
Binary Superposed Quantum Decision Diagrams

David Rosenbaum
Portland State University, Department of Computer Science

Email: drosenba@cs.pdx.edu

Abstract

Binary Superposed Decision Diagrams (BSQDDs) are a new type of quantum
decision diagram that can be used for representing arbitrary quantum superposi-
tions. One major advantage of BSQDDs is that they are dependent on the types
of gates used in synthesis and a BSQDD can be used to efficiently generate a
quantum array that will initialize the quantum superposition that the BSQDD rep-
resents. Transformation rules for BSQDDs allow BSQDDs to be reduced into sim-
pler BSQDDs that represent the same quantum superposition. Canonical forms ex-
ist for a broad class of BSQDDs. This allows BSQDDs to be used for synthesizing
quantum arrays that are capable of initializing arbitrary quantum superpositions.

1 Introduction

1.1 Initialization Algorithms
Initializing a quantum superposition from a basis state is an important problem in quan-
tum computing with applications in Grover’s algorithm [5, 2] and quantum neural net-
works [12, 4]. Several initialization algorithms have been created to solve this problem.
The Ventura-Martinez algorithm [11] requires Θ(mn) two qubit gates as well as n+ 1
ancilla qubits where m is the number of terms in the desired quantum superposition
and n is the number of qubits in the desired quantum superposition. Another initial-
ization algorithm that is based on a different idea is the Long-Sun algorithm [6] which
requires no ancilla qubits but uses Θ(n22n) two qubit gates. The SQUID algorithm [8]
is an improvement over the Ventura-Martinez algorithm [11] and usesO(pn) two qubit
gates and requires n+2 ancilla qubits where p is the number of disjoint phase groups in
the phase map of the desired superposition. The ESQUID algorithm [9] is an extension
of the SQUID algorithm [8] and uses O(bn) two qubit gates and requires n+ 2 ancilla
qubits where b is the number of disjoint generalized phase groups in the phase map
of the desired superposition. BSQDDs do not require the ancilla qubits or the special
initialization operators used in the Ventura-Martinez [11], SQUID [8] and ESQUID [9]
algorithms and can be used to find quantum arrays that are more efficient than those
generated by the Ventura-Martinez [11], Long-Sun [6], SQUID [8] and ESQUID [9]
algorithms.
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1.2 Quantum Decision Diagrams
Quantum decision diagrams called Quantum Information Decision Diagrams (QuIDDs)
were first created by Viamontes, Rajagopalan, Markov and Hayes [14, 13] for repre-
senting quantum operators and states. Miller and Thornton [7] developed improved
decision diagrams called Quantum Multivalued Decision Diagrams (QMDDs) for rep-
resenting binary and multivalued quantum operators. Another set of quantum decision
diagrams called Quantum Decision Diagrams (QDDs) was developed by Abdollahi
and Pedram [1] for representing and synthesizing quantum operators. The purpose of
BSQDDs is to provide a representation for quantum superpositions that can be used
to synthesize a quantum array which will initialize the desired quantum superposition.
This is done using only gates that are available for synthesis in a way that allows the
generated quantum array to be synthesized directly from the resulting BSQDD. The
generated quantum array can then be applied to the starting state in order to initialize
the desired quantum superposition. The starting state can be any basis state.

1.3 Advantages of BSQDDs
The main purpose of BSQDDs is to synthesize quantum arrays for initialization. This
is different from other quantum decision diagrams such as QuIDDs [14] and QMDDs
[7] which focus on providing efficient representations of quantum operators and states
rather than synthesizing quantum arrays for initialization. BSQDDs also differ from
QDDs [1] which are used for synthesizing operators rather than states. For these rea-
sons, BSQDDs are mainly comparable to quantum initialization algorithms since other
quantum decision diagrams are not applicable to the problem of synthesizing quantum
arrays for initializing desired quantum superpositions. BSQDDs have several impor-
tant advantages over existing methods for synthesizing quantum arrays for initializing
quantum superpositions. Some quantum superpositions can be initialized using only
a linear number of one and two qubit operations with quantum arrays generated using
BSQDDs while the Ventura-Martinez [11], SQUID [8] and Long-Sun [6] algorithms
all require an exponential number of one and two qubit operations as is shown in sec-
tion 11. This shows that BSQDDs can be used to achieve an exponential reduction in
the number of required gates over existing methods other than the ESQUID algorithm
[9] for initializing some classes of quantum superpositions. However, the ESQUID
algorithm [9] requires the quantum superposition to be represented using generalized
phase groups; this is a significant drawback because finding a sequence of generalized
phase groups that will result in an efficient quantum array is a difficult problem that is
not solved by the ESQUID algorithm [9]. The ESQUID algorithm [9] also still requires
more one and two qubit operations than quantum arrays generated using BSQDDs for
a class of quantum superpositions even though the difference in complexity is not ex-
ponential. Additionally, the ESQUID algorithm is only capable of initializing a narrow
class of quantum superpositions while BSQDDs can be used for any quantum super-
position given an appropriate set of gates. Unlike initialization algorithms such as
the Ventura-Martinez [11], SQUID [8] and ESQUID [9] algorithms, BSQDDs do not
require ancilla qubits for bookkeeping and therefore use less qubits. Another disad-
vantage of the Ventura-Martinez [11], SQUID [8] and ESQUID [9] algorithms is that
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they require special initialization operators in order to initialize the desired quantum
superposition. Although these operators are unitary, it is unclear how they can be im-
plemented efficiently using controlled single qubit gates. This means that it is not clear
how a quantum array generated by the Ventura-Martinez [11], SQUID [8] or ESQUID
[9] algorithm could actually be implemented on a quantum computer. BSQDDs do
not suffer from this drawback and use only controlled single qubit gates from the set
of gates available for synthesis. Although the Long-Sun algorithm [6] also does not
require a special training operator and uses only controlled single qubit gates, it re-
quires Θ(n22n) one and two qubit gates. BSQDDs are also capable of initializing any
quantum superposition unlike initialization algorithms which can only initialize certain
classes of quantum superpositions.

2 Creating the Starting State
Because BSQDDs require the starting state to be a basis state, it is necessary to run
a special initialization algorithm before applying the quantum array that is generated
by the BSQDD in order to create the starting state. This requires a different type of
initialization algorithm than those discussed in section 1.1 as all of the algorithms in
section 1.1 require the starting state to be |0n〉. One algorithm that can be used for this
task is the Schulman-Vazirani heat engine [10] which is capable of transforming the
initial mixed state into the state |0n〉. From now on, it will be assumed that the starting
state can be created and the focus will be on properties and examples of BSQDDs.

3 The BSQDD
The idea behind BSQDDs is to represent a quantum superposition as a decision dia-
gram where each node corresponds to a gate. The gate that corresponds to the node on
each branch of the BSQDD is controlled by the path that was used to reach it from the
root of the decision diagram. Thus, each branch of the BSQDD represents a different
part of the desired quantum superposition. This idea is inspired by the observation that
the quantum array synthesized by the Long-Sun [6] algorithm is similar to a binary tree
and also by the idea of Binary Decision Diagrams [3].

4 A Simple BSQDD
Given a sufficient set of gates, a BSQDD can represent any quantum superposition as
will be proven later in theorem 12.1. This section will illustrate the general concepts
behind BSQDDs by finding a quantum array for initializing the state

|ψ〉 = |x1x2x3x4〉 =
1

2
|0101〉+

1

2
|0110〉+

1

2
|1001〉+

1

2
|1010〉 (1)
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4.1 Finding the BSQDD
Using Hadamard gates, Feynman gates and inverters, this quantum superposition can
be represented by the BSQDD shown in figure 1 for the order of variables (x1, x2, x3, x4)
with respect to the starting state |0000〉. In figure 1, the quantum superpositions

∣∣ψ0
〉
,∣∣ψ1

〉
,
∣∣ψ01

〉
,
∣∣ψ10

〉
,
∣∣ψ010

〉
,
∣∣ψ011

〉
,
∣∣ψ100

〉
and

∣∣ψ101
〉

next to the nodes are the quan-
tum states that those nodes represent on their respective paths from the root node
of the BSQDD where

∣∣ψ0
〉

= 1
2 |0101〉 + 1

2 |0110〉,
∣∣ψ1
〉

= 1
2 |1001〉 + 1

2 |1010〉,∣∣ψ01
〉

= 1
2 |0101〉 + 1

2 |0110〉,
∣∣ψ10

〉
= 1

2 |1001〉 + 1
2 |1010〉,

∣∣ψ010
〉

= 1
2 |0101〉,∣∣ψ011

〉
= 1

2 |0110〉,
∣∣ψ100

〉
= 1

2 |1001〉 and
∣∣ψ101

〉
= 1

2 |1010〉. The superscripts in
each of the these quantum states indicates the path from the root node a1 of the BSQDD
to the node that represents the quantum state. For example, the quantum superposition∣∣ψ10

〉
is represented by the node a5 which can be reached from the root node a1 by

following the edge labeled by |1〉 to the node a3 and then following the edge labeled
with |0〉 to the node a5. The reasoning behind these superscripts should become clear
in the rest of this example. The BSQDD in figure 1 can be found from the quantum
superposition in equation (1). Because the order of variables is (x1, x2, x3, x4), the
qubit |x1〉 is initialized first. Note that the qubit |x1〉 is equal to |0〉 in half of the terms
in equation (1) and is |1〉 in half of the terms in equation (1). Thus, the gate that corre-
sponds to the first node a1 is a Hadamard gate. The gate that corresponds to each node
is controlled by the path used to reach it from the root node of the BSQDD. Thus, the
gate that corresponds to the node a2 is controlled by x1 and the gate that corresponds to
the node a3 is controlled by x1. Because |x2〉 = |1〉 in the quantum superposition

∣∣ψ0
〉

represented by the BSQDD rooted at the node a2, an inverter is used as the gate for the
node a2 because |x2〉 = |0〉 in the starting state. Note that the states represented by
nodes other than a1 are not normalized. This is because these states exist only as parts
of the quantum superposition |ψ〉 and will not be initialized themselves. For the quan-
tum superposition

∣∣ψ1
〉

represented by the BSQDD rooted at the node a3, |x2〉 = |0〉
so the identity matrix is the operation that corresponds to the node a3. Now consider
the quantum superposition

∣∣ψ01
〉

represented by the node a4. Because |x3〉 = |0〉 for
half of the terms in

∣∣ψ01
〉

and |x3〉 = |1〉 for half of the terms in
∣∣ψ01

〉
, the operation

that corresponds to a4 is a Hadamard gate. For the state
∣∣ψ010

〉
represented by the node

a6, |x4〉 = |1〉. Because x4 = |0〉 in the starting state, the operation that corresponds to
the node a6 is an inverter. Consider the state

∣∣ψ011
〉

represented by the node a7. Since
|x4〉 = |0〉 in

∣∣ψ011
〉

and x4 = |0〉 in the starting state the operation that corresponds to
the node a7 is the identity matrix. Using the similar reasoning, the gates for the nodes
a5, a8 and a9 are obtained as shown in figure 1.

4.2 Reducing the BSQDD
The BSQDD in figure 1 will now be reduced. Reducing BSQDDs is important because
the number of nodes in a BSQDD is an upper bound on the number of gates that will
be required in the quantum array that is generated from the BSQDD. Observe that
since |x3〉 = |0〉 in the quantum superposition the node a6 is applied to, the control
x3 can be added to this inverter without affecting the quantum superposition that will
be initialized. Since the gate that corresponds to the node a7 is the identity matrix and
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H

|ψ〉

a1

X

∣∣ψ0
〉

a2

H

∣∣ψ01
〉

a4

X

∣∣ψ010
〉

a6

|0〉

I

∣∣ψ011
〉

a7

|1〉

|1〉

|0〉

I

∣∣ψ1
〉

a3

H

∣∣ψ10
〉

a5

X

∣∣ψ100
〉

a8

|0〉

I

∣∣ψ101
〉

a9

|1〉

|0〉

|1〉

Figure 1: A simple unsimplified BSQDD

|x3〉 = |1〉 in the superposition the node a6 is applied to, this identity matrix can be
replaced by an inverter controlled by x3. Similarly, the gates that correspond to the
nodes a8 and a9 can be replaced by the inverters controlled by x3. This results in the
BSQDD shown in figure 2. Because the nodes a6, a7, a8 and a9 are now the same,
they can be merged as shown in figure 3(a). Note that the node a6 in figure 3(a) no
longer has the state it represents shown. This is because the node a6 now represents a
different state on each of the four paths from the root node to the node a6. The node
a6 represents

∣∣ψ010
〉

= 1
2 |0101〉 on the path (x1, x2, x3),

∣∣ψ011
〉

= 1
2 |0110〉 on the

path (x1, x2, x3),
∣∣ψ100

〉
= 1

2 |1001〉 on the path (x1, x2, x3) and
∣∣ψ101

〉
= 1

2 |1010〉
on the path (x1, x2, x3). Each of the above tuples of literals denotes the path from the
root node where all of the literals in the tuple are equal to 1. Note that summing the
states represented by the node a6 results in |ψ〉 which is the quantum superposition
represented by the BSQDD. This is a general property of BSQDDs and will be proven
later in theorem 7.3. The nodes a4 and a5 are also now the same so they can also be
merged as shown in figure 3(b). The paths to the node a5 from the root in figure 3(b)
are the same as for the node a6 in figure 3(a) and these nodes also represent the same
states. The node a4 in figure 3(b) represents

