. (For example, one 8-bit integer operation requires 8 LUTs.)

Additionally, there are instructions e.g., addition or subtraction that require other primitives also

present within a LUT slice such as carry chains. In any case, each primitive is annotated with the

coordinate result obtained in the instruction placement step.

Not every instruction will result in instantiating LUTs or DSPs. As we expect, wire operations

consume no area to execute (they simply require different wiring). These instructions are generated

as direct structural Verilog expressions without location information.

Chapter 4

Evaluation

In order to assess the efficiency of Reticle, we performed two separate evaluations. First, we

evaluate compute centric benchmarks such as linear algebra operators and coroutines. Then, we

discuss the implementation results of memory descriptions, and how these can impact programs

that are highly dependent on memory, specifically AES encryption.

4.1 Linear algebra and coroutine benchmarks

We evaluated Reticle by generating programs for linear algebra operators and control coroutines

(Section 4.1.1), and then compiled them to structural Verilog with layout annotations (Figure 2.2c)

using the compilation pipeline described in Subsection 3.2.1. We also compiled these benchmarks to

two behavioral Verilog baselines for a standard vendor toolchain, and compared their compilation

time and the quality of the resulting hardware.

Furthermore, the two behavioral Verilog baselines include: (1) one using standard, portable

Verilog, and (2) an advanced version using vendor-specific synthesis hints. The latter represents

the use of ad hoc and vendor-specific Verilog language extensions that can tune the toolchain to

29

4.1. Linear algebra and coroutine benchmarks 30

64 128 256 512
Size

10
0

10
1

10
2

C
om

pi
le

r s
pe

ed
up

 (l
og

)

64 128 256 512
Size

0

1

2

3

R
un

-ti
m

e
sp

ee
du

p

64 128 256 512
Size

0

1000

2000

3000

4000

LU
Ts

 u
se

d

64 128 256 512
Size

0

100

200

300

D
S

P
s

us
ed Lang

base
hint
reticle

(a) tensoradd

5x3 5x9 5x18 5x36
Size

10
0

10
1

10
2

C
om

pi
le

r s
pe

ed
up

 (l
og

)

5x3 5x9 5x18 5x36
Size

0.0

0.5

1.0

1.5

R
un

-ti
m

e
sp

ee
du

p

5x3 5x9 5x18 5x36
Size

0

2000

4000

6000

8000

LU
Ts

 u
se

d
5x3 5x9 5x18 5x36

Size

0

50

100

150

D
S

P
s

us
ed Lang

base
hint
reticle

(b) tensordot

3 5 7 9
Size

10
0

10
1

10
2

C
om

pi
le

r s
pe

ed
up

 (l
og

)

3 5 7 9
Size

0.0

0.2

0.4

0.6

0.8

1.0

R
un

-ti
m

e
sp

ee
du

p

3 5 7 9
Size

0

10

20

30

40

50

60

LU
Ts

 u
se

d

3 5 7 9
Size

−0.04

−0.02

0.00

0.02

0.04

D
S

P
s

us
ed Lang

base
hint
reticle

(c) fsm

Figure 4.1: Compiler, run-time, and utilization results of three benchmarks, tensoradd (a),
tensordot (b), and fsm (c), when using behavioral Verilog (base), behavioral Verilog with DSP
hints (hint), and Reticle (reticle).

do a better job of mapping the program to the FPGA’s fixed-function resources, and it represents

significant implementation effort beyond standard RTL design.

We generate these baselines by transforming Reticle programs using translation backends that

emit code resembling standard behavioral Verilog. We use a Xilinx xczu3eg-sbva484-1 FPGA, with

360 DSPs and 71K LUTs, as a target device. For the baseline RTL toolchain, we use Xilinx’s Vivado

2020.1.

4.1. Linear algebra and coroutine benchmarks 31

4.1.1 Benchmark Description

We use three benchmarks, intended to represent three distinct facets of Reticle: a tensor addition

kernel tensoradd demonstrates vectorization, a dot product implementation tensordot demon-

strates fused operations and cascading, and a finite state machine fsm demonstrates support for

control-oriented programs. Each benchmark is parameterized with four sizes.

The tensoradd benchmark consists of an element-wise summation over four different one-

dimensional tensor sizes (128, 256, 512, 1024). We pipelined the addition operation with register

instructions to get the best possible performance available in DSP primitives. Next, tensordot

consists of five systolic arrays [Kun82] performing the dot operation over five pairs of one-

dimensional tensors of four different sizes (3, 9, 18, 36). Finally, fsm is based on a coroutine,

implemented as a hardware finite state machine (FSM), that ranges over some number of states

(3, 5, 7, 9) based on input values. The motivation is to show that Reticle programs can describe

control-oriented programs normally found in hardware processor schedulers and protocols. More

importantly, these programs can only be implemented on LUTs, not DSPs: conditional branching

requires multiplexing (the mux instruction in Reticle), which it is implemented using only LUT-

based logic.

4.1.2 Results Comparison

Compiler speed

The leftmost plots in Figure 4.1 compare the compilation time for Vivado (labeled base for standard

Verilog and hint for directive-laden Verilog) and our compiler (reticle), when compiling and

placing (layout) programs for every benchmark described in Section 4.1.1. The Reticle compiler

is between 10 and 100 times faster than Vivado. By starting with programs at a lower level of

abstraction, the Reticle compiler is solving a simpler problem than a traditional HDL toolchain

4.1. Linear algebra and coroutine benchmarks 32

like Vivado. The Reticle compiler focuses exclusively on selecting and configuring the FPGA’s

coarse-grained heterogeneous resources; an RTL toolchain also attempts to perform bit-level

logic synthesis [BM10] to transform behavioral descriptions into structural realizations, which is

important for traditional circuit generation but does not directly affect the mapping to modern

units like DSPs.

