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Abstract

This paper presents a new quantum array that can be
used to control a single-qudit hermitian operator for an
odd radix r > 2 by n controls using Θ

(
nlog2 r+2

)
single-qudit controlled gates with one control and no an-
cilla qudits. This quantum array is more practical than
existing quantum arrays of the same complexity because
it does not require the use of small roots of the opera-
tion that is being implemented. Another quantum array
is also presented that implements a single-qudit operator
with n controls for any radix r > 2 using

⌈
logr−1 n

⌉
an-

cilla qudits and Θ
(
nlogr−1 2+1

)
single-qudit gates with

one control.

1 Introduction

Controlled single-qudit gates are a fundamental concept
in multivalued quantum computing. Because controlled
single-qudit gates with many controls are not directly
available for synthesis, implementing these gates effi-
ciently using multiple single-qudit gates with only one
control is an important problem for multivalued quan-
tum computing. Many applications exist for single-qudit
gates with multiple controls including implementing
unitary arithmetic operations [8, 5], synthesizing mul-
tivalued quantum circuits [6, 4] and oracles for Grover’s
algorithm in multivalued quantum logic [3]. The prob-
lem of controlling a single-qubit gate by many controls
was solved by Barenco et al. [1] for binary quantum
logic using Θ

(
n2
)

single qubit gates with one control
and no ancilla qubits. Muthukrishnan and Stroud [7]
developed a quantum array that can be used to control
multivalued single-qudit operations in a radix r > 2 by
n ≥ 2 controls using Θ(n) single-qudit gates with one
control and

⌈
n−1
r−2

⌉
ancilla qudits. The quantum array

by Barenco et al. [1] was extended by Brennen, Bul-
lock and O’Leary [2] for multivalued quantum comput-
ing using Θ

(
nlog2 r+2

)
single-qudit gates with one con-

trol without using any ancilla qudits where r is the radix
and n is the number of controls. However, this quantum
array requires taking small roots of the operation that is
being controlled which is not practical since these roots
correspond to rotations by small angles on the Bloch
sphere. A new quantum array for implementing hermi-
tian operations in an odd radix r > 2 with n controls will
be shown that uses Θ

(
nlog2 r+2

)
single-qudit gates with

one control and no ancilla qudits but does not require
taking small roots as is the case for existing quantum
arrays that do not use ancilla qudits. Another quantum
array will be shown that requires only Θ

(
nlogr−1 2+1

)
single-qudit gates with one control and can be used to
control any single-qudit unitary operator in an arbitrary
radix r but requires an additional

⌈
logr−1 n

⌉
ancilla qu-

dits. These ancilla qudits can be reused later because
their states are restored to |0〉 by the quantum array.
Note that because the bases for the logarithms in these
expressions are r−1, this second quantum array requires
fewer gates and ancilla qudits for higher radices. In fact,
it can be shown that as the radix increases, the number
of gates required by this quantum array approaches n.

2 Introduction to Multivalued Quantum
Logic

Before presenting the new quantum arrays introduced
in this paper, a brief introduction to multivalued quan-
tum logic will be provided. The multivalued analog of a
qubit in an arbitrary radix r is called a qudit. In ternary
logic, r = 3 and qudits are referred to as qutrits. The
basis states of a qudit of radix r are |0〉 , . . . , |r − 1〉
and the state of single qudit is of the form

∑r−1
i=0 αi |i〉

where each αi, i = 0, . . . , r − 1 is a complex number
and

∑r−1
i=0 |αi|2 = 1 assuming that the qudit is not en-

tangled with any other qudits. Several different types of
operations are used in this paper. The “+1” operation
maps any basis state |i〉 to |(i+ 1) mod r〉. The “−1”
operation is similar except that it maps any basis state
|i〉 to |(i− 1) mod r〉. Another type of operation is the



transposition operation which is denoted by (jk) where
0 ≤ j < k ≤ r − 1. Applying the transposition (jk)
to any basis state |i〉 results in |k〉 if i = j, |j〉 if i = k
and |i〉 if i 6= j and i 6= k. An important property of
transpositions that will be exploited later is that every
transposition is its own inverse and all transpositions are
therefore hermitian. In this paper, controlled operations
in quantum arrays are always controlled by |r − 1〉 on
each control unless otherwise indicated.

