
c©Copyright 2015

David J. Rosenbaum

Quantum Computation and Isomorphism Testing

David J. Rosenbaum

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2015

Reading Committee:

Paul W. Beame, Chair

Aram Wettroth Harrow, Chair

James Russell Lee

Program Authorized to Offer Degree:
Computer Science & Engineering

University of Washington

Abstract

Quantum Computation and Isomorphism Testing

David J. Rosenbaum

Co-Chairs of the Supervisory Committee:

Professor Paul W. Beame

Computer Science & Engineering

Affiliate Assistant Professor Aram Wettroth Harrow

Computer Science & Engineering

In this thesis, we study quantum computation and algorithms for isomorphism problems.

Some of the problems that we cover are fundamentally quantum and therefore require quan-

tum techniques. For other problems, classical approaches are more appropriate; however, we

often give quantum variants of our classical algorithms as well.

The field of quantum computation aims to accelerate algorithms by exploiting the laws

of quantum mechanics. Several quantum algorithms are known that are exponentially faster

than the best classical algorithms known for the same problems, including several which

are relevant to cryptography. Quantum computing is therefore of great importance. On

the theory side, it has already transformed our notions of which problems are tractable and

which are not. On the practical side, the construction of a quantum computer would render

many popular techniques for encryption obsolete.

We derive several results in quantum computation. Quantum algorithms are normally

formulated in an abstract way that ignores practical details such as where different parts of

the computation are located physically. Using naive methods for translating these algorithms

into practical quantum computing technologies increases the time complexity by a linear

factor, while previous work reduced this factor to a square root. We further reduce this

factor to a constant at the cost of requiring additional space. This retroactively justifies an

important assumption made in many quantum algorithms.

Another interesting problem is to determine the query complexity of extracting different

types of information from physical processes. In the case of deterministic processes, it is well

known that quantum algorithms cannot outperform deterministic algorithms by more than

an exponential factor. We show — somewhat surprisingly — that when the process is allowed

to be randomized, there are problems that have a constant quantum query complexity but

cannot be solved classically no matter how many queries are made. In fact, we show how to

construct such an infinity-vs-one separation from any weaker separation between the classical

and quantum query complexities.

In an isomorphism problem, we seek to determine if two algebraic or combinatorial objects

have the same structure. One of the most well-known of these is the graph isomorphism

problem, which is interesting since it is suspected to be of complexity intermediate between

P and the NP-complete problems.

We transition from quantum computation to isomorphism testing by considering the tree

isomorphism problem. While linear-time classical algorithms are known for this problem,

we show that a promising framework for developing efficient quantum algorithms for graph

isomorphism, known as the state preparation approach, can also solve tree isomorphism.

While this result might seem modest, it is important to know that the state preparation

approach works for trees, since otherwise there would be little hope of using it to obtain

efficient algorithms for more interesting classes of graphs. We also derive a powerful primitive

along the way that is of independent interest.

Next, we study the group isomorphism problem, which is a special case of graph isomor-

phism. Group isomorphism is suspected to be significantly easier than graph isomorphism,

but still has unknown complexity. While group isomorphism is already of interest since it

is a fundamental computational question about groups, searching for faster algorithms for

group isomorphism is therefore also one way of approaching the graph isomorphism problem.

We use collision detection methods to give a classical algorithm that obtains a square-root

speedup over the best algorithm previously known for the general group isomorphism prob-

lem. For the solvable groups (which are conjectured to be difficult and contain almost all

groups), we combine our collision detection techniques with group-theoretic methods to ob-

tain a classical fourth-root speedup over the best algorithm known previously. Prior to this

work, it was a longstanding open problem to obtain any improvement for either of these

classes of groups. Finally, we give a general framework that yields speedups for many iso-

morphism problems. In particular, it yields the square-root speedup for testing isomorphism

of general groups mentioned above. All of our group isomorphism-testing algorithms also

have quantum variants that are slightly faster than their classical counterparts.

