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Abstract

Binary Superposed Decision Diagrams (BSQDDs) are a new type of quantum
decision diagram that can be used for representing arbitrary quantum superposi-
tions. One major advantage of BSQDD:s is that they are dependent on the types
of gates used in synthesis and a BSQDD can be used to efficiently generate a
quantum array that will initialize the quantum superposition that the BSQDD rep-
resents. Transformation rules for BSQDDs allow BSQDDs to be reduced into sim-
pler BSQDDs that represent the same quantum superposition. Canonical forms ex-
ist for a broad class of BSQDDs. This allows BSQDDs to be used for synthesizing
quantum arrays that are capable of initializing arbitrary quantum superpositions.

1 Introduction

1.1 Initialization Algorithms

Initializing a quantum superposition from a basis state is an important problem in quan-
tum computing with applications in Grover’s algorithm [5, 2] and quantum neural net-
works [12, 4]. Several initialization algorithms have been created to solve this problem.
The Ventura-Martinez algorithm [11] requires ©(mn) two qubit gates as well as n + 1
ancilla qubits where m is the number of terms in the desired quantum superposition
and n is the number of qubits in the desired quantum superposition. Another initial-
ization algorithm that is based on a different idea is the Long-Sun algorithm [6] which
requires no ancilla qubits but uses ©(n22") two qubit gates. The SQUID algorithm [8]
is an improvement over the Ventura-Martinez algorithm [11] and uses O(pn) two qubit
gates and requires n+ 2 ancilla qubits where p is the number of disjoint phase groups in
the phase map of the desired superposition. The ESQUID algorithm [9] is an extension
of the SQUID algorithm [8] and uses O(bn) two qubit gates and requires n + 2 ancilla
qubits where b is the number of disjoint generalized phase groups in the phase map
of the desired superposition. BSQDDs do not require the ancilla qubits or the special
initialization operators used in the Ventura-Martinez [11], SQUID [8] and ESQUID [9]
algorithms and can be used to find quantum arrays that are more efficient than those
generated by the Ventura-Martinez [11], Long-Sun [6], SQUID [8] and ESQUID [9]
algorithms.



1.2 Quantum Decision Diagrams

Quantum decision diagrams called Quantum Information Decision Diagrams (QuIDDs)
were first created by Viamontes, Rajagopalan, Markov and Hayes [14, 13] for repre-
senting quantum operators and states. Miller and Thornton [7] developed improved
decision diagrams called Quantum Multivalued Decision Diagrams (QMDDs) for rep-
resenting binary and multivalued quantum operators. Another set of quantum decision
diagrams called Quantum Decision Diagrams (QDDs) was developed by Abdollahi
and Pedram [1] for representing and synthesizing quantum operators. The purpose of
BSQDDs is to provide a representation for quantum superpositions that can be used
to synthesize a quantum array which will initialize the desired quantum superposition.
This is done using only gates that are available for synthesis in a way that allows the
generated quantum array to be synthesized directly from the resulting BSQDD. The
generated quantum array can then be applied to the starting state in order to initialize
the desired quantum superposition. The starting state can be any basis state.

1.3 Advantages of BSQDDs

The main purpose of BSQDDs is to synthesize quantum arrays for initialization. This
is different from other quantum decision diagrams such as QuIDDs [14] and QMDDs
[7] which focus on providing efficient representations of quantum operators and states
rather than synthesizing quantum arrays for initialization. BSQDDs also differ from
QDDs [1] which are used for synthesizing operators rather than states. For these rea-
sons, BSQDDs are mainly comparable to quantum initialization algorithms since other
quantum decision diagrams are not applicable to the problem of synthesizing quantum
arrays for initializing desired quantum superpositions. BSQDDs have several impor-
tant advantages over existing methods for synthesizing quantum arrays for initializing
quantum superpositions. Some quantum superpositions can be initialized using only
a linear number of one and two qubit operations with quantum arrays generated using
BSQDDs while the Ventura-Martinez [11], SQUID [8] and Long-Sun [6] algorithms
all require an exponential number of one and two qubit operations as is shown in sec-
tion 11. This shows that BSQDDs can be used to achieve an exponential reduction in
the number of required gates over existing methods other than the ESQUID algorithm
[9] for initializing some classes of quantum superpositions. However, the ESQUID
algorithm [9] requires the quantum superposition to be represented using generalized
phase groups; this is a significant drawback because finding a sequence of generalized
phase groups that will result in an efficient quantum array is a difficult problem that is
not solved by the ESQUID algorithm [9]. The ESQUID algorithm [9] also still requires
more one and two qubit operations than quantum arrays generated using BSQDDs for
a class of quantum superpositions even though the difference in complexity is not ex-
ponential. Additionally, the ESQUID algorithm is only capable of initializing a narrow
class of quantum superpositions while BSQDDs can be used for any quantum super-
position given an appropriate set of gates. Unlike initialization algorithms such as
the Ventura-Martinez [11], SQUID [8] and ESQUID [9] algorithms, BSQDDs do not
require ancilla qubits for bookkeeping and therefore use less qubits. Another disad-
vantage of the Ventura-Martinez [11], SQUID [8] and ESQUID [9] algorithms is that



they require special initialization operators in order to initialize the desired quantum
superposition. Although these operators are unitary, it is unclear how they can be im-
plemented efficiently using controlled single qubit gates. This means that it is not clear
how a quantum array generated by the Ventura-Martinez [11], SQUID [8] or ESQUID
[9] algorithm could actually be implemented on a quantum computer. BSQDDs do
not suffer from this drawback and use only controlled single qubit gates from the set
of gates available for synthesis. Although the Long-Sun algorithm [6] also does not
require a special training operator and uses only controlled single qubit gates, it re-
quires ©(n22™) one and two qubit gates. BSQDDs are also capable of initializing any
quantum superposition unlike initialization algorithms which can only initialize certain
classes of quantum superpositions.

2 Creating the Starting State

Because BSQDDs require the starting state to be a basis state, it is necessary to run
a special initialization algorithm before applying the quantum array that is generated
by the BSQDD in order to create the starting state. This requires a different type of
initialization algorithm than those discussed in section 1.1 as all of the algorithms in
section 1.1 require the starting state to be |0™). One algorithm that can be used for this
task is the Schulman-Vazirani heat engine [10] which is capable of transforming the
initial mixed state into the state |0™). From now on, it will be assumed that the starting
state can be created and the focus will be on properties and examples of BSQDDs.

3 The BSQDD

The idea behind BSQDDs is to represent a quantum superposition as a decision dia-
gram where each node corresponds to a gate. The gate that corresponds to the node on
each branch of the BSQDD is controlled by the path that was used to reach it from the
root of the decision diagram. Thus, each branch of the BSQDD represents a different
part of the desired quantum superposition. This idea is inspired by the observation that
the quantum array synthesized by the Long-Sun [6] algorithm is similar to a binary tree
and also by the idea of Binary Decision Diagrams [3].

4 A Simple BSQDD

Given a sufficient set of gates, a BSQDD can represent any quantum superposition as
will be proven later in theorem 12.1. This section will illustrate the general concepts
behind BSQDDs by finding a quantum array for initializing the state

1 1 1 1
(1) = |21222524) = 5 |0101) + - 0110) + 7 [1001) + - [1010) (1)



4.1 Finding the BSQDD

Using Hadamard gates, Feynman gates and inverters, this quantum superposition can
be represented by the BSQDD shown in figure 1 for the order of variables (x4, x2, X3, 4)
with respect to the starting state |0000). In figure 1, the quantum superpositions }7,[10>,
|1, [O1), [10), [010), |01, |4p190) and [41°" ) next to the nodes are the quan-
tum states that those nodes represent on their respective paths from the root node
of the BSQDD where |¢°) = 1]0101) + 1[0110), |s') = [1001) + 1 [1010),
|¢01) = £10101) + 1 |0110), ['0) = $[1001) + 1 |1010), |°10) = L|0101),
|01y = 10110), [¢'%°) = £]1001) and |¢'') = 1[1010). The superscripts in
each of the these quantum states indicates the path from the root node a; of the BSQDD
to the node that represents the quantum state. For example, the quantum superposition
|10} is represented by the node a5 which can be reached from the root node a1 by
following the edge labeled by |1) to the node a3 and then following the edge labeled
with |0) to the node a5. The reasoning behind these superscripts should become clear
in the rest of this example. The BSQDD in figure 1 can be found from the quantum
superposition in equation (1). Because the order of variables is (x1, 2, x3,x4), the
qubit |z1) is initialized first. Note that the qubit |x1) is equal to |0) in half of the terms
in equation (1) and is |1) in half of the terms in equation (1). Thus, the gate that corre-
sponds to the first node a; is a Hadamard gate. The gate that corresponds to each node
is controlled by the path used to reach it from the root node of the BSQDD. Thus, the
gate that corresponds to the node as is controlled by Z; and the gate that corresponds to
the node aj is controlled by ;. Because |22) = |1) in the quantum superposition |¢)*)
represented by the BSQDD rooted at the node a2, an inverter is used as the gate for the
node ay because |x2) = |0) in the starting state. Note that the states represented by
nodes other than a; are not normalized. This is because these states exist only as parts
of the quantum superposition |)) and will not be initialized themselves. For the quan-
tum superposition |w1> represented by the BSQDD rooted at the node as, |x2) = |0)
so the identity matrix is the operation that corresponds to the node as. Now consider
the quantum superposition |1/)01> represented by the node ay. Because |x3) = |0) for
half of the terms in [¢)°') and |z3) = |1) for half of the terms in |[¢)°!), the operation
that corresponds to a4 is a Hadamard gate. For the state |1/1010> represented by the node
ag, |x4) = |1). Because x4 = |0) in the starting state, the operation that corresponds to
the node ag is an inverter. Consider the state |1'!) represented by the node a7. Since
|z4) = |0) in [p°*) and 24 = |0) in the starting state the operation that corresponds to
the node ar is the identity matrix. Using the similar reasoning, the gates for the nodes
as, ag and ag are obtained as shown in figure 1.

