
Mapping Binary Functions to a Practical

Adiabatic Quantum Computer

David Rosenbaum1, Marek Perkowski2
1Portland State University, Department of Computer Science

2Portland State University, Department of Electrical Engineering
Email: drosenba@cs.pdx.edu, mperkows@ee.pdx.edu

Abstract

Efficiently mapping binary functions to adiabatic quantum computers
is an important problem because the resulting circuits can be used as
oracles in Grover’s algorithm. This paper presents a method for mapping
binary functions to a two-dimensional grid of qubits with nearest neighbor
interactions which is used in a prototype from D-Wave Systems. This is
done by writing the binary function in a special form. This allows the
binary function to be implemented by converting each gate into a 3-local
Hamiltonian. These 3-local Hamiltonians are then converted into two-
local Hamiltonians which are mapped to the grid of qubits.

1 Introduction

Adiabatic quantum computation is a promising computational paradigm which
D-Wave Systems claims to have implemented on a prototype quantum computer
[4]. An advantage of adiabatic quantum computation over the circuit model of
quantum computation is that it is possible to build non-reversible boolean logic
operations into the Hamiltonian whereas in the circuit model of quantum com-
putation additional ancilla qubits must be added to implement non-reversible
operations using reversible gates. This allows adiabatic quantum computation
to utilize existing methods from classical logic synthesis but requires circuits to
be mapped to the rectangular array of qubits utilized in the adiabatic quantum
device. Adiabatic quantum computation has been shown to be polynomial time
equivalent to the circuit model of quantum computation [1]. This means that it
may be possible for adiabatic quantum algorithms to achieve polynomial time
speedups over their equivalents in the circuit model of quantum computation.
An adiabatic quantum version of Grover’s algorithm [6] has been devised which
provides the quadratic speedup over classical computation achieved in the cir-
cuit model of quantum computation [3]. Because both the circuit and adiabatic
versions of Grover’s quantum algorithm [3] rely on an oracle to identify the
desired basis states, constructing this oracle efficiently becomes an important

problem. In the circuit model of quantum computation, the oracle takes the
form of a unitary matrix that flips the sign of the phase of each basis state that
corresponds to a solution. This oracle can be constructed as a permutative cir-
cuit that inverts an ancilla qubit for every solution state. Initializing the ancilla
qubit to the state 1√

2
|0〉 − 1√

2
|1〉 then results in a unitary operator that will

flip the sign of the desired basis states due to phase kick-back. The adiabatic
quantum version of Grover’s algorithm takes the form of a Hamiltonian in which
the solution states correspond to low energy levels. This oracle Hamiltonian can
then be used to construct a Hamiltonian that will evolve to one of the solution
states. Because the oracle is necessary for Grover’s algorithm, implementing the
Hamiltonian for the oracle is an important problem. Biamonte [2] developed a
method for mapping a binary circuit represented as a planar tree of two-input
single-output gates into 3-local Hamiltonians. This method is illustrated by
mapping the tree of gates shown in figure 1(a) onto the two-dimensional grid
of qubits shown in figure 1(b). The operation I used in nodes with exactly
one input indicates that the value of the node is copied from the input. In
this paper, the grid utilized in D-Wave’s prototype is used where each node has
eight neighbors. These 3-local Hamiltonians are then decomposed into 2-local
Hamiltonians which allows the desired circuit to be implemented on an adiabatic
quantum computer. The main problem with this method [2] is that it is not
algorithmic and no proof is provided that it is always even possible to map the
tree of gates to the two-dimensional grid of qubits. Furthermore, no evidence is
provided that this can be done efficiently. Backtracking is also required when
this method is used because it is possible to reach a partial solution from which
the final solution cannot be reached. This will cause any algorithm that uses
this method to run slowly for large problems without the use of sophisticated
heuristics. In this paper, a mapping method is shown which is capable of map-
ping a binary function to the two-dimensional grid of qubits while avoiding the
difficulties with layout that result from using the method proposed by Biamonte
[2]. Furthermore, the method shown in this paper is completely algorithmic and
also does not require backtracking. Mapping is performed by first writing the
desired binary function in a special form which can be implemented efficiently
by decomposing it to the Hamiltonians given by Biamonte [2].

