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Abstract
The problem of initializing a quantum
superposition is important for Grover's
Algorithm [1], Quantum Neural Networks
[2] and other applications. The purpose of
the algorithm presented here is to
generate a quantum array that initializes a
desired quantum superposition on n
qubits. The SQUID algorithm almost
always creates quantum arrays that
perform better than those created by
existing algorithms such as the Ventura-
Martinez [3] and Long-Sun [4] algorithms.
The best case performance for the
quantum arrays created by the SQUID
algorithm is O(n) when the superposition
contains all possible states which is an
exponential improvement over all existing
algorithms. Also, the worst case
performance of the quantum array created
by the SQUID algorithm is never worse

than the performance of  existing
algorithms. The SQUID algorithm
represents a vast improvement over
previous quantum superposition
initialization algorithms and allows

quantum superpositions to be initialized
much more efficiently than with other
algorithms.

1. Introduction

The problem of initializing a quantum
superposition is important for quantum
algorithms such as Grover's algorithm [1]
and Quantum Neural Networks [2].
Ventura and Martinez [3] created an
algorithm that generates a quantum array
capable of initializing a quantum

2"-1
superposition of the form [¥)=)" L,’n|/ in
i=0
the complexity class O(mn) with n+1
ancilla bits. Long and Sun [4] created
another algorithm that introduced a new
method for solving a similar problem
without using any ancilla bits but with an
exponential complexity class for the
generated quantum array. An advantage of
the Long-Sun algorithm is that it uses a
training operator that is based on
sinusoidal functions in contrast to the
Ventura-Martinez algorithm which uses a
special training operator. The goal of the
SQUID algorithm is to improve the
efficiency of the generated quantum array
while adding very few ancilla bits.

2. Initializing the Starting State

The algorithm presented in this paper
requires an initial state of |0",00} . This
requires another algorithm to be run first
to initialize the state to [0",00/ . One
method for initializing to this state is the
Schulman-Vazirani heat engine [5]. The
rest of this paper will assume that this
starting state has been initialized and will
focus on initializing the desired
superposition from this state.

3. The Desired Quantum
Superposition

The desired quantum superposition must
2"-1
t

be of the form [¥)=> —=|i) (1) where

i=0 vmM
t,€{~1,0,1) and m is the number of




terms with nonzero amplitudes in the
desired quantum superposition.

3.1. The Phase Map

The algorithm uses a special Karnaugh
Map which we propose to call a phase map
to represent a desired guantum
superposition of the form shown in (1).
The indexes on the side of the map indicate
the state in the desired superposition that
the cell corresponds to. Each cell on the
phase map contains the phase for its
corresponding term so the number in a cell
is tel-1,0,1} For example, the state

1 \ 1 \
E\Ol;—ﬁllog (2) can be represented

using a phase map as shown in Figure 1:
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Figure 1: The phase map for (2)

The phase map also uses a new type of
product group which we propose to call a
phase group to represent sets of minterms
that will be initialized together in the
algorithm. Some restrictions apply to the
minterms that can form a phase group. It
must be possible to write the phase group
as a string s which contains the symbols 0
and 1 for the qubits that do not vary within
the group and the symbol * for the qubits
that do vary within the group. Note that
this string does not contain any
information about the phases of the
minterms so it does not completely
describe the group; however it is used later
for defining the algorithm. These phase
groups must be disjoint which means that
different phase groups may not overlap.
Also, it must be possible to write the
superposition corresponding to a phase
n

group as |s/=x[]|r;] (3) where |r;=|s;
=
if s;#% and \r,}:%(\oﬁi\lﬁ) (4) if

s;=* . Thesignin |r; depends on the

desired phases for terms in the desired
gquantum superposition. This implies that
each phase group has an equal number of
the values -1 and 1 inits cells. Thus, phase
groups have the same shapes as groups in
a standard Karnaugh Map. Also, minterms
with amplitudes of 0 may not be present in
any phase group since phase groups must
be disjoint.

