Extended Superposed Quantum State
Initialization Using Disjoint Prime Implicants

David Rosenbaum', Marek Perkowski?
'Portland State University, Department of Computer Science
ZPortland State University, Department of Electrical Engineering
Email: drosenba@cs.pdx.edu, mperkows @ee.pdx.edu

Abstract

Extended Superposed Quantum State Initialization Using Disjoint Prime Im-
plicants (ESQUID) is a new algorithm for generating quantum arrays for the pur-
pose of initializing a desired quantum superposition. The quantum arrays gener-
ated by this algorithm almost always use fewer gates than other algorithms and in
the worst case use the same number of gates. These improvements are achieved
by allowing certain parts of the quantum superposition that cannot be initialized
directly by the algorithm to be initialized using special circuits. This allows more
terms in the quantum superposition to be initialized at the same time which de-
creases the number of gates required by the generated quantum array.

1 Introduction

The problem of initializing a quantum superposition is important for Grover’s Algo-
rithm [3], Quantum Neural Networks [8, 2] and other applications. The purpose of the
algorithm presented here is to generate a quantum array that initializes a desired quan-
tum superposition from a basis state. Ventura and Martinez [7] created an algorithm
that generates a quantum array capable of initializing a quantum superposition of the
form |¢)) = Z?lgl \% |i) where t; € {—1,0,1}, m is equal to the number of terms
in the desired quantum superposition and n is the number of qubits in the desired quan-
tum superposition using ©(mn) one and two qubit operations and n + 1 ancilla qubits.
Long and Sun [4] created another algorithm based on a different principle that solves
a similar problem without using any ancilla bits but requires an exponential number
of one and two qubit operations in the generated quantum array. An advantage of the
Long-Sun algorithm [4] is that it uses a training operator that is based on sinusoidal
functions in contrast to the Ventura-Martinez algorithm which uses a special training
operator. The SQUID algorithm [5] is based on the Ventura-Martinez algorithm [7].
The SQUID algorithm [5] is an improvement over the Ventura-Martinez [7] and Long-
Sun [4] algorithms and generates quantum arrays that almost always use fewer gates
than those generated by the Ventura-Martinez algorithm [7] and in the worst case gen-
erates a quantum array that requires the same number of operations. The ESQUID al-

gorithm presented in this paper improves on the SQUID algorithm [5] by generalizing
the phase groups used in the SQUID algorithm [5] with the introduction of generalized
phase groups. This is done by using special circuits to initialize parts of the quan-
tum superposition that cannot be initialized directly by the algorithm in an efficient
manner. This allows the desired quantum superposition to be represented using fewer
groups which results in fewer gates in the quantum arrays generated by the ESQUID
algorithm.

2 Initializing the Starting State

The Ventura-Martinez [7], Long-Sun [4] and SQUID [5] algorithms require all qubits
to be initialized to |0) before the generated quantum array is applied. The ESQUID
algorithm presented in this paper also requires this starting state to be initialized before
the quantum array it generates is applied. This requires another algorithm to be run
first to initialize the state to |0™, 00) prior to applying the quantum array generated by
the ESQUID algorithm. One method for initializing the starting state is the Schulman-
Vazirani heat engine [6]. The rest of this paper will assume that the starting state has
been initialized and will focus on initializing the desired superposition from the starting
state.

3 The Desired Quantum Superposition

The ESQUID algorithm is capable of initializing the same class of quantum superpo-
sitions as the SQUID algorithm [5]. Thus, the desired quantum superposition must be

of the form
21

=3 \j%um € {-1,0,1} (1)

1=0

where m is the number of non-zero amplitudes in |). Note that this is also the number
of terms in |¢)).

3.1 The Phase Map

Phase maps [5] are a special type of Karnaugh map that were created for use with the
SQUID algorithm. A Phase map provides a way to visualize a quantum superposition.
The idea is that each cell on the phase map contains the coefficient of the term in
the quantum superposition that corresponds to the minterm of the cell. This can be
obtained by concatenating the binary representations of the row and column of the cell
in the same way as for a conventional Karnaugh map. If all amplitudes are equal as is
the case in equation (1), the amplitudes can be omitted and each cell can contain only
the phase. Thus, in the case of the SQUID and ESQUID algorithms, each cell must
contain some ¢; € {—1,0, 1} where 7 is the index of the cell on the phase map. As an
example, the quantum superposition

%)) 2

_ 01 ! 10
= 510 - 7

2

331I -1 0
2 3

Figure 1: The phase map for equation 2

can be represented using the phase map shown in figure 1.