2 Introduction to Adiabatic Quantum Compu-
tation

This section will cover the basic principles of adiabatic quantum computation
and will present some of the Hamiltonians developed by Biamonte [2]. Rather
than applying operations to an input state as in the circuit model of quantum
computation, the adiabatic model of quantum computation is based on the
evolution of Hamiltonians. A Hamiltonian is a hermitian matrix that represents
the energy of a quantum system. The eigenvalues of a Hamiltonian correspond to
the energies of the eigenvectors. The state |ψ(t)〉 of a quantum system with the

2

Hamiltonian H(t) at time t and initial state |ψ(0)〉 is governed by Schrödinger’s
equation [5]

i~
d |ψ(t)〉
dt

= H(t) |ψ(t)〉 (1)

The Hamiltonians given by Biamonte [2] will now be presented. Let σ be the
2 × 2 hermitian matrix such that σ |0〉 = |0〉 and σ |1〉 = − |1〉. Let σi =
I2i−1⊗σ⊗I2n−i where n is the number of qubits. Qubits can be initialized using
the Hamiltonian I2n−σi

2 to set the ith qubit to |0〉 and the Hamiltonian I2n+σi

2 to
set the ith qubit to |1〉. This is because during adiabatic quantum computation
the state of the system evolves to a minimal energy state. Since the eigenvectors
of the Hamiltonian I2n−σi

2 are |x1 . . . xi−10xi+1 . . . xn〉 with eigenvalue 0 and
|x1 . . . xi−11xi+1 . . . xn〉 with eigenvalue 1, using this Hamiltonian will cause the
state of the ith qubit to evolve to |0〉. Similar reasoning can be employed to
explain why the Hamiltonian I2n+σi

2 initializes the ith qubit to |1〉. Another

useful Hamiltonian is
I2n−σiσj

2 which causes the ith and jth qubits to evolve
to the same value. This works because σi |x1 . . . xn〉 = (−1)xi |x1 . . . xn〉 so
I2n−σiσj

2 |x1 . . . xn〉 = 1+(−1)xi+xj+1

2 |x1 . . . xn〉. Since 1+(−1)xi+xj+1

2 |x1 . . . xn〉 =

0 · |x1 . . . xn〉 if xi = xj and 1+(−1)xi+xj+1

2 |x1 . . . xn〉 = |x1 . . . xn〉 if xi 6= xj , the
energy of any basis state |x1 . . . xn〉 is 0 if xi = xj and is 1 if xi 6= xj . Biamonte
also showed how to realize any two-input single-output gate using two-local
Hamiltonians [2] except exclusive OR (EXOR) and its negation (EQUIV) which
can be implemented with 2-local Hamiltonians by adding additional qubits.

x1 x2

x3 x4

x5 x6

(a) An example tree of gates

x1

x2

x3

x4

x5

x6

∧

∧

∧

I

∨ ∨

6

5

4

3

2

1

1 2 3 4

(b) A possible grid of qubits

Figure 1: An example of Biamonte’s method for mapping trees of gates to
two-dimensional grids of qubits

3

3 A Generalized Sum of Products

A sum of products (SOP) is a simple formula that can be used to express any
binary function. This is done by writing a binary function s of the variables
x1, . . . , xn as

s(x1, . . . , xn) =

m∨
i=1

pi (2)

where

pi =

n∧
j=1

vi,j (3)