The compilation performance gains in linear algebra benchmarks (tensoradd, tensordot)

monotonically decreases as the sizes of the tensors grow, which translates into more DSPs to be

placed by Reticle’s SMT-based layout mechanism. On the other hand, the speedup obtained when

compiling the fsm benchmark is somewhat average due to the fact the number of used LUTs are

relatively low.

Run-time performance

The second plots in Figure 4.1 show run-time speedup for Reticle over Vivado, which is the ratio

between the running times for the generated FPGA-based programs from the different compilers.

Here, a running time is the critical path of the hardware circuit, which determines the maximum

clock frequency at which hardware operates. For tensoradd, Reticle-generated programs are

faster than the standard Vivado baseline for all tensor sizes because of the performance advantages

of using the hardened units in DSPs compared to LUT-based logic. Vivado’s heuristics fail to

exploit DSPs at all using a pure behavioral description (base); Reticle, in contrast, maps the

program to DSP hardware deterministically.

Surprisingly, even though there is hardware support for vectorization in every DSP of Xilinx

FPGAs, Vivado fails to use this feature when using behavioral representation even in the presence

of compiler hints. Vivado fails to exploit vectorization even for this simple, dependency-free

parallel workload. Reticle successfully selects vectorized DSP configurations in every case.

While vectorized configurations make more area-efficient use of DSP resources, they are

4.1. Linear algebra and coroutine benchmarks 33

slightly slower than scalar operations on DSPs. This phenomenon explains why the hint-laden

Verilog versions can be slightly faster than Reticle for some sizes: when sufficient DSP resources

exist on a target, Vivado can heuristically select scalar operations (at tensor sizes 64, 128, and

256). However, Vivado’s heuristic approach fails when the program grows larger, i.e., at a tensor

size of 512: a scalar configuration exhausts all the DSPs on the target, and the toolchain silently

falls back to using slower LUT-based implementations instead. At this latter configuration, the

Reticle-generated vectorized program is nearly 3× faster than the Verilog program, both with and

without hints. A differently annotated Reticle program could express the scalar configuration as

well; we focus specifically on the vectorized version here to show the differences with a traditional

HDL toolchain.

Next, the tensordot benchmark shows the benefits of cascading DSPs (Subsection 3.2.2). The

latest version of Vivado (2020.1) is capable of applying this type of cascade optimization when

using hints, similar to our compiler, at the expense of compilation time (up to 100 times slower

in the worst case). The performance is the same for Reticle and Verilog with hints, and both

outperform plain Verilog.

Lastly, the fsm benchmark shows the performance of control-oriented programs when mapped

to LUTs. This kind of control logic is a kind of pathological case for Reticle: there is no way to use

hardened logic resources like DSPs, which are Reticle’s main target, and traditional HDL toolchains

use complex logic synthesis optimizations to minimize the number of LUTs they require. Our aim

with this benchmark is to show that Reticle can nonetheless support this kind of synthesis and

that the performance is not much worse from a heavily engineered behavioral HDL toolchain.

In this case, Reticle produces fsm programs that are slower than Verilog’s results. While the

Reticle compiler focuses on extracting peak performance from hardened logic units like DSPs, it

nonetheless supports LUT-based compilation with much faster compilation and some performance

penalty.

4.2. Memory Benchmarks 34

Utilization

The final two plots in the rows of Figure 4.1 compare the FPGA resources used by the generated

programs. The aim here is to show how the difference in the resource binding policies for Reticle

versus Verilog. With Verilog, Vivado’s job is to search for any implementation that matches the

behavioral description—any resource-binding hints are “soft” and the compiler can ignore them. In

contrast, Reticle placement and resource annotations are “hard”: the compiler predictably allocates

exactly the kind of resource that the programmer requested.

The benchmarks’ resource utilization reveals this unpredictability in Vivado as the sizes vary.

In Reticle, both linear algebra benchmarks use vector instructions and chained instructions (mul

followed by an add) that the compiler deterministically maps to DSPs. Vivado performs a heuristic

mapping based on the availability of resources, resulting on unpredictable behavior that, for

example, silently replaces DSPs with LUTs in the largest size of tensoradd.

4.2 Memory Benchmarks

In addition to compute centric benchmarks, we also evaluated the efficiency of Reticle when target-

ing memory primitives available in FPGAs. Furthermore, we performed two different experiments

that highlight the impact of efficient memory implementations. First, we assessed two read-only

memory implementations and compared them against the srom instruction available in Reticle.

Then, we evaluated how these memories can affect a larger program such as a cryptographic

encryption protocol (AES) implementation.

4.2. Memory Benchmarks 35

1 reg [15:0] ram;
2 always @(posedge clock) begin
3 case({addr, reset})
4 {1’d0, 1’b0}: ram <= 16’h7FEE;
5 {1’d1, 1’b0}: ram <= 16’h7BEE;
6 default: ram <= 16’d0;
7 endcase
8 end

(a) Baseline.