∣∣ψ01
〉

= 1
2 |0101〉+ 1

2 |0110〉 on the path
(x1, x2) and

∣∣ψ10
〉

= 1
2 |1001〉+ 1

2 |1010〉 on the path (x1, x2). The gate for the node
a2 can be replaced by Xx1 because |x1〉 = |0〉 in the part of the quantum superposition
the operation of the node a2 is applied to. Similarly, the identity operation of the node
a3 can be replaced by Xx1

because |x1〉 = |1〉 in the part of the quantum superposition
the operation of the node a3 is applied to. Nodes a2 and a3 can then be merged which
results in the final BSQDD shown in figure 4(a). Note that in this final BSQDD, the
edge from the node a2 to the node a3 does not have a |0〉 or a |1〉 next to it as all the other
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H

|ψ〉

a1

X

∣∣ψ0
〉

a2

H

∣∣ψ01
〉

a4

Xx3

∣∣ψ010
〉

a6

|0〉

Xx3

∣∣ψ011
〉

a7

|1〉

|1〉

|0〉

I

|ψ〉1

a3

H

∣∣ψ10
〉

a5

Xx3

∣∣ψ100
〉

a8

|0〉

Xx3

∣∣ψ101
〉

a9

|1〉

|0〉

|1〉

Figure 2: Replacing the gates for a6, a7, a8 and a9 with inverters controlled by x3

edges do; this is because this edge indicates a part of the quantum superposition where
|x2〉 = |0〉 and also a different part of the quantum superposition where |x2〉 = |1〉
depending on which path from the root node is taken. The states represented by the
nodes a3 and a4 in figure 4(a) are the same as the states represented by the nodes a4
and a5 in figure 3(b). The node a2 represents the state 1

2 |0101〉+ 1
2 |0110〉 on the path

(x1) and 1
2 |1001〉+ 1

2 |1010〉 on the path (x1).

4.3 Converting the BSQDD to a Quantum Array
Now that the BSQDD has been reduced, it needs to be converted to a quantum array so
that the desired superposition in equation (1) can be initialized. The quantum array in
figure 4(b) generated by the final BSQDD in figure 4(a) can be obtained by adding the
gates for the nodes in each layer of the BSQDD starting with the first layer. New gates
are always placed to the right of gates that have already been placed in the quantum
array. The first gate to be added is the Hadamard gate that corresponds to the node a1
in figure 4(a). Because a1 is the root node, no controls are needed for the gate that
corresponds to this node. This results in the gate G1 in figure 4(b). Now consider the
node a2. Since all paths from the root node to the second layer end at this node, no
controls are required due to the paths to a2 from the root node. However, the gate for
this node is controlled by x1 so the inverter for this node must be controlled by |0〉
on |x1〉. This causes the gate G2 to be added to the quantum array. The next node is
a3. Because all paths from the root node to the third layer all end at the node a3, no
controls are required. The gate that corresponds to the node a3 is G3. The last node
is a4. All paths from the root node to the fourth layer terminate at the node a4 so no
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H

|ψ〉

a1

X

∣∣ψ0
〉

a2

H

∣∣ψ01
〉

a4

|1〉

|0〉

I

∣∣ψ1
〉

a3

H

∣∣ψ10
〉

a5

|0〉

|1〉

Xx3
a6

|0〉

|1〉

|1〉

|0〉

(a) Merging a6, a7, a8 and a9

H

|ψ〉

a1

X

∣∣ψ0
〉

a2

|0〉

I

∣∣ψ1
〉

a3

|1〉

H a4

Xx3
a5

|1〉 |0〉

|0〉 |1〉

(b) Merging a4 and a5

Figure 3: Merging nodes

H

|ψ〉

a1

Xx1
a2

H a3

Xx3
a4

|0〉 |1〉

|0〉 |1〉

(a) The final
BSQDD

|ψ0〉

H

G1

|ψ1〉

G2

|ψ2〉

H

G3

|ψ3〉

G4

|ψ4〉

|x1〉

|x2〉

|x3〉

|x4〉

(b) The generated quantum array

Figure 4: The final BSQDD and the quantum array it generates
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controls are needed. However, the gate for the node a4 still needs to be controlled by x3
because the gate for the node a4 is controlled by x3. This results in the gate G4 being
added to the quantum array. It is now necessary to apply the quantum array in figure
4(b) to the state |0000〉 to confirm that it initializes the superposition from equation (1)
represented by the BSQDDs in figures 1, 2, 3(a), 3(b) and 4(a). The starting state is
|ψ0〉 = |0000〉. Applying the Hadamard gate denoted by G1 in figure 4(b) results in
the state |ψ1〉 = 1√

2
|0000〉 + 1√

2
|1000〉. The G2 gate is then applied which changes

the state to |ψ2〉 = 1√
2
|0100〉 + 1√

2
|1000〉. The state |ψ3〉 = 1

2 |0100〉 + 1
2 |0110〉 +

1
2 |1000〉 + 1

2 |1010〉 results after applying the G3 Hadamard gate. After applying the
final G4 gate, the state is |ψ4〉 = 1

2 |0101〉+ 1
2 |0110〉+ 1

2 |1001〉+ 1
2 |1010〉. Observe

that |ψ4〉 = |ψ〉 where |ψ〉 is as defined in equation (1). Thus, BSQDDs can be used to
find efficient quantum arrays for initializing quantum superpositions.

5 Formalizing BSQDDs
A formalization of BSQDDs will now be presented.

Definition 5.1. A node in a BSQDD is denoted by a = (G, f(y1, . . . , yj−1), t) where
G is the single qubit gate that corresponds to the node a, f(y1, . . . , yj−1) is a boolean
function called the control function of the node a and t is a tuple denoting the children
of the node a. If t = () where () denotes the empty tuple, then a has no children and is
therefore a leaf node. Otherwise, if g00 = 0 or g10 = 0 where G |0〉 = g00 |0〉+ g10 |1〉
then t contains only one element; if neither of the first two conditions is satisfied, t is
an ordered pair where the first element of t is the left child and the second element of
t is the right child. The edge to the left child is called the |0〉 edge and the edge to the
right child is called the |1〉 edge. Note that since G is unitary, g00 = 0 or g10 = 0 if
and only if g01 = 0 or g11 = 0 where G |1〉 = g01 |0〉+ g11 |1〉 so it is not necessary to
consider the case where g01 = 0 or g11 = 0 separately.

For the BSQDD in figure 4(a), a1 = (H, f1() = 1, (a2, a2)), a2 = (X, f2(x1) =
x1, (a3)), a3 = (H, f3(x1, x2) = 1, (a4, a4)) and a4 = (X, f4(x1, x2, x3) = x3, ()).
Note that because the control function for the root node f1() takes no arguments, it is
always a constant.

Definition 5.2. A layer of a BSQDD is denoted by L = (C, |y〉) where C is a set nodes
as defined in definition 5.1. Each node in the set C is said to be in the layer L. The
qubit |y〉 is called the qubit operated on by the layer L. Each node in the set C is also
said to operate on the qubit |y〉.

In the BSQDD in figure 1, the first layer is L1 = ({a1}, |x1〉), the second layer is
L2 = ({a2, a3}, |x2〉), the third layer is L3 = ({a4, a5}, |x3〉) and the fourth layer is
L4 = ({a6, a7, a8, a9}, |x4〉). Note that in this case all the nodes that operate on a qubit
are in the same layer; this is not true in general as two or more layers may operate on
the same qubit if the BSQDD has repeated variables. An example of repeated variables
will be shown later in section 9. However, the nodes within any given layer always
operate on the same qubit.
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Definition 5.3. A BSQDD is a 5-tupleB = (A, (L1, . . . , Lm), {x1, . . . , xn}, (xi1 , . . . , xim), F )
whereA is a non-empty set of nodes, {x1, . . . , xn} is the set of variables that the nodes
operate on, the jth layer of the BSQDD is Lj , the order of variables is (xi1 , . . . , xim)
and the gate that corresponds to each node is selected from the set of gates F . The
qubit operated on by the layer Lj must be

∣∣xij〉 and the children of nodes in the layer
Lj must be in the j + 1th layer for j = 1, . . . ,m − 1. Also, the tuple denoting the
children of any node in the layer Lm must be (). Every variable xk must occur at
least once in the order of variables. Every node in the BSQDD except the root node
must be a child of some other node in the BSQDD. If the control function of any node
in the jth layer is f(y1, . . . , yj−1) then yk ≡ xik for k = 1, . . . , j − 1. Also, if
xij ≡ xik for some 1 ≤ k ≤ j − 1 then f(xi1 , . . . , xik−1

, 0, xik+1
, . . . , xij−1

) =
f(xi1 , . . . , xik−1

, 1, xik+1
, . . . , xij−1

) must hold. This means that the output of the
control function of a node cannot depend on the variable it operates on. Furthermore,
if xik ≡ xi` for some 1 ≤ k < ` ≤ j− 1 then f(xi1 , . . . , xik−1

, 0, xik+1
, . . . , xij−1) =

f(xi1 , . . . , xik−1
, 1, xik+1

, . . . , xij−1) which means that a control function can only
depend on the most recent repetition of a variable. In order to state the final con-
straint paths must be defined. A path from the root of a BSQDD to a node a =
(G, f(xi1 , . . . , xij−1

), t) in the jth layer is denoted by the tuple v = (vi1 , . . . , vij−1
)

where each vik ≡ xik if xik = 0 on the path from the root and vik ≡ xik if xik = 1 on
the path from the root. The path from the root node to itself contains no branches and is
denoted by () where () represents the empty tuple. If xij ≡ xik for some k ≤ j−1 and
v = (vi1 , . . . , vij−1

) and v̂ = (v̂i1 , . . . , v̂ij−1
) are paths to the jth layer with vi` ≡ v̂i`

for ` < j and ` 6= k then vik ≡ v̂ik must hold. Leaf nodes may exist only in the mth

layer. Nodes in the set A are said to be in the BSQDD B.

Several examples of BSQDDs have been shown in figures 1, 2, 3(a), 3(b) and 4(a)
although repeated variables were not used in any of them. A more complicated example
will be shown later in section 9 that illustrates the use of repeated variables. Note that
it is possible for there to be more than one path from the root node in a BSQDD to
another node in a BSQDD. For example, in figure 4(a), the possible paths from the root
node a1 to the node a3 are (x1, x2) and (x1, x2).

Definition 5.4. The path function p(xi1 , . . . , xij−1
) of a node a in the jth layer of a

BSQDDB = (A, (L1, . . . , Lm), {x1, . . . , xn}, (xi1 , . . . , xim), F ) is the boolean func-
tion that outputs 1 when the input variables correspond to a path from the root node
to the node a for some starting state and outputs a 0 for all inputs that correspond to
paths to other nodes.

The path function is essentially a way of describing all paths that end at a particular
node. For example, the path function for the node a4 in the BSQDD in figure 4(a)
would be p4(x1, x2, x3) = 1 because all paths from the root node to the fourth layer
terminate at the node a4.

Definition 5.5. The initial state of a node a = (G, f(xi1 , . . . , xij−1
), t) in the jth

layer of a BSQDD B = (A, (L1, . . . , Lm), {x1, . . . , xn}, (xi1 , . . . , xim), F ) on a path

v = (vi1 , . . . , vij−1) is denoted by
∣∣∣ψ̂v〉. If v = () then v is the empty path so a is

the root node and the initial state is
∣∣∣ψ̂()

〉
= (I2i1−1 ⊗G⊗ I2n−i1 ) |ψ0〉 where |ψ0〉 is
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the starting state which must be a basis state. Otherwise if v 6= (), the initial state is∣∣∣ψ̂v〉 = (I2ij−1 ⊗G ⊗ I2n−ij )f(xi1 ,...,xij−1
)

∣∣∣ψ̂vij−1

(vi1 ,...,vij−2
)

〉
where the operator that

results from the expression (I2ij−1 ⊗G⊗ I2n−ij ) is controlled by the boolean function

f(xi1 , . . . , xij−1) and the state
∣∣∣ψ̂vij−1

(vi1 ,...,vij−2)

〉
is obtained by taking the sum of all

terms in
∣∣∣ψ̂(vi1 ,...,vij−2)

〉
where vij−1

= 1.

The reason why this is called the initial state of a node a on a path v is because
it is the state that the child nodes of a will operate on. The basic idea is that the
initial state of a node is equal to the operator for node controlled by control function
f(xi1 , . . . , xij−1

) applied to the sum of the terms in the initial state of the parent node
on the path v. As an example, consider the initial state of the node a2 on the path
v = (x1) for the BSQDD in figure 4(a). First, it is necessary to find the initial state of
the root node which is

∣∣∣ψ̂()

〉
= (H ⊗ I8) |0000〉 so

∣∣∣ψ̂()

〉
= 1√

2
|0000〉 + 1√

2
|1000〉.