4.2 Reducing the BSQDD

The BSQDD in figure 1 will now be reduced. Reducing BSQDDs is important because
the number of nodes in a BSQDD is an upper bound on the number of gates that will
be required in the quantum array that is generated from the BSQDD. Observe that
since |z3) = |0) in the quantum superposition the node ag is applied to, the control
T3 can be added to this inverter without affecting the quantum superposition that will
be initialized. Since the gate that corresponds to the node a is the identity matrix and



Figure 1: A simple unsimplified BSQDD

|z3) = |1) in the superposition the node ag is applied to, this identity matrix can be
replaced by an inverter controlled by Z3. Similarly, the gates that correspond to the
nodes ag and ag can be replaced by the inverters controlled by Ts. This results in the
BSQDD shown in figure 2. Because the nodes ag, a7, ag and ag are now the same,
they can be merged as shown in figure 3(a). Note that the node ag in figure 3(a) no
longer has the state it represents shown. This is because the node ag now represents a
different state on each of the four paths from the root node to the node ag. The node
ag represents [¢)°10) = 110101) on the path (T, 2, T3), [°'') = |0110) on the
path (T1, 2, z3), [1°) = $]1001) on the path (z1,T2,Z3) and [1°) = $(1010)
on the path (x1, T2, x3). Each of the above tuples of literals denotes the path from the
root node where all of the literals in the tuple are equal to 1. Note that summing the
states represented by the node ag results in [¢)) which is the quantum superposition
represented by the BSQDD. This is a general property of BSQDDs and will be proven
later in theorem 7.3. The nodes a4 and a5 are also now the same so they can also be
merged as shown in figure 3(b). The paths to the node a5 from the root in figure 3(b)
are the same as for the node a¢ in figure 3(a) and these nodes also represent the same
states. The node ay in figure 3(b) represents [¢°1) = 3(0101) + 3 [0110) on the path
(%1, 22) and |11%) = £[1001) + % [1010) on the path (z1,72). The gate for the node
ag can be replaced by Xz, because |x1) = |0) in the part of the quantum superposition
the operation of the node as is applied to. Similarly, the identity operation of the node
ag can be replaced by Xz, because |x1) = |1) in the part of the quantum superposition
the operation of the node ag is applied to. Nodes as and ag can then be merged which
results in the final BSQDD shown in figure 4(a). Note that in this final BSQDD, the
edge from the node as to the node a3 does not have a |0) or a |1) next to it as all the other




Figure 2: Replacing the gates for ag, a7, ag and ag with inverters controlled by x5

edges do; this is because this edge indicates a part of the quantum superposition where
|z2) = |0) and also a different part of the quantum superposition where |z2) = |1)
depending on which path from the root node is taken. The states represented by the
nodes as and a4 in figure 4(a) are the same as the states represented by the nodes a4
and aj in figure 3(b). The node ay represents the state % |0101) + % |0110) on the path
(Z1) and 1 |1001) + 3 [1010) on the path (z1).

4.3 Converting the BSQDD to a Quantum Array

Now that the BSQDD has been reduced, it needs to be converted to a quantum array so
that the desired superposition in equation (1) can be initialized. The quantum array in
figure 4(b) generated by the final BSQDD in figure 4(a) can be obtained by adding the
gates for the nodes in each layer of the BSQDD starting with the first layer. New gates
are always placed to the right of gates that have already been placed in the quantum
array. The first gate to be added is the Hadamard gate that corresponds to the node a4
in figure 4(a). Because a; is the root node, no controls are needed for the gate that
corresponds to this node. This results in the gate G; in figure 4(b). Now consider the
node aq. Since all paths from the root node to the second layer end at this node, no
controls are required due to the paths to ay from the root node. However, the gate for
this node is controlled by Z; so the inverter for this node must be controlled by |0)
on |x1). This causes the gate G5 to be added to the quantum array. The next node is
a3. Because all paths from the root node to the third layer all end at the node a3, no
controls are required. The gate that corresponds to the node asz is G3. The last node
is a4. All paths from the root node to the fourth layer terminate at the node a4 so no
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controls are needed. However, the gate for the node a4 still needs to be controlled by x5
because the gate for the node a4 is controlled by T3. This results in the gate G4 being
added to the quantum array. It is now necessary to apply the quantum array in figure
4(b) to the state |0000) to confirm that it initializes the superposition from equation (1)
represented by the BSQDDs in figures 1, 2, 3(a), 3(b) and 4(a). The starting state is
|1b0) = |0000). Applying the Hadamard gate denoted by G in figure 4(b) results in

the state [1)1) = % |0000) + % |1000). The G gate is then applied which changes

the state to [1)2) = —5|0100) + = [1000). The state |v)3) = 5 [0100) + 3 |0110) +
% |1000) + % |1010) results after applying the G3 Hadamard gate. After applying the
final G, gate, the state is [¢4) = 1 |0101) + £ |0110) + £ [1001) + £ [1010). Observe
that |¢4) = |1) where |¢) is as defined in equation (1). Thus, BSQDDs can be used to
find efficient quantum arrays for initializing quantum superpositions.

5 Formalizing BSQDDs

A formalization of BSQDDs will now be presented.

Definition 5.1. A node in a BSQDD is denoted by a = (G, f(y1,...,y;j—1),t) where
G is the single qubit gate that corresponds to the node a, f(y1,...,y;—1) is a boolean
Junction called the control function of the node a and t is a tuple denoting the children
of the node a. If t = () where () denotes the empty tuple, then a has no children and is
therefore a leaf node. Otherwise, if goo = 0 or g19 = 0 where G |0) = goo |0) + g10]1)
then t contains only one element; if neither of the first two conditions is satisfied, t is
an ordered pair where the first element of t is the left child and the second element of
t is the right child. The edge to the left child is called the |0) edge and the edge to the
right child is called the |1) edge. Note that since G is unitary, goo = 0 or g1p = 0 if
and only if go1 = 0 or g11 = 0 where G |1) = go1 |0) + g11 |1) so it is not necessary to
consider the case where go1 = 0 or g11 = 0 separately.

For the BSQDD in figure 4(a), a; = (H, f1() = 1, (a2,a2)), az = (X, fo(z1) =
71, (a3)), a3 = (H, f3(x1,22) = 1, (as,a4)) and ag = (X, fa(x1, 2, 23) = T3, ()).
Note that because the control function for the root node f;() takes no arguments, it is
always a constant.

Definition 5.2. A layer of a BSQDD is denoted by L = (C, |y)) where C' is a set nodes
as defined in definition 5.1. Each node in the set C' is said to be in the layer L. The
qubit |y) is called the qubit operated on by the layer L. Each node in the set C' is also
said to operate on the qubit |y).

In the BSQDD in figure 1, the first layer is Ly = ({a1}, |21)), the second layer is
Ly = ({ag2,as}, |z2)), the third layer is Ly = ({a4, a5}, |x3)) and the fourth layer is
Ly = ({as,a7,as,a9}, |r4)). Note that in this case all the nodes that operate on a qubit
are in the same layer; this is not true in general as two or more layers may operate on
the same qubit if the BSQDD has repeated variables. An example of repeated variables
will be shown later in section 9. However, the nodes within any given layer always
operate on the same qubit.



Definition 5.3. A BSQDD isa 5-tuple B = (A, (L1, ..., L), {x1,..., 20}, (iy, .., 2i, ), F)
where A is a non-empty set of nodes, {x1, ..., xy} is the set of variables that the nodes
operate on, the j*" layer of the BSQDD is L;, the order of variables is (x;,, . .., Z;,,)
and the gate that corresponds to each node is selected from the set of gates F. The
qubit operated on by the layer L; must be }x17> and the children of nodes in the layer
L; must be in the j + 1" layer for j = 1,...,m — 1. Also, the tuple denoting the
children of any node in the layer L,, must be (). Every variable xy, must occur at
least once in the order of variables. Every node in the BSQDD except the root node
must be a child of some other node in the BSQDD. If the control function of any node
in the j* layer is f(y1,...,yj—1) then yi, = x;, for k = 1,...,j — 1. Also, if
xi;, = x4 for some 1 < k < j —1then f(xi,...,04_,0,2T5, ..., 2 ) =
f(woy, oo me_, Lwg s oo 2y, ) must hold. This means that the output of the
control function of a node cannot depend on the variable it operates on. Furthermore,
if vy, = w4, for some 1 <k << j—1then f(xi, ..., %5 _,0,%4 ..., T )=
floa, oo m_ Lxg .. ,acijfl) which means that a control function can only
depend on the most recent repetition of a variable. In order to state the final con-
straint paths must be defined. A path from the root of a BSQDD to a node a =
(G, f(xiy,...,x5,_,),t) in the j™ layer is denoted by the tuple v = (v;,,...,v;,_,)
where each v;, = T;, if ©;, = 0 on the path from the root and v;,, = x;, if x;, =1 on
the path from the root. The path from the root node to itself contains no branches and is
denoted by () where () represents the empty tuple. If ;; = x;,, for some k < j—1and
v=(viy,...,vi,_,) and © = (;,,...,0;,_,) are paths to the j* layer with v;, = ¥;,
for ¢ < jand { # k then v;, = v;, must hold. Leaf nodes may exist only in the m*™
layer. Nodes in the set A are said to be in the BSODD B.

Several examples of BSQDDs have been shown in figures 1, 2, 3(a), 3(b) and 4(a)
although repeated variables were not used in any of them. A more complicated example
will be shown later in section 9 that illustrates the use of repeated variables. Note that
it is possible for there to be more than one path from the root node in a BSQDD to
another node in a BSQDD. For example, in figure 4(a), the possible paths from the root
node a4 to the node a3 are (Z1,x2) and (x1,T2).

Definition 5.4. The path function p(x;,,...,x;,_,) of a node a in the 3 layer of a
BSODD B = (A, (Ly,..., L), {x1,..., 20}, (xiy, ..., @i, ), F) is the boolean func-
tion that outputs 1 when the input variables correspond to a path from the root node
to the node a for some starting state and outputs a 0 for all inputs that correspond to
paths to other nodes.

The path function is essentially a way of describing all paths that end at a particular
node. For example, the path function for the node a4 in the BSQDD in figure 4(a)
would be py(z1,22,23) = 1 because all paths from the root node to the fourth layer
terminate at the node ay.

Definition 5.5. The initial state of a node a = (G, f(x;,,...,®i,_,),t) in the j*"
layer of a BSODD B = (A, (Ly,..., Lp), {z1, ..., Zn}, (Tiy, ..., i, ), F) on a path

v = (Viy,...,v_,) is denoted by ’1[)U> If v = () then v is the empty path so a is
7]1()> = (Iyi1-1 ® G ® Iyn—iy ) [1ho) where |tpg) is

the root node and the initial state is




the starting state which must be a basis state. Otherwise if v # (), the initial state is
1/)”> = (I271j—1 ®RGE® Izn—i,j )f(xi1»-~vxij_1)
results from the expression (1,i;—1 @ G & Iyn—i;) is controlled by the boolean function
f(xiy, ... 2i,_,) and the state ‘1&2);]’1

i1

~~,Uij72)

AV
(P > where the operator that
('U'Ll ----- 'Uzj 72)

> is obtained by taking the sum of all

terms in ‘w(vil,“.,vi-72)> where v;,_, = 1.
J

The reason why this is called the initial state of a node a on a path v is because
it is the state that the child nodes of a will operate on. The basic idea is that the
initial state of a node is equal to the operator for node controlled by control function
f(xsy,...,2;;_,) applied to the sum of the terms in the initial state of the parent node
on the path v. As an example, consider the initial state of the node as on the path
v = (T ) for the BSQDD in figure 4(a). First, it is necessary to find the initial state of

the root node which is ‘1/3()> = (H ® Ig) |0000) so ’QL()> = % |0000) + % [1000).
Now ‘1/3(5)1> = % |0000) since T; = 0 for the term % |1000). Therefore, the initial

state of as on the path v is ‘@Z’(El)> = (L2 ® X ® l4)g, % |0000) which is equal to
% |0100).