4. The SQUID Algorithm

The quantum array generated by the
SQUID algorithm wuses two groups of
qubits. The first group qubits are denoted
by X;,i=1l..n and are the qubits over
which the desired superposition is
initialized. The second group of qubits are
ancilla bits used for storing codes and are
denoted by €, and C,

4.1. Codesin the Ancilla Bits

The qubits ¢; and C, (also called the
code qubits) are used for keeping track of
® which terms in the superposition
have been initialized,
® which are currently being initialized

and
® which terms will be used later to
create more terms in the

superposition (this is called the
generator state [3]).
The following codes are used:

e |00 on the C; and C, qubits is
not used.

e |01 onthe ¢, and C, qubits is
used to indicate that the
corresponding terms in the
quantum superposition have been
initialized to the proper values and
should not be modified again by the
algorithm.

e |10} indicates that the
corresponding terms in the
superposition are part of the group
that is currently being initialized.

e |11/ is used to indicate the
generator state. Note that applying
a swap gate to the code that
indicates the current group
transforms it into the code for an
initialized term in the quantum



superposition. Also, applying a
swap gate to the code for the
generator state will not change it.
The generated quantum array will
take advantage of both of these
facts.

4.2. The Initialization Operator

The operator used in this algorithm is
based on the operator from the Ventura-
Martinez algorithm [3]. However, it relies
on a different concept than the operator
used in the Ventura-Martinez algorithm as
it operates on phase map groups rather
than on the individual minterms that the
original operator in the Ventura-Martinez
algorithm operates on. This allows many
minterms to be initialized at the same time
by ~creating a new state in the
superposition and splitting it using
controlled Hadamard gates. The new
operator is defined by equation (5)

10 0 0

01 0 0
Si..,=0 0 w/pp%g t\/% (5)
00 —t\@ =g

p ' p

This operator works by splitting state
corresponding to the groups off from the
generator state during the algorithm where

t isthe phase that is multiplied by all the
minterms in the group, g is the number
of cellsin the group on the phase map and

p is number of minterms that still need
to be added to the superposition including
those in the current group. Note that since
this operator is always applied to the ¢,
and C, qubits, a superposition containing
a new generator state and a state that can
be split into the current group will be
created. Also, due to the nature of this
algorithm, this operator will never be
applied to a superposition containing codes
for the current group. Thus, only the
generator state will be modified and the
terms in the superposition that have
already been initialized will not be
changed.

4.3. A High-Level Overview of the

Algorithm

The following is intended only as a high
level overview of the algorithm and ignores
several important details. A complete and
detailed description of the algorithm is
given later.

1 Find a small set of groups G using
logic synthesis methods.
2 Initialize all X; and C; qubits to
o) .
3 Set the C; and C, qubits to the
code for the generator state.
4 For each group in G:

4.1 Split the term corresponding to
the group from the generator
state using the initialization
operator.

4.2 Split the group into its
corresponding minterms.

4.3 Change the codes for the terms
in the current group to the code
for an initialized term in the
superposition.

4.4. Example 1

This example involves initializing the

quantum state to
Liant Liaat, LA Lyqq,

¥ )==|00)—=|01)+=|10)—=|11, .
[¥/=51001-2{01/+ 210~ 511 (6). The

first step is to write the superposition as a
phase map as shown in figure 2 so that the
optimal set of groups can be found.