Now
∣∣∣ψ̂x1

()

〉
= 1√

2
|0000〉 since x1 = 0 for the term 1√

2
|1000〉. Therefore, the initial

state of a2 on the path v is
∣∣∣ψ̂(x1)

〉
= (I2 ⊗X ⊗ I4)x1

1√
2
|0000〉 which is equal to

1√
2
|0100〉.

Definition 5.6. The state represented by a BSQDD with respect to the starting state
|ψ0〉 is the sum of the initial states of the leaf nodes over all paths from the root node
to each leaf node.

As an example, consider the BSQDD in figure 4(a). Note that the state that was
being represented in equation (1) is the sum of the initial states of the leaf nodes since
the initial states of the leaf node a4 are 1

2 |0101〉, 1
2 |0110〉, 1

2 |1001〉 and 1
2 |1010〉

on the paths (x1, x2, x3), (x1, x2, x3), (x1, x2, x3) and (x1, x2, x3) respectively. An
algorithm for constructing a BSQDD that represents a desired quantum superposition
will be shown later in section 10.

6 Equivalence Relations for BSQDDs
Definition 6.1. The nodes a and â are equal, denoted a = â if the tuples that corre-
spond to the nodes a and â are equal.

Definition 6.2. The layers L and L̂ are equal, denoted L = L̂ if the tuples that corre-
spond to the layers L and L̂ are equal.

Definition 6.3. The BSQDDs B and B̂ are equal, denoted B = B̂ if the tuples that
correspond to the BSQDDs B and B̂ are equal.

Definition 6.4. The BSQDDs B and B̂ are equivalent, denoted B ≈ B̂ if the quantum
superpositions they represent as defined in definition 5.6 are equal with respect to each
possible starting state, they operate on the same set of variables, have the same order
of variables and have the same set of gates.
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An example of BSQDDs that are equivalent but not equal can be seen in the exam-
ple from section 4. Consider the BSQDDs in figures 1, 2, 3(a), 3(b) and 4(a). None
of these BSQDDs are equal because their sets of nodes are not equal. However, all
of these BSQDDs represent the quantum superposition from equation (1) so they are
equivalent. Hence, these BSQDDs are all equivalent but are not equal.

Theorem 6.5. Equality and equivalence of BSQDDs as defined in definitions 6.3 and
6.4 are equivalence relations.

Proof. By definition 5.3, BSQDDs are tuples. Because equality of tuples is an equiv-
alence relation, equality of BSQDDs is an equivalence relation. By definition 6.4, two
BSQDDs are equivalent if the they represent the same quantum superposition, operate
on the same set of variables, have the same order of variables and have the same set of
gates. Because all of these relations are equality relations, equivalence of BSQDDs is
an equivalence relation.

7 Generating Quantum Arrays Using BSQDDs
This section will prove a general theorem that relates the state at different points in the
quantum array that is generated by a BSQDD to the initial states of the BSQDD. This
will then be used to derive a theorem that shows that the quantum array generated by a
BSQDD initializes the state that the BSQDD represents.

Definition 7.1. The quantum array that is generated by a BSQDD B where B =
(A, (L1, . . . , Lm), {x1, . . . , xn}, (xi1 , . . . , xim), F ) is created by adding the gates from
the nodes in each layer to the quantum array. The layers are added in the order of their
indexes from smallest to largest. Each new gate is placed to the right of all previous
gates and operates on the qubit that its layer operates on in the BSQDD and is con-
trolled by p(xi1 , . . . , xij−1

)f(xi1 , . . . , xij−1
) where a = (G, f(xi1 , . . . , xij−1

), t) is
the node that is currently being added and p(xi1 , . . . , xij−1

) is the path function of the
node a from definition 5.4.

For an example of quantum array that is generated by a BSQDD, see section 4. The
idea in definition 7.1 can be implemented using algorithm 1. The algorithm includes
the optimization that if all nodes in a layer have the same operation and the product of
the path function and control function of each node is equal to the path function, then
the operation can be applied to the qubit operated on by the layer and no controls are
needed. Note that since the algorithm iterates over all the nodes in the BSQDD at most
two times, it is in the complexity class Θ (|A|).

Theorem 7.2. The state of the quantum array that is generated from a BSQDD after
the gates in the quantum array that correspond to the nodes in layers 1, . . . , j have
been applied to the starting state is the sum of the initial states of the nodes in the jth

layer over all paths to each node in the jth layer.

Proof. Let B = (A, (L1, . . . , Lm), {x1, . . . , xn}, (xi1 , . . . , xim), F ) be a BSQDD
withm layers and the order of variables (xi1 , . . . , xim). The theorem will be proven by
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Algorithm 1 The algorithm for generating a quantum array from a BSQDD
1: Let B = (A, (L1, . . . , Lm), {x1, . . . , xn}, (xi1 , . . . , xim), F ) be a BSQDD
2: for all j = 1, . . . ,m do
3: Let fa(xi1 , . . . , xij−1

) denote the control function of the node a in the jth layer
of the BSQDD B according to definitions 5.1 and 5.3

4: Let pa(xi1 , . . . , xij−1) denote the path function of the node a in the jth layer
of the BSQDD B according to definition 5.4

5: if every node a in the jth layer has the same operation U and
pa(xi1 , . . . , xij−1

) = pa(xi1 , . . . , xij−1
)fa(xi1 , . . . , xij−1

) for all nodes a in the
jth layer then

6: Apply the operation U to the qubit
∣∣xij〉 without using any controls

7: else
8: for all nodes a in the layer Lj do
9: Let the operation of a be Ua, let fa(xi1 , . . . , xij−1

) be the control func-
tion of the node a and let pa(xi1 , . . . , xij−1

) be the path function of the node a
10: Apply the operation Ua to the qubit

∣∣xij〉 and control by
pa(xi1 , . . . , xij−1)fa(xi1 , . . . , xij−1)

11: end for
12: end if
13: end for

induction. For the basis case j = 1, the initial state is the gate that corresponds to the
root node applied to the starting state |ψ0〉 by definition 5.5. Because the quantum state
before any of the gates in the quantum array are applied is also |ψ0〉, applying only the
gate that corresponds to the root node will result in the initial state of the root node.
This proves the basis case. For the inductive case, assume that the state of the quantum
array after the gates that correspond to the nodes in the layers 1, . . . , j are applied is
the sum of the initial states of the nodes in the jth layer of the BSQDD B. Let Vj be
the set of all paths to nodes in the jth layer from the root and let |ψj〉 denote the state
of the quantum array after the gates that correspond to the nodes in the layers 1, . . . , j
are applied. Then by the inductive hypothesis

|ψj〉 =
∑
v∈Vj

∣∣∣ψ̂v〉 (2)

Let Pj be the set of all path functions as defined in definition 5.4 for the nodes in the jth

layer. Because different nodes in the jth layer are in different locations, their path func-
tions are unique within the jth layer. Therefore, the node in the jth layer with the path
function p ∈ Pj denoted by ap = (Gp, fp(xi1 , . . . , xij−1

), tp) is unique. This allows
nodes to be indexed by their path functions. Applying the gates in the quantum array
that correspond to the gates in the j + 1th layer of the BSQDD B to |ψj〉 results in

|ψj+1〉 =
[∏

p∈Pj+1
(I2ij+1−1 ⊗Gp ⊗ I2n−ij+1 )p(xi1

,...,xij
)fp(xi1

,...,xij
)

]
|ψj〉 by def-

inition 7.1 where the subscript p(xi1 , . . . , xij )fp(xi1 , . . . , xij ) denotes the function

that controls I2ij+1−1 ⊗ Gp ⊗ I2n−ij+1 . Substituting
∑
v∈Vj

∣∣∣ψ̂v〉 for |ψj〉 according
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to equation (2) shows that

|ψj+1〉 =

 ∏
p∈Pj+1

(I2ij+1−1 ⊗Gp ⊗ I2n−ij+1 )p(xi1 ,...,xij
)fp(xi1 ,...,xij

)

 ∑
v∈Vj

∣∣∣ψ̂v〉
(3)

The summation can now be distributed over the product. Doing this results in

|ψj+1〉 =
∑
v∈Vj

∏
p∈Pj+1

[
(I2ij+1−1 ⊗Gp ⊗ I2n−ij+1 )p(xi1 ,...,xij

)fp(xi1 ,...,xij
)

] ∣∣∣ψ̂v〉
(4)

Let

|αv〉 =
∏

p∈Pj+1

[
(I2ij+1−1 ⊗Gp ⊗ I2n−ij+1 )p(xi1 ,...,xij

)fp(xi1 ,...,xij
)

] ∣∣∣ψ̂v〉 (5)

Then
|ψj+1〉 =

∑
v∈Vj

|αv〉 (6)

It is now necessary to consider three cases. First assume that the node av that the path
v = (vi1 , . . . , vij−1

) terminates at in equation (5) has only one child node. In this case,

only the operation of the child node of the node av will be applied to
∣∣∣ψ̂v〉 in equation

(4) because the path function p(xi1 , . . . , xij ) of the child node of av is the only path
function in the j + 1th layer that is equal to 1 in the path v by definition 5.4. Thus,
|αv〉 = (I2ij+1−1⊗Gp⊗I2n−ij+1 )p(xi1 ,...,xij

)fp(xi1 ,...,xij
)

∣∣∣ψ̂v〉. Let v̂ = (v̂i1 , . . . , v̂ij )

be the path to the child node of the node av such that v̂ik ≡ vik for k = 1 . . . j−1. Then

since the node av has only one child node,
∣∣∣ψ̂v〉 =

∣∣∣ψ̂v̂ijv 〉
by applying definition 5.5.

Therefore, |αv〉 = (I2ij+1−1 ⊗ Gp ⊗ I2n−ij+1 )p(xi1
,...,xij

)fp(xi1
,...,xij

)

∣∣∣ψ̂v̂ijv 〉
. Now

p(xi1 , . . . , xij ) = 1 for
∣∣∣ψ̂v̂ijv 〉

by definition 5.4, so the path function can be removed

which results in |αv〉 = (I2ij+1−1 ⊗ Gp ⊗ I2n−ij+1 )fp(xi1
,...,xij

)

∣∣∣ψ̂v̂ijv 〉
. Thus by

definition 5.5,
|αv〉 =

∣∣∣ψ̂v̂〉 (7)

For the second case assume that the node av that the path v = (vi1 , . . . , vij−1) termi-
nates at in equation (5) has two equal child nodes. In this case, only the operation of
the child node of the node av will be applied to

∣∣∣ψ̂v〉 in equation (4) because the path

function p(xi1 , . . . , xij ) of the child node of av is the only path function in the j + 1th

layer that is equal to 1 in the path v by definition 5.4. Thus, |αv〉 = (I2ij+1−1 ⊗Gp ⊗
I2n−ij+1 )p(xi1

,...,xij
)fp(xi1

,...,xij
)

∣∣∣ψ̂v〉. Since
∣∣∣ψ̂v〉 =

∣∣∣ψ̂xij
v

〉
+
∣∣∣ψ̂xij
v

〉
from definition

5.5, |αv〉 = (I2ij+1−1⊗Gp⊗I2n−ij+1 )p(xi1
,...,xij

)fp(xi1
,...,xij

)

(∣∣∣ψ̂xij
v

〉
+
∣∣∣ψ̂xij
v

〉)
. By
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definition 5.4, p(xi1 , . . . , xij ) = 1 for both
∣∣∣ψ̂xij
v

〉
and

∣∣∣ψ̂xij
v

〉
. Therefore by definition

5.5,
|αv〉 =

∣∣∣ψ̂(vi1 ,...,vij−1
,xij

)

〉
+
∣∣∣ψ̂(vi1 ,...,vij−1

,xij
)

〉
(8)

For the final case, suppose that the node av has two unique children. In this case, only
the path functions of the child nodes of av can be equal to 1 on the path v by definition
5.4. This allows all operations in the product in equation (5) to be removed except
the operations of the nodes that the paths (vi1 , . . . , vij−1 , xij ) and (vi1 , . . . , vij−1

, xij )
terminate at. Thus,

|αv〉 =(I2ij+1−1 ⊗Gp ⊗ I2n−ij+1 )p(xi1 ,...,xij
)fp(xi1 ,...,xij

) (9)

· (I2ij+1−1 ⊗Gp′ ⊗ I2n−ij+1 )p′(xi1 ,...,xij
)fp′ (xi1 ,...,xij

)

∣∣∣ψ̂v〉
where p(xi1 , . . . , xij ) is the path function of the node that the path (vi1 , . . . , vij−1

, xij )
terminates at and p′(xi1 , . . . , xij ) is the path function of the node at which the path

(vi1 , . . . , vij−1
, xij ) terminates. Now

∣∣∣ψ̂v〉 =
∣∣∣ψ̂xij
v

〉
+
∣∣∣ψ̂xij
v

〉
from definition 5.5 so

|αv〉 =(I2ij+1−1 ⊗Gp ⊗ I2n−ij+1 )p(xi1
,...,xij

)fp(xi1
,...,xij

)
(10)

· (I2ij+1−1 ⊗Gp′ ⊗ I2n−ij+1 )p′(xi1 ,...,xij
)fp′ (xi1 ,...,xij

)