Definition 5.6. The state represented by a BSQDD with respect to the starting state
[1o) is the sum of the initial states of the leaf nodes over all paths from the root node
to each leaf node.

As an example, consider the BSQDD in figure 4(a). Note that the state that was
being represented in equation (1) is the sum of the initial states of the leaf nodes since
the initial states of the leaf node a4 are 1 |0101), 3(0110), 1|1001) and 1 |1010)
on the paths (T1, x2,T3), (T1, T2, x3), (1, T2, T3) and (21, T2, x3) respectively. An
algorithm for constructing a BSQDD that represents a desired quantum superposition
will be shown later in section 10.

6 Equivalence Relations for BSQDDs

Definition 6.1. The nodes a and a are equal, denoted a = a if the tuples that corre-
spond to the nodes a and a are equal.

Definition 6.2. The layers L and L are equal, denoted L = L if the tuples that corre-
spond to the layers L and L are equal.

Definition 6.3. The BSQDDs B and B are equal, denoted B = B if the tuples that
correspond to the BSQDDs B and B are equal.

Definition 6.4. The BSODDs B and B are equivalent, denoted B ~ B if the quantum
superpositions they represent as defined in definition 5.6 are equal with respect to each
possible starting state, they operate on the same set of variables, have the same order
of variables and have the same set of gates.

10



An example of BSQDDs that are equivalent but not equal can be seen in the exam-
ple from section 4. Consider the BSQDDs in figures 1, 2, 3(a), 3(b) and 4(a). None
of these BSQDDs are equal because their sets of nodes are not equal. However, all
of these BSQDDs represent the quantum superposition from equation (1) so they are
equivalent. Hence, these BSQDDs are all equivalent but are not equal.

Theorem 6.5. Equality and equivalence of BSQDDs as defined in definitions 6.3 and
6.4 are equivalence relations.

Proof. By definition 5.3, BSQDDs are tuples. Because equality of tuples is an equiv-
alence relation, equality of BSQDDs is an equivalence relation. By definition 6.4, two
BSQDDs are equivalent if the they represent the same quantum superposition, operate
on the same set of variables, have the same order of variables and have the same set of
gates. Because all of these relations are equality relations, equivalence of BSQDDs is
an equivalence relation. O

7 Generating Quantum Arrays Using BSQDDs

This section will prove a general theorem that relates the state at different points in the
quantum array that is generated by a BSQDD to the initial states of the BSQDD. This
will then be used to derive a theorem that shows that the quantum array generated by a
BSQDD initializes the state that the BSQDD represents.

Definition 7.1. The quantum array that is generated by a BSODD B where B =
(A, (L1, ..., L) {z1, .- yxn b, (miy, - .-, 24, ), F) is created by adding the gates from
the nodes in each layer to the quantum array. The layers are added in the order of their
indexes from smallest to largest. Each new gate is placed to the right of all previous
gates and operates on the qubit that its layer operates on in the BSQDD and is con-
trolled by p(xi,, ..., %, ) f(Tiy, ..., wi;_,) where a = (G, f(zs,,...,2i;_,),t) is
the node that is currently being added and p(z;, , . . ., xij_l) is the path function of the
node a from definition 5.4.

For an example of quantum array that is generated by a BSQDD, see section 4. The
idea in definition 7.1 can be implemented using algorithm 1. The algorithm includes
the optimization that if all nodes in a layer have the same operation and the product of
the path function and control function of each node is equal to the path function, then
the operation can be applied to the qubit operated on by the layer and no controls are
needed. Note that since the algorithm iterates over all the nodes in the BSQDD at most
two times, it is in the complexity class © (| A]).

Theorem 7.2. The state of the quantum array that is generated from a BSQDD after
the gates in the quantum array that correspond to the nodes in layers 1,. .., 5 have
been applied to the starting state is the sum of the initial states of the nodes in the j*"

layer over all paths to each node in the j** layer.

Proof. Let B = (A,(L1,..., L), {x1,..., 20}, (ziy,...,z;, ), F) be a BSQDD
with m layers and the order of variables (z;, , ..., ;). The theorem will be proven by

11



Algorithm 1 The algorithm for generating a quantum array from a BSQDD

1: Let B= (A, (L1,..., L), {x1,..., 20}, (i), ..., 2, ), F) be aBSQDD

2: forallj=1,...,mdo

3: Let fo(%4,,. .., 2;,_,) denote the control function of the node a in the j th Jayer
of the BSQDD B according to definitions 5.1 and 5.3

4: Let pq (i, , ..., ;,_,) denote the path function of the node a in the j*" layer
of the BSQDD B according to definition 5.4

5: if every node a in the j* layer has the same operation U and
PalTiyys o Ti;_y) = Pa(@iy,s oo @iy ) fa(®iy, ..., 2, ) for all nodes a in the
41 layer then

6: Apply the operation U to the qubit ’z,]> without using any controls

7: else

8: for all nodes a in the layer L; do

9: Let the operation of a be U,, let f,(x;,,...,2s,_,) be the control func-
tion of the node @ and let p, (z;,, . .., x;;_, ) be the path function of the node a

10: Apply the operation U, to the qubit ’zij > and control by
pa(xiu v 7xij_1)fa(xi1 o axij—l)

11 end for

12: end if

13: end for

induction. For the basis case j = 1, the initial state is the gate that corresponds to the
root node applied to the starting state |1)g) by definition 5.5. Because the quantum state
before any of the gates in the quantum array are applied is also |t), applying only the
gate that corresponds to the root node will result in the initial state of the root node.
This proves the basis case. For the inductive case, assume that the state of the quantum
array after the gates that correspond to the nodes in the layers 1,...,j are applied is
the sum of the initial states of the nodes in the j*" layer of the BSQDD B. Let V; be
the set of all paths to nodes in the j*" layer from the root and let |1;) denote the state
of the quantum array after the gates that correspond to the nodes in the layers 1,...,
are applied. Then by the inductive hypothesis

) =

veV;

bo) @)

Let P; be the set of all path functions as defined in definition 5.4 for the nodes in the j*
layer. Because different nodes in the 5" layer are in different locations, their path func-
tions are unique within the j*" layer. Therefore, the node in the 5" layer with the path
function p € P; denoted by a, = (G, fp(2i,,...,2i,_,),tp) is unique. This allows
nodes to be indexed by their path functions. Applying the gates in the quantum array
that correspond to the gates in the j + 1' layer of the BSQDD B to |4b;) results in

|"/)j+1> = [l_lpepj+1 (12"141*1 ® Gp QI n=ij4 )p(mil1‘-v75177;j)fp(:17i17~~gzij):| |’(/}]> by def-
inition 7.1 where the subscript p(z;,,...,2s;)fp(%i,, ..., x;;) denotes the function

that controls I,i;,,-1 ® Gp ® Iyn—i;,,. Substituting Zuevj

1/1v> for |1);) according
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to equation (2) shows that

|wj+1> = H (Igij+1*1 ® Gp ® 1. n—ijyq )p(xil,...,zi,)fp(ril,“.,:zzi.) Z "(/}v>

J J

PEPj+1 veV;
3
The summation can now be distributed over the product. Doing this results in
|¢j+1> = Z H |:(12ij+1—1 X Gp ® I n—ijiq )p(ril,H.,;z:ij)fp(a:il,...,rij):| wv>
veV; peEPj 1
“
Let
o) =TT [oui ® Go® Lyt oy oo oo [ 0) )
peEP;j11
Then

[Vjv1) = Z |ovy) (6)

veVj
It is now necessary to consider three cases. First assume that the node a, that the path
v = (i, ..., v;,_,) terminates at in equation (5) has only one child node. In this case,
only the operation of the child node of the node a,, will be applied to ’1[)1,> in equation
(4) because the path function p(x;,,...,z;,) of the child node of a, is the only path
function in the j 4+ 1*® layer that is equal to 1 in the path v by definition 5.4. Thus,
|O‘v> = (1277.7‘+1*1®Gp®1 n=ij41 )p(airil,.4.,wij)fp(wil,...,a:,ij) 7/’v>- Let?d = (172‘1, ce 7171‘,,-)
be the path to the child node of the node a,, such that 9;, = v;, fork =1...j—1. Then
qj;v> = |y > by applying definition 5.5.

Therefore, |a,) = (Iyi;11-1 ® Gp ® I2n—ij+1)p(ri17___7mij)fp(mi17'“7zij)

since the node a,, has only one child node,

1&5” > Now

1[)2’ > by definition 5.4, so the path function can be removed

(T, .., 25;) = 1 for

which results in |a,) = (Iyior 1 @ Gp ® Ly iyi0) gy (orr o ) w> Thus by
definition 5.5,

o) = [iha) )
For the second case assume that the node a,, that the path v = (v;,,...,v;,_,) termi-

nates at in equation (5) has two equal child nodes. In this case, only the operation of
the child node of the node a, will be applied to

’(/AJ,U> in equation (4) because the path
function p(x;,, ..., x;;) of the child node of a, is the only path function in the j + 1th
layer that is equal to 1 in the path v by definition 5.4. Thus, |a,) = (Jyi;41-1 @ Gp ®
I zﬁv> Since qﬁv> = |y >+ D > from definition

2n 41 )p(CEily~~~7wij)fp(wi17"~)$i')
AT N
qu,> = (121']'-%—171 ®GP®I "*7"_7'+1)p($i1,4.-,$7‘] )fp(z’il""’zij) ( ’l/}v J> + ’l//v J >). By

J
5.5,
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deﬁnition 54, p(IC“ e ’xij) = 1 fOI' bOth w:;] > and

5.5,

1[}: Kl > Therefore by definition

‘O‘U> = w(vil7---7vz‘j_1iij)> + ¢(Ur517<~-7vij_1,93ij)> ®)

For the final case, suppose that the node a,, has two unique children. In this case, only
the path functions of the child nodes of a,, can be equal to 1 on the path v by definition
5.4. This allows all operations in the product in equation (5) to be removed except
the operations of the nodes that the paths (v;,, ..., v;,_,,Z;;) and (vi,, ..., vi;_,,%;;)
terminate at. Thus,

lay) =Lgijs1-1 @ Gp @ Lyn—ijyy )p(zil,,,,’wij)fp(wil,,,,,zij) 9)

’ (I2i.1+1*1 & Gp’ ® I n=ijd )p/(l'i,l,...,(Eij)fp/(.'l;il,..47Iij) 7/1u>
where p(z,, . .., x;;) is the path function of the node that the path (v;,, ..., vi;_,,Ts;)
terminates at and p’(z;,, ..., ;;) is the path function of the node at which the path