TABLE OF CONTENTS

Page

Chapter 1: Introduction . 1

Chapter 2: Overview of results . 10

2.1 Quantum computing . 10

2.2 Isomorphism testing . 19

2.3 Chapter roadmap . 24

Chapter 3: Group theory basics . 25

3.1 Groups and subgroups . 25

3.2 Normal subgroups and quotients . 28

3.3 Group homorphisms and isomorphisms . 29

3.4 Abelian groups . 31

3.5 Series of subgroups . 33

3.6 Permutation groups . 34

3.7 Isomorphisms and automorphisms of graphs 37

Chapter 4: Quantum computing basics . 39

4.1 Quantum states and operations . 39

4.2 Tensor products and qubits . 42

4.3 Elementary operations . 44

4.4 Quantum teleportation . 45

4.5 The swap test . 46

4.6 Grover’s algorithm . 48

4.7 The hidden subgroup problem . 50

Part I: Quantum computing . 55

i

Chapter 5: 2D quantum circuits . 56

5.1 Introduction . 56

5.2 Quantum teleportation chains . 65

5.3 Depth complexity in the kD CCNTC model 66

5.4 Controlled operations in the kD NANTC model 71

5.5 Fanout operations . 78

5.6 Optimality . 78

5.7 More Examples . 81

5.8 Conclusion . 85

Chapter 6: Uselessness and infinity-vs-one separations 86

6.1 Introduction . 86

6.2 Conventions for oracles . 88

6.3 Examples of infinity-vs-one query-complexity separations 88

6.4 Uselessness for oracles with internal randomness 92

6.5 Amplifying separations . 99

6.6 Alternate proofs of uselessness . 102

6.7 Bounded-error infinity-vs-one separations . 108

6.8 Relation between uselessness and unbounded query complexity 109

Chapter 7: A quantum algorithm for tree isomorphism 111

7.1 Introduction . 111

7.2 A quantum algorithm for state symmetrization 114

7.3 A quantum algorithm for tree isomorphism 124

7.4 Conclusion . 127

Part II: Isomorphism testing . 128

Chapter 8: The color automorphism problem . 129

8.1 Introduction . 129

8.2 Group actions . 130

8.3 Permutation-group algorithms . 131

8.4 Bounded-degree graph isomorphism . 132

8.5 The WL algorithm . 142

ii

8.6 Zelmyachenko’s degree reduction lemma and general graph isomorphism . . . 143

8.7 Conclusion and open problems . 144

Chapter 9: Previous algorithms for group isomorphism 146

9.1 The generator-enumeration algorithm . 146

9.2 Testing isomorphism of Abelian groups . 149

9.3 Other algorithms for group isomorphism . 150

Chapter 10: p-group isomorphism . 152

10.1 Introduction . 152

10.2 Reducing group isomorphism to composition-series isomorphism 154

10.3 Composition-series isomorphism and canonization 156

10.4 Algorithms for p-group isomorphism and canonization 164

Chapter 11: Solvable-group isomorphism . 168

11.1 Introduction . 168

11.2 Reducing solvable-group isomorphism to α-composition pair isomorphism . . 171

11.3 α-composition-pair isomorphism and canonization 177

11.4 Algorithms for solvable-group isomorphism and canonization 191

Chapter 12: Bidirectional collision detection . 193

12.1 Introduction . 193

12.2 Bidirectional collision detection lemmas . 195

12.3 General group isomorphism . 202

12.4 Solvable-group isomorphism . 204

12.5 Ring isomorphism . 207

12.6 Worst-case graph isomorphism . 208

12.7 Conclusion . 211

Chapter 13: Conclusion . 213

13.1 Open problems . 214

Bibliography . 216

iii

ACKNOWLEDGMENTS

First and foremost, I am especially grateful to my advisors Paul Beame and Aram Harrow

for all of the valuable advice, encouragement and feedback that they have given me over the

years that I have known them. Without their help, guidance and patience, this thesis would

not have been possible.

I would also like to thank the other members of my committee (James Lee, Larry Ruzzo

and William Stein), for taking the time to serve on my committee and also for their helpful

comments and feedback.

Two of the chapters in this thesis are collaborations with others. Chapter 6 is joint work

with my advisor Aram Harrow and Chapter 10 is joint work with Fabian Wagner.