(∣∣∣ψ̂xij
v

〉
+
∣∣∣ψ̂xij
v

〉)
Now I2ij+1−1 ⊗ Gp ⊗ I2n−ij+1 will only be applied to

∣∣∣ψ̂xij
v

〉
because the path func-

tion p(xi1 , . . . , xij ) will be 0 for
∣∣∣ψ̂xij
v

〉
by definition 5.4. Similarly, I2ij+1−1 ⊗Gp′ ⊗

I2n−ij+1 will only be applied to
∣∣∣ψ̂xij
v

〉
. Therefore, distributing the sum over the prod-

uct results in

|αv〉 =(I2ij+1−1 ⊗Gp ⊗ I2n−ij+1 )p(xi1
,...,xij

)fp(xi1
,...,xij

)

∣∣∣ψ̂xij
v

〉
(11)

+ (I2ij+1−1 ⊗Gp′ ⊗ I2n−ij+1 )p′(xi1
,...,xij

)fp′ (xi1
,...,xij

)

∣∣∣ψ̂xij
v

〉
Because p(xi1 , . . . , xij ) = 1 for

∣∣∣ψ̂xij
v

〉
and p′(xi1 , . . . , xij ) = 1 for

∣∣∣ψ̂xij
v

〉
by defi-

nition 5.4 these path functions can be removed. Hence,

|αv〉 =(I2ij+1−1 ⊗Gp ⊗ I2n−ij+1 )fp(xi1
,...,xij

)

∣∣∣ψ̂xij
v

〉
(12)

+ (I2ij+1−1 ⊗Gp′ ⊗ I2n−ij+1 )fp′ (xi1
,...,xij

)

∣∣∣ψ̂xij
v

〉
Thus, by definition 5.5,

|αv〉 =
∣∣∣ψ̂(vi1 ,...,vij−1

,xij
)

〉
+
∣∣∣ψ̂(vi1 ,...,vij−1

,xij
)

〉
(13)

Therefore, by equations (7), (8) and (13), |αv〉 =
∑
v̂∈V v

j+1

∣∣∣ψ̂v̂〉 where V vj+1 denotes

the set of all paths v̂ = (v̂i1 , . . . , v̂ij ) to the j + 1th layer where v̂ik ≡ vik for k =
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1, . . . , j − 1. By equation (6), |ψj+1〉 =
∑
v∈Vj

|αv〉. Now every path to the j + 1th

layer must pass through a node in the jth layer. Therefore,

|ψj+1〉 =
∑

v∈Vj+1

∣∣∣ψ̂v〉 (14)

Thus, the inductive case holds so by the principle of mathematical induction, the state
of the quantum array after the gates that correspond to the nodes in the layers 1, . . . , j
of the BSQDD B have been applied is the sum of the initial states of the nodes in the
jth layer over all paths to each node in the jth layer.

Theorem 7.3. The state initialized by the quantum array generated from a BSQDD B
from the starting state |ψ0〉 is the quantum superposition represented by the BSQDD B
with respect to the starting state |ψ0〉.

Proof. Assume that the BSQDD B has m layers. By definition 5.3, the leaf nodes
are in the mth layer so it follows that the quantum superposition represented by the
BSQDD B is the sum of the initial states of the nodes in the mth layer over all paths
to each node in the mth layer by definition 5.6. By theorem 7.2, this is the state of the
quantum array after the gates that correspond to the nodes in layers 1, . . . ,m have been
applied. Since this is the state of the quantum array after all gates have been applied,
the quantum array initializes the quantum superposition represented by the BSQDD
when applied to the starting state |ψ0〉.

This theorem is important because it shows that BSQDDs can be used to find quan-
tum arrays for initializing quantum superpositions. All that needs to be done is to
represent the desired quantum superposition using a BSQDD and then use the BSQDD
to generate a quantum array. However, this quantum array is sometimes inefficient so
it is usually necessary to reduce the BSQDD using transformation rules before using it
to generate a quantum array. These transformation rules will be presented now.

8 Transformation Rules
In this section, two transformation rules that can be used to manipulate and reduce
BSQDDs will be derived. First, the transformation rule which allows equal nodes to be
merged will be shown.

Transformation Rule 8.1. If a = â for two distinct nodes a = (G, f(xi1 , . . . , xij−1
), t)

and â = (Ĝ, f̂(xi1 , . . . , xij−1
), t̂) in the jth layer of a BSQDD, then merging the two

nodes into one new node results in an equivalent BSQDD. Performing the inverse op-
eration by splitting a node ã = (G̃, f̃(xi1 , . . . , xij−1), t̃) into two nodes a and â where
a = â = ã where the node ã has at least two parents also results in an equivalent
BSQDD.

Proof. Let B = (A, (L1, . . . , Lm), {x1, . . . , xn}, (xi1 , . . . , xim), F ) be a BSQDD
and let a = â where a = (G, f(xi1 , . . . , xij−1), t) and â = (Ĝ, f̂(xi1 , . . . , xij−1), t̂)

are two nodes in the jth layer of the BSQDD B. Let B̃ be a BSQDD where B̃ =
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(Ã, (L̃1, . . . , L̃m), {x1, . . . , xn}, (xi1 , . . . , xim), F ), Ã is obtained from A by merg-
ing the nodes a and â into a new node ã with a = â = ã and replacing a and â by
ã in the tuple t for each (G, f(xi1 , . . . , xij−2

), t) ∈ A. It will now be proven that the
sum of initial states in the kth layer of the BSQDD B is the same as the sum of the
initial states in the kth layer of the BSQDD B̃. Consider a path v = (vi1 , . . . , vik−1

)
to a node av = (Gv, fv(xi1 , . . . , xik−1

), tv) in the kth layer of the BSQDD B. Let the
node that the path v terminates at in the BSQDD B̃ be denoted by ãv . First suppose
that k < j. In this case, the equation for the initial state of node av on the path v will
be the same as the initial state of node ãv in the kth layer of the BSQDD B̃ on the
path v due to definition 5.5. Therefore, since av is an arbitrary node in the kth layer of
the BSQDD B, the sum of the initial states in the kth layers of the BSQDDs B and B̃
will be the same when k < j. Now assume that k = j. If av 6≡ a and av 6≡ â then
the initial state of the node av on the path v in the BSQDD B is equal to the initial
state of the node ãv on the path v in the BSQDD B̃ because of definition 5.5. Suppose
that av ≡ a or av ≡ â. In this case, the initial state of the node av on the path v in
the BSQDD B is

∣∣∣ψ̂v,B〉 =
(
I2ij−1 ⊗G⊗ I2n−ij

)
f(xi1

,...,xij−1
)

∣∣∣ψ̂vij−1

(vi1 ,...,vij−2
),B

〉
where the subscript B has been added to the initial state to indicate that it is for the
BSQDD B. Similarly, the initial state of the node ãv on the path v in the BSQDD B̃ is∣∣∣ψ̂v,B̃〉 =

(
I2ij−1 ⊗G⊗ I2n−ij

)
f(xi1 ,...,xij−1

)

∣∣∣∣ψ̂vij−1

(vi1 ,...,vij−2
),B̃

〉
. Note that v 6= ()

since it is not possible for any node to be equal to the root node except for the root
node itself. Hence, no node can be merged with the root node so it is not neces-
sary to consider the case where v = (). Since the initial states of the j − 1th layer
are the same in the BSQDDs B and B̃,

∣∣∣ψ̂(vi1 ,...,vij−2
),B

〉
=
∣∣∣ψ̂(vi1 ,...,vij−2

),B̃

〉
so∣∣∣ψ̂vij−1

(vi1 ,...,vij−2
),B

〉
=

∣∣∣∣ψ̂vij−1

(vi1 ,...,vij−2
),B̃

〉
which implies that

∣∣∣ψ̂v,B〉 =
∣∣∣ψ̂v,B̃〉 by def-

inition 5.5. Because the union of the set of paths to a and the set of paths to â is
equal to the set of paths to ã, the sum of the initial states of the nodes a and â is equal
to the sum of the initial states of the node ã. Thus, the sum of the initial states of
the nodes in the th layer of the BSQDD B is equal to the sum of the initial states in
the jth layer of the BSQDD B̃. Consider the case where k > j. It will be proven
by induction that the initial state of a node in the kth layer of the BSQDD B on a
given path is equal to the initial state of the corresponding node in the kth layer of
the BSQDD B̃ on the same path. Consider the basis case where k = j + 1. If the
path v does not pass through the node a or the node â in the BSQDD B, then the
initial state of the node av on the path v in the BSQDD B will be equal to the ini-
tial state of the node ãv in the BSQDD B̃ by definition 5.5. Suppose that the path v
passes through the node a or the node â in the BSQDD B. Then the path v passes
through the node ã in the BSQDD B̃. Let v̂ = (vi1 , . . . , vij−1

) and let av̂ and ãv̂
be the nodes that the path v̂ terminates at in the BSQDDs B and B̃ respectively. Be-
cause the initial state of the node ã on the path v̂ in the BSQDD B̃ is equal to the
initial state of the node av̂ on the path v̂ in the BSQDD B,

∣∣∣ψ̂v̂,B〉 =
∣∣∣ψ̂v̂,B̃〉 and

therefore
∣∣∣ψ̂vijv̂,B〉 =

∣∣∣ψ̂vij
v̂,B̃

〉
which implies that

∣∣∣ψ̂v,B〉 =
∣∣∣ψ̂v,B̃〉 by definition 5.5.
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Now consider the inductive case where the initial state of any node in the kth layer of
the BSQDD B on a given path is equal to the initial state of the corresponding node
in the kth layer of the BSQDD B̃ on the same path. From definition 5.5, the initial
state of a node av = (Gv, fv(xi1 , . . . , xik), tv) on the path v in k + 1th layer of the
BSQDD B is

∣∣∣ψ̂v,B〉 =
(
I2ik+1−1 ⊗Gv ⊗ I2n−ik+1

)
fv(xi1

,...,xik
)

∣∣∣ψ̂vik(vi1 ,...,vik−1
),B

〉
and the initial state of the node ãv on the path v in the BSQDD B̃ is

∣∣∣ψ̂v,B̃〉 =(
I2ik+1−1 ⊗Gv ⊗ I2n−ik+1

)
fv(xi1

,...,xik
)

∣∣∣∣ψ̂vik(vi1 ,...,vik−1
),B̃

〉
. Let v̂ = (vi1 , . . . , vik−1

).

Since
∣∣∣ψ̂v̂,B〉 =

∣∣∣ψ̂v̂,B̃〉,
∣∣∣ψ̂vikv̂,B〉 =

∣∣∣ψ̂vik
v̂,B̃

〉
which implies that

∣∣∣ψ̂v,B〉 =
∣∣∣ψ̂v,B̃〉 by

definition 5.5. This proves the inductive case. Therefore, by the principle of mathe-
matical induction, the initial state of a node in the kth layer of the BSQDD B is equal
to the initial state of the node in the kth layer of the BSQDD B̃. This implies that the
sum of the initial states of the nodes in the kth layer of the BSQDD B is equal to the
sum of the initial states of the nodes in the kth layer of the BSQDD B̃ when k > j.
Thus, the quantum superpositions represented by the BSQDDs B and B̃ are equal so
B ≈ B̃ by definition 6.4. To prove the second part of the transformation rule, observe
that B can be obtained from B̃ by splitting the node ã to obtain the nodes a and â so
that the above proof also proves the second part of the transformation rule.

This transformation rule is very useful for reducing BSQDDs. For examples, see
figures 3(a) and 3(b) from the example in section 4. However, some of the transfor-
mations used in the example in section 4 are more complicated than the simple merges
of equal nodes in the same layer permitted by transformation rule 8.1. This requires
another transformation rule.

Transformation Rule 8.2. Replacing a node a = (G, f(xi1 , . . . , xij−1
), t) in the jth

layer of a BSQDDB with a node ã = (G̃, f̃(xi1 , . . . , xij−1), t) results in an equivalent
BSQDD B̃ if the initial state of the node a on a path v in the BSQDD B is equal to the
initial state of the node ã on the path v in the BSQDD B̃ for all paths v to the node a
in the BSQDD B.