(Viyy -y Vi;_,, ;) terminates. Now

1&v> =
|Oév> :(121']-4,1*1 ® Gp X I n—ijyq )p(mil ..... zij)fp('til _____ x;) (10)
)4 i)

@fJ > because the path func-

o)+

1&: K > from definition 5.5 so

) (IQijJrl*l Y G;D’ ® Lyn—iji )p,(zily“wxij)f;;’(mila~~~:mij) (

Now I ij 11 ® Gp ® Iyn—i;., will only be applied to

tion p(w;,, ..., x;,) will be 0 for

1[151 > by definition 5.4. Similarly, I,i; -1 ® Gy ®

1,

uct results in

n—i;,, Will only be applied to

1[)f K > Therefore, distributing the sum over the prod-

) (1)
)

Dol > by defi-

) =Tty -1 @ Gp @ 1, "71‘7‘4’1)p(zilguwxij)fp(mil7~~~1Iij)

+ (Izijﬂ—l ®Gp ® Iz”—ij+1)p'(zil,...,xzj)fp/(qul,..,,zij)

1/35”> and p/ (2, ..., ;) = 1 for
nition 5.4 these path functions can be removed. Hence,

Because p(z;,,...,x;;) = 1 for

) (12)

+ (Izijﬂ*l ® Gy ® 1, "*’ij+1)f (@iy s )

p’ J

|ovy) :(Igi.7‘+1*1 ®Gp® 1. ”*ij+1)fp(aci1,--<,acij)

Thus, by definition 5.5,
lay) = z&(vilv---7vij_17§i]‘)> + ‘QL(111:17~~-»U1'_7»_1,$¢]»)> (13)

Therefore, by equations (7), (8) and (13), |a,) = Zﬁevgl ¢v> where V", | denotes
J

the set of all paths 0 = (0;,,...,0;;) to the j + 1'" layer where 0;, = v;, for k =
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1,...,j — 1. By equation (6), [)j+1) = >_,cy, |aw). Now every path to the j + 1t
layer must pass through a node in the ;" layer. Therefore,

i) = Y

veVjp

du) (14)

Thus, the inductive case holds so by the principle of mathematical induction, the state

of the quantum array after the gates that correspond to the nodes in the layers 1,...,
of the BSQDD B have been applied is the sum of the initial states of the nodes in the
4*" layer over all paths to each node in the 5" layer. O

Theorem 7.3. The state initialized by the quantum array generated from a BSQDD B
from the starting state |1)g) is the quantum superposition represented by the BSODD B
with respect to the starting state |1g).

Proof. Assume that the BSQDD B has m layers. By definition 5.3, the leaf nodes
are in the m'" layer so it follows that the quantum superposition represented by the
BSQDD B is the sum of the initial states of the nodes in the m*™ layer over all paths
to each node in the m" layer by definition 5.6. By theorem 7.2, this is the state of the
quantum array after the gates that correspond to the nodes in layers 1, . .., m have been
applied. Since this is the state of the quantum array after all gates have been applied,
the quantum array initializes the quantum superposition represented by the BSQDD
when applied to the starting state [¢g). O

This theorem is important because it shows that BSQDDs can be used to find quan-
tum arrays for initializing quantum superpositions. All that needs to be done is to
represent the desired quantum superposition using a BSQDD and then use the BSQDD
to generate a quantum array. However, this quantum array is sometimes inefficient so
it is usually necessary to reduce the BSQDD using transformation rules before using it
to generate a quantum array. These transformation rules will be presented now.

8 Transformation Rules

In this section, two transformation rules that can be used to manipulate and reduce
BSQDDs will be derived. First, the transformation rule which allows equal nodes to be
merged will be shown.

Transformation Rule 8.1. Ifa = a for two distinct nodes a = (G, f (x4, ..., 2i;_,),t)
and a = (G, f(xil, e Ty ), t) in the §* layer of a BSQDD, then merging the two
nodes into one new node results in an equivalent BSQDD. Performing the inverse op-
eration by splitting a node a = (G, f(z;,, . .. ,T;,_,),t) into two nodes a and & where
a = a = a where the node a has at least two parents also results in an equivalent
BSODD.

Proof. Let B = (A,(L1,..., L), {x1,..., 20}, (i, ...,z ), F) be a BSQDD
and let a = a where a = (G, f(xi,,...,2i,_,),t) and & = (G, f(ziy, ..., 2i,_,),1)

are two nodes in the j*" layer of the BSQDD B. Let B be a BSQDD where B =
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(A, (Ly, ..., L), {x1, ... 20}, (24, ... 2 ), F), A is obtained from A by merg-
ing the nodes a and & into a new node a with @ = a = a and replacing a and a by
a in the tuple ¢ for each (G, f(;,,...,2;,_,),t) € A. It will now be proven that the
sum of initial states in the k" layer of the BSQDD B is the same as the sum of the
initial states in the k" layer of the BSQDD B. Consider a path v = (v, , ..., vi,_,)
to anode a, = (Gy, fo(Tiy, ..., T, ), ty) in the K layer of the BSQDD B. Let the
node that the path v terminates at in the BSQDD B be denoted by a,. First suppose
that k& < j. In this case, the equation for the initial state of node a,, on the path v will
be the same as the initial state of node @, in the k" layer of the BSQDD B on the
path v due to definition 5.5. Therefore, since a, is an arbitrary node in the k" layer of
the BSQDD B, the sum of the initial states in the kth layers of the BSQDDs B and B
will be the same when k& < j. Now assume that k = j. If a,, # a and a,, # a then
the initial state of the node a, on the path v in the BSQDD B is equal to the initial
state of the node @, on the path v in the BSQDD B because of definition 5.5. Suppose
that a, = a or a, = a. In this case, the initial state of the node a, on the path v in

the BSQDD B is [th.5) = (L1 @G @ Lusy) [0 )

where the subscript B has been added to the initial state to indicate that it is for the
BSQDD B. Similarly, the initial state of the node a, on the path v in the BSQDD B is

7[’u,]§> = (IT'j—l RGE® Ign—ij) 1/}1}”_1 > Note that v # ()

f(mi’l"""xij—l) (vil""’vij72)’é

since it is not possible for any node to be equal to the root node except for the root
node itself. Hence, no node can be merged with the root node so it is not neces-
sary to consider the case where v = (). Since the initial states of the j — 1'" layer

are the same ill the ’ Il&( i Vi ) ~>
h BS( !l )l )S B an(l E; Vi yeeey ij_2 ,B
wvij L > Wthh lmplles that

(viq Vii o) B Q;U,B> = Tﬁv’g> by def-
sesVij_g )

inition 5.5. Because the union of the set of paths to a and the set of paths to a is
equal to the set of paths to a, the sum of the initial states of the nodes a and a is equal
to the sum of the initial states of the node a. Thus, the sum of the initial states of
the nodes in the j** layer of the BSQDD B is equal to the sum of the initial states in
the 7" layer of the BSQDD B. Consider the case where k > j. It will be proven
by induction that the initial state of a node in the k*" layer of the BSQDD B on a
given path is equal to the initial state of the corresponding node in the k" layer of
the BSQDD B on the same path. Consider the basis case where k = j + 1. If the
path v does not pass through the node a or the node & in the BSQDD B, then the
initial state of the node a, on the path v in the BSQDD B will be equal to the ini-
tial state of the node @, in the BSQDD B by definition 5.5. Suppose that the path v
passes through the node a or the node a in the BSQDD B. Then the path v passes
through the node @ in the BSQDD B. Let ¢ = (Viy, - vi;_,) and let a; and as
be the nodes that the path ¢ terminates at in the BSQDDs B and B respectively. Be-
cause the initial state of the node a on the path ¥ in the BSQDD B is equal to the

initial state of the node a; on the path ¢ in the BSQDD B, 1/31;’ B> = ZZJ@ B> and
ZZAJU,B> = ?/A)U’E}> by definition 5.5.

1E(vil,....,vijiz),]_c;> =

therefore ’@Z%> = ’1/3:%) which implies that
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Now consider the inductive case where the initial state of any node in the k" layer of
the BSQDD B on a given path is equal to the initial state of the corresponding node
in the k" layer of the BSQDD B on the same path. From definition 5.5, the initial
state of a node a,, = (G, fu(2iy, ..., 2, ), ty) on the path v in k + 1th layer of the

BSQDD B is 1/A)v73> = (Iynn ®Gy ®12"*ik+1)fw(zil,...,x%) 1E2}2517.~~,Uik71),3>

and the initial state of the node @, on the path v in the BSQDD B is ‘z/?v B> =

A,Uik

(I27‘,k+1—1 ® Gv ® I2n—7‘,k+1) _ ). Leto = ('Uil, e 71}7;1@—1)'

Fo(@ig @iy ) |7 (vig seyviy ), B

7,[3@7B> = 1/A)ﬁ’3>, wzlfg> = @ZA):@%> which implies that ‘1/3@,3> = 1[11),];,> by
definition 5.5. This proves the inductive case. Therefore, by the principle of mathe-
matical induction, the initial state of a node in the k' layer of the BSQDD B is equal
to the initial state of the node in the k*" layer of the BSQDD B. This implies that the
sum of the initial states of the nodes in the k*" layer of the BSQDD B is equal to the
sum of the initial states of the nodes in the k™ layer of the BSQDD B when k > j.
Thus, the quantum superpositions represented by the BSQDDs B and B are equal so
B ~ B by definition 6.4. To prove the second part of the transformation rule, observe
that B can be obtained from B by splitting the node a to obtain the nodes a and a so
that the above proof also proves the second part of the transformation rule. O

Since

This transformation rule is very useful for reducing BSQDDs. For examples, see
figures 3(a) and 3(b) from the example in section 4. However, some of the transfor-
mations used in the example in section 4 are more complicated than the simple merges
of equal nodes in the same layer permitted by transformation rule 8.1. This requires
another transformation rule.

Transformation Rule 8.2. Replacing a node a = (G, f(x;,,...,x;,_,),t) in the j*"
layer of a BSQDD B with a node a = (G, f (x4, . . ., xi,_,),t) results in an equivalent
BSODD B if the initial state of the node a on a path v in the BSQODD B is equal to the
initial state of the node a on the path v in the BSQDD B for all paths v to the node a
in the BSODD B.