Finally, the work described in this thesis benifited from useful comments and feedback

from other researchers. Laci Babai provided extensive comments on Chapters 10 – 12 that

greatly improved the presentation. I am also greatful to Dave Bacon, Joshua Grochow,

Richard Lipton, Paul Pham and the many anonymous referees who have reviewed my work

over the years for their comments and feedback.

iv

DEDICATION

This thesis is dedicated to my parents, who have always been there for me when I needed

them.

v

1

Chapter 1

INTRODUCTION

At the same time that Turing and Church were developing the foundations of classical

computer science, physicists were formulating the theory of quantum mechanics. Quantum

mechanics is fundamentally different from classical physics as a quantum system can be si-

multaneously in a superposition of many classical states. This leads to strange phenomena

that are unique to quantum mechanics such as entanglement (which allows stronger correla-

tions than are possible classically) and destructive interference (which occurs when different

classical states in the superposition interact to cancel each other out). These effects are

potentially of great use computationally; however, classical computers are unable to take

advantage of them since they cannot store or manipulate quantum states.

Quantum computers are devices that are analogous to classical computers, but which

use quantum states instead of classical bit strings to store information. In a physical sense,

quantum computers are more natural than classical computers since there is no reason to

prohibit operations as long as they are possible physically. Since a quantum superposition can

contain exponentially many classical states, stimulating an arbitrary quantum computation

classically seems to require exponential time. Quantum computers therefore appear to violate

the strong Church-Turing thesis — which states that Turing machines can efficiently simulate

any physically realistic model of computation — and are worthy of study for this reason

alone. While the task of simulating an arbitrary quantum computation is not a classical

problem, early papers [39, 115, 116, 38] showed that there are quantum algorithms that

can solve certain classical problems exponentially faster than the best algorithms known

classically. The utility of quantum computers is therefore not restricted quantum problems

but applies to classical problems as well. The study of quantum computation is therefore

2

strongly motivated by its ability to transform our notions of which problems are tractable

and which are not.

One of the most impressive quantum algorithms is due to Shor [115] who shows that

integer factoring and computing discrete logarithms (a problem which arises in cryptography)

can be done in polynomial time on a quantum computer. The best classical algorithms

known for these problems require 2n
Ω(1)

time, so this is an exponential speedup. Since widely

used encryption schemes such as RSA [101] and elliptic curve cryptography rely respectively

on the assumptions that factoring and the discrete logarithm problem are difficult, many

modern encryption systems will be vulnerable once a sufficiently large quantum computer

is built [31]. Quantum computing therefore is not only of great theoretical importance, but

also has profound real-world implications.

The underlying ideas behind Shor’s result are in fact more general than either factoring

or computing discrete logarithms. Both of these problems can be viewed as special cases

of the hidden subgroup problem. We will define this problem formally later; however, for

now it is enough to know that it is the basis of most quantum algorithms that exponentially

outperform their classical counterparts.

Another important quantum algorithm is Grover’s algorithm [52, 25] which is capable of

performing brute force search over a set of size N in only O(
√
N) time. Classically, Θ(N)

time is required even for randomized algorithms. This speedup applies even to problems that

appear to be very difficult, such as the NP-complete problems. While this is a square-root

rather than an exponential speedup, it is nonetheless surprising and impressive due to the

wide range of search problems to which it can be applied.

Despite the promise of large speedups provided by quantum computers, early on, re-

searchers were concerned that it might not be possible to build a quantum computer even in

theory. Since quantum computers store and manipulate quantum information, they are also

vulnerable to noise from the environment, which can disrupt computations. Noise is much

less of a problem for classical computers, because each classical bit is stored using a very

large number of particles, which causes any errors that occur to be automatically corrected.

3

On the other hand, quantum computers typically store information in individual atoms or

subatomic particles1, and are therefore much more vulnerable to errors. Fortunately, the

discovery of quantum-error correction and the Threshold Theorem [1] show that any quan-

tum computation can be made proof against errors with low computational overhead. These

discoveries have transformed the quest to build a general-purpose quantum computer from

something that, a priori, may not have even been theoretically possible, into an engineering

challenge.

Quantum-error correction and the Threshold Theorem provide the theoretical justifica-

tion for the first assumption of the abstract model of quantum computation, which states

that we can assume that all quantum computations are performed exactly, without any er-

rors. The abstract model of quantum computation is convenient since it allows one to ignore

low-level implementation details and instead focus on algorithm design; for this reason, most

quantum algorithms are formulated in this model.

However, the abstract model also has a second assumption that is more problematic. In

order to explain this, we first need to discuss the basic building blocks of quantum algorithms.

There are two elementary types of operations: single-particle operations and interactions

between pairs of particles. In a physical implementation of a quantum computer, these

particles must be arranged in space and interactions can only be performed between particles

that are spatially close. If we wish to perform an interaction between a distant pair of

particles, we must move them close together first.