1 reg [15:0] ram [1:0];
2 initial begin
3 ram[0] = 16’h7FEE;
4 ram[1] = 16’h7BEE;
5 end
6

7 reg [15:0] data;
8 always @(posedge clock) begin
9 if (reset) begin
10 data <= 0;
11 end else begin
12 data <= ram[addr];
13 end
14 end

(b) PyRTL (generated).

1 data:i16 = srom(addr) @bram;

(c) Reticle.

Figure 4.2: Example of three semantically equivalent read-only memory (ROM) implementations.
The values of srom instructions in Reticle are provided in a separate configuration file.

4.2.1 Read-only Memories

Read-only memories can be described in multiple ways, using behavioral Verilog. For example,

Figure 4.2 shows three different implementations that are semantically equivalent, two using

behavioral Verilog and another one based on Reticle. Every memory can store up to two elements

of 16-bits. The baseline reference implementation described in Figure 4.2a was taken from the HDL

coding techniques found in the Xilinx Vivado user guide [Xil21b]. The other Verilog implementation

shown in Figure 4.2b was generated from an embedded hardware DSL called PyRTL [DTS20]. In

contrast to Verilog implementations, there is only one mechanism to describe these memories

in the Reticle language, and it is based on the srom instruction. This instruction is described in

Figure 4.2c.

While Verilog allows programmers to express different memory behavior, using storage

elements such as registers, the Vivado synthesizer does not guarantee predictable results in

4.2. Memory Benchmarks 36

8 16 32 64 12
8

25
6

51
2

10
24

20
48

0

2

4

6

8

10

Nu
m

be
r o

f r
es

ou
rc

es

(a) Baseline
lut
bram

8 16 32 64 12
8

25
6

51
2

10
24

20
48

0

2

4

6

8

10
(b) PyRTL (generated)

lut
bram

8 16 32 64 12
8

25
6

51
2

10
24

20
48

0

2

4

6

8

10
(c) Reticle

lut
bram

8 16 32 64 12
8

25
6

51
2

10
24

20
48

Number of elements

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Da
ta

 p
at

h
de

la
y

(n
s)

8 16 32 64 12
8

25
6

51
2

10
24

20
48

Number of elements

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

8 16 32 64 12
8

25
6

51
2

10
24

20
48

Number of elements

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Figure 4.3: Resource utilization and data-path delay (performance) for three memory implemen-
tations described in Figure 4.2 for multiple number of elements.

terms of resources and performance. For example, Figure 4.3 shows the resource utilization and

data-path delay for memories of different sizes (number of elements). First, we can see how

resources are mapped to either LUTs or BRAMs depending on the number of elements for the two

Verilog implementations (a, b) compared to Reticle’s (c), which always maps to the same primitive.

Interestingly, this primitive mapping affects directly the performance of the final program. For

example, LUTs can only store few bits compared to BRAMs, requiring more primitives to store the

same amount of data. Therefore, LUT-based memories consume more routing resources, which

translates into longer data-path delays or worse performance. Conversely, the memory instruction

in Reticle results in the same performance across multiple sizes, because it always uses the same

resource (BRAMs).

4.2. Memory Benchmarks 37

Name LUTs (%) LRAMs (%) BRAMs (%) Data Path Delay (ns)

PyRTL 7.29 4.49 0 36.46

PyRTL + Reticle 7.29 0 57.64 6.93

Figure 4.4: Evaluating Reticle read-only memory instruction (srom) for an AES encryption imple-
mentation using the Xilinx Kria board.

4.2.2 AES Encryption

Now that we understand how different memory descriptions can change the resource utilization

and performance metrics, we can discuss how Reticle’s memory instruction srom can improve a

more involved program such as AES encryption. Concretely, we evaluated two implementations

based on PyRTL [DTS20]. The only difference between the two is that one implementation uses

Reticle’s memory instruction srom, while the other does not. This implementation uses read-only

memories to implement the substitution box (SBOX) and multiplication tables for Galois fields.

Finally, we used the Xilinx Kria board for evaluating these two implementations.

Table 4.4 shows the percentage of used resources (LUTs, LRAMs, and BRAMs) for the two

implementations. Furthermore, the percentage of LUTs represents mapped compute operations,

whereas LRAMs shows how many LUTs were used for memory operations. We can see how

the use of Reticle’s srom instruction results in the utilization of 36.46% (BRAMs) available in the

device compared to the Verilog generated by PyRTL, which uses only 4.49% (LRAMs). The benefit

of choosing BRAMs over LUTs represents a 5× speedup in the whole program for a cost of 36.46%

(BRAMs) available in the device.

Chapter 5

Related Work

In this dissertation, we focus on the tasks of designing programming abstractions and evaluating

efficient compilation techniques for modern FPGAs. We explore the architectural features, based

on compute and memory operations, present in FPGAs today and show how these operations

can be expressed more efficiently in an intermediate language called Reticle. Additionally, we

demonstrate how to compile programs written in this language into FPGA primitives, including

their physical locations.

Interestingly, there has been a large amount of work done in the space of languages and

compilers for FPGAs. Programs written for these reconfigurable devices have been traditionally

described using hardware description languages, and compiled into FPGA primitives by a process

called hardware synthesis. First, we discuss work on programming languages for the task of

hardware programming. Then, we talk about prior work on compiling hardware descriptions,

including layout, for FPGAs.