Each vi,j must be in the set {1, xj , xj} and m is the number of products in the
SOP. Using the method shown by Biamonte [2], it is possible to implement all
16 binary gates with two inputs and a single output using 3-local Hamiltonians.
All of these 3-local Hamiltonians can be written as sums of 2-local Hamiltonians
except for the 3-local Hamiltonians used for EXOR and EQUIV. This allows all
of these gates to be implemented directly except for EXOR and EQUIV which
must be decomposed to gates in the NPN classification of AND. Thus, all gates
except EXOR and EQUIV are of the same cost. This means that a more general
summation formula should be used because this will allow some functions to be
implemented using far fewer products which will result in smaller number of
qubits used. Since most of the operations in a SOP occur inside products, these
operations should have small costs. However, the number of operations used to
sum the products is comparatively small so even if these operations are fairly
expensive, it will not significantly increase the overall cost of the circuit. The
concept of a SOP was therefore generalized to represent a binary function s of
the variables x1, . . . , xn as s = sm where

s1 = p1 (4)

si = gi−1(pi, si−1) for 1 < i ≤ m (5)

pi = pi,n (6)

pi,1 = x1 (7)

pi,j = fi,j−1(xj , pi,j−1) for 1 < j ≤ n (8)

For these equations, the conditions m ≥ 1 and n ≥ 2 must hold. The conditions
fi,j ∈ F and gi ∈ G must be satisfied where G = {g : {0, 1}2 → {0, 1}}, F =
G\{⊕,�} and the symbols ⊕ and � represent EXOR and EQUIV respectively.
The idea is to create a generalized sum of generalized products where each
generalized product is created using any two-input single-output gates except
for EXOR and EQUIV and the generalized sum can be created using any two-
input single-output gates. Since the set of all two-input binary gates except
for EXOR and EQUIV is the NPN class of AND (the set of all gates that
can be obtained by negating and permuting inputs and negating the output of
an AND gate), the formula defined by equations (4) and (5) will be called an

4

NPNSOP. Note that functions in product of sums (POS) are included in the
NPNSOP form. Since the summing operations do not all have to be the same
function, the order in which the summing operations are applied affects the
function that the NPNSOP represents. This is different from a SOP in which
all of the summing operations are the OR operation. Note that the NPNSOP
defines the order in which the summing operations are applied explicitly. This
will simplify mapping to the grid of qubits later on and is the main reason why
prefix notation is used. The generalized products (these will be called NPN
products from now on) are represented by equations (7) and (8). Note that the
order in which the product operations are applied is also defined explicitly which
is important since the operations in a NPN product can be different functions.
An example of a function represented by s = sm as defined by equations (4)
through (8) will be shown later in this paper.

4 A Simple Example

This section will illustrate the mapping algorithm for the function

s = ∨ (∧(x4, I1 (x3, z(x2, x1))), (9)

⊕ (∨(x4, I2 (x3,∧(x2, x1))),

I2 (x4,∧(x3, I1 (x2, x1)))))

written in pure NPNSOP form as defined by equations equations (4) through
(8) where I1 (x, y) = x, I2 (x, y) = y and z(x, y) = 0. Using infix notation, this
function can be written as

s = x4 ∧ x3 ∨ ((x4 ∨ x2 ∧ x1)⊕ x3 ∧ x2) (10)

In boolean algebra the function would be written as

s = x4x3 + ((x4 + x2x1)⊕ x3x2) (11)

The function s can be visualized using a Karnaugh map as shown in figure 2.
This function can be implemented using the grid of qubits shown in figure 3.
The symbols that each node is labeled with indicate the binary operation that
corresponds to the given node and the arrows indicate that the values of nodes
that the arrows come from are arguments to the binary operation pointed to
by the arrows. Solid arrows indicate that the value is not negated while dashed
arrows indicate negation. For example, the function realized by the node at
coordinates (8, 3) (the node in column 8 and row 3) is ∧(x4, x3).