3 Controlling Single-Qudit Operations
Without Using Ancilla Qudits

This section will show how to control a single-qudit op-
eration U by n ≥ 2 controls without using any ancilla
qudits or small roots of operations. For this quantum
array, the single-qudit operator that is being controlled
must be hermitian and the radix r > 2 must be an
odd number. The reasons for these requirements will
be discussed later. The general form of the quantum
array is shown in figure 1. This quantum array is ap-
plied recursively to construct the controlled U opera-
tion with n − 1 controls. The “+1” operations in fig-
ure 1 that are controlled by |r − 1〉 on each of the qu-
dits |xi〉 , i = 1, . . . , n − 1 are implemented using a
special quantum array that was developed by Brennen,
Bullock and O’Leary [2] and was based on a quantum
array for binary quantum logic by Barenco et al. [1].
This quantum array is shown in figure 2 and applies a
“+1” operation controlled by |r − 1〉 on each of the qu-
dits |xi〉 , i = 1, . . . , n to the qubit |y〉 where n > 2.
The quantum array in figure 2 does not control by the
qudit |xn+1〉 and it will have the same value after the
quantum array is applied. Since the quantum array in
figure 2 cannot be used to implement “+1” operations
with two controls it is necessary to use a special trick in
this case. From group theory, +1 = (0 r − 1) . . . (01).
This allows “+1” operations with two controls to be im-
plemented using r−1 transposition operations. Because
every transposition is its own inverse, every transposi-
tion is a hermitian operator. Therefore, the quantum ar-
ray in figure 1 can be used to implement each transpo-
sition. The quantum array in figure 1 will now be ex-
plained. The basic idea is to apply a U operation to the
qudit |y〉 if each of the qudits |xi〉 , i = 1, . . . , n − 1 is
equal to |r − 1〉. This gives the correct behavior unless
|xn〉 6= |r − 1〉. However, in this case the control for ex-
actly one of the U gates that are controlled by |xn〉 will
be equal to |r − 1〉 so a second U gate will be applied to
the qudit |y〉. This will reverse the effect of the first U
operation so the net effect will be applying the identity
operation.

3.1 A Simple Example
An example will now be shown to illustrate how the
quantum array in figure 1 works. For this example, the
values r = 3 and n = 3 will be used. The controlled
operation will be U . Note that r is odd and U must be a
hermitian operation. Applying the quantum array in fig-
ure 1 for r = 3 and n = 3 results in the quantum array in
figure 3. The “+1” operations with 2 controls cannot be
implemented using the quantum array in figure 2. There-
fore, since +1 = (02)(01), the “+1” operations with 2
controls are implemented using (02) and (01) operations
with 2 controls. Note that (02) and (01) operations with
2 controls can be implemented using the quantum array
in figure 1 because (02) and (01) are hermitian opera-
tions whereas the “+1” operator is not hermitian.

3.2 Correctness of the Quantum Array
The following theorem shows that the quantum array in
figure 1 applies a U operation to the qudit |y〉 that is
controlled by |r − 1〉 on the qudits |xi〉 , i = 1, . . . , n.

Theorem 1. If r > 2 is an odd radix, n ≥ 2 is the
number of controls and U is a single-qudit hermitian
operation then the quantum array in figure 1 applies a
U operation to |y〉 that is controlled by |r − 1〉 on each
of the qudits |xi〉 , i = 1, . . . , n.

Proof. To prove this theorem, it will first be proven by
induction on the number of controls j that the quantum
array in figure 1 works correctly for all input basis states.
For the basis case, j = 2. Consider the quantum array in
figure 1 for j = 2 controls. Assume that |x1〉 6= |r − 1〉.
Then the first U operation with one control will not be
applied since its control will not be |r − 1〉. The “+1”
operations with one control also will be not applied for
the same reason. Hence, in this case r − 1 U opera-
tions controlled by |r − 1〉 on the qudit |x2〉 will be ap-
plied to the qudit |y〉. Because r is odd r − 1 is even.
Therefore, since U is hermitian, U = U† = U−1 so
applying these r − 1 U operations to the qudit |y〉 will
be equivalent to applying the identity operation. Thus,
the quantum array is correct if |x1〉 6= |r − 1〉. Now
assume that |x1〉 = |r − 1〉. Then all of the operations
controlled by |r − 1〉 on the qudit |x1〉 will be applied.
If |x2〉 6= |r − 1〉 then exactly one of the U operations
controlled by |x2〉 will have its control equal to |r − 1〉
so the entire quantum array will apply exactly two U
operations to the qudit |y〉 and will thus be equivalent to
applying the identity operation. If |x2〉 = |r − 1〉 then
none of the U operations controlled by |x2〉 will have
its control equal to |r − 1〉 so the entire quantum array
will apply exactly one U operation to the qudit |y〉. This
proves the basis case. For the inductive case, assume



that the quantum array is correct for j controls. Consider
figure 1 for j + 1 controls. By the inductive hypothesis
the U operation with j controls works correctly. By ap-
plying the same reasoning as in the basis case it can be
shown that the quantum array is correct for j + 1 con-
trols. Thus, the quantum array works correctly for all
basis states by the principle of mathematical induction.
Because unitary matrices are linear operators the quan-
tum array in figure 1 works correctly for all quantum
states.