The second assumption is that quantum operations may be performed on arbitrary pairs

of particles in the quantum computer. This is physically unrealistic, since — as mentioned

above — distant pairs of particles cannot interact directly. Moreover, naive methods for

moving distant pairs of particles close to each other are inefficient and add significant com-

putational overhead. This presents a problem since we wish to maintain efficiency when

mapping abstract algorithms into practical architectures.

1In some quantum computing technologies, information is stored in other ways. However, for the purposes
of this discussion, we shall assume that particles are used.

4

In this thesis, we shall consider one way of arranging particles in space that accurately

models many quantum computing technologies. One of our main results in this model justi-

fies the second assumption of the abstract model of quantum computation by showing that

interactions between distant particles can be simulated with extremely low computational

overhead. In fact, by using our construction, arbitrary interactions between distant pairs

of particles can be handled while only increasing the runtime of an abstract algorithm by

a constant factor. Coupled with the Threshold Theorem, this result shows that all of the

assumptions of the abstract model can be removed without significantly reducing efficiency.

This is of great theoretical importance since it retroactively justifies the model of quantum

computation in which most algorithms are formulated. On the practical side, it gives us a

concrete way of mapping theoretical algorithms into practical quantum computing architec-

tures.

In both classical and quantum algorithms, it is often useful to have an abstraction that

models the case where we have a subroutine that we are allowed to run, but cannot inspect

its code. This could model the situation in which we do not understand the code for the

subroutine or where the subroutine is stored on a remote server to which we are allowed to

send queries but do not have direct access. The abstraction that models these situations

is called an oracle or black box. Many quantum algorithms (including the aforementioned

results of Shor [115] and Grover [52, 25]) are formulated in terms of oracles. An advantage

of this is that the results are independent of the internal workings of the black box and thus

hold for any implementation of the oracle.

Typically, oracles implement deterministic functions. In this case, a quantum algorithm

for an oracle problem can be simulated classically with exponential overhead. Thus, any

deterministic oracle problem which can be solved quantumly can also be solved classically

(albeit much more slowly). In this thesis, we also consider oracles that are be allowed to

behave randomly. From a quantum perspective, such oracles are natural since they can model

random physical processes. For these randomized oracles, we show that there are problems

that cannot be solved with any number of classical queries but can be solved quantumly

5

using a single query. In other words, there are problems in which any number of classical

queries yield no information but a single quantum query yields enough information to solve

the problem. This demonstrates an even larger separation between classical and quantum

computers than the aforementioned exponential speedups.

The problems of factoring integers and computing discrete logarithm2 solved by Shor’s

algorithm are examples of problems that are suspected to be of complexity intermediate

between P and NP. Another problem that is suspected to be of intermediate complexity is

the graph isomorphism problem. There is complexity-theoretic evidence that graph isomor-

phism is not NP-complete, as this would contradict a widely-believed complexity-theoretic

conjecture [9, 24, 48, 47]. In this problem, we are given two graphs and must determine if

the first graph can be redrawn with different labels for its nodes such that it is identical to

the second graph. In this case, the graphs are said to be isomorphic.

In addition to being of great theoretical interest, the graph isomorphism problem also has

many important practical applications. A few of these are molecular databases [65], circuit

verification [129] and generating instruction sets [35]. For this reason, much effort has been

put into devising practical algorithms for graph isomorphism. Unfortunately, progress on

worst-case algorithms has been much more limited: the best theoretical algorithm known for

general graphs [18, 16] was devised in 1983 and has not been significantly improved since.

Later in this thesis, we will show a small improvement to this algorithm via collision detection

arguments.

Due to this lack of progress on faster worst-case classical algorithms for graph isomor-

phism, there has been strong interest in developing faster quantum algorithms for graph

isomorphism. Since graph isomorphism can be cast as a special case of the hidden subgroup

problem — which we will define later and is the basis of most quantum speedups [39, 115,

116, 38] — many in the quantum algorithms community were initially optimistic that an

2Technically, these are not decision problems. However, there are variants of both that are decision
problems. It is these variants that seem to have complexity between P and NP (which are classes of
decision problems).

6

efficient quantum algorithm for graph isomorphism would be found. Unfortunately, the in-

stance of the hidden subgroup problem that arises in graph isomorphism seems much more

difficult than those that arise in other contexts and, so far, efforts to solve it have been

fruitless.