38

5.1. Programming Languages for FPGAs 39

5.1 Programming Languages for FPGAs

In the early days, the main purpose for FPGAs was emulating arbitrary hardware circuits. Hard-

ware designers used FPGAs to prototype their architectures i.e., processors and evaluate software

programs running on top it, due to the fact that simulating complex hardware designs i.e., CPUs

took considerable amount of computing time [TQC
+
15]. Therefore, the languages used for pro-

gramming FPGAs have been always related to the ones used for designing a silicon device (ASIC),

regardless of all the architectural advancements in FPGAs over the last three decades [Tri15, Xil20c].

The following discussion is based on work done in the area of programming languages for FPGAs.

5.1.1 Hardware Description Languages

The Verilog language was designed back in 1984, and to this date, it is the most widely used

language for programming hardware [FMG
+
20]. Originally, Verilog was a proprietary HDL that

led to the creation of VHDL, a royalty-free hardware language that became an IEEE standard in

1987 [FMG
+
20]. The Verilog language, however, eventually dominated the market and became

the standard source language for describing hardware that every FPGA toolchain uses today.

Therefore, other languages designed over the last couple of decades had to eventually be compiled

down to Verilog in order to compile a binary that can program the device. Interestingly, the

design of the Verilog language was highly inspired by C [FMG
+
20] but adapted to capture circuits

semantics. Specifically, the programming abstraction is based on data operations flowing through

registers known as the register-transfer level (RTL) abstraction. Furthermore, this abstraction

requires programmers to define the behavior of a given hardware circuit for every clock cycle.

A range of recent domain specific languages, based on the RTL abstraction, have emerged aim-

ing to improve productivity compared to Verilog. For example, Chisel [BVR
+
12], PyRTL [DTS20],

and PyMTL [JPOB20] were designed to improve the hardware programming experience by lever-

5.1. Programming Languages for FPGAs 40

aging features available in the host language such as collections, decorators, and type systems. On

the other hand, there is work on automating the scheduling complexity required by RTL-based

languages, called Bluespec [Nik04]. This language provides a simpler concurrency model, based

on rules that are scheduled by a compiler instead of a programmer. The design goal of the Blue-

spec language is to allow formal reasoning without compromising performance of the resulting

hardware programs [BPCCA20].

All of these languages, however, target the semantics of the Verilog language, which were

designed to express behavioral descriptions of low-level circuits. This approach works great

when designing a silicon chip, but it falls short for efficiently programming specialized hardware

primitives in a device, which it is the case for FPGAs. For example, there is no mechanism available

to express vector operations behaviorally in the Verilog language, therefore, programs written in

Verilog cannot use vector units (SIMD) available in state-of-the-art FPGAs. In this work, I focus

on designing programming abstractions, specifically for FPGAs, that can be used to address the

expressiveness challenges present in traditional HDLs.

5.1.2 Layout Languages

Inspired by functional geometry [Hen82], muFP was the first hardware language that proposed a

different approach to conventional hardware description languages. The language was based on

functional programming and let programmers describe not only behavior but also the layout of

hardware programs. This idea of combining behavior and layout was later explored for FPGAs in

a language called Lava [BCSS98]. The Lava language employs first order functions to describe

basic operations, based on LUT primitives, that are then composed using high-order functions to

efficiently express complex hardware programs. The approach demonstrated to be particularly

useful for achieving great performance on highly structured designs, compared to traditional

5.1. Programming Languages for FPGAs 41

synthesis and layout approaches [Sin11].

In this work, however, my approach is based on splitting the task of expressing behavior

and layout in two separate languages instead of using a single one. The reason behind is that

separating the program behavior from layout allows program to be expressed independently of the

target, since layout requires information about the supported operations and physical locations

of resources. More importantly, compilation can be efficiently performed in finer grained steps,

solving one concern at the time, instead of a single monolithic transformation task.

5.1.3 High-level Languages

A range of recent languages have aimed to improve the programmability of hardware accelerators

by using a higher-level abstractions compared to RTL languages. One work in this area is called

Spatial [KFP
+
18] which proposes the use of parallel patterns, including control, memory hierarchy,

and host interfaces, to program FPGAs and CGRAs. Another area of work focused on creating

novel type systems for expressing hardware-level concerns such as scheduling [DFH
+
20] and

interfaces [dMV19]. Moreover, Dahlia [NAT
+
20] demonstrated how to reduce the performance

unpredictability of high-level programs by modeling consumable hardware using a time-sensitive

affine type system. This category of work is centered on productive high-level programming,

whereas the programming abstractions proposed in this work are designed for compilers targeting

FPGA architectures instead of programmers.

5.1.4 Intermediate Representations

The number of intermediate representations focusing on hardware programming have increased

over the last couple of years, due to the ubiquity of hardware accelerators. Interestingly, there

are several work on IRs operating at different level of abstraction and addressing the challenge of

5.2. Compilation Techniqes for FPGAs 42

transforming a program specification into a hardware description. A novel approach in this area is

Calyx [NTLS21] which is an intermediate language for accelerator-designs [Adr21] that is based

on two languages: one for describing control and another for structure. This representation enables

certain machine-driven optimizations and analysis such as resource sharing and register liveness

that are critical for efficiently lowering high-level program specifications into hardware. Addition-

ally, other lower-level IRs have also been proposed such as FIRRTL [IKL
+
17] and LLHD [SKGB20].

The FIRRTL language was created as a compiler target for the Chisel language. The language aims

to provide a representation for performing optimizations and analysis such as constant folding

and resource estimation, before producing a Verilog implementation. The LLHD IR, on the other

hand, was designed to model arbitrary hardware behavior, including timing, that matched most of

the features available in the Verilog standard aiming verification and synthesis.