3.3 Complexity of the Quantum Array
The number of single-qudit gates with one control re-
quired by the quantum array in figure 1 will now be cal-
culated. First, the number of single-qudit gates with one
control required to implement a “+1” operation with n
controls will be found. Let fr,n denote the number of
single-qudit gates with one control required to imple-
ment a “+1” operation with n controls using the quan-
tum array in figure 2 when n > 2. When n = 2 the
quantum array in figure 2 cannot be used and the “+1”
operation is decomposed to transpositions as previously
described. The quantum array in figure 1 is then used to
implement each transposition with 2 controls. Then fr,n

is defined by the recurrence

fr,2 =2r(r − 1) (1)

fr,n =r
(
fr,dn+1

2 e + fr,bn+1
2 c
)

(2)

Let gr,n be the number of single-qudit gates with one
control required to control a hermitian single-qudit op-
erator U by n controls using the quantum array in figure
1. Then gr,n is defined by the recurrence

gr,2 =2r (3)
gr,n =gr,n−1 + rfr,n−1 + r − 1 (4)

It can be shown that

gr,n ∈ Θ
(
nlog2 r+2

)
(5)

Thus, the quantum array in figure 1 requires
Θ
(
nlog2 r+2

)
single-qudit gates with one control.

The notation gr,n ∈ Θ
(
nlog2 r+2

)
means that gr,n

is asymptotically bounded below by some positive
constant multiple of nlog2 r+2 and is is asymptotically
bounded above by some positive constant multiple
of nlog2 r+2. Although this is the same as for the
quantum array by Brennen, Bullock and O’Leary [2],
this quantum array does not require taking small roots
of the operation that is being controlled. This makes it
much more practical to implement on an actual quantum
computer since it does not require rotations by small
angles on the Bloch sphere.
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Figure 1: The quantum array for implementing single-
qudit controlled operations without using ancilla qudits
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Figure 3: A quantum array for implementing a U oper-
ation with 3 controls in ternary quantum logic without
using ancilla qutrits



4 Controlling Single-Qudit Operations
Using

⌈
logr−1 n

⌉
Ancilla Qudits

This section will demonstrate how implement a U
single-qudit operation with n ≥ 2 controls using a log-
arithmic number of ancilla qudits. Although it is desir-
able to use as few ancilla qudits as possible, the number
of single-qudit gates with one control can be dramati-
cally reduced by adding a logarithmic number of ancilla
qudits. Additionally, this quantum array does not require
the radix r > 2 to be odd and the controlled single-qudit
operation U may be an arbitrary unitary operation and
does not need to be hermitian. Figure 4 shows the gen-
eral form of the quantum array where m =

⌈
logr−1 n

⌉
is the number of ancilla qudits. Each of the ancilla qu-
dits |ci〉 , i = 1, . . . ,m must be initialized to the state
|0〉 before the quantum array is applied. These ancilla
qudits can be reused later for other tasks as the quantum
array restores their states to |0〉. In order to apply this
quantum array directly, it is necessary for the number of
controls n to be a power of r − 1 so that n = (r − 1)m.
However, it will be shown later that this quantum array
can also be applied when n is not a power of r − 1. The
quantum array in figure 4 is applied recursively to im-
plement each of the r − 1 “+1” and “−1” operations
with (r − 1)m−1 controls. The idea is that the control
for the U operation will only be equal to |r − 1〉 if all
of the “+1” operations with (r − 1)m−1 controls have
been applied. This will only happen if each of the qudits
|xi〉 , i = 1, . . . , n is equal to |r − 1〉. Therefore, the U
operation will only be applied to the qudit |y〉when each
of the qudits |xi〉 , i = 1, . . . , n is equal to |r − 1〉. By
applying this reasoning recursively, it can be seen that
the quantum array works correctly. Now if n is not a
power of r− 1 then n′ = (r− 1)dlogr−1 ne is a power of
r− 1 and n′ > n. Hence, in this case the quantum array
in figure 4 can be used to implement a controlledU oper-
ation with n′ controls using

⌈
logr−1 n

′⌉ =
⌈
logr−1 n

⌉
ancilla qudits. This results in an extra n − n′ controls
which can be removed by treating them as set to |r − 1〉.
Any of the “+1” and “−1” gates with one control that
was controlled by a control that is now constant is re-
placed by a new gate with the same operation but no
controls.