Because of the apparent difficulty of the general case of graph isomorphism, we focus on

two special cases in this work: tree isomorphism and group isomorphism. While a linear-

time classical algorithm [4] is known for tree isomorphism, we use tree isomorphism as a

step towards quantum algorithms for graph isomorphism based on the state preparation

approach [3] to graph isomorphism. Given a graph, the goal in this approach is to produce

a complete-invariant quantum state that encodes the isomorphism class of the graph. Given

the complete invariant states for two graphs, we require that there exists an efficient quantum

algorithm that tests if the graphs are isomorphic. Fortunately, for a natural definition of a

complete invariant state that corresponds to all permutations of the graph, such an algorithm

does indeed exist [28]. The challenge is in preparing these complete-invariant states for

interesting classes of graphs.

Our contribution towards this problem is to show that symmetrized complete-invariant

states can be prepared for any tree. While tree isomorphism is not particularly interesting

on its own, it is important to know that the state preparation approach at least works for

the class of trees, since if it did not there would be no hope that it would work for more

complicated classes of graphs. There are also some classes of graphs that generalize trees but

have isomorphism problems that are not known to be solvable in polynomial time classically.

One such class of graphs is the cone graphs, which are trees that are allowed to have cross

edges between nodes at the same distance from the root.

A more interesting and difficult special case of graph isomorphism is the group isomor-

phism problem. Groups are mathematical abstractions that generalize operations such as

addition and multiplication. However, abstract groups can be much more general. For in-

stance, in the case of multiplication and addition, x + y = y + x and x · y = y · x, but for a

general group operation ∗, it is not necessarily that case that x ∗ y = y ∗ x. An example of

7

such a group is the set of all permutations of [n] with function composition as the operation.

One way of specifying a finite group is by a multiplication table, which stores the value

x ∗ y for each pair of elements x and y in the group. Two groups are isomorphic if the

elements of the first can be relabeled so that the first group operation becomes identical to

the second. While for tree isomorphism, we only considered quantum algorithms, for group

isomorphism we shall utilize both classical and quantum techniques.

In the group isomorphism problem, we are given two finite groups specified as multipli-

cation tables and must decide if they are isomorphic. Group isomorphism essentially asks if

two groups are the same modulo relabeling their elements. Thus, it is a fundamental problem

in computational group theory and is interesting for this reason alone. However, there are

at least two other reasons why group isomorphism is worthy of study.

First, in order to devise an efficient algorithm for a class of groups, is often necessary to

obtain structural insights into the class of groups in question. This has already happened in

a number of papers on the group isomorphism for certain classes of groups [70, 12, 19, 13, 51].

Second, group isomorphism is a special case of graph isomorphism that is still not known

to be solvable in polynomial time. Moreover, there is good reason to believe that group

isomorphism may be easier than graph isomorphism. Since the 1970’s, group isomorphism

has been known to be decidable in nlogn+O(1) time using the generator-enumeration algo-

rithm [44, 74, 84]; this is much faster than the nO(
√
n/ logn) runtime of the best worst-case

algorithm [18, 16] known for graphs. There is also complexity-theoretic evidence [29, 91] that

graph isomorphism cannot be reduced to group isomorphism. Thus, group isomorphism is

a nontrivial special case of graph isomorphism that is probably considerably easier than the

general graph isomorphism problem. Since progress on the general case of graph isomorphism

is stalled, studying the special case of group isomorphism seems like a useful approach.

Since the discovery of the aforementioned generator-enumeration algorithm for general

groups, there has been progress on group isomorphism for interesting subclasses of groups [74,

113, 125, 63, 70, 94, 12, 34, 19, 13, 71, 51]. However, until the work which we describe later

in this thesis, even improving the constant 1 in front of the log n in the exponent of the

8

n1·logn+O(1) runtime of generator enumeration for general groups was an open problem for

several decades [72, 73].