3.2 Phase Groups

The phase maps used in the SQUID and ESQUID algorithms also use a type of group
called a phase group to represent quantum superpositions. The idea is that each phase
group contains a set of minterms that correspond to terms in the desired quantum su-
perposition that will be initialized at the same time when the SQUID algorithm is run.
A term in a quantum superposition is the product of a basis state that has a non-zero
coefficient in the quantum superposition and its coefficient. Certain restrictions apply
to which sets of minterms can form a phase group. It must be possible to express a
phase group as a string of length n where each element of the string is 0 or 1 if the
corresponding qubit is 0 or 1 respectively in the phase group. If the qubit is not con-
stant within the phase group then * is used as the corresponding element in the string
in order to indicate this. Furthermore, the quantum superposition that corresponds to
the phase group must be of the form

o) = £) 185) 3)
j=0
where)
18j) = —= (10) £ 1)),]0) or [1) “)

V2

The symbol) denotes a Kronecker product and the sign in equation (4) is determined
by the corresponding phase group. This implies that each Phase Group either has the
value —1 in every cell, the value 1 in every cell or has an equal number of the values —1
and 1 in its cells. Thus, Phase Groups have the same shapes as literal product groups in
a standard Karnaugh Map but restrictions apply to the phases that can be present within
each phase group. Two phase groups are disjoint if they do not overlap on the phase
map. Because the SQUID [5] and ESQUID algorithms assume that all phase groups
are disjoint and will not initialize the desired quantum superposition correctly if this is
not the case, minterms with amplitudes of 0 may not be present in any phase group.

3.3 Generalized Phase Groups

While the SQUID algorithm [5] requires that the desired superposition be expressed as
a disjoint set of phase groups, the ESQUID algorithm allows the use of a more general
type of phase group called a generalized phase group. A generalized phase group is a
set of 2¢ minterms on the phase map where there exists a 2" x 2" permutative operator
U such that

) = Ulay) (5)

where |y) is the quantum superposition that corresponds to the generalized phase group
and |a,) is a phase group that contains 2¢ minterms. The quantum state |,) is called
the intermediate phase group. Note that every phase group is also a generalized phase
group because U can be taken to be the identity matrix. Because U is a permutative
operator, a generalized phase group can have the value —1 in every cell, the value 1
in every cell or an equal number of the values —1 and 1 in its cells as is the case for
phase groups. In the ESQUID algorithm, the desired quantum superposition is repre-
sented as a sequence of generalized phase groups. In order for the ESQUID algorithm
to initialize the correct quantum superposition, all generalized phase groups in the se-
quence must be disjoint and the intermediate phase group that each generalized phase
group is created from must be disjoint from all previous generalized phase groups in
the sequence of generalized phase groups. This is necessary because the generalized
phase groups at the beginning of the sequence will be initialized first by the ESQUID
algorithm. If an intermediate phase group or a generalized phase group later in the
sequence overlapped with a generalized phase group earlier in the sequence, part of the
quantum superposition that had already been initialized would be changed when the
new intermediate phase group or generalized phase group was initialized. This would
result in the ESQUID algorithm failing to initialize the correct quantum superposition.

3.4 Complexity of the U Operations

Because a permutative U operation is used for each generalized phase group initialized
by the ESQUID algorithm, the U operations have an important impact on the com-
plexity of the ESQUID algorithm in terms of the number of one and two qubit gates
required. Since U is an arbitrary permutative operation, implementing it using inverters
controlled by up to n — 1 qubits requires a superpolynomial number of operations in
the most general case. The number of operations is still superpolynomial if the permu-
tative U operations are implemented using controlled single qubit operations selected
from any finite set of single qubit unitary matrices. However, it is possible to place
restrictions on the U operations so that they use a polynomial number of operations.
Let GG be a finite set of single qubit unitary matrices. Let a be the number of elements
in the set G. To show that the number of operations required is superpolynomial in
general consider the number of possible permutative operators on n qubits compared
with the number of possible quantum arrays that can be created using a polynomial
number of controlled single qubit operations from the set G. Since each permutative
operation on n qubits corresponds to an invertible function over the set of all integers
between 0 and 2™ — 1 inclusive, there are a total of 2"! permutative operations on n

qubits. If every permutative operation on n qubits can be implemented using a poly-
nomial number of controlled single qubit operations from the set G then there exists
a polynomial p(n) such that p(n) is an upper bound on the number of operations in
every such quantum array. Since there are n qubits and a possible operations, there are

an Z;:Ol ("J_.l) + 1 = an2™~! + 1 choices for each operation in each quantum array
since there are (”;1) ways to place each operation with j controls. Note that each
of these operations could also be the identity operation since p(n) is an upper bound
so an2™~! + 1 is the number of choices for each operation rather than an2”~!. This
implies that the number of quantum arrays that can be constructed using up to p(n)

controlled inverters is bounded above by (an2"_1 + 1)p ("). It can be shown that,

iy (a2 1)""

=0 6)