5 The Mapping Algorithm

An algorithm for mapping functions represented using the NPNSOP form de-
fined by equations (4) through (8) will now be shown. The idea is to realize each

5

s

1
0

1
1

1
2

1
3

0
4

1
5

1
6

0
7

1
8

1
9

1
10

1
11

0
12

1
13

0
14

0
15x1

x3

x2

x4

Figure 2: The Karnaugh map for the function s as defined in equation (9)

x1

x2

x3

x4

I1

∧

I2

I

I

2

1

2
1

x1

x2

x3

x4

I

I

∧

I2

∨

∧

∧ ∨

2
1

x1

x2

x3

x4

I

I

0

I1

∧

∨
s

2
1

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9

Figure 3: The grid of qubits for the function s from equation 9

6

of the NPN products pi and “add” them into the NPNSOP. This is accomplished
using the pseudocode shown in algorithm 1. The qubits used in the algorithm
are mapped to a two dimensional grid as shown in figure 3 where the qubit with
coordinates (x, y) is denoted by ax,y. The notation x1, . . . , xn → ak,n+2, . . . , ak,3
used on line 5 indicates that each of the qubits ak,n+2, . . . , ak,3 is initialized to
one of the values x1, . . . , xn respectively. Several other conventions are used to
describe the operation of the algorithm. The notation ax1,y1 →I ax2,y2 indi-
cates that a Hamiltonian should be created that has the lowest energy when
the qubits ax1,y1 and ax2,y2 have the same value. This Hamiltonian can be cre-
ated as described by Biamonte [2]. Let h be a binary function of two variables.
Then the notation ax1,y1 , ax2,y2 →h ax3,y3 indicates that a Hamiltonian should
be created where the lowest energy state occurs when ax3,y3 = h(ax1,y1 , ax2,y2).
Sometimes, the function h is written as a binary formula using the variables x
and y. In this case, x corresponds to the first argument of h and y corresponds
to the second argument of h. These Hamiltonians can be implemented using the
method described by Biamonte [2]. Note that algorithm 1 uses more columns
than necessary in some case such as column 3 in figure 3. This is done because it
makes the algorithm much simpler and only affects the number of qubits it uses
by a constant factor. Furthermore, in a practical application it would be sim-
ple to remove wasted columns by running an additional compaction algorithm
to optimize the output of algorithm 1. Algorithm 1 also uses more operations
than necessary to implement NPN products in some cases. This is also done for
simplicity and would be easily rectified in an implementation of the algorithm.
Algorithm 1 works by synthesizing each NPN product and then combining it
into the NPNSOP. This is done by the loop on lines 3 to 29 which iterates over
all m NPN products. During each iteration, the NPN product pi is mapped
on the grid of qubits. Line 4 sets k to the index of the column where the val-
ues of the input variables for the NPN product pi. Line 5 stores the values
of the inputs variables in the column with index k. The code on line 6 stores
the value fi,1(x2, x1) in the qubit ak+1,n+1. The rest of the NPN product pi is
then mapped to the grid of qubits by the loop on lines 7 to 9. At this point in
the algorithm, pi is stored in the qubit ak+1,3. The rest of the code deals with
“adding” pi into the NPNSOP. Line 10 tests if i = 1. If this is the case than
pi is the first NPN product in the NPNSOP so it does not need to be “added”
into the NPNSOP of previous NPN products so the value of pi is simply copied
into the qubit ak+2,1. This is done because during all iterations after the first
iteration the value si−1 as defined in equations (4) and (5) is assumed to be
stored in the qubit ak−1,1. Lines 13 to 28 deal with the case where i 6= 1. In
this case, si−1 is stored in the qubit ak−1,1. Line 14 copies pi into the qubit
ak,2. Line 15 copies si−1 into the qubit ak,1. Because the operations EXOR
and EQUIV cannot be implemented using a single operation [2], it is necessary
to implement them using the identities x ⊕ y = xy + xy and x � y = xy + xy.
The case where gi−1 = ⊕ or gi−1 = � therefore must be handled separately.
Line 16 accomplishes this by checking if gi−1 is neither EXOR nor EQUIV. If
this is the case then gi−1 is mapped to the grid of qubits directly on line 17.
Line 18 copies the result from the qubit ak+1,1 to the qubit ak+2,1 so that the

7

partial NPNSOP will be in the location expected by the next iteration of the
outer loop. Line 19 handles the other case where gi−1 = ⊕ or gi−1 = �. In
this case, line 20 stores pisi−1 in the qubit ak+1,2 and line 21 stores pisi−1 in
the qubit ak+1,1. Line 23 checks if gi−1 = ⊕. If this is the case then the EXOR
operation is performed by storing the OR of the qubits ak+1,1 and ak+1,2 in the
qubit ak+2,1 on line 23. Otherwise, gi−1 = �. This case is handled by line 25
which stores the NOR of the qubits ak+1,1 and ak+1,2 in the qubit ak+2,1.