X3 0 1

X,

0 1 -1

1 -1
Figure 2: The phase map for (6)

Note that this superposition can also be
written in the factored form shown in (3) as
|‘I’:%(|O+|1)(|O—|l) (7) so it satisfies

the factoring requirements. The circuit
generated by the algorithm for this
superposition is shown in figure 3:
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Figure 3: The Circuit for (6)

The initial state is \60}=|00,00§ . Two
inverters are applied to the ¢; and C,
qubits of this state to set the code to the
generator state. Conceptually, no terms
have been initialized in the superposition
so this term must be the generator state.
This results in a new state of [5,/=|00,11)
Notice that in the factored superposition
for this group, the first qubit is

1 . \
ﬁ(|0$+|1;‘) and the second qubit is

%(|0—|1) . Observe that these states

can be created by applying Hadamard
gates to the states |0) and [1)
respectively. However, the second qubit in
the generator state is in state |O Thus,
an inverter is applied in order to set it to
|1) in the generator state. The inverter
is controlled by [1) on ¢, because at
this stage of the algorithm the code qubits
always contain a superposition of zero or
more codes for initialized terms and
exactly one term with the code qubits set
to the code for the generator state. Since
the ¢, is [1) in the code for the
generator state but not in the code for an
initialized term, controlling by |1 on
C, affects only the generator state. This
results in a new state of \62}=|01.11}
The initialization operator is now applied to
split the current group from the
superposition. For this initialization
operator, t=1 because there is no minus
sign outside the factored superposition that
corresponds to the current group. Also,
g=4 because the current group contains
4 minterms and p=4 because there are 4
minterms left to add to the superposition
including those in the current group. Now

1 0 0 O
s 0100
1440 0 0 1
00 -1 0
so S,,,11)=[10] . Thus the new state is
55=01,10/ . Note that since all of the

remaining amplitude will be wused to
initialize the minterms associated with the
current group, the code has simply been
changed to the code for the current group
by the initialization operator. The next two

gates split the current group into
individual minterms. This results in
e Loar 10 \
84)=|0/|-=|0/——-=|1)||10/
| 4 | / \/il | \/2| / | | and
Al A, T a1 4, |
85)=|0)| =0+ —=|1)|| —=|0)——=|1)]|10|

The next step involves applying a swap
gate to update the codes for the current
group. Since the current group contains
all possible terms, no controls are used on
the swap gate. The state becomes

=lo)[Ljol+-Lin|Lo-L1)|o1)

|66f—|0s‘ \/§|05+\/§|1s \/§|Os‘ \/§|1s 01
At the end of the algorithm an inverter is
applied to C, to restore the state of the
C, qubit to |0 The final state is

. d1 .. 1 M I~ 14 \
5,=|0)|=|0)+—=|1)||—=|0)——=11)]|00)
o100+ J5la [ o~ oo

=(L100-Lj01/+L|10-L]11)|]00)

_2|00; 2|015+2|105 2|11§ |00

which is the desired superposition with
the addition of two ancilla bits that can
be reused later. Note that in this case
where all possible minterms can be put
in one group, the SQUID algorithm uses

O(n) controlled single-qubit gates,
which is an exponential improvement
over the Ventura-Martinez and Long-
Sun algorithms.

4.5, Pseudo Code for The
Algorithm

The algorithm will now be described using
detailed pseudo code. In this algorithm,
|‘I’j}=|X,C1C2:‘> represents the state of the
circuit at the jt iteration and |x
represents the state of the n qubits that
will be initialized to the desired quantum



superposition and €, and C, are ancilla
bits. ‘I’o represents the initial state
before the 1st iteration. Although a
correctness proof exists for this algorithm,
itistoo long to show in this paper.

1 Find a small set of groups G where
each s=s,5,...5,€G is the binary
string described in section 3.1 that
represents each group.

2 Initialize the

¥ o)=|x, c;c,)=(0",00]

3 Apply inverters to ¢; and C,
state is now \‘I’O}:\x,clcz}:b”,ll}

4 For S=S,S,...5,€G

4.1 Let g denote the number of
minterms in the group s

4.2 Let p be the number of terms
in the superposition that have
not been initialized yet including
the terms about to be initialized
inthe current group.