It follows that (cm?"‘1 + 1)p(n) < 2™ for large n. Therefore, there exist permuta-
tive operations that cannot be implemented using a polynomial number of controlled
operations from a finite set of single qubit unitary matrices. It will now be shown
how to place restrictions on the U operations in order to allow them to be imple-
mented using a polynomial number of operations. Let the variables z;,7 = 1,...,n
denote the inputs to the permutative operator U. Let ji,...,j, be integers that de-
note the order in which each output is calculated in the quantum array such that the
qubit with index jj, is the k'™ output calculated. Let the output on the j,'" qubit be
Yie = FixWirs-->Yjr_1>Tjus---> T4,). The idea here is that the outputs are cal-
culated in the order given by ji,...,j,. Since each output y;, replaces x;, as the
value of the j,'" qubit, each output yj, is a function of the inputs z;,,¢ = k,...,n
to the permutative U operator as well as the outputs y;,,¢ = 1,...,k — 1. This is
because when the k' output is computed, the first & — 1 outputs have already been
computed so each of the values x;,,/ = 1,...,k — 1 has been replaced by the val-
ues y;,, £ = 1,...,k — 1 respectively. Let g(n) be a polynomial. The U operations
can now be restricted to a polynomial number of controlled inverters by requiring each
output ¥, = fi (Yjrs- -+ Yjp_1sLjps- - -»2j,) to be an ESOP with at most ¢(n) prod-
ucts of literals. The term ESOP stands for exclusive sum of products and a literal is
any input or its negation. This means that each function can be constructed using con-
trolled inverters since the exclusive sum corresponds to the exclusive or operation. The
total number of controlled inverters required to implement a U operation is therefore
bounded above by ng(n) and is therefore polynomial. By using different degrees for
the polynomial ¢(n) more control can be gained over the complexity of the U opera-
tions.

4 The ESQUID Algorithm

The ESQUID algorithm operates on the state |x . ..z, ¢1c2) where the desired quan-
tum superposition is initialized on the qubits |x;),7 = 1,...,n and |¢;) and |co) are
ancilla qubits.

4.1 Codes in the Ancilla Qubits

The ancilla qubits |¢1) and |c2) are called the code qubits and keep track of
e which terms in the current superposition have been initialized,
e which terms are currently being initialized and

e which terms will be used later to create more terms in the quantum superposition
(this is called the generator state [7]).

The following codes are used:
e |00) on the |¢1) and |c2) qubits is not used.

e |01) on the |¢1) and |c2) qubits is used to indicate that the corresponding terms
in the quantum superposition have already been initialized to the proper values
and should not be modified again by the algorithm.

e |10) indicates that the corresponding terms in the quantum superposition are part
of the generalized phase group that is currently being initialized.

e |11) is used to indicate the generator state. Note that applying a swap gate to the
code that indicates the current group transforms it into the code for an initialized
term in the quantum superposition. Also, applying a swap gate to the code for
the generator state will not change it. The generated quantum array will take
advantage of both of these properties by using controlled swap gates to update
the codes for the terms in each generalized phase group after it is initialized.

4.2 The Initialization Operator

The training operator used in the ESQUID algorithm is the same as the training opera-
tor used in the SQUID algorithm [5] which is based on the training operator from the
Ventura-Martinez algorithm [7]. However, it relies on a different concept than the oper-
ator used in the Ventura-Martinez algorithm as it operates on phase map groups rather
than on the individual minterms that the original operator in the Ventura-Martinez al-
gorithm operates on. This allows many minterms to be initialized at the same time by
creating a new term in the quantum superposition and then splitting it using controlled
Hadamard gates. The operator is defined by equation (7).

1 0 0 0
0 1 0 0
Stap =10 0 \/ pp%g t % @)
_ 9 pb—g
0 0 t » o

This operator works by splitting the terms corresponding to the groups off from the
generator state during the algorithm where ¢ is the phase that is multiplied by all the
minterms in the group, g is the number of cells in the group on the Phase Map and

p is the number of minterms that still need to be added to the quantum superposition
including those in the current group. Note that since this operator is always applied to
the |c1) and |c2) qubits, a superposition containing a new generator state and a term
that can be split into the current group will be created. Also, due to the nature of this
algorithm, this operator will never be applied to a superposition containing codes for
the current group. Thus, only the generator state will be modified and the terms in the
quantum superposition that have already been initialized will not be changed.

4.3 A High-Level Overview of the ESQUID Algorithm

The pseudocode shown in algorithm 1 is intended only as a high level overview of the
algorithm and ignores several important details. A complete and detailed description
of the algorithm is given in section 6.

Algorithm 1 High level pseudocode for the ESQUID algorithm

1: Find a small set A of generalized phase groups that represents |1)) using logic
synthesis methods
Initialize all qubits |x;), |c1) and |cz2) to |0)
Set the |c1) and |c2) qubits to the code for the generator state
foralla € Ado
Split the term corresponding to the intermediate phase group from the genera-
tor state
6: Split the term into the intermediate phase group using controlled Hadamard
gates
7: Transform the intermediate phase group into the generalized phase group
8: Change the codes for the terms in the generalized phase group to the codes for
initialized terms
9: end for

S A Simple Example

This section illustrates the basic idea behind the ESQUID algorithm using a simple
example. For this example, the state