4.1 A Simple Example

An example will now be presented to show how the
quantum array in figure 4 works. For this example,
r = 3 and n = 4 will be used. The controlled operation
will be U . Note that although r is odd in this case, this
is not required and r may be even. The controlled op-
eration U can be any single-qudit unitary operation and

does not need to be hermitian. The number of required
ancilla qutrits is m = 2 since dlog2 4e = 2. Applying
the quantum array in figure 4 results in the quantum ar-
ray in figure 5. As mentioned earlier, it is necessary to
initialize the ancilla qutrits |c1〉 and |c2〉 to |0〉 before
the quantum array is applied. Observe that some of the
“+1” and “−1” operations in figure 5 are not required.
However, these have been left in the quantum array in
order to show the pattern.

4.2 Correctness of The Quantum Array
The following theorem shows that the quantum array in
figure 4 is correct.

Theorem 2. If r > 2 is an arbitrary radix, n = (r−1)m

is the desired number of controls, m ≥ 1 is the number
of ancilla qudits and U is an arbitrary single-qudit uni-
tary operation then the quantum array in figure 4 applies
aU operation to |y〉 that is controlled by |r − 1〉 on each
of the qudits |xi〉 , i = 1, . . . , n.

Proof. Let nj = (r − 1)j . Then n = nm. Assume that
the state that the quantum array is figure 4 is applied to
is a basis state. It will be proven that the quantum array
is correct by induction on j. For the basis case j = 1
and n1 = r − 1. Consider the U operation in figure
4. Because the ancilla qudits are initialized to |0〉, the
control for the U operation will be equal to |r − 1〉 if
and only if each of the preceding “+1” operations is ap-
plied. This will happen if and only if each of the qudits
|xi〉 , i = 1, . . . , r − 1 is equal to |r − 1〉 which implies
that the U operation will be applied to the qudit |y〉 if
and only if each of the qudits |xi〉 , i = 1, . . . , r − 1 is
equal to |r − 1〉. This proves the basis case. For the in-
ductive case assume that the quantum array in figure 4
is correct for nj controls. Consider the quantum array
in figure 4 for nj+1 controls. Observe that because in
this case each of the “+1” and “−1” operations has nj

controls, each of the “+1” and “−1” operations is im-
plemented correctly by the inductive hypothesis. By ap-
plying the same reasoning for the control of theU opera-
tion as in the basis case, the U operation is applied if and
only if each of the qudits |xi〉 , i = 1, . . . , nj+1 is equal
to |r − 1〉. This proves that the quantum array works
correctly for all basis states by the principle of mathe-
matical induction. Because unitary matrices are linear
operators it works correctly for all quantum states.

4.3 Complexity of The Quantum Array
The number of single-qudit gates with one control re-
quired by the quantum array in figure 4 will now be cal-
culated. Let hr,m be the number of single-qudit gates



required to implement a U operation with n = (r− 1)m

controls where m is the number of ancilla qudits used.
The reason the recurrence uses the number of ancilla
qudits instead of the number of controls is because this
simplifies the analysis. Note that this assumes that n is
a power of r− 1. This result will be generalized later in
this paper. The recurrence hr,m is defined by

hr,1 =2r − 1 (6)
hr,m =2(r − 1)hr,m−1 + 1 (7)

It can be shown that

hr,m =
2(r − 1)nlogr−1 2+1 − 1

2r − 3
(8)

This implies that

hr,m ∈ Θ
(
nlogr−1 2+1

)
(9)

Thus, Θ
(
nlogr−1 2+1

)
single-qudit gates with one con-

trol are required to implement a U operation with n con-
trols using the quantum array in figure 4. It is important
to note that equation (8) only holds when n is a power
of r − 1. However, equation (9) holds even when n is
not a power of r−1 because taking n′ to be the smallest
power of r − 1 greater than n increases n by a factor
that is less than r − 1. The complexity of the quan-
tum array in figure 4 has several desirable properties. In
addition to using significantly fewer single-qudit gates
with one control than the quantum array in figure 1, the
quantum array in figure 4 becomes more efficient as the
radix r becomes larger in contrast to the quantum array
in figure 4 which requires more single-qudit gates with
one control when the radix is larger. This is true both in
terms of the number of single-qudit gates with one con-
trol that are required as well as the number of required
ancilla qudits. This can be seen from equation (8) be-
cause logr−1 2 will be smaller for larger values of r. In
fact, in can be shown that the number of single-qudit
gates that are required approaches n as the radix r in-
creases. Since m =

⌈
logr−1 n

⌉
is the number of ancilla

qudits, a larger value for r will cause m to be smaller as
well.