In fact, until the work described in this thesis, improving the constant in the exponent of

the generator-enumeration algorithm was similarly open even for certain difficult subclasses

of groups. One such class of groups is the p-groups (which we shall define later). Researchers

conjecture [12, 34, 19] that the p-groups contain the hard case of the group isomorphism

problem, since there are p-groups that have many complicated isomorphisms that are not

well understood. It has also been shown empirically [22] that almost all groups are p-groups;

this provides further evidence that testing isomorphism of p-groups is as difficult as testing

isomorphism of general groups. One of the main results of this thesis is a deterministic

classical algorithm that solves p-group isomorphism in n(1/2) logn+o(1) time. This improves

the constant in the exponent of the generator-enumeration algorithm from 1 to 1/2 and

thereby solves the open problem mentioned in the last paragraph in the case of p-groups.

An even more general class of groups is the solvable groups which were developed by Galois

for the purpose of studying the solvability of quintic polynomials. The solvable groups contain

the p-groups as well as many other groups, such as the groups that contain an odd number

of elements [43]. Thus, the solvable groups are one step closer to the general case of group

isomorphism. Another important result of this work is the extension of the n(1/2) logn+o(1)

time upper bound for p-groups to the class of solvable groups. We accomplish this by using

additional group-theoretic tricks which complicate the algorithm significantly but allow us

to obtain the same value in the exponent up to slightly worse lower order terms.

The final contribution of this work is a general collision-detection framework for obtaining

square-root speedups for isomorphism testing problems. As a result, we are able to show

an algorithm with a runtime of n(1/2) logn+o(1) for the class of general groups, which resolves

the open problem of improving on generation-enumeration in the most general setting. By

combining this framework with our algorithms for p- and solvable-group isomorphism, we

are able to further reduce the runtime for these classes of groups to n(1/4) logn+o(1). This

constitutes a fourth-root speedup over the original generator-enumeration algorithm.

9

Our collision detection framework can also be used to obtain faster quantum algorithms

for isomorphism problems. In the typical case, these are cube root speedups over the original

algorithm. This yields an n(1/3) logn+O(1) time quantum algorithm for general groups and

n(1/6) logn+o(1) time algorithms for the classes of p- and solvable-groups.

10

Chapter 2

OVERVIEW OF RESULTS

In this chapter, we state the main results of this thesis. Some of the theorem statements

are informal and are less precise than those presented later in order to make this chapter

more readable. We start with our quantum computing results in Section 2.1 and discuss our

results on classical isomorphism testing in Section 2.2. We also mention quantum variants

of these algorithms. Lastly, we give a roadmap for the rest of the thesis in Section 2.3.

2.1 Quantum computing

As mentioned in the introduction, quantum computation is a model of computation that

exploits quantum mechanics in order to solve problems more quickly. It is unique among all

known physically plausible models of computation due to its apparent violation of the strong

Church-Turing thesis and is strongly motivated by efficient algorithms for problems that are

conjectured to be intractable on classical computers.

In the introduction, we mentioned that most quantum algorithms are formulated in the

abstract model where we assume that there are no errors. The errors that we discussed

are those that result from noise caused by undesirable interactions with the environment.

However, errors can also result when the basic operations from which all other quantum oper-

ations are built are performed imprecisely. Such errors occur due to defects in the underlying

quantum device or errors in the classical circuit the controls the device. Fortunately, the

Threshold Theorem can account for gate errors as well. As long as the basic operations can

be implemented with error less than some universal constant, the Threshold Theorem [1]

implies that any quantum computation can be protected against noise while increasing the

overhead by only a polylogarithmic factor. While building gates accurate enough for the

11

threshold theorem is a significant challenge for experimental physicists, there are no funda-

mental theoretical obstacles and it is likely only a matter of time before this is achieved 1.

In this work, we shall take advantage of the threshold theorem by ignoring both gate

errors and noise from the environment. A significant advantage of this approach is that

any results obtained are independent of the particular technology that is used to implement

quantum computers. Thus, they are likely to be relevant regardless of whatever quantum

computing technology ultimately proves most successful. This assumption also simplifies

algorithm design considerably.

In order to discuss the second assumption of the abstract model in more detail, we need

to introduce the two main primitives of quantum computation: qubits and basic opera-

tions. Qubits are the basic unit of quantum information and are analogous to classical bits.

Previously, we discussed quantum information terms of particles, which are one way of im-

plementing qubits. However, qubits can also be implemented in other ways. For this reason,

we shall use the more standard term qubit from now on.