1 1 1 1
= — 10101 —10110) — - |1001) — = |101
) = 5 10101) + 5 [0110) — 2 [1001) — > [1010) ®)

will be initialized. The phase map that corresponds to the state |¢)) is shown in figure 2.
First observe that all of the minterms in figure 2 can be put into one generalized phase
group which is denoted in figure 2 by the small circles connected with lines. This is
because applying the quantum array in figure 4 transforms the intermediate phase group
in figure 3 into the generalized phase group in figure 2. Note that the intermediate phase
group that corresponds to the phase group in figure 3 can be denoted by the string «1x1
because the qubits |z1) and |z3) are both |0) and |1) within this phase group but the

[4) N
-
0Oj0]07]O
0 1 S 4
0 1 0 1
x2 2 3 7
010 0
xl 10 11 S 14
0 [(-1) 0 |(-1
8 9 13 1

Figure 2: The phase map for equation (8)

T3
V) 24
—
olo|lo0] o0
0 1 5 4
0 ﬁ R 0
1:2 2 7 6
0 |\-1 J 0
331 10 11 14
olo 0] o
8 9 13 12

Figure 3: The intermediate phase group for the generalized phase group in equation 8

qubits |xo) and |x4) are constant within this phase group. It is important to observe that
this string does not completely describe the phase group because it does not account
for phase. This phase group can also be written as a quantum superposition according
to the form in equation (3) which results in

1 1 1 1
) =5 0101) + 5 [0111) — 2 [1101) — 7 [1111) ©9)

=3 (10) — 1) 1 (10) + [1)) 1) (10

The quantum array for initializing the quantum superposition in equation (8) is
therefore as shown in figure 5. The inverters denoted by G; and G4 set the code to
indicate that the only term in the quantum superposition is the generator state. Note
that |11) is the code for the generator state from section 4.1. The state of the quantum
array before any operators are applied is |)g) = |0000,00) so the state after G; and
G4 are applied is |¢)1) = |0000, 11). Now consider the factored form in equation (10).

Lo
iaRa

Figure 4: The quantum array for transforming the intermediate phase group in equation
(10) into the generalized phase group in equation (8)

The qubits |z3) and |z4) are both |1) in equation (10), these qubits must be set to |1)
in the generator state so the CNOT gates denoted by GG3 and G4 are applied. Because
the state of the qubit |x1) is % |0) — % |1), it is necessary to set the state of the |z1)

qubit to |1) because a Hadamard gate will be applied later to this qubit to initialize
the intermediate phase group in equation (10). To do this, the CNOT gate denoted by
G5 is applied. Note that inverters could have been used rather than these CNOT gates
because at this point in the algorithm the generator state is the only term in the quantum
superposition. However, this is not true during later stages of the algorithm. Applying

these gates results in a new state |¢)2) = |1101,11). The gate Sq 4.4 denoted by G is

10 00

then applied to the ¢; and c2 qubits. From equation (7), Sy 44 = {8 5o (1)} so that

00-10
the state becomes |¢3) = |1101,10) after G is applied. Note that applying S7 4.4

has changed the code to |10) which is the code for the phase group that is currently
being initialized as defined in section 4.1. The controlled Hadamard gates denoted by
G and Gy are applied to split the term that corresponds to the current phase group
into the intermediate phase group from equation (10). This results in the state |1)4) =
2(10) — 1)) [1) (J0) +|1)) 1, 10). It is now necessary to transform this intermediate
phase group into the desired generalized phase group from equation (8). This can
be done using the quantum array from figure 4 with controls added so that only the
generalized phase group that is currently being initialized will be affected. Note that
these controls are not necessary for the first generalized phase group. This is because
all terms in the current quantum superposition are in the first generalized phase group
since no other generalized phase groups are initialized before the first generalized phase
group. However, these controls are required for generalized phase groups that are
initialized after the first generalized phase group. First note that |1)4) can be rewritten
as [¢4) = £10101,10) + $]0111,10) — % [1101,10) — [1111,10). The state after
the gates Gy and G are applied is therefore |¢5) = £ |0101,10) + (0110, 10) —
111001, 10) — 11010, 10) The swap gate G1; is then applied to the terms in the
quantum superposition that correspond to the generalized phase group that is currently
being initialized. This changes the codes for these terms to the code for initialized
terms. Because in this case all terms in the quantum superposition are in the group
that is currently being initialized, it is not necessary to control the swap gate denoted
by G11. This results in the state |¢)6) = % [0101,01) + 2 [0110,01) — £ |1001,01) —
% |1010,01). Finally, the inverter denoted by G2 is applied to restore states of the
code qubits to [0). This results in the state |¢/7) = £]0101,00) + 1|0110,00) —

G

|21) o P | H o
22) SI—— T
[771
|l‘3> Gs LI_IJ G1o
|SC4> G1 () <> Gi1
FaR\
|Cl> Gy U 5174)4 G2
|le2) —B——
Ge

Figure 5: The quantum array for initializing the quantum superposition from equation

(®)

111001, 00) — £ |1010,00) which is equal to the desired quantum superposition from
equation (8) if the code qubits are ignored. Since the states of the code qubits have
been restored to |0), the code qubits can be reused later for other tasks.