Proof. Let B = (A, (L1,...,Ly),{z1, ...y &zn}, (i), ..., 2, ), F) be a BSQDD that
contains a node a = (G, f(@;,,...,x;,_,),t) in the j* layer. Let B be the BSQDD
obtained from B by replacing the node a with @ = (G, f(z;,,... ;Zi;_,),t). Then
B = (A,(Ly,...,Ly), {z1,...,xn}, (2i,,...,2s, ), F) where the set of nodes A is
@ZA)U, B> for
all paths v to the node a in the BSQDD B. Consider a path v = (v;,,...,v;,_,) to
anode a, = (G, fuo(ziy,--,%i,_,),t,) in the k" layer of the BSQDD B. Let a,
denote the node that the path v terminates at in the BSQDD B. Suppose that £ < j.
Then by definition 5.5, the initial state of the node a,, on the path v will be equal to the
initial state of the node a, on the path v. Now suppose that k¥ = j. Then if a, # a
then the initial state of the node a, on the path v in the BSQDDs B will be equal to
the initial state of the node @, on the path v in the BSQDD B by definition 5.5 since
the initial states of the corresponding nodes in the k& — 1*h layers of the BSQDDs B

obtained from A by replacing the node a with the node & and ‘1&1,, B> =

17



and B are equal. If a, = a then the initial state of a, on the path v in the BSQDD
B is equal to the initial state of the node a on the path v by assumption. Suppose
that £ > j. It will be proven by induction that the initial state of node a, on a path
v in the k** layer of the BSQDD B is equal to the initial state of the node @, on the
path v in the BSQDD B. Consider the basis case where k = j + 1. If the path v
does not pass through the node a in the j** layer of the BSQDD B, then the initial
state of the node a, on the path v in the BSQDD B is equal to the initial state of the
node a, in the BSQDD B by definition 5.5. If the path v passes through the node a
in the BSQDD B, then the initial state of the node a, on the path v in the BSQDD

B will be ¢B> = (Iyiyar1 @ Gy ® Lyu—iyyn) o > and

(’Uil ,...,1)71].71),3
the initial state of the node @, on the path v in the BSQDD B will be ‘@v 1§> =

fo(@iysnmiy)

AV;

Fo@iyrs,) Yo 'j1>,é> in the BSQDD B. Since

AV T
5 ) and ’ > = ’ -~
'1~-~,'Uij,1):B> ‘w(vil7~~-7vi,~,1)73 w(vil,...,vij71)7B >

1[}1} B> so that the basis case is proven. Consider the inductive case where

(Izijﬂ—l ®G, ® IQ"—UH)

1&(”1'1 ..... Vi 4 ),B> =

'l/}v,B> =

the initial state of any node in the k' layer of the BSQDD B is equal to the initial state
of the corresponding node in the BSQDD B on any path that terminates at the node.
Let o = (vi,,...,v;,) be a path to the k + 1'™ Jayer that terminates at a node a; =
(Go, fol@iy, ... @, ), ts) in the k + 1" layer of the BSQDD B. Let &, denote the
node that the path © terminates at in the BSQDD B. Then the initial state of the node a;
wﬁ,B> = (IzikJrlfl ® G{; ® IQn—ikJrl )fﬁ(xil jeesTiy,) (;fl Vi ),B>
in the BSQDD B and the initial state of the node a, on the path ¢ in the BSQDD Bis

72’@,B> = (Iyiry1-1 ® Go ® Iyn-irys ) ook

(9iq ,...,6%71),3

¢<%~»~»ﬁik_1>73> = W(ml,...,mk_l),é> so that ‘w(@fl,...,m,l),8> =

1[)?’“ b ) 1§>' Thus, {ts, B> = 1/3{) B> by definition 5.5 so the inductive case
VigsesVig_q)s ’

holds. By the principle of mathematical induction, the initial state of a node in the Eth

layer of the BSQDD B is equal to the initial state of the node in the BSQDD B for any

path where k& > j. Therefore, B ~ B by definition 6.4. O

on the path ¥ is

. By the induc-

Jo(Tiqgsees®iy)

tive hypothesis,

These two transformation rules are sufficient for transforming BSQDDs that use the
any set of gates where the corresponding elements of the gates have unique amplitudes
as will be proven in theorem 10.2.

9 A BSQDD with Repeated Variables

This section will illustrate the use of repeated variables in BSQDDs by showing how
to initialize the quantum state

1+

¥) = —

100) + ) (15)

L
V2
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using the set of gates {I,7,V, X} and the starting state |1)o) = |00) where T =

[(1) %} and V = % Hfz ﬁz] is the square root of NOT. The first step for initializ-

ing a quantum superposition using these gates is to find a BSQDD that represents the
desired quantum superposition |¢/). The desired quantum superposition |¢) cannot be
represented without using repeated variables for this set of gates. To see this, con-
sider the desired quantum superposition |¢) and assume that the order of variables is
(21, x2). Because the first qubit |z1) is in an entangled state in the desired quantum
superposition |¢), any BSQDD that represents the quantum superposition [¢)) must
have V as the operation of the root node because none of the other operations re-
sult in a quantum superposition with more than one non-zero term when applied to
the state |0). Because the two qubits are entangled, the root node must have either
one child node that has an inverter controlled by |1) on the qubit |z;) as its opera-
tion or two child nodes where the child on the path (Z;) from the root node has the
identity matrix as its operation and the child on the path (x1) has an inverter as its op-
eration. However, the quantum superposition represented by the resulting BSQDD is
124100) + 15 [11) which is not equal to [¢)) even when the irrelevance of global phase
is taken into consideration. Similarly, the desired quantum superposition |¢) cannot be
represented by a BSQDD that uses the set of gates {I, T, V, X} and the order of vari-
ables (z2,21). However, the desired quantum superposition |4} can be represented
using the order of variables (z1,x2,z2) by the BSQDD shown in figure 5(a). The
quantum array generated by the BSQDD in figure 5(a) is shown in figure 5(b). Be-
cause V' [0) = £ 10) + 151 |1), applying the V gate denoted by G results in the
quantum state [¢1) = 1££]00) + 15¢ |10). After the controlled inverter denoted by G
1 1

is applied, the quantum state is |1)2) = 1% |00) + 152 [11). Since 15 - 1—\}%’ = 75 ap-

plying the T gate denoted by G5 results in the quantum state [)5) = 1+ [00)+ % [11).
Because |¢)) = |13), the quantum array initializes the desired quantum superposition
|1). This example shows that repeated variables can be useful for some sets of gates.

10 A Canonical Form for BSQDDs

This section will present a canonical form for BSQDDs that use a set of gates F' # ()
where corresponding elements of gates in the set F' have unique amplitudes. The
BSQDDs also must not have repeated variables. The set of gates have unique am-
plitudes if and only if for every G, G € F none of the corresponding elements of G
and G have equal amplitudes unless G = G.

Theorem 10.1. Let ' # () be a set of 2 X 2 unitary matrices such that if G, GeF

where G = [0 311 ], G = [gig gﬂ and if |goo| = |Gool, |g01| = [go1|, [g10] = |g10| oF

|911| = ‘§11| thenG = G. Let B = (A, (Ll, ceey Lm), {.’Eh R ,$n}, ((Eil,. .. ,.’Ein)7 F)
be a BSQDD that has no repeated variables. Then the BSODD B is in canonical form

if for every node a = (G, f(xi,,...,xi;_,),t) € A, f(xi,...,2i;,_,) = 1 and there

are no equal nodes in any layer of the BSODD B. This form is canonical in the sense

that if two BSQDDs B and Bare in canonical form and B ~ B, then B = B.

’ ’
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Figure 5: The BSQDD and quantum array

Proof. Let B = (A, (L1,..., L), {21, .., 20}, (i), ..., 2,), F') be a BSQDD in
canonical form where F' # () is a set of 2 x 2 unitary matrices such thatif G,G € F

where G = [§% §01], G = [Z‘jﬁ Z[ﬂ] and if [goo| = |gool. [g01| = [Go1]; [g10] = |g10] Or

|911| = ‘§11| thenG = G. Let B = (A, (Ll, ce ,Lm), {(El, NN ,l’n}, (QCiU e ,xin),F)
be a BSQDD in canonical form such that B ~ B. First observe that for any path
v = (v,,...,v;;,_,) to anode in the j** layer of the BSQDD B, there exists a node in
the BSQDD B that the path v terminates at. This must be true because otherwise the
BSQDDs B and B would not represent the same superposition and therefore would
not be equivalent. Also, for any path v = (v;,,...,v;,_,) to a node in the 4§ layer
of the BSQDD B, there exists a node in the BSQDD B that the path v terminates at.
This implies that the number of nodes in the j*" layer of the BSQDD B is equal to
the number of nodes in the j** layer of the BSQDD B. It will be proven by induc-
tion that the initial state of the node a, in the j*" layer of the BSQDD B on any path
U= (Viyy---, Vi ,) is equal to the initial state of the node a, on the path v where a,
is the node in the BSQDD B that the path v terminates at and @, is the node in the
BSQDD B that the path v terminates at. The inductive proof will also show that the
operation G of the node a,, is equal to the operation G of the node a,. Let the starting
state be [1pg) = |b1, ..., b,). Note that because the starting state |t) is required to be
a basis state, |by) = |0) or |bg) = |1) forall k = 1,...,n. Let |)) be the quantum su-
perposition represented by the BSQDD B. Since B ~ B, |1} is also represented by the
BSQDD B. Consider the basis case where j = 1. Then v = (). Let the operation of the
node a() be G and let the operation of the node &, be G' where G |b;, ) = 0 |0) + 61 |1)
and G |b;,) = &0 |0) 4 01 |1). Consider the quantum arrays generated by the BSQDDs
Band B according to definition 7.1. By theorem 7.3, applying either of these quantum
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arrays to the starting state |t)g) results in the desired quantum superposition |¢). Be-

cause the control function of the root node ay of the BSQDD B is f(y() = 1 and no

other layers in the BSQDD B operate on the variable z;,, the probability of observing

|0) when the qubit |x;,) is measured in the quantum superposition |¢) is |00/ Now

the control function of the root node a) of the BSQDD Bis Jo() = 1 and no other

layers in the BSQDD B operate on the variable z;, so the probability of observing |0)
2

when the qubit |z;, ) is measured in the quantum superposition |¢) is ’50’ . Therefore,

~ 2 - N
|<50|2 = ‘60‘ so since amplitudes are non-negative, |dp| = ‘60‘. Now G, G € F and the
corresponding elements of gates in /" have unique amplitudes. Therefore, G = G which
implies that the initial state of the root node ay of the BSQDD B on the path () is equal
to the initial state of the root node a) of the BSQDD B on the path (). This proves the
basis case. Consider the inductive case where the initial state of the node a,, in the jt"
layer of the BSQDD Bon any path v = (v;,,...,v;,_,) is equal to the initial state of
the node a,, on the path v where a, is the node in the BSQDD B that the path v termi-
nates at and a, is the node in the BSQDD B that the path v terminates at. Also, G = G
where G is the operation of the node a, and G is the operation of the node a,. Let
0 = (i, ..., 0;;) be apath to a node a; in the j + 1*0 layer of the BSQDD B. Let
be the node in the BSQDD B that the path © terminates at. Let the operation of the node
a; be G and let the operation of the node @; be G where G |b;,,, ) = 0o |0) + &1 |1)
and G |bi, ) = 50 ]0) + 01 [1). Letv = (0j,,... ,0i;_,). Because ¥ # () and the
control function of the node a; is fo(x4,,. .., acij) = 1 the initial state of the node
as on the path 9 in the BSQDD B is ¢0,3> = (Iyiyr 1 @G @ Lyniy) ¢B> by
definition 5.5 where B has been added to the subscripts of 1/3 to indicate that this initial
state is from the BSQDD B. Since the qubit |z;,,, ) is still equal to [b;,,, ) in Vo, B>

the probability of observing |0) when the qubit |xij +1> is measured in the quantum

superposition ‘ﬁu B> is |0o|?. Since © # () and the control function of the node d; is
ﬁ; (wi,,...,2;;) = 1 the initial state of the node a; on the path ¢ in the BSQDD B
1[){),B> = (121:]‘“71 RGRI nﬂﬂl) ‘12):%3> by definition 5.5 where B has been
added to the subscripts of vfz to indicate that 7this initial state is from the BSQDD B.