Proof. LetB = (A, (L1, . . . , Ln), {x1, . . . , xn}, (xi1 , . . . , xim), F ) be a BSQDD that
contains a node a = (G, f(xi1 , . . . , xij−1), t) in the jth layer. Let B̃ be the BSQDD
obtained from B by replacing the node a with ã = (G̃, f̃(xi1 , . . . , xij−1

), t). Then
B̃ = (Ã, (L̃1, . . . , L̃n), {x1, . . . , xn}, (xi1 , . . . , xim), F ) where the set of nodes Ã is
obtained from A by replacing the node a with the node ã and

∣∣∣ψ̂v,B〉 =
∣∣∣ψ̂v,B̃〉 for

all paths v to the node a in the BSQDD B. Consider a path v = (vi1 , . . . , vik−1
) to

a node av = (Gv, fv(xi1 , . . . , xik−1
), tv) in the kth layer of the BSQDD B. Let ãv

denote the node that the path v terminates at in the BSQDD B̃. Suppose that k < j.
Then by definition 5.5, the initial state of the node av on the path v will be equal to the
initial state of the node ãv on the path v. Now suppose that k = j. Then if av 6≡ a
then the initial state of the node av on the path v in the BSQDDs B will be equal to
the initial state of the node ãv on the path v in the BSQDD B̃ by definition 5.5 since
the initial states of the corresponding nodes in the k − 1th layers of the BSQDDs B

17



and B̃ are equal. If av ≡ a then the initial state of av on the path v in the BSQDD
B is equal to the initial state of the node ã on the path v by assumption. Suppose
that k > j. It will be proven by induction that the initial state of node av on a path
v in the kth layer of the BSQDD B is equal to the initial state of the node ãv on the
path v in the BSQDD B̃. Consider the basis case where k = j + 1. If the path v
does not pass through the node a in the jth layer of the BSQDD B, then the initial
state of the node av on the path v in the BSQDD B is equal to the initial state of the
node ãv in the BSQDD B̃ by definition 5.5. If the path v passes through the node a
in the BSQDD B, then the initial state of the node av on the path v in the BSQDD
B will be

∣∣∣ψ̂v,B〉 =
(
I2ij+1−1 ⊗Gv ⊗ I2n−ij+1

)
fv(xi1

,...,xij
)

∣∣∣ψ̂vij(vi1 ,...,vij−1
),B

〉
and

the initial state of the node ãv on the path v in the BSQDD B̃ will be
∣∣∣ψ̂v,B̃〉 =(

I2ij+1−1 ⊗Gv ⊗ I2n−ij+1

)
fv(xi1

,...,xij
)

∣∣∣∣ψ̂vij(vi1 ,...,vij−1
),B̃

〉
in the BSQDD B̃. Since∣∣∣ψ̂(vi1 ,...,vij−1

),B

〉
=
∣∣∣ψ̂(vi1 ,...,vij−1

),B̃

〉
and

∣∣∣ψ̂vij(vi1 ,...,vij−1
),B

〉
=

∣∣∣∣ψ̂vij(vi1 ,...,vij−1
),B̃

〉
,∣∣∣ψ̂v,B〉 =

∣∣∣ψ̂v,B̃〉 so that the basis case is proven. Consider the inductive case where

the initial state of any node in the kth layer of the BSQDD B is equal to the initial state
of the corresponding node in the BSQDD B̃ on any path that terminates at the node.
Let v̂ = (vi1 , . . . , vik) be a path to the k + 1th layer that terminates at a node av̂ =
(Gv̂, fv̂(xi1 , . . . , xik), tv̂) in the k + 1th layer of the BSQDD B. Let ãv̂ denote the
node that the path v̂ terminates at in the BSQDD B̃. Then the initial state of the node av̂
on the path v̂ is

∣∣∣ψ̂v̂,B〉 =
(
I2ik+1−1 ⊗Gv̂ ⊗ I2n−ik+1

)
fv̂(xi1

,...,xik
)

∣∣∣ψ̂v̂ik(v̂i1 ,...,v̂ik−1
),B

〉
in the BSQDD B and the initial state of the node ãv on the path v̂ in the BSQDD B̃ is∣∣∣ψ̂v̂,B̃〉 =

(
I2ik+1−1 ⊗Gv̂ ⊗ I2n−ik+1

)
fv̂(xi1

,...,xik
)

∣∣∣∣ψ̂v̂ik(v̂i1 ,...,v̂ik−1
),B̃

〉
. By the induc-

tive hypothesis,
∣∣∣ψ̂(v̂i1 ,...,v̂ik−1

),B

〉
=
∣∣∣ψ̂(v̂i1 ,...,v̂ik−1

),B̃

〉
so that

∣∣∣ψ̂v̂ik(v̂i1 ,...,v̂ik−1
),B

〉
=∣∣∣∣ψ̂v̂ik(v̂i1 ,...,v̂ik−1

),B̃

〉
. Thus,

∣∣∣ψ̂v̂,B〉 =
∣∣∣ψ̂v̂,B̃〉 by definition 5.5 so the inductive case

holds. By the principle of mathematical induction, the initial state of a node in the kth

layer of the BSQDD B is equal to the initial state of the node in the BSQDD B̃ for any
path where k > j. Therefore, B ≈ B̃ by definition 6.4.

These two transformation rules are sufficient for transforming BSQDDs that use the
any set of gates where the corresponding elements of the gates have unique amplitudes
as will be proven in theorem 10.2.

9 A BSQDD with Repeated Variables
This section will illustrate the use of repeated variables in BSQDDs by showing how
to initialize the quantum state

|ψ〉 =
1 + i

2
|00〉+

1√
2
|11〉 (15)
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using the set of gates {I, T, V,X} and the starting state |ψ0〉 = |00〉 where T =[
1 0
0 1+i√

2

]
and V = 1

2

[
1+i 1−i
1−i 1+i

]
is the square root of NOT. The first step for initializ-

ing a quantum superposition using these gates is to find a BSQDD that represents the
desired quantum superposition |ψ〉. The desired quantum superposition |ψ〉 cannot be
represented without using repeated variables for this set of gates. To see this, con-
sider the desired quantum superposition |ψ〉 and assume that the order of variables is
(x1, x2). Because the first qubit |x1〉 is in an entangled state in the desired quantum
superposition |ψ〉, any BSQDD that represents the quantum superposition |ψ〉 must
have V as the operation of the root node because none of the other operations re-
sult in a quantum superposition with more than one non-zero term when applied to
the state |0〉. Because the two qubits are entangled, the root node must have either
one child node that has an inverter controlled by |1〉 on the qubit |x1〉 as its opera-
tion or two child nodes where the child on the path (x1) from the root node has the
identity matrix as its operation and the child on the path (x1) has an inverter as its op-
eration. However, the quantum superposition represented by the resulting BSQDD is
1+i
2 |00〉+ 1−i

2 |11〉 which is not equal to |ψ〉 even when the irrelevance of global phase
is taken into consideration. Similarly, the desired quantum superposition |ψ〉 cannot be
represented by a BSQDD that uses the set of gates {I, T, V,X} and the order of vari-
ables (x2, x1). However, the desired quantum superposition |ψ〉 can be represented
using the order of variables (x1, x2, x2) by the BSQDD shown in figure 5(a). The
quantum array generated by the BSQDD in figure 5(a) is shown in figure 5(b). Be-
cause V |0〉 = 1+i

2 |0〉 + 1−i
2 |1〉, applying the V gate denoted by G1 results in the

quantum state |ψ1〉 = 1+i
2 |00〉+ 1−i

2 |10〉. After the controlled inverter denoted by G2

is applied, the quantum state is |ψ2〉 = 1+i
2 |00〉+ 1−i

2 |11〉. Since 1−i
2 ·

1+i√
2

= 1√
2

, ap-
plying the T gate denoted byG3 results in the quantum state |ψ3〉 = 1+i

2 |00〉+ 1√
2
|11〉.

Because |ψ〉 = |ψ3〉, the quantum array initializes the desired quantum superposition
|ψ〉. This example shows that repeated variables can be useful for some sets of gates.

10 A Canonical Form for BSQDDs
This section will present a canonical form for BSQDDs that use a set of gates F 6= ∅
where corresponding elements of gates in the set F have unique amplitudes. The
BSQDDs also must not have repeated variables. The set of gates have unique am-
plitudes if and only if for every G, G̃ ∈ F none of the corresponding elements of G
and G̃ have equal amplitudes unless G = G̃.

Theorem 10.1. Let F 6= ∅ be a set of 2 × 2 unitary matrices such that if G, G̃ ∈ F
whereG = [ g00 g01g10 g11 ], G̃ =

[
g̃00 g̃01
g̃10 g̃11

]
and if |g00| = |g̃00|, |g01| = |g̃01|, |g10| = |g̃10| or

|g11| = |g̃11| thenG = G̃. LetB = (A, (L1, . . . , Lm), {x1, . . . , xn}, (xi1 , . . . , xin), F )
be a BSQDD that has no repeated variables. Then the BSQDD B is in canonical form
if for every node a = (G, f(xi1 , . . . , xij−1), t) ∈ A, f(xi1 , . . . , xij−1) = 1 and there
are no equal nodes in any layer of the BSQDD B. This form is canonical in the sense
that if two BSQDDs B and B̂ are in canonical form and B ≈ B̂, then B = B̂.
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V

|ψ〉

a1

Xx1
a2

T a3

|0〉 |1〉

(a) A BSQDD
that represents
|ψ〉

|ψ0〉

V

G1

|ψ1〉

G2

|ψ2〉

T

G3

|ψ3〉

|x1〉

|x2〉

(b) The quantum array generated by the
BSQDD

Figure 5: The BSQDD and quantum array

Proof. Let B = (A, (L1, . . . , Lm), {x1, . . . , xn}, (xi1 , . . . , xin), F ) be a BSQDD in
canonical form where F 6= ∅ is a set of 2 × 2 unitary matrices such that if G, G̃ ∈ F
whereG = [ g00 g01g10 g11 ], G̃ =

[
g̃00 g̃01
g̃10 g̃11

]
and if |g00| = |g̃00|, |g01| = |g̃01|, |g10| = |g̃10| or

|g11| = |g̃11| thenG = G̃. Let B̃ = (Ã, (L̃1, . . . , L̃m), {x1, . . . , xn}, (xi1 , . . . , xin), F )
be a BSQDD in canonical form such that B ≈ B̃. First observe that for any path
v = (vi1 , . . . , vij−1

) to a node in the jth layer of the BSQDD B, there exists a node in
the BSQDD B̃ that the path v terminates at. This must be true because otherwise the
BSQDDs B and B̃ would not represent the same superposition and therefore would
not be equivalent. Also, for any path v = (vi1 , . . . , vij−1

) to a node in the jth layer
of the BSQDD B̃, there exists a node in the BSQDD B that the path v terminates at.
This implies that the number of nodes in the jth layer of the BSQDD B is equal to
the number of nodes in the jth layer of the BSQDD B̃. It will be proven by induc-
tion that the initial state of the node av in the jth layer of the BSQDD B on any path
v = (vi1 , . . . , vij−1

) is equal to the initial state of the node ãv on the path v where av
is the node in the BSQDD B that the path v terminates at and ãv is the node in the
BSQDD B̃ that the path v terminates at. The inductive proof will also show that the
operation G of the node av is equal to the operation G̃ of the node ãv . Let the starting
state be |ψ0〉 = |b1, . . . , bn〉. Note that because the starting state |ψ0〉 is required to be
a basis state, |bk〉 = |0〉 or |bk〉 = |1〉 for all k = 1, . . . , n. Let |ψ〉 be the quantum su-
perposition represented by the BSQDDB. SinceB ≈ B̃, |ψ〉 is also represented by the
BSQDD B̃. Consider the basis case where j = 1. Then v = (). Let the operation of the
node a() beG and let the operation of the node ã() be G̃ whereG |bi1〉 = δ0 |0〉+δ1 |1〉
and G̃ |bi1〉 = δ̃0 |0〉+ δ̃1 |1〉. Consider the quantum arrays generated by the BSQDDs
B and B̃ according to definition 7.1. By theorem 7.3, applying either of these quantum
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arrays to the starting state |ψ0〉 results in the desired quantum superposition |ψ〉. Be-
cause the control function of the root node a() of the BSQDD B is f()() = 1 and no
other layers in the BSQDD B operate on the variable xi1 , the probability of observing
|0〉 when the qubit |xi1〉 is measured in the quantum superposition |ψ〉 is |δ0|2. Now
the control function of the root node ã() of the BSQDD B̃ is f̃()() = 1 and no other
layers in the BSQDD B̃ operate on the variable xi1 so the probability of observing |0〉
when the qubit |xi1〉 is measured in the quantum superposition |ψ〉 is

∣∣∣δ̃0∣∣∣2. Therefore,

|δ0|2 =
∣∣∣δ̃0∣∣∣2 so since amplitudes are non-negative, |δ0| =

∣∣∣δ̃0∣∣∣. NowG, G̃ ∈ F and the

corresponding elements of gates in F have unique amplitudes. Therefore,G = G̃which
implies that the initial state of the root node a() of the BSQDDB on the path () is equal
to the initial state of the root node ã() of the BSQDD B̃ on the path (). This proves the
basis case. Consider the inductive case where the initial state of the node av in the jth

layer of the BSQDD Bon any path v = (vi1 , . . . , vij−1
) is equal to the initial state of

the node ãv on the path v where av is the node in the BSQDD B that the path v termi-
nates at and ãv is the node in the BSQDD B̃ that the path v terminates at. Also, G = G̃
where G is the operation of the node av and G̃ is the operation of the node ãv . Let
v̂ = (v̂i1 , . . . , v̂ij ) be a path to a node av̂ in the j + 1th layer of the BSQDD B. Let ãv̂
be the node in the BSQDD B̃ that the path v̂ terminates at. Let the operation of the node
av̂ be G and let the operation of the node ãv̂ be G̃ where G

∣∣bij+1

〉
= δ0 |0〉 + δ1 |1〉

and G̃
∣∣bij+1

〉
= δ̃0 |0〉 + δ̃1 |1〉. Let v = (v̂i1 , . . . , v̂ij−1). Because v̂ 6= () and the

control function of the node av̂ is fv̂(xi1 , . . . , xij ) = 1 the initial state of the node

av̂ on the path v̂ in the BSQDD B is
∣∣∣ψ̂v̂,B〉 =

(
I2ij+1−1 ⊗G⊗ I2n−ij+1

) ∣∣∣ψ̂v̂ijv,B〉 by

definition 5.5 where B has been added to the subscripts of ψ̂ to indicate that this initial
state is from the BSQDD B. Since the qubit

∣∣xij+1

〉
is still equal to

∣∣bij+1

〉
in
∣∣∣ψ̂v,B〉

the probability of observing |0〉 when the qubit
∣∣xij+1

〉
is measured in the quantum

superposition
∣∣∣ψ̂v̂,B〉 is |δ0|2. Since v̂ 6= () and the control function of the node ãv̂ is

f̃v̂(xi1 , . . . , xij ) = 1 the initial state of the node ãv̂ on the path v̂ in the BSQDD B̃

is
∣∣∣ψ̂v̂,B̃〉 =

(
I2ij+1−1 ⊗ G̃⊗ I2n−ij+1

) ∣∣∣ψ̂v̂ij
v,B̃

〉
by definition 5.5 where B̃ has been

added to the subscripts of ψ̂ to indicate that this initial state is from the BSQDD B̃.
Since the qubit

∣∣xij+1

〉
is still equal to

∣∣bij+1

〉
in
∣∣∣ψ̂v,B̃〉 the probability of observing

|0〉 when the qubit
∣∣xij+1

〉
is measured in the quantum superposition

∣∣∣ψ̂v̂,B̃〉 is
∣∣∣δ̃0∣∣∣2.