6 Detailed Pseudocode

The algorithm will now be described using the detailed pseudocode in algorithm 2.
The qubits |z ;) are the qubits that the desired quantum superposition will be initialized
on and the qubits |c;) and |cg) are used for storing the codes discussed in section
4.1. The notation s, = 541 -..5q,, is used to denote the string that corresponds to
the intermediate phase group for the generalized phase group a and U, is the unitary
operator from equation (5).

Theorem 6.1. The ESQUID algorithm initializes the desired quantum superposition.

Proof. Let |t;) = |®i1...%in,Ci1¢i2) denote the state of the quantum array after
the i1 iteration has been completed where 1)) is defined to be the state immediately
before the first iteration. Let m be the number of terms in the desired quantum super-
position from equation (1) and let ¢; be the value that is assigned to ¢ at the i*" iteration
of the algorithm. Let g; be the number of minterms that are initialized in the quantum
superposition during the i*" iteration of the algorithm and let p; be the total number of
minterms that need to be initialized in the quantum superposition by the i*? iteration
and all subsequent iterations of the algorithm. Let b be the total number of generalized
phase groups that are initialized, let |a;) be the quantum superposition that corresponds
to the generalized phase group that is initialized at the i*" iteration of the algorithm and
let |sq,) be the intermediate phase group that corresponds to a; as defined in equation
(5). Let g; be the binary string of length n that corresponds to the states of the |z;)
qubits in the generator state before line 30. Let gy be the starting states of the qubits

|2 ;) in the generator state. It will be proven by induction on 4 that the state after the i*!

10

Algorithm 2 Detailed pseudocode for the ESQUID algorithm

1:

2
3
4:
5

7:
8:
9:
10:
11:
12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:

Find a small set A of generalized phase groups using logic synthesis methods

: Initialize the state to |0™, 00)
. Apply inverters to |c;) and |¢3), this results in |¢g) = 0™, 11)
foralla € Ado
Let g be the number of minterms in intermediate phase group that corresponds
to s,
Let p be the number of terms in the quantum superposition that have not been
initialized yet including the terms about to be initialized in the current group
Find the state that corresponds to s, using the form shown in equation (3)
if the sign outside the product is positive then
Lett =1
else
Lett = -1
end if
forallj=1,... ,ndo
if s ; = * then
if the sign in equation (4) for the j*" qubit in the intermediate phase
group is positive then
if the j* qubit is |1) in the generator state then
Apply an inverter controlled by |1) on |c;) to the j* qubit
end if
else
if the j* qubit is |0) in the generator state then
Apply an inverter controlled by |1) on |c;) to the j* qubit
end if
end if
else
if the j*" qubit in the generator state is not equal to |s, ;) then
Apply an inverter controlled by |1) on |c;) to the j*" qubit
end if
end if
end for
Apply St,g,p 10 [c1¢2)
forallj=1,...,ndo
if s, ; = * then
Apply a Hadamard gate controlled by |10) on |c; o) to the j** qubit
end if
end for
Apply a U, operation controlled by |10) on |cico) to |1 ... zp)
Apply Uj to |z1 ... 2y,)
Apply a swap gate controlled by s, ; on each |z;) where s, ; # * to |cic2)
Apply Uy to |21 ... xp)
end for
Apply an inverter to |co)

11

iteration is

| [Di — Gi
V) = — |ax, 01) + lgi, 11) (1)
kzzl vm m

Consider the basis case where ¢ = 0. By definition, this is the quantum state immedi-
ately before the first iteration which is the quantum state after the operations on line 3
of the algorithm are applied. Line 1 does not affect the state. After line 2, the quantum
state is [0™,00). Note that there is no 0*" iteration of the algorithm so the number of
minterms initialized in the 0" iteration is 0. Also, since no minterms have been ini-
tialized yet, the number of minterms that still need to be initialized is m. Thus, gg = 0
and pg = m. Using these results, the state after line 3 is applied is

|tho) =107, 11) (12

0
1 _
=3 :Tﬁ lax, 01) +,/p0mg° g0, 11) (13)
k=1

so the basis case holds. The inductive case will now be proven. Assume that equa-
tion (11) holds for the " iteration. Lines 5 to 11 update the parameters g, p and
t t0 git1, pi+1 and t; 4. Let the factored form of the intermediate phase group be
+ ®;.L=0 |Bit1,5) where |Bit1,) = % (|0y £ |1)). After lines 13 to 26 are run the
following properties hold:

e If s4,,,; = * and the sign in |3;11,;) is positive then the j* qubit in the
generator state is |0). This is because the qubits in the generator state are always
either |0) or |1) so if the j*® qubit in the generator state is not |1), it must be
|0). However, since the sign in |3;11,;) is positive, the 5" qubit in the generator
state cannot be |1) because if it was |1) it would have been set to |0) by line 17.

Hence, g;11,; = 0 in this case.

e If s,,,,; = = and the sign in |3;11,;) is negative then the j qubit in the
generator state is |1). This is because the qubits in the generator state are always
either |0) or |1) so if the j*® qubit in the generator state is not |0), it must be
|1). However, since the sign in |3;11,;) is negative, the j*" qubit in the generator
state cannot be |0) because if it was |0) it would have been set to |1) by line 21.
Hence, g;11,; = 1 in this case.

e If so,,,; # *,the j™ qubit in the generator state is set to q,, ; on line 26.
Hence, g;11,; = Sq,,,,; in this case.