1&1}, B> the probability of observing
’2

is

Since the qubit |z, ) is still equal to |b;,, ) in
|0) when the qubit |x” +1> is measured in the quantum superposition ‘1[)1) B> is ’50
Let |Z> denote ‘é > where / is equal to the binary string that corresponds to the number
CoLet[9) = Y0 ot o |€) be the quantum superposition represented by the BSQDD
B. Let|y) = Y7 o' Be [€) where 8, = oy if 43, = 1in [¢) forall k = 1,...,j and
B¢ = 0 otherwise. Since the layers after the j + 1* layer do not change the qubits |:,.)

for k = 1,...,7 + 1 and the BSQDD B represents |1)), the probability of observing
|0) when the qubit |m¢j ., ) is measured in the quantum superposition |7) is equal to the

probability |(50|2 of observing |0) when the qubit ‘J:ij ., ) is measured in the quantum
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superposition

'(2{)1 B>. Because the BSQDD B also represents the quantum superpo-

sition |¢)), the probability of observing |0) when the qubit ’a:zj ., ) is measured in the
quantum superposition |v) is equal to the probability ‘50’ of observing |0) when the

. _ 2
qubit ]mij+1> is measured in the quantum superposition (1), B>' Thus, \5o|2 = ‘60‘ SO

since amplitudes are non-negative, |o| = ’50’. Now G, G € F and the corresponding
elements of gates in /" have unique amplitudes. Therefore, G = G. By the inductive
1&,,7 B> = 1ﬁ% ,;> SO J:j3> = |1ﬁ31§> by definition 5.5 which implies
1[)6,B> = 77/;@ 5 )- This proves the inductive case. Therefore, by the principle of

mathematical induction, the initial state of the node a,, in the j*" layer of the BSQDD
B on any path v = (vj,,...,v;,_,) is equal to the initial state of the node @, on the
path v where a,, is the node in the BSQDD B that the path v terminates at and a,, is the
node in the BSQDD B that the path v terminates at. It will now be proven by induction
that the node a, in the j" layer of the BSQDD B on any path v = (v;,,...,v;,_,)
is equal to the node a, on the path v where a, is the node in the BSQDD B that the
path v terminates at and a,, is the node in the BSQDD B that the path v terminates
at. Consider the basis case where j = n. Then a,, and a, are leaf nodes and have no
children. Therefore, since the control function of a,, is f,(x;,,...,x;, ,) = 1 and the
control function of a,, is fv (Xiyy-o oy, ) =1,a, = a, ifand only if G = G where
G is the operation of the node a,, and G is the operation of @, by definition 5.1. Since it
was just proven that G = G, a, = Q, so the basis case holds. Assume that the node a,,
in the j*" layer of the BSQDD B on any path v = (v;,, . ..,v;,_,) is equal to the node
a,, on the path v where a,, is the node in the BSQDD B that the path v terminates at and
@, is the node in the BSQDD B that the path v terminates at. Let & = (v, , . . . s Vi _y)-
Let a; be the node in the BSQDD B that the path ¢ terminates at and a; be the node in
the BSQDD B that the path ¢ terminates at. Let ¢ be the tuple denoting the children of
the node a; and let £ be the tuple denoting the children of the node @;. By the induc-
tive hypothesis the corresponding children of the nodes a; and a; are equal so t = .
Therefore, since the control function of a; is fi(z4,,...,2;,_,) = 1 and the control

hypothesis,

that

function of a; is ff,(l’i17 ceoyxi, ) =1,a; = agifand only if G = G where G is the
operation of a, and G is the operation of a, by definition 5.1. Since it was previously
shown that G = G’, a3 = a3. Thus, the node a, in the j** layer of the BSQDD B
on any path v = (v;,,...,v;,_,) is equal to the node @, on the path v where a, is the
node in the BSQDD B that the path v terminates at and a,, is the node in the BSQDD
B that the path v terminates at. Therefore, B = B by definition 6.3. O

This canonical form is quite general and works for many sets of gates. Examples
include any set of gates {U,I, X} where |u;;| # 0 and |u;;| # 1. This includes
sets of gates such as {H,1, X} and {V,I, X} where V = 3 [ [T?{7}] is the square
root of NOT. Another interesting set of gates for which the canonical form holds is
{Go =[50 5n0,]]0<6 < Z} which is used in the Long-Sun algorithm [6].

sin @ — cos 6

Theorem 10.2. Let F' # () be a set of gates such that the corresponding elements of the
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gates in the set F' have unique amplitudes as defined in theorem 10.1. Let B and B be
equivalent BSQDDs where B = (A, (L1, ..., L)y {21, -y 2 by (Tiyy ooy, ), F)
and B = (A (Li,..., L), {z1,.. s 2}, (Tiy, ..., 24,), F) have no repeated vari-
ables. Then B can be transformed into B using transformation rules 8.1 and 8.2.

Proof. The theorem will be proven by showing that the BSQDDs B and B can be
transformed into canonical form. First transformation rule 8.1 is used to split the nodes
in B and B until each node has exactly one parent. Let these two new sets of nodes be
denoted by A and A respectively. Now consider a node a = (G, f(x;,, . .. T, 1), t)
where a € Aora € A If f (%4,,...,2i,_,) is not equal to the constant function
JICT x;,_,) = 1, then a can be replaced by a new node @ = (G, f(xiy,. .., Ti;_,)
1,t) where G = G if f(zi,,. .. ,i;_,) = 1 on the path to a from the root and G=1
if f(2i,,...,7;,_,) = 0 on the path to a from the root using transformation rule 8.2.
Merging equal nodes in each layer then results in two new BSQDDs B, and B, that
are obtained from B and B respectively as described above. Because B, and B, are in
canonical form by theorem 10.1, B, = = B,. Because transformation rules 8.1 and 8.2
can each be applied in both directions, the BSQDD Bc = B, can be transformed into
B using transformation rules 8.1 and 8.2. Therefore the BSQDD B can be transformed
into the BSQDD B using transformation rules 8.1 and 8.2. 0

Theorem 10.2 shows that a BSQDD B of the form shown in theorem 10.1 that
has no repeated variables can be transformed into any equivalent BSQDD using trans-
formation rules 8.1 and 8.2. Algorithm 2 can be used to construct a BSQDD in the
canonical form given in theorem 10.1 that represents a desired quantum superposition
for a given order of variables and starting state provided that the set of gates used for
synthesis satisfy the constraints in theorem 10.1. Since a quantum superposition can
be represented as a list of all terms with non-zero coefficients, this algorithm is in the
complexity class ©(mn) where m is the number of terms non-zero coefficients in the
desired quantum superposition. Algorithm 3 can be used to convert any BSQDD that
satisfies the conditions in theorem 10.1 and has all of its control functions equal to the
constant 1 into canonical form using transformation rule 8.1. The restriction on the
control functions is used because it makes the algorithm much more efficient. If the
number of nodes in the j* layer of the BSQDD B is given by ¢;, then algorithm 3
is in the complexity class ©(¢1 + ... + £,) = O (JA]) since each iteration over all
pairs of equal nodes can be implemented in linear time by constructing a hash table
that contains all nodes in the current layer.

11 Complexity of BSQDDs

This section will present two theorems that provide upper bounds on the number of
nodes required in BSQDDs with and without repeated variables. A class of quan-
tum superpositions will then be shown that require an exponential number of one and
two qubit operations to be initialized using the Ventura-Martinez [11], SQUID [8] and
Long-Sun [6] algorithms but only a linear number of one and two qubit operations
when BSQDDs are used to find the initialization quantum array.
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Algorithm 2 The algorithm for constructing a BSQDD in canonical form

1:

Let the desired quantum superposition be [¢), let (x;,,...,x;,) be the desired
order of variables, let the starting state be [1)g) = |b1,...,b,) and let F be a set of
gates that satisfies the constraints in theorem 10.1

2: Let a = construct(|¢)), 1)

10:

11:
12:
13:

14:
15:

16:
17:
18:
19:

20:
21:
22:
23:
24:

if |¢) = |¢) where |¢) is the quantum superposition represented by the BSQDD
with the root node a then

return bsqdd(a, (z;,,...,z;, ), F) > bsqdd is a function that takes a
root node, the order of variables and the set of gates and stores them in a BSQDD
which it then returns
else

return Failure, this quantum superposition cannot be represented using this set
of gates
end if
function construct(|9) , j) :

Let[d) = 275 " a4 [7)
Let B = Z?;;l B2 where ; = a; if z;, = 0in [i) and 3; = 0 otherwise

Lety = \/Z?ial 72 where ; = o if 7, = 1in m and y; = 0 otherwise
Let |¢) = Y7mg " i@ and &) = 32700 i [7)
Let G € F be the operator that satisfies [go|* = Bfi:% and |g1
G |bi,) = g010) + g1]1) > Note that because the gates in the set F' have unique
amplitudes, the operator G is unique if it exists
if no such operator GG exists then

return Failure, this quantum superposition cannot be represented using this set
of gates
else if ; = n then

return (G, f(z,,..., 25, ,) = 1,())
else if 5 = 0 and v # 0O then

return (G, f(2iy, ..., 75 ,) = 1, (construct(|¢),j +
1), construct(|£),j + 1)))
else if 5 % 0 and v = 0 then

return (G, f(zi,,...,2,_,) = 1, (construct(|¢) ,j + 1)))
else if 5 = 0 and v # 0O then

return (G, f(z;,,...,2;;_,) = 1, (construct(|{),j +1)))
end if

2 2
| = BZ’YTVZ where
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Algorithm 3 The algorithm for converting a BSQDD into canonical form
1: Let B = (A, (L1,...,Lp), {x1,..., 20}, (ziy, ..., 2, ), F) be a BSQDD that
satisfies the constraints in theorem 10.2 and the control function for each node
ain the j** layer is f(z;,,...,z;,_,) =1

2: forallj=n,...,1do

3: for all pairs of nodes a and @ in the j*" layer where a = @ do
4: Apply transformation rule 8.1 to merge the nodes a and a
5: end for

6: end for

Theorem 11.1. Let B = (A, (L1,...,Lm),{z1,.. . an}, (Tiy,...,2i,,), F) be a
BSQDD. Then the maximum number of nodes in the BSODD B is (m—n)2" 142" —1.