Let
∣∣`〉 denote

∣∣∣ˆ̀〉 where ˆ̀ is equal to the binary string that corresponds to the number

`. Let |ψ〉 =
∑2n−1
`=0 α`

∣∣`〉 be the quantum superposition represented by the BSQDD
B. Let |γ〉 =

∑2n−1
`=0 β`

∣∣`〉 where β` = α` if v̂ik = 1 in
∣∣`〉 for all k = 1, . . . , j and

β` = 0 otherwise. Since the layers after the j + 1th layer do not change the qubits |xik〉
for k = 1, . . . , j + 1 and the BSQDD B represents |ψ〉, the probability of observing
|0〉 when the qubit

∣∣xij+1

〉
is measured in the quantum superposition |γ〉 is equal to the

probability |δ0|2 of observing |0〉 when the qubit
∣∣xij+1

〉
is measured in the quantum
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superposition
∣∣∣ψ̂v̂,B〉. Because the BSQDD B̃ also represents the quantum superpo-

sition |ψ〉, the probability of observing |0〉 when the qubit
∣∣xij+1

〉
is measured in the

quantum superposition |γ〉 is equal to the probability
∣∣∣δ̃0∣∣∣2 of observing |0〉 when the

qubit
∣∣xij+1

〉
is measured in the quantum superposition

∣∣∣ψ̂v̂,B̃〉. Thus, |δ0|2 =
∣∣∣δ̃0∣∣∣2 so

since amplitudes are non-negative, |δ0| =
∣∣∣δ̃0∣∣∣. Now G, G̃ ∈ F and the corresponding

elements of gates in F have unique amplitudes. Therefore, G = G̃. By the inductive
hypothesis,

∣∣∣ψ̂v,B〉 =
∣∣∣ψ̂v,B̃〉 so

∣∣∣ψ̂v̂ijv,B〉 =
∣∣∣ψ̂v̂ij
v,B̃

〉
by definition 5.5 which implies

that
∣∣∣ψ̂v̂,B〉 =

∣∣∣ψ̂v̂,B̃〉. This proves the inductive case. Therefore, by the principle of

mathematical induction, the initial state of the node av in the jth layer of the BSQDD
B on any path v = (vi1 , . . . , vij−1

) is equal to the initial state of the node ãv on the
path v where av is the node in the BSQDD B that the path v terminates at and ãv is the
node in the BSQDD B̃ that the path v terminates at. It will now be proven by induction
that the node av in the jth layer of the BSQDD B on any path v = (vi1 , . . . , vij−1)
is equal to the node ãv on the path v where av is the node in the BSQDD B that the
path v terminates at and ãv is the node in the BSQDD B̃ that the path v terminates
at. Consider the basis case where j = n. Then av and ãv are leaf nodes and have no
children. Therefore, since the control function of av is fv(xi1 , . . . , xin−1

) = 1 and the
control function of ãv is f̃v(xi1 , . . . , xin−1

) = 1, av = ãv if and only if G = G̃ where
G is the operation of the node av and G̃ is the operation of ãv by definition 5.1. Since it
was just proven that G = G̃, av = ãv so the basis case holds. Assume that the node av
in the jth layer of the BSQDD B on any path v = (vi1 , . . . , vij−1) is equal to the node
ãv on the path v where av is the node in the BSQDDB that the path v terminates at and
ãv is the node in the BSQDD B̃ that the path v terminates at. Let v̂ = (vi1 , . . . , vij−2

).
Let av̂ be the node in the BSQDD B that the path v̂ terminates at and ãv̂ be the node in
the BSQDD B̃ that the path v̂ terminates at. Let t be the tuple denoting the children of
the node av̂ and let t̃ be the tuple denoting the children of the node ãv̂ . By the induc-
tive hypothesis the corresponding children of the nodes av̂ and ãv̂ are equal so t = t̃.
Therefore, since the control function of av̂ is fv̂(xi1 , . . . , xin−1

) = 1 and the control
function of ãv̂ is f̃v̂(xi1 , . . . , xin−1

) = 1, av̂ = ãv̂ if and only if G = G̃ where G is the
operation of av and G̃ is the operation of ãv by definition 5.1. Since it was previously
shown that G = G̃, av̂ = ãv̂ . Thus, the node av in the jth layer of the BSQDD B
on any path v = (vi1 , . . . , vij−1

) is equal to the node ãv on the path v where av is the
node in the BSQDD B that the path v terminates at and ãv is the node in the BSQDD
B̃ that the path v terminates at. Therefore, B = B̃ by definition 6.3.

This canonical form is quite general and works for many sets of gates. Examples
include any set of gates {U, I,X} where |uij | 6= 0 and |uij | 6= 1. This includes
sets of gates such as {H, I,X} and {V, I,X} where V = 1

2

[
1+i 1−i
1−i 1+i

]
is the square

root of NOT. Another interesting set of gates for which the canonical form holds is{
Gθ =

[
cos θ sin θ
sin θ − cos θ

] ∣∣ 0 ≤ θ ≤ π
2

}
which is used in the Long-Sun algorithm [6].

Theorem 10.2. Let F 6= ∅ be a set of gates such that the corresponding elements of the
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gates in the set F have unique amplitudes as defined in theorem 10.1. Let B and B̂ be
equivalent BSQDDs where B = (A, (L1, . . . , Lm), {x1, . . . , xn}, (xi1 , . . . , xin), F )
and B̂ = (Â, (L̃1, . . . , L̃m), {x1, . . . , xn}, (xi1 , . . . , xin), F ) have no repeated vari-
ables. Then B can be transformed into B̂ using transformation rules 8.1 and 8.2.

Proof. The theorem will be proven by showing that the BSQDDs B and B̂ can be
transformed into canonical form. First transformation rule 8.1 is used to split the nodes
in B and B̂ until each node has exactly one parent. Let these two new sets of nodes be
denoted by Ȧ and Ä respectively. Now consider a node a = (G, f(xi1 , . . . , xij−1

), t)

where a ∈ Ȧ or a ∈ Ä. If f(xi1 , . . . , xij−1
) is not equal to the constant function

f̃(xi1 , . . . , xij−1) = 1, then a can be replaced by a new node ã = (G̃, f̃(xi1 , . . . , xij−1) =

1, t) where G̃ = G if f(xi1 , . . . , xij−1
) = 1 on the path to a from the root and G̃ = I

if f(xi1 , . . . , xij−1
) = 0 on the path to a from the root using transformation rule 8.2.

Merging equal nodes in each layer then results in two new BSQDDs Bc and B̂c that
are obtained from B and B̂ respectively as described above. Because Bc and B̂c are in
canonical form by theorem 10.1, Bc = B̂c. Because transformation rules 8.1 and 8.2
can each be applied in both directions, the BSQDD B̂c = Bc can be transformed into
B̂ using transformation rules 8.1 and 8.2. Therefore the BSQDDB can be transformed
into the BSQDD B̂ using transformation rules 8.1 and 8.2.

Theorem 10.2 shows that a BSQDD B of the form shown in theorem 10.1 that
has no repeated variables can be transformed into any equivalent BSQDD using trans-
formation rules 8.1 and 8.2. Algorithm 2 can be used to construct a BSQDD in the
canonical form given in theorem 10.1 that represents a desired quantum superposition
for a given order of variables and starting state provided that the set of gates used for
synthesis satisfy the constraints in theorem 10.1. Since a quantum superposition can
be represented as a list of all terms with non-zero coefficients, this algorithm is in the
complexity class Θ(mn) where m is the number of terms non-zero coefficients in the
desired quantum superposition. Algorithm 3 can be used to convert any BSQDD that
satisfies the conditions in theorem 10.1 and has all of its control functions equal to the
constant 1 into canonical form using transformation rule 8.1. The restriction on the
control functions is used because it makes the algorithm much more efficient. If the
number of nodes in the jth layer of the BSQDD B is given by `j , then algorithm 3
is in the complexity class Θ(`1 + . . . + `n) = Θ (|A|) since each iteration over all
pairs of equal nodes can be implemented in linear time by constructing a hash table
that contains all nodes in the current layer.

11 Complexity of BSQDDs
This section will present two theorems that provide upper bounds on the number of
nodes required in BSQDDs with and without repeated variables. A class of quan-
tum superpositions will then be shown that require an exponential number of one and
two qubit operations to be initialized using the Ventura-Martinez [11], SQUID [8] and
Long-Sun [6] algorithms but only a linear number of one and two qubit operations
when BSQDDs are used to find the initialization quantum array.
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Algorithm 2 The algorithm for constructing a BSQDD in canonical form
1: Let the desired quantum superposition be |ψ〉, let (xi1 , . . . , xin) be the desired

order of variables, let the starting state be |ψ0〉 = |b1, . . . , bn〉 and let F be a set of
gates that satisfies the constraints in theorem 10.1

2: Let a = construct(|ψ〉 , 1)
3: if |φ〉 = |ψ〉 where |φ〉 is the quantum superposition represented by the BSQDD

with the root node a then
4: return bsqdd(a, (xi1 , . . . , xin), F ) . bsqdd is a function that takes a

root node, the order of variables and the set of gates and stores them in a BSQDD
which it then returns

5: else
6: return Failure, this quantum superposition cannot be represented using this set

of gates
7: end if
8: function construct(|δ〉 , j) :

9: Let |δ〉 =
∑2n−1
i=0 αi

∣∣i〉
10: Let β =

√∑2n−1
i=0 β2

i where βi = αi if xij = 0 in
∣∣i〉 and βi = 0 otherwise

11: Let γ =
√∑2n−1

i=0 γ2i where γi = αi if xij = 1 in
∣∣i〉 and γi = 0 otherwise

12: Let |ζ〉 =
∑2n−1
i=0 βi

∣∣i〉 and |ξ〉 =
∑2n−1
i=0 γi

∣∣i〉
13: Let G ∈ F be the operator that satisfies |g0|2 = β2

β2+γ2 and |g1|2 = γ2

β2+γ2 where
G
∣∣bij〉 = g0 |0〉+ g1 |1〉 . Note that because the gates in the set F have unique

amplitudes, the operator G is unique if it exists
14: if no such operator G exists then
15: return Failure, this quantum superposition cannot be represented using this set

of gates
16: else if j = n then
17: return (G, f(xi1 , . . . , xij−1

) = 1, ())
18: else if β 6= 0 and γ 6= 0 then
19: return (G, f(xi1 , . . . , xij−1

) = 1, (construct(|ζ〉 , j +
1), construct(|ξ〉 , j + 1)))

20: else if β 6= 0 and γ = 0 then
21: return (G, f(xi1 , . . . , xij−1) = 1, (construct(|ζ〉 , j + 1)))
22: else if β = 0 and γ 6= 0 then
23: return (G, f(xi1 , . . . , xij−1

) = 1, (construct(|ξ〉 , j + 1)))
24: end if
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Algorithm 3 The algorithm for converting a BSQDD into canonical form
1: Let B = (A, (L1, . . . , Ln), {x1, . . . , xn}, (xi1 , . . . , xin), F ) be a BSQDD that

satisfies the constraints in theorem 10.2 and the control function for each node
a in the jth layer is f(xi1 , . . . , xij−1

) = 1
2: for all j = n, . . . , 1 do
3: for all pairs of nodes a and â in the jth layer where a = â do
4: Apply transformation rule 8.1 to merge the nodes a and â
5: end for
6: end for

Theorem 11.1. Let B = (A, (L1, . . . , Lm), {x1, . . . , xn}, (xi1 , . . . , xim), F ) be a
BSQDD. Then the maximum number of nodes in the BSQDDB is (m−n)2n−1+2n−1.