Similarly to related work on hardware description languages, most of these IRs are designed

around the semantics of the Verilog language, dismissing the technological advances in modern

FPGA architectures [Ivo06]. Conversely, the programming abstractions described in this work

aim to solely cover operations supported by FPGAs, rather than focusing on supporting every

possible hardware operation required for designing arbitrary silicon chips.

5.2 Compilation Techniques for FPGAs

FPGA programs are written (or compiled to) the Verilog language, because Verilog is the common

interchange format for FPGA toolchains. These tools perform the arduous task of transforming

arbitrary hardware descriptions into primitives that can fit into an FPGA target. The abstraction

gap between Verilog descriptions and FPGA hardware is enormous [Adr19], requiring amulti-stage

compilation process [VMS
+
21]. In the following discussion, I cover related work on compilation

techniques used throughout this process.

5.2. Compilation Techniqes for FPGAs 43

5.2.1 Hardware Synthesis

The process of translating a behavioral specification written in a hardware description language

i.e., Verilog into a netlist of FPGA primitives is known as hardware synthesis [LSB05]. First,

the hardware description is transformed into a network of boolean operations, or gates, that is

then optimized using logical equivalences to minimize the number of operations—and therefore

resources [Mic94]. Next, these boolean operations are mapped to FPGA primitives by a step called

technology mapping [MCB07]. There are several ideas explored in the area of hardware synthesis

for FPGAs over the last three decades [Tri15], however, my work focused on leveraging software

compilation techniques i.e., instruction selection instead of logic optimizations and unpredictable

metaheuristics used in technology mapping [LSB05].

5.2.2 Instruction Selection

While it is not mainstream, other compilers have used instruction selection and similar techniques

to optimize hardware programs [Joh83]. For example, a compiler based on silicon instruction

sets [KW88] powered the design of six chips at IBM, and a similar approach has been applied

to FPGAs [CCDW98]. However, this line of work primarily targets compound logic functions

used in silicon chips i.e., AND-OR-INVERT, and even the FPGA-based variants focus solely on

programming LUTs. Previous work does not attempt to program recent specialized units i.e.,

DSPs, because FPGAs at that time were mainly based on LUTs. In this work, I show how to use

instruction selection to optimize programs not only for DSPs and LUTs but also for memory

primitives including registers and SRAMs.

5.2. Compilation Techniqes for FPGAs 44

5.2.3 Layout Compilation

Historically, the task of compiling a program layout for an FPGA has always been influenced by

hardware synthesis. For example, a layout engine operates over low-level primitives instead of

high-level operations, because this is the standard output of a conventional synthesizer [CC17].

The layout process consists of two intertwined steps: one called placement that finds a legal

location for every primitive in the program and another one called routing that searches for the

best possible path (wiring) between primitives [CC17]. Although there are some efforts on open-

sourcing routing for some FPGA architectures [MEB
+
20], the access to this feature is closed-source

and not widely supported by toolchains [Xil21a]. Therefore, the layout compilation technique

proposed in this work focuses only on placement. Specifically, I focus on evaluating the benefits

of laying out programs using a more coarse-grained abstraction based on the Reticle’s assembly

language.

Chapter 6

Conclusion

The work described in this thesis presents an alternative approach to program state-of-the-art

FPGAs. The programming abstractions and compilation techniques covered in this work aim to

provide a better foundation for FPGA programming.

In this thesis, I present a new low-level abstraction for FPGA programming, called Reticle, that

captures high-performance operations i.e., SIMD available in recent architectures and provide a

mechanism to bind operations to primitives if needed. Additionally, I show how this intermediate

abstraction is lowered to a target-dependent representation, also known as assembly language,

using a standard and faster compilation technique called instruction selection. Furthermore,

Reticle’s assembly language can be used to spatially accommodate operations into the FPGA fabric.

Therefore, this work shows a viable alternative to traditional FPGA synthesis and placement with

deterministic results and compile times in seconds instead of days.

45

6.1. Future work 46

6.1 Future work

There are several areas of exciting future work to be done in the space of Reticle-like compilation

for FPGAs. One area that I am particularly interested in is related to generating target descriptions

from architectural descriptions. This is particularly important because newer FPGA architectures

can be supported without any human intervention. Today, the instruction selector used in Reticle

is completely target independent, requiring only a target description for every FPGA backend.

Unfortunately, these descriptions are implemented by hand and require an expert on the target

architecture for generating optimal implementations.

One notable difference between Reticle and traditional hardware synthesis is that Reticle does

not decompose arithmetic operations into boolean logic to search for a global optimum. Instead,

Reticle aims to find or select the best possible instruction implementations, based on a target

description that was derived offline or before the actual compilation happen. This means that

search-based approaches based on program synthesis or learning techniques can be used to discover

newer and more efficient implementations compared to the ones we have today.

Another interesting research opportunity that Reticle enables, and can be framed as a compila-

tion problem, is related to the layout of FPGA primitives. Normally, the placement of primitives is

done after the structure of the source program is completely destroyed. This means that current

heuristics place primitives instead of operations, making it really hard to find a feasible solution

fast on large devices. Reticle’s assembly language offers an alternative to this approach by provid-

ing a language with layout information that allows operations to be placed instead of primitives,

reducing considerably the search-space and making possible faster placement. Future work can

explore further the idea of placing operations instead of primitives and evaluate performance and

compilation time tradeoffs for a set of workloads and FPGA targets.