These operations affect only the generator state because they are controlled by |1) on
|c1) and from equation (11), the qubit |¢;) is |1) only in the generator state. After the
loop on line 13 finishes, the state is therefore

i 1 ;
i) = 30— law 01) + /5 g, 1) (14
k=1

12

Note that p; 1 = p; — g; because all minterms that are not initialized at the ith jteration
must be initialized by the i + 1'® or later iterations. Now consider line 30. By defi-
nition, ¢;11, ¢g;+1 and p;4; are the values assigned to the parameters ¢, g and p at the
i 4+ 1'™ iteration of the algorithm. Hence, line 30 applies the operator Sy, 1G4 Did
to |c1¢2). From equation (7), this operator does not affect the code |01) so the state is
now

i
1 Di+1
[Gian) =Y = lar, 01) + /== [gis1) (15)
=vm
10 0 0
0 1 0 0
0 0 B /B I
. git+1 Pit1—9git1
00—ty [fregmen

: 1 Di+1
= E : — |ak>01> + |QZ+1> (16)
k=1 m

) <t¢+1 Ji+1 ‘10> + [Pit+1 — Ji+1 |11>>
Pi+1 Pi+1
1 i it1 — Gi
= —= lag, 01) + iy g4tl|Qr+1a10>*‘\/giil“élil|Qr+1»11>
Pt vm m m

a7

The loop on line 31 applies a Hadamard gate to each qubit if s,,,, ; = *. Since
¢i+1,j = 0if 54, ; = * and the sign in |B; 11 ;) is positive and H [0) = % |0) +
\% |1), applying a Hadamard gate results in the correct phase in this case. Also since
Q1+1 j = lif s, ; = *and the sign in |f;11 ;) is negative and H [1) = f |0) —

ﬁ |1), applying a Hadamard gate also results in the correct phase in this case. If

Sa;41,j 7 %> then sq,., i = qi11,;. Therefore, after the loop on line 31 runs, the state
is

|€ita) Z f|ak7o1>+tz+1 ®|Bz+1,j 10) (18)

+ Pi+1 — Ji+1 |Qi+17 11>

m

L1 1 Dit1 — Git1
:E —|ak701>+—|sai+1,10>+\/7|qi+1,11> (19)
1 v m A/ T m

Note that these Hadamard gates only affect the terms with the code |10) because of the
controls on the Hadamard gates. Line 36 transforms the intermediate phase group into

13

the generalized phase group. This results in the state

1 1 Dit1 — Git1
(Bea1) = - = o0 01) 4 = o, 10) [P I o 11) - 20)

k=1

Observe that since U,,,, is a permutative matrix, it performs a one-to-one mapping
from the set of all basis states in the intermediate phase group to the set of all basis
states in the generalized phase group. Thus, the operator U, (LH maps a basis vector
to basis vector in the intermediate phase group if and only if the basis vector is in the
generalized phase group. Therefore, line 37 causes the swap operation on line 38 to be
applied to the terms in the generalized phase group that was just initialized and line 39
restores the state of the |x;) qubits. Note that since the generalized phase groups that
were previously initialized are disjoint from this intermediate phase group, this swap
gate will not be applied to these generalized phase groups. Thus, the state after lines
37to 39 is

‘1 1 Di+1 — Gi+1
wit1) =3 —= lak, 01) + —= |aiy1,01) + |/ = gig1, 1) (21)
£ \Jm Jm m

i+1
1 i+1 — Gi
=27 ks 01) [P g 1) (22)
k=1
= Yit1) (23)

Thus, the inductive case is proven. Therefore, by the principle of mathematical induc-
tion, the state after the ¢*" iteration is as shown in equation (11). Applying equation
(11) for the final b*" iteration results in

b —
¥b) ZZ 7= |k, 01) + \/Mmﬁ% 11) (24)

(25)

Note that this is because p, = g since the bt iteration is the last iteration. Line 41
applies an inverter to the |¢) qubit which results in the state 22:1 \/% |ak, 00) which

is equal to the desired state [¢) from equation (1) with the addition of two ancilla qubits
set to |0). Therefore, the ESQUID algorithm initializes the desired state. O

14

7 A More Complex Example

This section will show how to use the ESQUID algorithm to initialize the quantum
superposition

1 1 1 1 1
= — —|0000) + — |0010) + — |0011) — —— |0101) — — |0110
) = = = 0000) + —= 0010) + —— 00L1) ~ —— [0101) ~ — o110}
26)
+ i 0111) 4+ —— [1100) + —— 1001) + —— |1010) — —— [1011)
V10 V10 V10 V10 V10