Proof. Let B = (A, (L1, . . . , Lm), {x1, . . . , xn}, (xi1 , . . . , xim), F ) be a BSQDD.
By definition 5.3, each node a in the jth layer of the BSQDD B has at least one path
v = (vi1 , . . . , vij−1

) that terminates at a. Therefore, the number of nodes in the jth

layer is bounded above by the number of paths to nodes in the jth layer. From definition
5.3, each vik ≡ xik or vik ≡ xik so the number of paths to nodes in the jth layer is
at most 2j−1. Therefore, there are at most

∑n
j=1 2j−1 = 2n − 1 nodes in the first n

layers. By definition 5.3, if xij ≡ xik for some k < j and v = (vi1 , . . . , vij−1) and
v̂ = (v̂i1 , . . . , v̂ij−1

) are paths to the jth layer with vi` ≡ v̂i` for ` < j and ` 6= k then
vik ≡ v̂ik . This implies that only n− 1 of the variables vik where k < j and j > n can
be chosen because the rest are determined by definition 5.3. Therefore, the jth layer
has at most 2n−1 nodes. Since there are m − n layers where j > n, the number of
nodes in layers where j > n is at most (m − n)2n−1. Therefore, the total of nodes in
the BSQDD B is at most (m− n)2n−1 + 2n − 1.

Theorem 11.2. LetB = (A, (L1, . . . , Ln), {x1, . . . , xn}, (xi1 , . . . , xin), F ) be a BSQDD
with no repeated variables. Then the maximum number of nodes in the BSQDD B is
2n − 1.

Proof. Because the number of layers in the BSQDD B is m = n, the maximum num-
ber of nodes in the BSQDD B is 2n − 1 by theorem 11.1.

It will now be shown that quantum superpositions that correspond to an an exclusive
or (EXOR) of the variables that correspond to qubits in the quantum superposition can
be represented using a BSQDD that requires only a linear number of nodes.

Theorem 11.3. Let {|x1〉 , . . . , |xn〉} be a set of qubits and let g(x1, . . . , xn) =
⊕n

k=1 xk
where

⊕
denotes summation using the EXOR operation. Let ui,1, . . . , ui,n denote the

binary representation of the number 0 ≤ i ≤ 2n − 1. Let |ψ〉 =
∑2n−1
i=0 αi

∣∣i〉 where∣∣i〉 denotes
∣∣∣̂i〉, î is equal to the binary string that corresponds to the number i and

αi = 1√
2n−1

if g(ui,1, . . . , ui,n) = 1 and αi = 0 otherwise. Then the quantum state |ψ〉
can be represented by B = (A, (L1, . . . , Ln), {x1, . . . , xn}, (x1, . . . , xn), {H, I,X})
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where B is a BSQDD in the canonical form of theorem 10.1 that has 2n− 1 nodes and
the starting state |ψ0〉 = |0n〉.

Proof. First a BSQDDB = (A, (L1, . . . , Ln), {x1, . . . , xn}, (x1, . . . , xn), {H, I,X})
will be constructed. In this BSQDD, the jth layer Lj will contain two nodes if j > 1
and one node if j = 1. These nodes will be denoted by aj,` where j is the index of the
layer that contains the node and ` is an index that distinguishes nodes within the same
layer so that ` = 0 or ` = 1 for j > 1 and ` = 0 for j = 1. The control function is
f(x1, . . . , xj−1) = 1 for each node aj,` in the jth layer. The operation of each node
aj,` in the jth layer is H for j < n. The operation of the node an,0 is X and the
operation of the node an,1 is I . The children of the nodes will now be defined. Let tj,`
be the tuple from definition 5.1 denoting the children of the node aj,`. The tuple tj,`
will now be defined. If n = 1 then the root node a1,0 is the only node in the BSQDD
B and t1,0 = (). For j < n, tj,0 = (aj+1,0, aj+1,1) and tj,1 = (aj+1,1, aj+1,0). For
j = n, tn,0 = () and tn,1 = () if n 6= 1. Let the starting state be |ψ0〉 = |0n〉. Let
v = (v1, . . . , vj−1) be a path to a node aj,` in the jth layer of the BSQDD B. The
BSQDD B is shown in figure 6(a) for the case where n = 3. Let uk = 0 if vk ≡ xk
and uk = 1 if vk ≡ xk for each k = 1, . . . , j − 1. Also, let sj,` =

⊕j−1
k=1 uk. It will be

proven by induction that for j < n the initial state of the node aj,` on the path v is∣∣∣ψ̂v〉 =
1√
2j

∣∣u1 . . . uj−10n−j+1
〉

+
1√
2j

∣∣u1 . . . uj−110n−j
〉

(16)

Furthermore, it will also be shown that ` = sj,` for all j = 1, . . . , n. Consider the basis
case where j = 1. Then v = () since this is the only possible path to the root node and
the root node is the only node in the first layer. Since the starting state is |ψ0〉 = |0n〉,
the initial state of the root node on the path () is

∣∣∣ψ̂()

〉
= 1√

2
|0n〉 + 1√

2

∣∣10n−1
〉

by definition 5.5 so equation (16) is satisfied. Since v = () and the root node is
a1,0, ` = 0 and s1,0 = 0 so ` = s1,0 as well and the basis case is proven. For the
inductive case, assume that equation (16) holds for every path v = (v1, . . . , vj−1)
to a node aj,` in the jth layer of the BSQDD B and ` = sj,` for each such node.
Let v̂ = (v̂1, . . . , v̂j) be a path to a node aj+1,ˆ̀ in the j + 1th layer. Let aj,` be
the parent node of aj+1,ˆ̀ on the path v̂. Let ûk = 0 if v̂k ≡ xk and ûk = 1 if
v̂k ≡ xk for each k = 1, . . . , j. By the inductive hypothesis, the initial state of the
node aj,` on the path v is

∣∣∣ψ̂v〉 = 1√
2j

∣∣û1 . . . ûj−10n−j+1
〉

+ 1√
2j

∣∣û1 . . . ûj−110n−j
〉

where v = (v̂1, . . . , v̂j−1). Therefore,
∣∣∣ψ̂v̂jv 〉 = 1√

2j

∣∣û1 . . . ûj0n−j〉 by definition

5.5. It follows by definition 5.5 that the initial state of the node aj+1,ˆ̀ is
∣∣∣ψ̂v̂〉 =

1√
2j+1

∣∣û1 . . . ûj0n−j〉+ 1√
2j+1

∣∣û1 . . . ûj10n−j−1
〉

which satisfies equation (16). Ob-

serve that by definition, if ` = ˆ̀ then ûj = 0 so sj+1,ˆ̀ = sj,` ⊕ 0 which is equal to

` = ˆ̀. Also, by definition if ` 6= ˆ̀ then ` = ˆ̀⊕ 1 and ûj = 1 so sj+1,ˆ̀ = sj,` ⊕ 1

which is equal to `⊕ 1 = ˆ̀. This proves the inductive case so by the principle of math-
ematical induction, the initial state of the node aj,` on the path v is given by equation
(16) for j < n and ` = sj,` for all j = 1, . . . , n. Let v̂ = (v̂1, . . . , v̂n−1) be a path to
a node an,ˆ̀ in the nth layer. Let an−1,` be the parent node of the node an,ˆ̀ on the path
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v̂. It was shown that the initial state of an−1,` on the path v = (v̂1, . . . , v̂n−2) is given
by equation (16). Suppose that ˆ̀ = 0. Since the operation of the node an,0 is X , the

initial state of the node an,ˆ̀ on the path v̂ is
∣∣∣ψ̂v̂〉 = 1√

2n−1
|û1 . . . ûn−11〉. Because

sn,0 = 0, it follows that g(û1, . . . , ûn−1, 1) = 1. Now suppose that ˆ̀ = 1. Since
the operation of the node an,1 is I , the initial state of the node an,ˆ̀ on the path v̂ is∣∣∣ψ̂v̂〉 = 1√

2n−1
|û1 . . . ûn−10〉. Because sn,1 = 1, it follows that g(û1, . . . , ûn−1, 0) =

1. Therefore since the amplitude of each basis state in the quantum superposition rep-
resented by the BSQDD B is 1√

2n−1
and the function g(x1, . . . , xn) has an output of 1

for exactly 2n−1 assignments to its inputs, it follows that the BSQDD B represents the
quantum superposition |ψ〉. Since the BSQDD B has 2n − 1 nodes and satisfies the
conditions in 10.1 the proof is complete.

Applying algorithm 1 to the BSQDD B from the proof of theorem 11.3, a quantum
array that uses n−1 single qubitH operations and n−1 two qubit Feynman operations
is obtained. This quantum array is shown in figure 6(b) for the case where n = 3. Thus,
the quantum superposition |ψ〉 from theorem 11.3 can be represented using a BSQDD
with a linear number of nodes that generates a quantum array with a linear number of
one and two qubit operations. Because other approaches to initializing this quantum
superposition rely on representing the quantum superposition using minterms in the
case of the Ventura-Martinez [11] and phase groups in the case of the SQUID [8], both
of these algorithms require an exponential number of one and two qubit operations to
initialize the quantum superposition |ψ〉 from theorem 11.3 while BSQDDs can be used
to accomplish this task using only a linear number of one and two qubit operations.
Therefore, in this case BSQDDs are an exponential improvement over the Ventura-
Martinez [11], SQUID [8] and Long-Sun [6] algorithms. The ESQUID algorithm [9]
can initialize the quantum state |ψ〉 from theorem 11.3 using only a linear number
of one and two qubit operations assuming the correct sequence of generalized phase
groups is used. However, it still uses extra qubits and requires more operations than if
BSQDDs are used. Furthermore, finding an efficient sequence of generalized phase
groups is a difficult problem that the ESQUID algorithm [9] does not address and
the ESQUID algorithm [9] can only be used for quantum superpositions of the form
|ψ〉 =

∑2n−1
i=0

ti√
m
|i〉 where ti ∈ {−1, 0, 1} while BSQDDs can be used for arbitrary

quantum superpositions as is proven in theorem 12.1.

12 BSQDDs are Universal
In this section, it will be shown that BSQDDs are universal in the sense that a BSQDD
can represent an arbitrary quantum superposition given an appropriate set of gates.

Theorem 12.1. A BSQDD operating on the set of qubits {|x1〉 , . . . , |xn〉} using the set

of gates
{
Gθ,ϕ =

[
cos θ sin θe−iϕ

sin θeiϕ − cos θ

] ∣∣∣ θ, ϕ ∈ R
}

, the order of variables (x1, . . . , xn)

and the starting state |ψ0〉 = |0n〉 can represent an arbitrary quantum superposition.
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(a) A BSQDD that represents |ψ〉
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H
G2

G3 G4

|x1〉

|x2〉

|x3〉

(b) The quantum array generated by the
BSQDD

Figure 6: The BSQDD and quantum array for |ψ〉

This set of gates is adapted from the Long-Sun algorithm [6]. This theorem will
now be proven by constructing a BSQDD that initializes an arbitrary quantum super-
position.

Proof. Note that Gθ,ϕ = G†θ,ϕ so Gθ,ϕ is Hermitian and as well as unitary. Let |ψ〉 =∑2n−1
k=0 αk

∣∣k〉 be an arbitrary quantum superposition where αk ∈ C,
∑2n−1
k=0 |αk|

2
=

1 and
∣∣k〉 denotes

∣∣∣k̂〉 with k̂ equal to the binary string that corresponds to the number

k. Then |ψ〉 =
∑2n−1
k=0 rke

iφk
∣∣k〉 where each αk = rke

iφk and
∑2n−1
k=0 r2k = 1.