Bibliography

[Ach19] Achronix. Speedster7t IP Component Library User Guide. https:
//www.achronix.com/sites/default/files/docs/Speedster7t_IP_
Component_Library_User_Guide_UG086.pdf, 2019.

[Adr19] Adrian Sampson. FPGAs Have the Wrong Abstraction. https://www.cs.cornell.
edu/~asampson/blog/fpgaabstraction.html, 2019.

[Adr21] Adrian Sampson. From Hardware Description Languages to Accelerator Design

Languages. https://www.sigarch.org/hdl-to-adl/, 2021.

[AG85] Alfred V. Aho and Mahadevan Ganapathi. Efficient tree pattern matching (extended

abstract): An aid to code generation. In Proceedings of the 12th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL ’85, page 334–340, New

York, NY, USA, 1985. Association for Computing Machinery.

[AI19] Mikhail Asiatici and Paolo Ienne. Stop crying over your cache miss rate: Handling

efficiently thousands of outstanding misses in fpgas. In Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA ’19,

page 310–319, New York, NY, USA, 2019. Association for Computing Machinery.

[BC13] Thomas Braibant and Adam Chlipala. Formal verification of hardware synthesis. In

Natasha Sharygina and Helmut Veith, editors, Computer Aided Verification, pages
213–228, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[BCSS98] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: Hardware

design in haskell. In Proceedings of the Third ACM SIGPLAN International Conference
on Functional Programming, ICFP ’98, page 174–184, New York, NY, USA, 1998.

Association for Computing Machinery.

[BM10] Robert Brayton and Alan Mishchenko. Abc: An academic industrial-strength verifi-

cation tool. In Tayssir Touili, Byron Cook, and Paul Jackson, editors, Computer Aided
Verification, pages 24–40, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

47

https://www.achronix.com/sites/default/files/docs/Speedster7t_IP_Component_Library_User_Guide_UG086.pdf
https://www.achronix.com/sites/default/files/docs/Speedster7t_IP_Component_Library_User_Guide_UG086.pdf
https://www.achronix.com/sites/default/files/docs/Speedster7t_IP_Component_Library_User_Guide_UG086.pdf
https://www.cs.cornell.edu/~asampson/blog/fpgaabstraction.html
https://www.cs.cornell.edu/~asampson/blog/fpgaabstraction.html
https://www.sigarch.org/hdl-to-adl/

BIBLIOGRAPHY 48

[BPCCA20] Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind. The essence of

bluespec: A core language for rule-based hardware design. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2020, page 243–257, New York, NY, USA, 2020. Association for Computing

Machinery.

[BVR
+
12] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis, J. Wawrzynek, and

K. Asanović. Chisel: Constructing hardware in a scala embedded language. In DAC
Design Automation Conference 2012, pages 1212–1221, 2012.

[CC17] Shih-Chun Chen and Yao-Wen Chang. Fpga placement and routing. In 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages 914–921, 2017.

[CCDW98] Timothy J. Callahan, Philip Chong, André DeHon, and John Wawrzynek. Fast

module mapping and placement for datapaths in FPGAs. In Proceedings of the 1998
ACM/SIGDA Sixth International Symposium on Field Programmable Gate Arrays, FPGA
’98, page 123–132, New York, NY, USA, 1998. Association for Computing Machinery.

[CNM
+
18] Philip Colangelo, Nasibeh Nasiri, Asit Mishra, Eriko Nurvitadhi, Martin Margala, and

Kevin Nealis. Exploration of low numeric precision deep learning inference using

intel fpgas, 2018.

[DFH
+
20] David Durst, Matthew Feldman, Dillon Huff, David Akeley, Ross Daly, Gilbert Louis

Bernstein, Marco Patrignani, Kayvon Fatahalian, and Pat Hanrahan. Type-directed

scheduling of streaming accelerators. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2020, page
408–422, New York, NY, USA, 2020. Association for Computing Machinery.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Proceedings
of the Theory and Practice of Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’08/ETAPS’08, page
337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

[dMV19] Jan de Muijnck-Hughes and Wim Vanderbauwhede. A typing discipline for hardware

interfaces. In Alastair F. Donaldson, editor, 33rd European Conference on Object-
Oriented Programming, ECOOP 2019, July 15-19, 2019, London, United Kingdom, volume

134 of LIPIcs, pages 6:1–6:27. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2019.

[DTS20] D. Dangwal, G. Tzimpragos, and T. Sherwood. Agile hardware development and

instrumentation with pyrtl. IEEE Micro, 40(4):76–84, 2020.

BIBLIOGRAPHY 49

[FMG
+
20] Peter Flake, Phil Moorby, Steve Golson, Arturo Salz, and Simon Davidmann. Verilog

hdl and its ancestors and descendants. Proc. ACM Program. Lang., 4(HOPL), June
2020.

[FOP
+
18a] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo, S. Alkalay,

M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel, A. Sapek, G. Weisz, L. Woods,

S. Lanka, S. K. Reinhardt, A. M. Caulfield, E. S. Chung, and D. Burger. A configurable

cloud-scale dnn processor for real-time ai. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), pages 1–14, 2018.

[FOP
+
18b] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo, S. Alkalay,

M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel, A. Sapek, G. Weisz, L. Woods,

S. Lanka, S. K. Reinhardt, A. M. Caulfield, E. S. Chung, and D. Burger. A configurable

cloud-scale dnn processor for real-time ai. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), pages 1–14, 2018.