Algorithm 1 Pseudocode for the mapping algorithm

1: Let s be a binary function in NPNSOP form as defined in equations (4)
through (8)

2: Let m, n, fi,j , gi be as defined in equations (4) through (8) with respect to
s

3: for all i := 1, . . . ,m do
4: k := 3(i− 1) + 1
5: x1, . . . , xn → ak,n+2, . . . , ak,3
6: ak,n+1, ak,n+2 →fi,1 ak+1,n+1

7: for all j := 2, . . . , n− 1 do
8: ak,n−j+2, ak+1,n−j+3 →fi,j ak+1,n−j+2

9: end for
10: if i = 1 then
11: a2,3 →I a3,2
12: a3,2 →I a3,1
13: else
14: ak+1,3 →I ak,2
15: ak−1,1 →I ak,1
16: if gi−1 6= ⊕ and gi−1 6= � then
17: ak,2, ak,1 →gi−1 ak+1,1

18: ak+1,1 →I ak+2,1

19: else
20: ak,2, ak,1 →x∧y ak+1,2

21: ak,2, ak,1 →x∧y ak+1,1

22: if gi−1 = ⊕ then
23: ak+1,2, ak+1,1 →∨ ak+2,1

24: else
25: ak+1,2, ak+1,1 →∨ ak+2,1

26: end if
27: end if
28: end if
29: end for

8

6 Correctness Proof for the Mapping Algorithm

This section will prove that algorithm 1 properly maps binary functions in
NPNSOP form as defined by equations (4) through (8) to the grid of qubits. It
will be assumed that the Hamiltonians given by Biamonte [2] work correctly.

Theorem 6.1. Given a binary function s of the form defined by equations (4)
through (8), algorithm 1 maps the output of the function s to the qubit a3m,1.

Proof. After line 1, s is a binary function in NPNSOP form as defined by equa-
tions (4) through (8). Line 2 sets the variables m, n, fi,j and gi according to the
values they are assigned when s is defined according to equations (4) through
(8). Let si be as defined by equations (4) and (5). To simplify to proof, the
concept of an unused qubit will be introduced. A qubit is said to be unused if
the corresponding node on the grid of qubits has no inputs, has no outputs and
has not been initialized to any particular value. Before using induction on the
loop on line 3, it is necessary to prove that if the qubits in columns k and k+ 1
are unused after line 4 is executed, then after executing lines 5 through 9 the
qubit ak+1,3 stores pi and the qubits ak,j′ and ak+1,j′ are unused where j′ ≤ 2.
Line 5 initializes the qubits ak,n+2, . . . , ak,3 to the variables x1, . . . , xn and line
6 sets the qubit ak+1,n+1 equal to fi,1(x2, x1). Suppose that n = 2. Then the
loop on line 7 will not run since the condition 2 ≤ n− 1 is false. Furthermore,
pi,n = fi,1(x2, x1) and pi = pi,n in this case so the qubit ak+1,3 stores pi. Sup-
pose that n > 2. In this case it is necessary to prove by induction that after
each iteration of the loop on line 7, the qubit a2,n−j+2 stores pi,j and each qubit
ak+1,j′ where j′ < n − j + 2 is unused. Consider the basis case where j = 2.
Line 8 will perform the operation ak,n, ak+1,n+1 →fi,2 ak+1,n. Since the qubit
ak,n stores x3 and the qubit ak+1,n+1 stores pi,1 = fi,1(x2, x1), this will result in
the qubit ak+1,n storing pi,2 = fi,2(x3, pi,1). Furthermore, in column k + 1 the
only qubits used are ak+1,n+1 and ak+1,n so the basis case holds. Now suppose

that after the iteration where j = ĵ in the loop on line 7 the qubit ak+1,n−ĵ+2

stores pi,ĵ and that each qubit ak+1,j′ where j′ < n − ĵ + 2 is unused. Then

at the start of the iteration where j = ĵ + 1, the qubit ak+1,n−ĵ+2 still stores

pi,ĵ . Line 8 will perform the operation ak,n−ĵ+1, ak+1,n−ĵ+2 →
fi,ĵ+1 ak+1,n−ĵ+1.