5 Comparison of Implementations of
Controlled Operations for Multivalued
Quantum Logic

The different approaches to implementing controlled op-
erations presented in this paper will now be compared.
The quantum array developed by Muthukrishnan and
Stroud [7] uses only Θ(n) single-qudit gates with one
control. This is better than the other quantum arrays,

+1 . . . +1︸ ︷︷ ︸
r−1 “+1” operations

U

−1 . . . −1︸ ︷︷ ︸
r−1 “−1” operations

|x1〉
...
|xp〉

...
|xn−p+1〉

...
|xn〉
|c1〉

...
|cm〉
|y〉

Figure 4: The quantum array for implementing single-
qudit controlled operations using

⌈
logr−1 n

⌉
ancilla qu-

dits where p = (r − 1)m−1

however the quantum array created by Muthukrishnan
and Stroud also requires

⌈
n−1
r−2

⌉
ancilla qudits which is

significantly more than any of the other quantum arrays.
The quantum array invented by Brennen, Bullock and
O’Leary [2] does not use any ancilla qudits but requires
Θ
(
nlog2 r+2

)
single-qudit gates with one control. The

quantum array shown in figure 1 requires the same num-
ber of single-qudit gates with one control and does not
need any ancilla qudits but requires the radix r > 2 to
be odd and the controlled operation U to be hermitian.
However, this quantum array has the advantage of not
requiring small roots of the operation being controlled as
is the case with the quantum array by Brennen, Bullock
and O’Leary [2]. The quantum array shown in figure
4 requires Θ

(
nlogr−1 2+1

)
single-qudit gates with one

control and
⌈
logr−1 n

⌉
ancilla qudits and can be used to

control any single qudit hermitian operator in an arbi-
trary radix r > 2. It is important to note that as the radix
r becomes large, this quantum array uses only n single-
qudit gates with one control which is the same as the
quantum array by Muthukrishnan and Stroud [7]. These
comparisons are summarized in table 1.

6 Conclusion

This paper presented two new quantum arrays for imple-
menting controlled operations in multivalued quantum
logic using single-qudit gates with one control. The first
quantum array was shown in figure 1 and is capable of
controlling a single-qudit hermitian operator by n qudits
in an odd radix r > 2 using Θ

(
nlog2 r+2

)
single-qudit



U

≡
+1 +1

+1
−1 −1 +1

+1
+1

−1 −1
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+1 +1
−1
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−1 +1 +1
−1
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|x1〉
|x2〉
|x3〉
|x4〉
|c1〉
|c2〉
|y〉

Figure 5: A quantum array for implementing a U oper-
ation with 4 controls in ternary quantum logic using 2
ancilla qutrits

gates with one control and no ancilla qudits. A quantum
array developed by Brennen, Bullock and O’Leary [2]
is also capable of implementing controlled single-qudit
operations using the same number of single-qudit gates
with one control without using ancilla qudits. However,
it is not practical to implement because it requires tak-
ing small roots of the operation that is being controlled
whereas the quantum array in figure 1 does not. The
second quantum array shown in this paper was given
in figure 4 and can be used for controlling an arbitrary
single-qudit unitary operation by n qudits in an arbi-
trary radix r > 2. It uses Θ

(
nlogr−1 2+1

)
single-qudit

gates with one control and requires
⌈
logr−1 n

⌉
ancilla

qudits. This drastically reduces the number of required
single-qudit gates with one control without using a lin-
ear number of ancilla qudits as was previously required
[7]. Because controlled operations are fundamental in
multivalued quantum computing, these quantum arrays
are useful as they provide different tradeoffs between the
required number of single-qudit gates with one control

Quantum Array Gates Ancillas

Muthukrishnan Θ(n)
⌈

n−1
r−2

⌉
Brennen Θ

(
nlog2 r+2

)
0

Figure 1 Θ
(
nlog2 r+2

)
0

Figure 4 Θ
(
nlogr−1 2+1

) ⌈
logr−1 n

⌉
Table 1: Comparison of quantum arrays for implement-
ing controlled operations where r is the radix and n is
the number of controls

and the number of ancilla qudits.
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