Because global phase is irrelevant, the quantum superposition∣∣∣ψ̃〉 =e−iφ0 |ψ〉 (17)

=

2n−1∑
k=0

rke
iϕk
∣∣k〉 (18)

is equivalent to |ψ〉 where each ϕk = φk − φ0. Consider the BSQDD B that has
the order of variables (x1, . . . , xn) where each node that is not a leaf node has two
children and the control function of each node is always equal to 1. This implies that
the path from the root to any node in this BSQDD is unique. Let av be a node in
the jth layer that the path v = (v1, . . . , vj−1) terminates at. Let uk = 0 if vk ≡ xk
and uk = 1 if vk ≡ xk for each k = 1, . . . , j − 1. Let x = u1 . . . uj−10n−j+1, y =
u1 . . . uj−11n−j+1 and z = u1 . . . uj−110n−j where the expressions u1 . . . uj−10n−j+1,
u1 . . . uj−110n−j and u1 . . . uj−11n−j+1 are interpreted as binary numbers. For the
rest of this proof, the node av at which a path v terminates will be denoted by ax,y
where x and y are as defined above. Assume that ax,y is not a leaf node. Then
z − 1 = u1 . . . uj−101n−j which implies that the tuple from definition 5.1 that de-
notes that children of the node ax,y is (ax,z−1, az,y) since the paths to the children of
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the node ax,y are (v1, . . . , vj−1, xj) and (v1, . . . , vj−1, xj). Also note that by defini-
tion of x and z, z = x + 2n−j . This property will be used later in this proof. The
operation of the node ax,y is denoted by Ux,y = Gθx,y,ϕx,y

where θx,y = cos−1αx,y ,

ϕx,y = ϕz − ϕx, αx,y =

√∑z−1
k=x r

2
k∑y

k=x r
2
k

, βx,y =

√∑y
k=z r

2
k∑y

k=x r
2
k

and x, y and z are as previ-

ously defined. If the denominator in the formulas for αx,y and βx,y is 0, then αx,y is
taken to be 1 and βx,y is taken to be 0. The BSQDD B is shown in figure 7 for the case

where n = 3. It will now be proven that the BSQDD B represents
∣∣∣ψ̃〉. Because each

path from the root to a node in the BSQDD B is unique, it is not necessary to specify
the path to when referring to the initial state of a node. Several identities are used in this
proof which will now be shown. From trigonometry, sin cos−1x =

√
1− x2. Also,

from the definitions of αx,y and βx,y , αx,y =
√

1− β2
x,y and βx,y =

√
1− α2

x,y . It
will now be proven by induction on the layers of the BSQDD B that the initial state of
a node ax,y on the path v in the jth layer of the BSQDD B is∣∣∣ψ̂v〉 = γx,yαx,ye

iϕx |x〉+ γx,yβx,ye
iϕz |z〉 (19)

where γx,y =
√∑y

k=x r
2
k. For the basis case j = 1, x = 0, y = 2n − 1 and z = 2n−1

so by definition 5.5 the initial state of the root node is∣∣∣ψ̂()

〉
=(U0,2n−1 ⊗ I2n−1) |0n〉 (20)

=(Gθ0,2n−1,ϕ0,2n−1
⊗ I2n−1) |0n〉 (21)

=

([
cos θ0,2n−1 sin θ0,2n−1e

−iϕ0,2n−1

sin θ0,2n−1e
iϕ0,2n−1 − cos θ0,2n−1

]
⊗ I2n−1

)
|0n〉 (22)

=

 α0,2n−1

√
1− α2

0,2n−1e
−iϕ2n−1√

1− α2
0,2n−1e

iϕ2n−1 −α0,2n−1

⊗ I2n−1

 |0n〉
(23)

=

([
α0,2n−1 β0,2n−1e

−iϕ2n−1

β0,2n−1e
iϕ2n−1 −α0,2n−1

]
⊗ I2n−1

)
|0n〉 (24)

=α0,2n−1e
0 |0n〉+ β0,2n−1e

iϕ2n−1
∣∣10n−1

〉
(25)

=γ0,2n−1α0,2n−1e
ϕ0
∣∣0〉+ γ0,2n−1β0,2n−1e

iϕ2n−1

∣∣∣2n−1〉 (26)

Thus, equation (19) holds so the basis case is proven. The inductive case will now be
proved. Assume that the initial state of any node ax,y in the jth layer of the BSQDD
B is given by equation (19). Let âx̂,ŷ be a node in the j + 1th layer of the BSQDD
B, let ax,y be the parent node of âx̂,ŷ and let v̂ = (v̂1, . . . , v̂j) be the path to the node
âx̂,ŷ from the root node. Let v = (v̂1, . . . , v̂j−1). Suppose that v̂j ≡ xj . Then x̂ = x,
ŷ = z − 1 and ẑ = x̂ + 2n−j−1 by definition of x, y and z. Therefore, by definition
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5.5 the initial state of the node âx̂,ŷ is∣∣∣ψ̂v̂〉 =(I2j ⊗ Ux̂,ŷ ⊗ I2n−j−1)
∣∣∣ψ̂xj
v

〉
(27)

=(I2j ⊗Gθx̂,ŷ,ϕx̂,ŷ
⊗ I2n−j−1)γx,yαx,ye

iϕx |x〉 (28)

=

(
I2j ⊗

[
cos θx̂,ŷ sin θx̂,ŷe

−iϕx̂,ŷ

sin θx̂,ŷe
iϕx̂,ŷ − cos θx̂,ŷ

]
⊗ I2n−j−1

)
(29)

· γx,z−1eiϕx |x〉

=

I2j ⊗
 αx̂,ŷ

√
1− α2

x̂,ŷe
−iϕx̂,ŷ√

1− α2
x̂,ŷe

iϕx̂,ŷ −αx̂,ŷ

⊗ I2n−j−1

 (30)

· γx̂,ŷeiϕx̂ |x〉

=

(
I2j ⊗

[
αx̂,ŷ βx̂,ŷe

−i(ϕẑ−ϕx̂)

βx̂,ŷe
i(ϕẑ−ϕx̂) −αx̂,ŷ

]
⊗ I2n−j−1

)
(31)

· γx̂,ŷeiϕx̂ |x〉

=γx̂,ŷαx̂,ŷe
iϕx̂ |x〉+ γx̂,ŷβx̂,ŷe

iϕẑ

∣∣∣x+ 2n−j−1
〉

(32)

=γx̂,ŷαx̂,ŷe
iϕx̂
∣∣x̂〉+ γx̂,ŷβx̂,ŷe

iϕẑ
∣∣ẑ〉 (33)

Now Suppose that v̂j ≡ xj on the path v̂ from the root to âx̂,ŷ . Then x̂ = z, ŷ = y and
ẑ = x̂+ 2n−j−1. Therefore, by definition 5.5 the initial state of âx̂,ŷ is∣∣∣ψ̂v̂〉 =(I2j ⊗ Ux̂,ŷ ⊗ I2n−j−1)

∣∣∣ψ̂xj
v

〉
(34)

=(I2j ⊗Gθx̂,ŷ,ϕx̂,ŷ
⊗ I2n−j−1)γx,yβx,ye

iϕz |z〉 (35)

=

(
I2j ⊗

[
cos θx̂,ŷ sin θx̂,ŷe

−iϕx̂,ŷ

sin θx̂,ŷe
iϕx̂,ŷ − cos θx̂,ŷ

]
⊗ I2n−j−1

)
γz,ye

iϕz |z〉 (36)

=

I2j ⊗
 αx̂,ŷ

√
1− α2

x̂,ŷe
−iϕx̂,ŷ√

1− α2
x̂,ŷe

iϕx̂,ŷ −αx̂,ŷ

⊗ I2n−j−1

 (37)

· γx̂,ŷeiϕx̂ |z〉

=

(
I2j ⊗

[
αx̂,ŷ βx̂,ŷe

−i(ϕẑ−ϕx̂)

βx̂,ŷe
i(ϕẑ−ϕx̂) −αx̂,ŷ

]
⊗ I2n−j−1

)
γx̂,ŷe

iϕx̂ |z〉 (38)

=γx̂,ŷαx̂,ŷe
iϕx̂
∣∣x̂〉+ γx̂,ŷβx̂,ŷe

iϕẑ

∣∣∣x̂+ 2n−j−1
〉

(39)

=γx̂,ŷαx̂,ŷe
iϕx̂
∣∣x̂〉+ γx̂,ŷβx̂,ŷe

iϕẑ
∣∣ẑ〉 (40)

This proves that inductive case. Thus, for a node ax,y in the nth layer of the BSQDD
B, y = x + 1 and z = x + 1 so by equation (19) the initial state of the node ax,y on
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the path v from the root is∣∣∣ψ̂v〉 =γx,x+1αx,x+1e
iϕx |x〉+ γx,x+1βx,x+1e

iϕx+1
∣∣x+ 1

〉
(41)

=γx,xe
iϕx |x〉+ γx+1,x+1e

iϕx+1
∣∣x+ 1

〉
(42)

=rxe
iϕx |x〉+ rx+1e

iϕx+1
∣∣x+ 1

〉
(43)

Thus, the quantum superposition represented by the BSQDD B is

2n−1−1∑
k=0

r2ke
iϕ2k

∣∣2k〉+ r2k+1e
iϕ2k+1

∣∣2k + 1
〉

=

2n−1∑
k=0

rke
iϕk
∣∣k〉 (44)

=
∣∣∣ψ̃〉 (45)

Since
∣∣∣ψ̃〉 is equivalent to |ψ〉, the BSQDD B represents the quantum superposition

|ψ〉.

This theorem is important because it shows that BSQDDs can represent any quan-
tum superposition up to global phase. In conjunction with theorem 7.3, this theorem
shows that BSQDDs can be used to synthesize quantum arrays for initializing arbitrary
quantum superpositions from the starting state |0n〉 by constructing a BSQDD of form
defined in the proof of theorem 12.1. Basis states other than |0n〉 can also be used. To
find a BSQDD that represents an arbitrary quantum superposition with respect to the
starting state |ψ0〉 where |ψ0〉 is any basis state, use the method from theorem 12.1 to
find a BSQDD that represents the desired quantum superposition with respect to the
starting state |0n〉. This BSQDD can then be modified by replacing the operation U of
each node with the product U ·X in layers where the corresponding qubit in the start-
ing state |ψ0〉 is equal to |1〉. This will result in a BSQDD that represents the desired
quantum superposition with respect to the starting state |ψ0〉.

13 Representing Quantum Superpositions Using a Class
of BSQDDs with Canonical Forms

This section will present a theorem which shows that a BSQDD that uses the set of
gates

{
Dθ =

[
cos θ sin θ
sin θ − cos θ

] ∣∣ 0 ≤ θ ≤ π
2

}
with no repeated variables can initialize any

quantum superposition with non-negative real coefficients. Although this is not as
general as theorem 12.1, this set of gates is used in the Long-Sun algorithm [6] and
satisfies the conditions in theorems 10.1 and 10.2. This implies that BSQDDs that use
this set of gates and do not have repeated variables have canonical forms and can be
transformed into any equivalent BSQDD.

Theorem 13.1. A BSQDD operating on the set of qubits {|x1〉 , . . . , |xn〉} using the
set of gates

{
Dθ =

[
cos θ sin θ
sin θ − cos θ

] ∣∣ 0 ≤ θ ≤ π
2

}
, the order of variables (x1, . . . , xn)

and the starting state |ψ0〉 = |0n〉 can represent any quantum superposition with non-
negative real coefficients.
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U0,7

∣∣∣ψ̂〉
a0,7

U0,3 a0,3

U0,1 a0,1

|0〉

U2,3 a2,3

|1〉

|0〉

U4,7 a4,7

U4,5 a4,5

|0〉

U6,7 a6,7

|1〉

|1〉

Figure 7: A BSQDD that represents
∣∣∣ψ̂〉 for n = 3

Proof. Let the desired quantum superposition be denoted by |ψ〉. Recall that in the
proof for theorem 12.1, the operation of each node ax,y was Ux,y = Gθx,y,ϕx,y

where

θx,y = cos−1αx,y , ϕx,y = ϕz−ϕx, αx,y =

√∑z−1
k=x r

2
k∑y

k=x r
2
k

and x, y and z are as defined in

theorem 12.1 and Gθ,ϕ =
[

cos θ sin θe−iϕ

sin θeiϕ − cos θ

]
. Since x ≤ z − 1 < y, 0 ≤

∑z−1
k=x r

2
k ≤∑y

k=x r
2
k. Therefore, 0 ≤

∑z−1
k=x r

2
k∑y

k=x r
2
k
≤ 1 so 0 ≤ αx,y ≤ 1. Hence, 0 ≤ θx,y ≤ π

2 .
Recall that the quantum superposition represented in the proof of theorem 12.1 was∣∣∣ψ̃〉 =

∑2n−1
k=0 rke

iϕk
∣∣k〉 as shown in equation (17) where each ϕk = φk − φ0 and

the original quantum superposition before the global phase was factored out was |ψ〉 =∑2n−1

k=0 rke
iφk
∣∣k〉. Since the quantum superposition being represented now has only

non-negative real coefficients, φk = 0 for all k = 0, . . . , 2n − 1. Therefore, ϕx,y = 0

for each node ax,y . ThenDθx,y = Gθx,y,ϕx,y so since |ψ〉 =
∣∣∣ψ̃〉 the construction used

in the proof of theorem 12.1 can be used to represent the quantum superposition |ψ〉
with a BSQDD that operates on the set of qubits {|x1〉 , . . . , |xn〉}, uses the set of gates{
Dθ =

[
cos θ sin θ
sin θ − cos θ

] ∣∣ 0 ≤ θ ≤ π
2

}
, has the order of variables (x1, . . . , xn) and uses

the starting state |ψ0〉 = |0n〉.

This theorem is useful because it shows that a class of BSQDDs that satisfy the
conditions in theorems 10.1 and 10.2 can initialize a broad class of quantum superpo-
sitions. The construction from theorem 13.1 can be used to construct a BSQDD that
represents any quantum superposition with non-negative real coefficients.
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14 Conclusion
BSQDDs are a powerful data structure that can be used for synthesizing efficient quan-
tum arrays for initializing arbitrary quantum superpositions and also for representing
arbitrary quantum superpositions. The gates used in BSQDDs can be restricted to only
those available for synthesis so that the generated quantum arrays do not require gates
that are not available. A canonical form exists for a broad class of BSQDDs. Transfor-
mation rules also exist for reducing BSQDDs in order to decrease the number of gates
in the resulting quantum array. BSQDDs have advantages over existing methods for
initializing quantum superpositions. One advantage is that quantum arrays generated
from BSQDDs do not require ancilla qubits unlike the Ventura-Martinez [11], SQUID
[8] and ESQUID [9] algorithms. Furthermore, for some classes of quantum superpo-
sitions, BSQDDs can be used to generate quantum arrays that require exponentially
fewer gates than the Ventura-Martinez [11], Long-Sun [6] and SQUID [8] algorithms.
This makes BSQDDs a powerful and useful data structure for representing and initial-
izing quantum superpositions.
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