The other class of primitives from which quantum computers are built are basic operations

(or gates). Just as classical circuits are built from basic classical gates such as AND, OR

and NOT, quantum circuits are built from an analogous small set of one- and two-qubit

quantum gates. Most of these basic operations are reversible, which means that there is

another inverse operation that can be applied in order to restore the system to the state

that it had before the first operation was applied. An example of a basic operation that is

not reversible is a measurement. Unlike classical measurements, which do not change the

state of the classical bit, quantum measurements force the quantum superposition of classical

states into a single classical state and therefore affect the state of the system. This has many

important implications to quantum computation.

The second assumption made in the abstract model of quantum computation is that

two-qubit gates can be performed on arbitrary pairs of qubits. As mentioned previously,

1Aram Harrow (personal communication).

12

in a physical implementation of a quantum computer, the qubits have positions in space

and therefore operations can only be directly performed between adjacent pairs of qubits.

It is still possible to perform two-qubit operations between distant pairs of qubits, but the

computational overhead is greater. Since most quantum algorithms are described in the

abstract model, it is important to find a way to implement them efficiently on realistic

quantum computers.

2.1.1 2D quantum circuits

Van Meter and Itoh [124] (cf. [32]) proposed a model that accounts for the spatial layout in

many technologies by arranging the qubits on a k-dimensional grid. Two-qubit operations

may be performed on neighboring pairs of qubits and single-qubit gates may be performed

on any qubit. Operations are also allowed to be performed in parallel so long as they

are on disjoint sets of qubits. This model accurately represents many quantum computing

technologies such as ion-trap quantum computers, where the qubits are often arranged on a

grid.

Quantum algorithms typically also assume that there is a classical controller that decides

which operations to perform at each step based on the input and the measurements performed

so far. The classical controller is allowed to perform arbitrary randomized polynomial time

computations in order to accomplish this. One can also consider the non-adaptive case

where a classical controller is not used. This means that the operations performed at the jth

timestep depend only on the input and j. In Chapter 5, we consider four models of quantum

circuits: the abstract model with a classical controller, the abstract model without a classical

controller, the k-dimensional grid model with a classical controller and the k-dimensional grid

model without a classical controller.

The number of steps used in a quantum circuit is called the depth. The total number of

basic operations is the size and the number of qubits is the width. In Chapter 5, we show

that any quantum operation that can be implemented in the abstract model using a classical

controller can be simulated on the 2D grid while increasing the depth by a constant factor

13

and squaring the width.

Theorem 2.1.1. Suppose that C is an abstract quantum circuit with a classical controller

that has depth d, size s and width n. Then C can be simulated in O(d) depth, O(sn) size

and n2 width in the 2D grid using a classical controller.

Since the depth corresponds to the time required to perform a computation and is there-

fore arguably the most important computational resource, this result can be thought of as

justifying the second assumption of the abstract model.

The proof of this result is based on a lemma that shows that, on a 2D square grid, a

column of qubits can be permuted arbitrarily in constant depth using quantum teleportation.

Chapter 5 also considers quantum circuits on a 2D grid without a classical controller. In

this case, we show that an operation with n controls can be implemented in Θ(k
√
n) depth

in a kD grid without using a classical controller. We also prove a matching lower bound.

Theorem 2.1.2. The depth required for controlled-U operations with n controls and fanouts

with n targets in a kD grid without using a classical controller is Θ(k
√
n). Moreover, this

depth can be achieved with size Θ(n) and width Θ(n).

2.1.2 Infinity-vs-one separations and uselessness

While Chapter 5 is very concrete and practical, in Chapter 6, we explore the more theoretical

domain of oracles. As mentioned in the introduction, an oracle is a black-box that computes

an unknown function. In an oracle problem, we are given an oracle that computes an unknown

function and must decide if the function has some property by querying the oracle. A query

consists of applying the oracle to a state of our choosing. However, queries are all that is

allowed: we cannot inspect the inner workings of the oracle.

While it may seem artificial at first glance, oracles can be justified in several ways. One

natural formulation is that the oracle is represented by an external server that computes a

function that we are allowed to query. However, since we do not have access to the server

itself, we cannot look inside the black box. Another more surprising approach is for the

14

oracle to be specified explicitly by its source code. This is justified by Rice’s theorem [100]

which shows that it is impossible to decide anything interesting about what a Turing machine

computes by inspecting its source code.

Typically, oracles act according to a deterministic function that is applied to the input.

Therefore, a natural extension is to oracles whose behavior can depend on some internal

random process. We call this an oracle with internal randomness. The study of such oracles

is well-motivated since we can think of many randomized physical process as oracles with

internal randomness.