[Hen82] Peter Henderson. Functional geometry. In Proceedings of the 1982 ACM Symposium
on LISP and Functional Programming, LFP ’82, page 179–187, New York, NY, USA,

1982. Association for Computing Machinery.

[IKL
+
17] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert Magyar,

Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, and Jonathan Bachrach.

Reusability is firrtl ground: Hardware construction languages, compiler frameworks,

and transformations. In Proceedings of the 36th International Conference on Computer-
Aided Design, ICCAD ’17, page 209–216. IEEE Press, 2017.

[Int20a] Intel. Intel Agilex FPGA Architecture. https://www.intel.
com/content/dam/www/programmable/us/en/pdfs/literature/wp/
intel-agilex-fpgas-deliver-game-changing-combination-wp.pdf, 2020.

[Int20b] Intel. Intel HLS Compiler: Fast Design, Coding, and Hardware. https://www.
intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/
wp-01274-intel-hls-compiler-fast-design-coding-and-hardware.pdf,
2020.

[Int20c] Intel. Intel Stratix 10 Variable PrecisionDSP Blocks User Guide.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/hb/stratix-10/ug-s10-dsp.pdf, 2020.

[Ivo06] Ivo Bolsens. Programming Modern FPGAs. http://xilinx.eetrend.com/
files-eetrend-xilinx/forum/201703/11148-29110-bolsens.pdf, 2006.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/intel-agilex-fpgas-deliver-game-changing-combination-wp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/intel-agilex-fpgas-deliver-game-changing-combination-wp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/intel-agilex-fpgas-deliver-game-changing-combination-wp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01274-intel-hls-compiler-fast-design-coding-and-hardware.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01274-intel-hls-compiler-fast-design-coding-and-hardware.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01274-intel-hls-compiler-fast-design-coding-and-hardware.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-dsp.pdf
http://xilinx.eetrend.com/files-eetrend-xilinx/forum/201703/11148-29110-bolsens.pdf
http://xilinx.eetrend.com/files-eetrend-xilinx/forum/201703/11148-29110-bolsens.pdf

BIBLIOGRAPHY 50

[Joh83] S. C. Johnson. Code generation for silicon. In Proceedings of the 10th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, POPL ’83, page 14–19,

New York, NY, USA, 1983. Association for Computing Machinery.

[JPOB20] S. Jiang, P. Pan, Y. Ou, and C. Batten. Pymtl3: A python framework for open-source

hardware modeling, generation, simulation, and verification. IEEE Micro, 40(4):58–66,
2020.

[KFP
+
18] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Hadjis,

Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis, and Kunle

Olukotun. Spatial: A language and compiler for application accelerators. SIGPLAN
Not., 53(4):296–311, June 2018.

[Kun82] H. T. Kung. Why systolic architectures? Computer, 15(1):37–46, January 1982.

[KW88] K. Keutzer and W. Wolf. Anatomy of a hardware compiler. In Proceedings of the ACM
SIGPLAN 1988 Conference on Programming Language Design and Implementation, PLDI
’88, page 95–104, New York, NY, USA, 1988. Association for Computing Machinery.

[Lat20] Lattice. sysDSP Usage Guide for Nexus Platform. https://www.latticesemi.com/
view_document?document_id=52791, 2020.

[LK18] C. Lavin and A. Kaviani. Rapidwright: Enabling custom crafted implementations

for fpgas. In 2018 IEEE 26th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 133–140, 2018.

[LSB05] A. Ling, D.P. Singh, and S.D. Brown. Fpga technology mapping: a study of optimality.

In Proceedings. 42nd Design Automation Conference, 2005., pages 427–432, 2005.

[MCB07] A. Mishchenko, S. Chatterjee, and R. K. Brayton. Improvements to technology

mapping for lut-based fpgas. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 26(2):240–253, 2007.

[MEB
+
20] Kevin E. Murray, Mohamed A. Elgammal, Vaughn Betz, Tim Ansell, Keith Roth-

man, and Alessandro Comodi. Symbiflow and vpr: An open-source design flow for

commercial and novel fpgas. IEEE Micro, 40(4):49–57, 2020.

[Mic94] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill

Higher Education, 1st edition, 1994.

[NAT
+
20] Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore Bauer, Yuwei

Ye, Apurva Koti, Adrian Sampson, and Zhiru Zhang. Predictable accelerator design

with time-sensitive affine types. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2020, page 393–407,
New York, NY, USA, 2020. Association for Computing Machinery.

https://www.latticesemi.com/view_document?document_id=52791
https://www.latticesemi.com/view_document?document_id=52791

BIBLIOGRAPHY 51

[Nik04] R. Nikhil. Bluespec system verilog: efficient, correct rtl from high level specifications.

In Proceedings. Second ACM and IEEE International Conference on Formal Methods and
Models for Co-Design, 2004. MEMOCODE ’04., pages 69–70, 2004.

[NTLS21] Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. A compiler infras-

tructure for accelerator generators. In Proceedings of the 26th ACM International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS 2021, page 804–817, New York, NY, USA, 2021. Association for Computing

Machinery.

[PCC
+
14] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Constan-

tinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan

Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati, Joo-Young Kim,

Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong,

Phillip Yi Xiao, and Doug Burger. A reconfigurable fabric for accelerating large-scale

datacenter services. SIGARCH Comput. Archit. News, 42(3):13–24, June 2014.

[RBL
+
09] Mariusz Rawski, Grzegorz Borowik, Tadeusz Luba, Pawel Tomaszewicz, and Bogdan J.