4.3 Find the superposition that
corresponds to s as described
instep 1. Thisresultsin (3).

4.4 If the sign outside the product

state to

The

in (3) is +, let t=1
Otherwise, if the sign is -, let
t=—1 .
4.5 For j=1...n
4.5.11f s5;=*

4.5.1.1 If the signin (4) is +
4.5.1.1.1 If the jth qubit is
set to |1) in the
generator state, apply
an inverter to the jt
qubit controlling by

1) on ¢
4.5.1.2 If the sign in (4) is -
4.5.1.2.1 If the jth qubit is
set to [0) in the
generator state, apply
an inverter to the jt
qubit controlling by

1) on ¢,

4.5.2 Otherwise, if S;#* apply
an inverter if the state of the
jth qubit in the generator
state is not equal to S;
controlling by |1} on ¢,

4.6 Apply S, ,, to the ¢, and

C, qubits. This splits a new

state off the generator state that
can be used to create the terms
inthe current group.
4.7 For j=1l..n
4.7.11f s;=* apply a
Hadamard gate to the jt
qubit controlling by [10) on
[y
4.8 Apply a swap gate to the C;
and C, qubits controlling by
S; oneach X; where s;#*
This changes the codes of the
terms from the current group to
the code for initialized terms.
This freezes these terms so they
will not be modified by the rest
of the algorithm.
5 Apply an inverter to C,

5. Comparison with Other
Algorithms

The SQUID algorithm is compared with the
Ventura-Martinez and Long-Sun algorithms
in Table 1 where m isthe number of
terms with nonzero amplitudes in the
desired quantum superposition, n isthe
number of qubitsin the superposition and

p isthe number of phase groupsinthe
superposition. The complexity is measured
interms of two qubit gates.

Algorith Wor st B est Total
m: Case Case Number
Perform | Perform of
ance: ance: Qubits
Ventura- | O(mn) O(mn) 2n+1
Martinez
Algorith
m
Modified | O(mn®) | O(mn®) n+2
Ventura-
Martinez
Algorith
m
Long-Sun| 0O(n°2") | O(n*2") n
Algorith
m
SQUID O(pn) O(n) 2n+2
Algorith




m | |

Modified | O(pn?) O(n) n+2
SQUID
Algorith

m

Table 1: Comparison of Quantum Superposition
Initialization Algorithms

The modified versions of the Ventura-
Martinez and SQUID algorithms refer to
implementing the controlled gates using a
quadratic blowup rather than by adding
extra ancilla bits [6]. Because p isthe
number of phase groups, p<m so the
SQUID algorithm will never be worse than
the Ventura-Martinez algorithm and the
modified SQUID algorithm will never be
worse than the modified Ventura-Martinez
algorithm. In fact, the SQUID algorithm
and modified SQUID algorithm will be
faster than the Ventura-Martinez and
modified Ventura-M artinez algorithms
respectively whenever at least one phase
group that covers more than one cell is
found. Thisistrue for most superpositions
so the SQUID algorithm will be better for
most superpositions. The best case
performances of the SQUID and modified
SQUID algorithms are much better than
the best case performance of the Ventura-
Martinez and modified Ventura-Martinez
algorithms. The two versions of the SQUID
algorithm also only use one additional
ancilla bit to achieve thisreduction in the
number of gates required.

6. Conclusion

The SQUID algorithm discussed in this
paper allows quantum superpositions to be
initialized much more quickly than with
existing algorithms for the vast majority of

quantum superpositions. In fact, the
quantum array generated by SQUID
algorithm will be faster than the quantum
array generated by any existing algorithm
in all cases where at least group exists.
The quantum array generated by the
SQUID algorithm is also never slower than
any existing algorithm and is an
exponential improvement over all existing
algorithms in the best case. This paper
also introduces several new concepts such
as the phase map, the new type of groups
used in the phase map, the use of a new
initialization operator to split groups off
the generator state rather than single
minterms as in previous papers and the use
of controlled Hadamard gate for splitting
groups into individual minterms in a linear
amount of time.
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