Proof. Let B = (A,(L1,..., L), {x1,... 20}, (s, ..., 2, ), F) be a BSQDD.
By definition 5.3, each node a in the 5" layer of the BSQDD B has at least one path
v = (viy,...,v_,) that terminates at a. Therefore, the number of nodes in the gt
layer is bounded above by the number of paths to nodes in the j*" layer. From definition
5.3, each v;, = ;, or v;, = z;, so the number of paths to nodes in the j** layer is
at most 22~ 1, Therefore, there are at most Z?:l 23—l = 9" _ 1 nodes in the first n
layers. By definition 5.3, if z;, = x;, for some k < j and v = (v;;,...,v;;_,) and
& = (iy,...,0;,_,) are paths to the j*® layer with v;, = ©;, for ¢ < j and ¢ # k then
vi, = ¥;, . This implies that only n — 1 of the variables v;, where k < j and j > n can
be chosen because the rest are determined by definition 5.3. Therefore, the ;" layer
has at most 2"~ ! nodes. Since there are m — n layers where j > n, the number of
nodes in layers where j > n is at most (m — n)2" . Therefore, the total of nodes in
the BSQDD B is at most (m —n)2" 1 + 2" — 1. O

Theorem 11.2. Let B = (A, (Ly,..., L), {z1, ..., 20}, (%iy, ..., i, ), F) be a BSODD
with no repeated variables. Then the maximum number of nodes in the BSQDD B is
2n — 1.

Proof. Because the number of layers in the BSQDD B is m = n, the maximum num-
ber of nodes in the BSQDD B is 2" — 1 by theorem 11.1. O

It will now be shown that quantum superpositions that correspond to an an exclusive
or (EXOR) of the variables that correspond to qubits in the quantum superposition can
be represented using a BSQDD that requires only a linear number of nodes.

Theorem 11.3. Let {|x1) , ..., |z,)} be a set of qubits and let g(x1, . .., x,) = Df_, Tk
where @ denotes summation using the EXOR operation. Let u; 1, . . . ,u; ,, denote the

binary representation of the number 0 < i < 2" — 1. Let |¢)) = Zial o |{> where

@ denotes ‘i> iis equal to the binary string that corresponds to the number i and

o = \/21771 ifg(uit, ..., un) = 1land a; = 0 otherwise. Then the quantum state |1)
can be represented by B = (A, (Ly,..., Ly), {z1, ..., &}, (x1,...,zn), {H, I, X})
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where B is a BSQDD in the canonical form of theorem 10.1 that has 2n — 1 nodes and
the starting state |1)o) = |0™).

Proof. FirstaBSQDD B = (A, (L1, ..., L), {z1,..., 20}, (21, .., 20),{H,[,X})
will be constructed. In this BSQDD, the ;' layer L; will contain two nodes if j > 1
and one node if j = 1. These nodes will be denoted by a; , where j is the index of the
layer that contains the node and ¢ is an index that distinguishes nodes within the same
layer so that { = Qor £ = 1for j > 1 and ¢ = O for j = 1. The control function is
f(z1,...,2j_1) = 1 for each node a; , in the j'" layer. The operation of each node
aj¢ in the j*" layer is H for j < n. The operation of the node an,0 1s X and the
operation of the node a,, 1 is I. The children of the nodes will now be defined. Let ¢; ,
be the tuple from definition 5.1 denoting the children of the node a;,. The tuple ¢; ,
will now be defined. If n = 1 then the root node a; ¢ is the only node in the BSQDD
B and tl,O = () Forj <n, tj’o = (aj+1’0,aj+1’1) and tj71 = (aj+1’17aj+1’0). For
j=mn,tyo = ()and t,1 = () if n # 1. Let the starting state be |¢pg) = |0"). Let
v = (v1,...,vj_1) be a path to a node a; ¢ in the j*" layer of the BSQDD B. The
BSQDD B is shown in figure 6(a) for the case where n = 3. Let u, = 0 if v, = 7,
and uy, = lif vy = 2 foreachk =1,...,7 — 1. Also, let s, = @fc;ll ug. It will be
proven by induction that for j < n the initial state of the node a; , on the path v is

I 1 n—j+1 1 n—j
wv>:ﬁ|u1...uj_10 gt >+ﬁ|u1...uj_110 J> (16)
Furthermore, it will also be shown that £ = s; o forall j = 1, ..., n. Consider the basis

case where j = 1. Then v = () since this is the only possible path to the root node and
the root node is the only node in the first layer. Since the starting state is |¢)g) = |0™),
e e . N _ 1 n 1 n—1
the initial state of the root node on the path () is ‘1/)()> = 510"+ 5 |10m~1)
by definition 5.5 so equation (16) is satisfied. Since v = () and the root node is
a1,0, { = 0and s;9 = 0so £ = s1 as well and the basis case is proven. For the
inductive case, assume that equation (16) holds for every path v = (vq,...,v;-1)
to a node aj, in the j*" layer of the BSQDD B and ¢ = s;, for each such node.
Let & = (d1,...,%;) be a path to a node a, ., ; in the j + 1™ layer. Let a;, be
the parent node of jyq g ON the path 0. Let up, = 0if 0y = T and 4 = 1 if
U = xp for each k = 1,...,j. By the inductive hypothesis, the initial state of the
node a; ¢ on the path v is ‘1/)U> = \/% |ﬁ1 . ﬁj,10”’j+1> + \/% |7§L1 .. aj,llon*j>

G0 = A [an .. ;0") by definition
5.5. It follows by definition 5.5 that the initial state of the node a oy is 1&U> =
Tarrr [0 40" )+ o [ L0107 797 which satisfies equation (16). Ob-

serve that by definition, if £ = { then i; = 0s0s

where v = (01,...,0j—1). Therefore,

i+1,0 = Sj,¢ D 0 which is equal to

¢ = {. Also, by definition if £ # ¢ then £ = / ® 1 and @; = 1 s0 Sit10 = 50Dl
whichisequalto (D1 = {. This proves the inductive case so by the principle of math-
ematical induction, the initial state of the node a; ¢ on the path v is given by equation
(16)forj <nand ¢ =sjeforall j =1,...,n. Letd = (¥1,...,0,—1) be a path to
anode a,, ; in the ntM layer. Let ap—1,¢ be the parent node of the node a,, ; on the path
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0. It was shown that the initial state of a,,_1 ¢ on the path v = (01, ..., 0,_2) is given
by equation (16). Suppose that £ = 0. Since the operation of the node a,, ¢ is X, the
1ﬁ@> = \/% |y ... 7,_11). Because

sn,o = 0, it follows that g(@1,...,%,—1,1) = 1. Now suppose that / = 1. Since
the operation of the node a,; is I, the initial state of the node a,, ; on the path ¥ is

initial state of the node a,, ; on the path ¢ is

1[11;> = \/% |Gy ... Gnp—10). Because s, 1 = 1, it follows that g(d1, . . ., tp—1,0) =
1. Therefore since the amplitude of each basis state in the quantum superposition rep-

resented by the BSQDD B is \/2111771 and the function g(z1, .. ., z,) has an output of 1

for exactly 2"~ ! assignments to its inputs, it follows that the BSQDD B represents the
quantum superposition [¢)). Since the BSQDD B has 2n — 1 nodes and satisfies the
conditions in 10.1 the proof is complete. O

Applying algorithm 1 to the BSQDD B from the proof of theorem 11.3, a quantum
array that uses n— 1 single qubit H operations and n— 1 two qubit Feynman operations
is obtained. This quantum array is shown in figure 6(b) for the case where n = 3. Thus,
the quantum superposition |¢) from theorem 11.3 can be represented using a BSQDD
with a linear number of nodes that generates a quantum array with a linear number of
one and two qubit operations. Because other approaches to initializing this quantum
superposition rely on representing the quantum superposition using minterms in the
case of the Ventura-Martinez [11] and phase groups in the case of the SQUID [8], both
of these algorithms require an exponential number of one and two qubit operations to
initialize the quantum superposition |¢) from theorem 11.3 while BSQDDs can be used
to accomplish this task using only a linear number of one and two qubit operations.
Therefore, in this case BSQDDs are an exponential improvement over the Ventura-
Martinez [11], SQUID [8] and Long-Sun [6] algorithms. The ESQUID algorithm [9]
can initialize the quantum state |¢)) from theorem 11.3 using only a linear number
of one and two qubit operations assuming the correct sequence of generalized phase
groups is used. However, it still uses extra qubits and requires more operations than if
BSQDDs are used. Furthermore, finding an efficient sequence of generalized phase
groups is a difficult problem that the ESQUID algorithm [9] does not address and
the ESQUID algorithm [9] can only be used for quantum superpositions of the form

[¢) = Zial \;;W |i) where ¢; € {—1,0,1} while BSQDDs can be used for arbitrary

quantum superpositions as is proven in theorem 12.1.

12 BSQDDs are Universal

In this section, it will be shown that BSQDDs are universal in the sense that a BSQDD
can represent an arbitrary quantum superposition given an appropriate set of gates.

Theorem 12.1. A BSQDD operating on the set of qubits {|x1) , ..., |zn)} using the set
of gates {Gg,q, = [Si;‘);e% sin ZZ;;D} ‘ 0,0 € R}, the order of variables (1, ..., %)

and the starting state |1g) = |0™) can represent an arbitrary quantum superposition.
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(a) A BSQDD that represents |¢) (b) The quantum array generated by the
BSQDD

Figure 6: The BSQDD and quantum array for |¢)

This set of gates is adapted from the Long-Sun algorithm [6]. This theorem will

now be proven by constructing a BSQDD that initializes an arbitrary quantum super-
position.
Proof. Note that Gy, = G};’Qp so G, is Hermitian and as well as unitary. Let |1) =
Ziigl ag |E> be an arbitrary quantum superposition where oy, € C, Zi:ol |l =
1 and ‘E> denotes ‘k> with k equal to the binary string that corresponds to the number
k. Then |)) = Zii_ol rie'® |k) where each oy, = re’®* and Zilgl r2 = 1.
Because global phase is irrelevant, the quantum superposition