This is much more complicated than for the example in section 5 as two generalized
phase groups and one phase group are required to initialize this quantum superposition.
The phase map for equation (26) is shown in figure 6. In figure 6, two generalized
phase groups and one phase group are used to represent the quantum superposition.
Note that a phase group is also a generalized phase group so ESQUID can be used to
initialize this quantum superposition. The phase map itself does not specify the order
in which the generalized phase groups are initialized although an order must be chosen
so that the previously discussed constraints are satisfied. Since the order depends on
the intermediate phase groups, the order will be chosen after the intermediate phase
groups have been selected. The generalized phase group

1 1 1 1
) = =3 0101) — £]0110) + [1001) + 7 [1010) @7)

can be initialized from the intermediate phase group
1 1 1 1
|B8) = — =1]0101) — = |0111) + = |1101) + = |1111) (28)
2 2 2 2
1
== 5 (100 = 1)) [1) (0} + [1)) [1) (29)
using the quantum array in figure 4. The generalized phase group
1 1 1 1
|v) = —=1]0000) + = |0111) + = |1100) — = |1011) (30)
2 2 2 2
can be initialized from the intermediate phase group
1 1 1 1
|0) = — =]0000) + = |0100) + = |1100) — = |1000) (€28)
2 2 2 2
1
=~ 5 (10) =[1)) (10) —[1)) [00) (32)
using the quantum array in figure 7. Now the intermediate phase group |3) overlaps
with the generalized phase group |y). As mentioned in section 3.3, each intermediate

phase group must be disjoint from all generalized phase groups that have already been
initialized. This implies that the generalized phase group |«) must be initialized before

15

T2

(D
0
A LD
0
8

|z1)

|z2) —D <
|3) S,

|z4) ——D—

Figure 7: The quantum array for transforming the intermediate phase group in equation
(32) into the generalized phase group in equation (30)

the generalized phase group |v) is initialized. The phase group

1 1
€) =% 10010) + 7 0011) 33)
1
) 1001) (|0) +[1)) 34

can be initialized at any point in the algorithm. If |«) is initialized first, |-y) is initialized
second and |¢) is initialized last, the ESQUID algorithm generates the quantum array
in figure 8. Note that the two CNOT gates above the second controlled swap gate in
figure 8 are unnecessary and can be removed from the quantum array. However, these
gates have not been removed in order to demonstrate the operation of the algorithm.
Calculating the quantum states that result from applying this quantum array to the
starting state |0™, 00) confirms that the ESQUID algorithm works correctly.

8 Complexity of the ESQUID Algorithm

This section will analyze the complexity of the ESQUID algorithm in terms of the
number of one and two qubit operations required. The number of iterations required

16

Jan
[#1) D LH | | H |-
Jan AN e D
|22) N, o— O+ | H |
|z3) LH |
|4) Jany A o D
4 NP NFANFEL SENVANY,
m &
c1) —D—e
S_1,4,10 S 146
lea) —P—— Ho—o—0—0—" w1 —o—o0—
Jany
NP
D oo DD Jan AN Jan S
NEAL S SENPANY, o—D o
Jany Jan Jany Jan
NP, N, NP NP,
Jan Jan Jany H
N N, NP,

@
A 4

!
>Q S1,2,2

i,

TR
N\

Figure 8: The quantum array for initializing the quantum superposition in equation
(26)

17

by the ESQUID algorithm will be denoted by b. It is assumed that applying the b re-
quired initialization operators requires a total of O(bn) one and two qubit operations.
It is also assumed that applying the 2b U operators from equation (5) and the b required
UT operators, requires a total of O(bn) one and two qubit operations. The operations
on line 3 require two inverters and hence two single qubit gates. Lines 5 to 11 do not
require any operations. Lines 13 to 26 require O(n) CNOT gates. Since this is re-
peated b times, this requires a total of O(bn) two qubit gates. Line 30 requires a total
of O(bn) one and two qubit gates by assumption. Lines 31 to 33 use n Hadamard gates
with two controls. These gates can be implemented using 5 two qubit gates [1] so since
this is repeated b times, this requires O(bn) two qubit gates. By assumption, lines 36
to 39 use O(bn) one and two qubit gates to implement the U and U operators. Im-
plementing the controlled swap operations requires O(bn) two qubit gates if n ancilla
qubits are used for this purpose since a controlled swap gate can be implemented using
two CNOT gates and a Toffoli gate which can be implemented using the method in
the Ventura-Martinez algorithm [7]. Since line 41 uses only one single qubit gate, the
entire algorithm requires O(bn) one and two qubit gates. If the Toffoli gates used to
implement the controlled swap gates in the ESQUID algorithm are implemented us-
ing a quadratic number of two qubit gates [1], then the algorithm requires a total of
O(bn?) one and two qubit gates. In this case, the b initialization operators used by
the algorithm must use O(bn?) one and two qubit gates and the 2b U operators from
equation (5) and the b required UT operators must also use O(bn?) one and two qubit
gates. This means that the initialization and U operators from equation (5) may use
more gates when ancilla qubits are not used to implement the Toffoli gates required for
constructing the controlled swap gates. This version of the ESQUID algorithm will be
referred to as the modified ESQUID algorithm for the remainder of this paper.