Since the qubit ak+1,n−ĵ+1 stores xĵ+2, the result of this operation is storing
pi,ĵ+1 = fi,ĵ+1(xĵ+2, pi,ĵ) in the qubit ak+1,n−ĵ+1. Since each qubit ak+1,j′

where j′ < n − ĵ + 2 was unused before this operation was performed, each
qubit ak+1,j′ where j′ < n− ĵ + 1 is unused afterward. This proves the induc-
tive case so by the principle of mathematical induction, after the final iteration
of the loop on line 7 the qubit ak+1,3 stores pi = pi,n and the qubits ak+1,2

and ak+1,1 are unused. It will now be proved by induction on i that after each
iteration of the loop on line 3 the following hold:

• The qubit ak+2,1 stores si

• Each qubit ai′,j′ is unused for i′ > k + 2

9

For the basis case, i = 1 so after line 4 is executed k = 1. Since all of the
qubits are unused at this point, in particular the qubits in columns k and k+ 1
are unused. Therefore, by the reasoning shown above, after executing lines 5
through 9 the qubit a2,3 stores pi and the qubits a1,j′ and a2,j′ are unused
where j′ ≤ 2. In particular, the qubits a2,2 and a2,1 are unused. Since i = 1,
the if statement on line 10 causes lines 11 and 12 to be executed. Running line
11 causes s1 to be copied from the qubit a2,3 into the qubit a3,2 will store s1.
After executing line 12, s1 is copied into the qubit a3,1. Since only qubits in the
columns 1, 2 and 3 were used, this proves the basis case. The inductive case will
now be considered. Assume that after the iteration of the loop on line 3 where
i = î that the qubit ak̂+2,1 stores sî each qubit ai′,j′ is unused for i′ > k̂ + 2

where k̂ = 3(̂i − 1) + 1 is the value of k in the îth iteration. Now consider the
iteration of the loop where i = î + 1. After executing line 4, k = 3(i − 1) + 1.
As shown before, executing lines 5 through 9 causes the qubit ak+1,3 to store

pî+1 and the qubits ak,j′ and ak+1,j′ to be unused where j′ ≤ 2. Since i = î+ 1

and î ≥ 1, i > 1. Therefore, executing the if statement on line 10 will cause
lines 13 through 28 to be executed. Line 14 copies pî+1 into the qubit ak,2.

Observe that k̂ + 2 = k − 1. Therefore, line 15 copies sî into the qubit ak,1.
Suppose that gî 6= ⊕gî = �. Then the if statement on line 16 will cause lines
17 through 18 to be executed. Executing line 17 will store sî+1 = gî(pî+1, sî) in
the qubit ak+1,1 and line 18 will copy aî+1 into the qubit ak+2,1. Now assume
that the condition gî 6= ⊕gî = � is false. In this case lines 19 through 27 will
be executed. Line 20 stores p+̂1sî in the qubit ak+1,2. Line 21 stores p+̂1sî in
the qubit ak+1,1. Because gî 6= ⊕gî = � is false, gî = ⊕ or gî = �. Suppose
that gî = ⊕. Then the if statement on line 22 will cause line 23 to run which
will result in p+̂1 ⊕ sî = p+̂1sî + p+̂1sî being stored the qubit ak+2,1. Since
gî = ⊕ and s+̂1 = p+̂1 ⊕ sîp+̂1, sî+1 is stored in the qubit ak+2,1. Now assume
that gî = �. In this case, the if statement on line 22 will cause line 25 to run.
This will result in storing p+̂1�sî = p+̂1sî + p+̂1sî in the qubit ak+2,1. Because
sî+1 = p+̂1 � sî in this case, sî+1 is stored in the qubit ak+2,1. Thus, after the

iteration of the loop on line 3 where i = î+ 1, sî+1 is stored in the qubit ak+2,1.
Because only qubits in the columns k, k+ 1 and k+ 2 were used in the iteration
where i = î + 1, each qubit ai′,j′ is unused for i′ > k + 2 after this iteration is
finished. Thus, the inductive case holds as well. Therefore, by the principle of
mathematical induction, the following conditions hold after every iteration of
the loop on line 3:

• The qubit ak+2,1 stores si

• Each qubit ai′,j′ is unused for i′ > k + 2

Consequently, since i = m and k = (3m− 1) + 1 in the last iteration of the loop
on line 3, the qubit a3m,1 stores s = sn after the loop finishes executing.

10

7 Complexity of the Algorithm

In this section, the complexity of algorithm 1 will be analyzed. This will be
calculated in terms of the number of qubits required and the running time
required by algorithm 1. Lines 1 and 2 do not use any qubits. Consequently,
the total maximum number of required qubits can be calculated by determining
the number of qubits used in each iteration of the loop. Each iteration of the loop
on line 3 uses at least n qubits because of line 5. Also, since during each iteration
only qubits ai′,j′ with indexes satisfying k ≤ i′ ≤ k + 2 and 1 ≤ j′ ≤ n+ 2 can
be used, each iteration requires at most 3(n + 2) qubits. Because the loop on
line 3 is executed m times, between mn and 3m(n+ 2) qubits are used by each
iteration. Therefore, the number of qubits required is bounded above and below
by positive multiples of mn so the number of qubits required is Θ(mn). The
running time complexity of algorithm 1 will now be determined. Observe that
all of the steps in the loop on lines 3 to 29 run in constant time except for the
loop on lines 7 to 9 which requires n − 2 operations. This implies that each
iteration of the loop requires Θ(n) operations so the entire loop uses Θ(mn)
operations.

8 Advantages of the Algorithm

Algorithm 1 has some important advantages over the mapping method proposed
by Biamonte [2]. Algorithm 1 is totally algorithmic and does not require trees of
gates to be mapped onto the two dimensional grid of qubits which is required if
the Biamonte’s mapping method [2] is used. This resolves a significant problem
with the Biamonte method [2] because it eliminates the necessity of using long
chains of qubits to repeat values of qubits. Algorithm 1 does not have this
problem because it only performs operations on adjacent qubits. Algorithm 1
is also reasonably efficient as it requires Θ(mn) qubits.

9 Conclusion

This paper presented a mapping algorithm for adiabatic quantum computation
which is more practical than previous methods because it does not waste large
amounts of qubits repeating intermediate values. The algorithm is capable of
synthesizing a very general class of boolean formulas and is also fairly efficient
since it uses only Θ(mn) qubits. This makes this algorithm a good method for
synthesizing oracles for the adiabatic quantum version of Grover’s algorithm [6].

References

[1] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev.
Adiabatic quantum computation is equivalent to standard quantum compu-
tation. arXiv:quant-ph/0405098v2, 2005.

11

[2] J. D. Biamonte. Non-perturbative k-body to two-body commuting conver-
sion hamiltonians and embedding problem instances into ising spins. Phys-
ical Review A, 77:23–31, 2008.

[3] L. K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the Annual ACM Symposium on Theory of Computing, pages
212–219, 1996.

[4] R. Harris, F. Brito, A. J. Berkely, J. Johansson, M. W. Johnson, T. Lant-
ing, P. Bunyk, E. Ladizinsky, B. Bumble, A. Fung, A. Kaul, A. Klein-
sasser, and S. Han. Synchronization of multiple coupled rf-squid flux qubits.
arXiv:0903.1884v1, 2009.

[5] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[6] W. van Dam, M. Mosca, and U. Vazirani. How powerful is adiabatic quan-
tum computation? arXiv:quant-ph/0206003v1, 2002.

12