Falkowski. Logic synthesis strategy for fpgas with embedded memory blocks. In 2009
MIXDES-16th International Conference Mixed Design of Integrated Circuits Systems,
pages 296–301, 2009.

[RF16] B. Ronak and S. A. Fahmy. Mapping for maximum performance on fpga dsp blocks.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
35(4):573–585, 2016.

[RT06] R. B. Reese and M. A. Thornton. Introduction to Logic Synthesis using Verilog HDL.
2006.

[SF92] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-

passing style. In Proceedings of the 1992 ACM Conference on LISP and Functional
Programming, LFP ’92, page 288–298, New York, NY, USA, 1992. Association for

Computing Machinery.

[SGKK19] A. Samajdar, T. Garg, T. Krishna, and N. Kapre. Scaling the cascades: Interconnect-

aware fpga implementation of machine learning problems. In 2019 29th International
Conference on Field Programmable Logic and Applications (FPL), pages 342–349, 2019.

[Sin11] Satnam Singh. The rloc is dead - long live the rloc. In Proceedings of the 19th
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA ’11,

page 185–188, New York, NY, USA, 2011. Association for Computing Machinery.

BIBLIOGRAPHY 52

[SKGB20] Fabian Schuiki, Andreas Kurth, Tobias Grosser, and Luca Benini. Llhd: A multi-level

intermediate representation for hardware description languages. In Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2020, page 258–271, New York, NY, USA, 2020. Association for Computing

Machinery.

[TH19] Lenny Truong and Pat Hanrahan. A Golden Age of Hardware Description Languages:

Applying Programming Language Techniques to Improve Design Productivity. In

Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi, editors, 3rd Summit
on Advances in Programming Languages (SNAPL 2019), volume 136 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 7:1–7:21, Dagstuhl, Germany, 2019.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[TQC
+
15] Zhangxi Tan, Zhenghao Qian, Xi Chen, Krste Asanovic, and David Patterson. Diablo:

A warehouse-scale computer network simulator using fpgas. SIGARCH Comput.
Archit. News, 43(1):207–221, March 2015.

[Tri15] Stephen M. Trimberger. Three ages of fpgas: A retrospective on the first thirty years

of fpga technology. Proceedings of the IEEE, 103(3):318–331, 2015.

[Tur03] Mike Turpin. The Dangers of Living with an X (bugs hidden in your Verilog).

https://developer.arm.com/documentation/arp0009/a/, 2003.

[VMS
+
21] Luis Vega, Joseph McMahan, Adrian Sampson, Dan Grossman, and Luis Ceze. Reticle:

A virtual machine for programming modern fpgas. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implementa-
tion, PLDI 2021, page 756–771, New York, NY, USA, 2021. Association for Computing

Machinery.

[Xil20a] Xilinx. UltraScale Architecture DSP Slice User Guide. https://www.xilinx.com/
support/documentation/user_guides/ug579-ultrascale-dsp.pdf, 2020.

[Xil20b] Xilinx. Versal ACAP Memory Resources. https://www.xilinx.com/support/
documentation/architecture-manuals/am007-versal-memory.pdf, 2020.

[Xil20c] Xilinx. Versal:The First Adaptive Compute Acceleration Platform (ACAP).

https://www.xilinx.com/support/documentation/white_papers/
wp505-versal-acap.pdf, 2020.

[Xil20d] Xilinx. Vitis Unified Software Development Platform 2020.1 Documenta-

tion. https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/
introductionvitishls.html, 2020.

https://developer.arm.com/documentation/arp0009/a/
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/architecture-manuals/am007-versal-memory.pdf
https://www.xilinx.com/support/documentation/architecture-manuals/am007-versal-memory.pdf
https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf
https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf
https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/introductionvitishls.html
https://www.xilinx.com/html_docs/xilinx2020_1/vitis_doc/introductionvitishls.html

BIBLIOGRAPHY 53

[Xil21a] Xilinx. Vivado Design Suite User Guide. https://www.xilinx.com/support/
documentation/sw_manuals/xilinx2021_1/ug904-vivado-implementation.
pdf, 2021.

[Xil21b] Xilinx. Vivado Design Suite User Guide Synthesis. https://www.
xilinx.com/support/documentation/sw_manuals/xilinx2021_1/
ug901-vivado-synthesis.pdf, 2021.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug904-vivado-implementation.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug904-vivado-implementation.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug904-vivado-implementation.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug901-vivado-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug901-vivado-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug901-vivado-synthesis.pdf

	Introduction
	FPGA Programming Today
	The Future of FPGA Programming
	Virtual Instruction Set
	Resource Binding
	Fast Compilation

	Overview

	Background
	Classic vs. Modern Architectures
	Hardware Synthesis

	Reticle: A Virtual Machine for Programming Modern FPGAs
	The Language
	The Intermediate Language
	The Assembly Language
	Well-formedness

	The Compiler
	Instruction Lowering
	Layout Optimizations
	Instruction Placement
	Code Generation

	Evaluation
	Linear algebra and coroutine benchmarks
	Benchmark Description
	Results Comparison

	Memory Benchmarks
	Read-only Memories
	AES Encryption

	Related Work
	Programming Languages for FPGAs
	Hardware Description Languages
	Layout Languages
	High-level Languages
	Intermediate Representations

	Compilation Techniques for FPGAs
	Hardware Synthesis
	Instruction Selection
	Layout Compilation

	Conclusion
	Future work

	Bibliography