[9) =e7% I} a7)
2" -1
= et k) (18)
k=0
is equivalent to |1)) where each ¢, = ¢ — ¢o. Consider the BSQDD B that has
the order of variables (x1,...,x,) where each node that is not a leaf node has two

children and the control function of each node is always equal to 1. This implies that
the path from the root to any node in this BSQDD is unique. Let a, be a node in
the j** layer that the path v = (vy, ... ,vj—1) terminates at. Let up = 0if vy = T,
and up, = lif vy, = foreach bk = 1,...,5 — 1. Letz = uy ... u;—10" 7Tl ¢y =
up...uj—11" 7T and 2 = uy ... u;—110" "7 where the expressions uy . .. u;_10" 7T
uy ... u;j—110"77 and ug ... u;—11""7*! are interpreted as binary numbers. For the
rest of this proof, the node a, at which a path v terminates will be denoted by a,_,
where x and y are as defined above. Assume that a, , is not a leaf node. Then
z—1=wuq.. .uj_101"—i which implies that the tuple from definition 5.1 that de-
notes that children of the node a, ,, is (as .—1,a.,,) since the paths to the children of
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the node a, 4 are (v1,...,v;-1,%;) and (v1,...,vj_1, ;). Also note that by defini-
tion of x and z, z = x + 277, This property will be used later in this proof. The
operation of the node a.. , is denoted by U, , = G where 0, , = cos™ ay, .

z,y P,y
z—1 _2 Y 2
.. T _. T .
Oay = Pz — Pa, Oz y = E’é*’” 5, Bey = E’J*Z k and x, y and z are as previ-
k=z Tk k=z Tk

ously defined. If the denominator in the formulas for o, and 3, 4 is 0, then o, is
taken to be 1 and §3, , is taken to be 0. The BSQDD B is shown in figure 7 for the case

where n = 3. It will now be proven that the BSQDD B represents ‘1[)> Because each
path from the root to a node in the BSQDD B is unique, it is not necessary to specify
the path to when referring to the initial state of a node. Several identities are used in this
proof which will now be shown. From trigonometry, sin cos™'z = /1 — z2. Also,
from the definitions of o, and £, ), azy = (/1 — B2 and B, = /1 —aZ . It
will now be proven by induction on the layers of the BSQDD B that the initial state of
anode a, , on the path v in the 41 layer of the BSQDD B is

wv> = ’Yz,yaa:,yeiww |f> + ’Yx,yﬂat,yeisoz |§> (19)

where 7, , = Y _,ri. Forthebasiscase j =1,z =0,y =2"—land z = 2" !
so by definition 5.5 the initial state of the root node is

[0 ) =(Uozn-1 @ Bpur) [07) 20)
:(G90,2"—1-,<Po,2n—1 ® 12”*1) |0n> 21
— cos flp an 1 sin fg gn e~ t¥02m 1 .
o < |:Sin 90}27171€i"0012"’*1 — COoS Qo’gnfl ® 12"71 |O > (22)

/ 2 i
Qp 2n—1 1-— 0407271_16 YPan—1 "
= . ® Ign-1 | [0™)
V1= 0fon_jetPe —,2n—1

(23)

Q,2n 1 Bo,on 1€~ Pan-1 n
- <[BO,2n_1€i“’2"1 —Qpan—1 ] @ IQn_l) 0%) @4
:OL07271_160 |0’n> 4 /8072n_16i<,02n71 |10n71> (25)
=70,2n—1000,2n~1%° |0) + 70,20 —1 80,27 —1€"%2" 2”_1> (26)

Thus, equation (19) holds so the basis case is proven. The inductive case will now be
proved. Assume that the initial state of any node a, , in the 7' layer of the BSQDD
B is given by equation (19). Let a; 4 be a node in the j + 1*2 layer of the BSQDD
B, let a; , be the parent node of G; 3 and let & = (91, ..., 0;) be the path to the node
@z, from the root node. Let v = (01, ...,7;—1). Suppose that 0; = T;. Then & = z,
§ = z—1and 2 = 2 + 2" 7~ by definition of x, y and z. Therefore, by definition
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5.5 the initial state of the node a; 4 is

Bo) =(los @ Usg @ Lynsm) [0 )
=l @ Go, 5055 @ Iyne3-1 )72,y Q0 €9 [T) (28)
_ ‘ cos 0z 4 sin @z ge~Pe0 ‘
= (_[2] ® |:Sin 0@7Q6i¢j’g — cos 9@@ :| ® IQn]l) (29)

: 'Yrc,Z—lewz T)

Qg 1 — a2 e
=|Iy® o oY ® Ipn—i— (30)
/1 —af et —Qag

Vg€ |T)
B , Qs g ﬁj’ge—i(#’z—%e) -
— <12] ® L@% il sy & Iyn—i—1 31)
g€ |T)
=Y3,§0,5€"%" [T) + Va,90z,9¢"* |z + 2777 ’1> 32)
=e,50.5€ 7% | &) + 72,989 |2) (33)

Now Suppose that 9; = x; on the path ¢ from the root to a3 4. Then £ = z, § = y and
£ =3+ 2"~ Therefore, by definition 5.5 the initial state of a; 4 is

1&{;> =I5 @ Uz, 5 @ Ign—j-1) ‘LZAJ;?J> (34)
=l @ Go, 5055 @ 12"—1’—1)'7x7yﬂz,yewz Z) (35
cos 0 4 sin 0z ;e ¥ o
= (Igj & Lin 0@ gZ’ng‘x’g 727(2;8 9'2 g :| & Ianl) ’727yeupz ‘Z> (36)
Qg \J1—a2 e e
=1y ® o w © Iyn 51 37)
1—ag je#eo —Qag
“Y2,9€"% [7)
. . e Hpr—vz) )
Qg z,5€ i0n =
= (IQJ' ® |:ﬂA »ei(éz_saa’}) ﬁ Y s :| ® [2nj1> Vz,5€ Pz |Z> (38)
.9 .9
=72,§02,9€'* |Z) + 12,5B2,9€'7 |2 + 2”*j*1> (39)
=s,90a,5¢ % |T) +75,985,9¢"* |2) (40)

This proves that inductive case. Thus, for a node a, , in the n*® layer of the BSQDD
B,y =x+ 1land z = = + 1 so by equation (19) the initial state of the node a, , on
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the path v from the root is

q[)“> =Vew 410221177 |T) + Yo w41 Be 1€ [2 1) 41)
=V2,2€"7" |T) + Vot1,001€ 97 |2+ 1) (42)
=ry€'%" |T) + rpqie’¥ot ’T—l—l> (43)

Thus, the quantum superposition represented by the BSQDD B is

gn—1_1 2" 1
Z rzkeitﬂzk ’ﬁ> + r2k+1ei¢2k+1 ’m> _ Z rkeitpk ’E> (44)

k=0 k=0
=|#) (4$)

Since ‘1/3> is equivalent to |1), the BSQDD B represents the quantum superposition
[¥). O

This theorem is important because it shows that BSQDDs can represent any quan-
tum superposition up to global phase. In conjunction with theorem 7.3, this theorem
shows that BSQDDs can be used to synthesize quantum arrays for initializing arbitrary
quantum superpositions from the starting state |0™) by constructing a BSQDD of form
defined in the proof of theorem 12.1. Basis states other than |0™) can also be used. To
find a BSQDD that represents an arbitrary quantum superposition with respect to the
starting state |tg) where |1)) is any basis state, use the method from theorem 12.1 to
find a BSQDD that represents the desired quantum superposition with respect to the
starting state |0™). This BSQDD can then be modified by replacing the operation U of
each node with the product U - X in layers where the corresponding qubit in the start-
ing state |t)g) is equal to |1). This will result in a BSQDD that represents the desired
quantum superposition with respect to the starting state |1)g).

13 Representing Quantum Superpositions Using a Class
of BSQDDs with Canonical Forms

This section will present a theorem which shows that a BSQDD that uses the set of
gates { Dy = [59 5291 |0 < ¢ < T} with no repeated variables can initialize any
quantum superposition with non-negative real coefficients. Although this is not as
general as theorem 12.1, this set of gates is used in the Long-Sun algorithm [6] and
satisfies the conditions in theorems 10.1 and 10.2. This implies that BSQDDs that use
this set of gates and do not have repeated variables have canonical forms and can be

transformed into any equivalent BSQDD.

Theorem 13.1. A BSQODD operating on the set of qubits {|x1) ,...,|zn)} using the
set of gates {Dg = [gﬂfg _SIC‘})S%] | 0<o< g}, the order of variables (x1,...,x,)

and the starting state |1o) = |0™) can represent any quantum superposition with non-
negative real coefficients.
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Figure 7: A BSQDD that represents ‘1&> forn =3

Proof. Let the desired quantum superposition be denoted by [¢). Recall that in the

proof for theorem 12.1, the operation of each node a, , was U, , = Gy, , o, , Where
-1 Siiie? .
Oy = COS™ Qg y, Pry = Pz Pas Qg y = Ey*f 5 and z, y and z are as defined in
’ k=x 'k

theorem 12.1 and Gy, = [ cos Sineefw}. Sincex <z—-1<y,0< Z;;i i <

sinfe’? —cos6 -

z—1 2
ZZ:T r,%. Therefore, 0 < Zéj” :’5 <1500 < ayy < 1. Hence, 0 < 0,y < %
- k=xz 'k
Recall that the quantum superposition represented in the proof of theorem 12.1 was

‘1[)> = Ziigl rre'#* |k) as shown in equation (17) where each ¢ = ¢ — ¢ and

the original quantum superposition before the global phase was factored out was [1)) =
n—1 . —

Sr_o ke’ |k). Since the quantum superposition being represented now has only

non-negative real coefficients, ¢, = 0 for all k = 0,...,2" — 1. Therefore, ¢, , = 0

for each node a; . Then Dy, = Gy so since |1)) = ’1§> the construction used

z,y,Px,y
in the proof of theorem 12.1 can be used to represent the quantum superposition |1/}

with a BSQDD that operates on the set of qubits {|z1) , ..., |z,)}, uses the set of gates
{Dg =[50 501 ]10<6<Z}, has the order of variables (z1,...,,) and uses
the starting state [¢)g) = |0™). O

This theorem is useful because it shows that a class of BSQDDs that satisfy the
conditions in theorems 10.1 and 10.2 can initialize a broad class of quantum superpo-
sitions. The construction from theorem 13.1 can be used to construct a BSQDD that
represents any quantum superposition with non-negative real coefficients.
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14 Conclusion

BSQDDs are a powerful data structure that can be used for synthesizing efficient quan-
tum arrays for initializing arbitrary quantum superpositions and also for representing
arbitrary quantum superpositions. The gates used in BSQDDs can be restricted to only
those available for synthesis so that the generated quantum arrays do not require gates
that are not available. A canonical form exists for a broad class of BSQDDs. Transfor-
mation rules also exist for reducing BSQDDs in order to decrease the number of gates
in the resulting quantum array. BSQDDs have advantages over existing methods for
initializing quantum superpositions. One advantage is that quantum arrays generated
from BSQDDs do not require ancilla qubits unlike the Ventura-Martinez [11], SQUID
[8] and ESQUID [9] algorithms. Furthermore, for some classes of quantum superpo-
sitions, BSQDDs can be used to generate quantum arrays that require exponentially
fewer gates than the Ventura-Martinez [11], Long-Sun [6] and SQUID [8] algorithms.
This makes BSQDDs a powerful and useful data structure for representing and initial-
izing quantum superpositions.
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