9 Comparison of Initialization Algorithms

The ESQUID algorithm is compared with the SQUID [5], Ventura-Martinez [7] and
Long-Sun [4] algorithms in table 1 where n is the number of qubits in the desired
quantum superposition, m is the number of minterms in the quantum superposition,
p is the number of phase groups required by the SQUID algorithm [5] and b is the
number of generalized phase groups required by the ESQUID algorithm. In table 1,
the modified ESQUID algorithm is as described in section 8; similarly, the modified
SQUID algorithm [5] uses a quadratic number of one and two qubit gates [1] to im-
plement the Toffoli gates required for constructing the controlled swap gates used in
the SQUID algorithm [5]. The modified Ventura-Martinez algorithm [7] also uses a
quadratic number of one and two qubit gates [1] to implement the Toffoli gates re-
quired for the algorithm. Because in the worst case, a phase group contains only a
single minterm, p < m. Since any generalized phase group is also a phase group, b can
always be selected so that b < p which implies that b < p < m. Thus, the quantum
arrays generated by the ESQUID algorithm will never use more gates than quantum
arrays generated by the SQUID algorithm [5] which will never use more gates than
quantum arrays generated by the Ventura-Martinez [7] and Long-Sun [4] algorithms.
Hence, quantum arrays generated by the ESQUID algorithm will never use more gates

18

Algorithm Worst Case | Best Case | Total Qubits

Long-Sun Algorithm 0(n?2") | ©(n?27) n
Ventura-Martinez Algorithm O(mn) ©(mn) 2n+1
Modified Ventura-Martinez Algorithm | ©(mn?) O(mn?) n+ 2
SQUID Algorithm O(pn) O(n) 2n +2
Modified SQUID Algorithm O(pn?) O(n) n+ 2
ESQUID Algorithm O(bn) O(n) 2n +2
Modified ESQUID Algorithm O(bn?) O(n) n+2

Table 1: Comparison of the complexity of different quantum initialization algorithms
where m, p and b are the numbers of iterations required by the Ventura-Martinez,
SQUID and ESQUID algorithms respectively and n is the number of qubits in the
desired quantum superposition

than any existing algorithm. For most quantum superpositions, the ESQUID algorithm
will use far less gates than existing algorithms due to the increased flexibility of gener-
alized phase groups over phase groups. The best case performance for quantum arrays
generated by the ESQUID algorithm is the same as for quantum arrays generated by
the SQUID algorithm [5] and is an exponential improvement over all other initializa-
tion algorithms. The best case for quantum arrays generated by the ESQUID algorithm
will also occur more often than the best case performance for quantum arrays gener-
ated by the SQUID algorithm [5] since there are far more quantum superpositions that
can be represented by a single generalized phase group than by a single phase group.
This makes the ESQUID algorithm much more efficient than all other algorithms for
initializing quantum superpositions including the SQUID algorithm [5].

10 Conclusion

The ESQUID algorithm generates quantum arrays that are much more efficient than
the quantum arrays generated by other quantum initialization algorithms for almost all
quantum superpositions. Furthermore, quantum arrays generated by the ESQUID al-
gorithm never require more gates than quantum arrays generated by other algorithms
assuming that the generalized phase groups are selected as described in section 1. As
with the SQUID algorithm [5], the ESQUID algorithm provides an exponential im-
provement in the number of gates required in the generated quantum arrays in the best
case. Because the generalized phase groups introduced in this paper are more general
than phase groups, the best case for the ESQUID algorithm occurs for more quantum
superpositions than the best case for the SQUID algorithm. Due to these properties, the
ESQUID algorithm is much better for initializing quantum superpositions efficiently
than other initialization algorithms.

19

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor,
T. Sleator, J. A. Smolin, and H. Weinfurter. Elementary gates for quantum compu-
tation. Physical Review A, 52:3457-3467, 1995.

A. A. Ezhov, A. V. Nifanova, and D. Ventura. Quantum associative memory with
distributed queries. Information Sciences, 128:271-293, 1999.

L. K. Grover. A fast quantum mechanical algorithm for database search. In Pro-
ceedings of the Annual ACM Symposium on Theory of Computing, pages 212-219,
1996.

G.-L. Long and Y. Sun. Efficient scheme for initializing a quantum register with
an arbitrary superposed state. Physical Review A, 64:014303, 2001.

D. Rosenbaum and M. Perkowski. Superposed quantum state initialization using
disjoint prime implicants. In Proceedings of the 38th International Symposium on
Multiple Valued Logic, pages 144—-149, 2008.

L. J. Schulman and U. V. Vazirani. Molecular scale heat engines and scalable
quantum computation. In Conference Proceedings of the Annual ACM Symposium
on Theory of Computing, pages 322-329, 1999.

D. Ventura and T. Martinez. Initializing the amplitude distribution of a quantum
state. Foundations of Physics Letters, 12:547-559, 1999.

D. Ventura and T. Martinez. Quantum associative memory. Information Sciences,
124:273-296, 1999.

20