Our interest here is in query complexity : the minimum number of calls to the oracle

required to solve the problem with unlimited computational resources. Moreover, we only

require that the algorithm obtains the correct result with some arbitrarily small advantage

over guessing randomly.

As previously mentioned, there are a number of deterministic oracle problems [39, 115,

116, 38] that can be solved with quantum algorithms using a polynomial number of queries

but require exponentially many queries classically. Such an exponential separation is the

best we can hope for in the case of deterministic oracles, since a single quantum query can

be simulated by an exponential number of classical queries.

In the first part of Chapter 6, we show that far stronger separations are possible for

oracles with internal randomness. Namely, there are problems involving oracles with internal

randomness that can be solved using a single quantum query but cannot be solved classically

no matter how many queries are made. We now introduce several problems for which such

infinity-vs-one separations exist.

A permutation is called an involution if composing it with itself yields the identity per-

mutation. Another type of permutation is a cycle, so one can consider the problem of

distinguishing an oracle that applies a random involution from one that applies a random

cycle of length at least three. We call this the problem of distinguishing involutions from

cycles and show that an infinity-vs-one exists for this problem.

In Simon’s problem, we are given a deterministic oracle that allows us to query a binary

15

function f : {0, 1}n → {0, 1} where there exists some unknown a such that f(x+ a) = f(x)

for all x ∈ {0, 1}n where addition is performed coordinate-wise and modulo 2. Our goal is to

find a. We show that one can modify Simon’s problem by adding randomness to the oracle

to obtain a second infinity-vs-one separation.

The hidden linear structure problem [38] is an oracle problem that can be solved exactly

using a single quantum query but requires an exponential number of queries classically. By

adding randomness to this oracle, we obtain yet another infinity-vs-one separation.

The basic reason behind these results is that when the oracle has internal randomness,

each query is effectively on a different oracle, since the output of the internal random process

can be different for each oracle call. This allows one to construct problems where a single

quantum query can extract information from the oracle but classical queries yield random

noise.

In the second part of Chapter 6, we study when k queries to an oracle yield information

about the solution to the problem. We say that k queries are useless if there is no way to

query the oracle k times that yields any information about the problem. One can talk about

either quantum uselessness or classical uselessness2, which are the concept of uselessness

applied to classical and quantum queries respectively. We show that k quantum queries are

useless if and only if 2k classical queries are useless, with the caveat that the classical queries

come in pairs that share the same internal randomness. This generalizes a result of [82].

Theorem 2.1.3. For any oracle problem, k quantum queries are useless if and only if 2k

classical queries are useless where the classical queries come in pairs that share the same

random seed.

2.1.3 A quantum algorithm for tree isomorphism

In Chapter 7, we move back from considering query complexity to time complexity. This

subsection is the last on a result that is primarily quantum. Since it is also an algorithm for

2The concept we refer to as classical uselessness here is called weak classical uselessness in Chapter 6 to
distinguish it from the other types of uselessness introduced in that chapter.

16

isomorphism testing, it provides a useful transition to Section 2.2, which is primarily about

classical algorithms for isomorphism testing. We start by introducing the general notion of

an isomorphism problem.

We say two algebraic or combinatorial objects are isomorphic if their elements can be

relabeled so that they have the same structure. For example, two graphs are isomorphic if

the nodes of the first graph can be relabeled so that it has the same edges as the second

graph.

Isomorphism problems are closely related to group theory which can be used to describe

all isomorphisms between two objects. As mentioned in the introduction, a group is a math-

ematical abstraction the generalizes operations such as addition, multiplication of nonzero

numbers and composition of permutations.

One of the biggest open problems in classical theoretical computer science is to find an

efficient algorithm for the graph isomorphism problem. While efficient practical algorithms

are available [80, 59, 37, 62, 81] and there is complexity-theoretic evidence [9, 24, 48, 47]

that graph isomorphism is not NP-complete, to date the best worst-case classical algorithm

known [16, 18, 76] for this problem runs in 2O(
√
n logn) time and has not been improved for

over thirty years. A major open problem in quantum algorithms has therefore been to find

a faster quantum algorithm for graph isomorphism.

As mentioned earlier in this chapter, most quantum algorithms (cf. [39, 115, 116, 38])

that provide exponential speedups over their classical counterparts are based on a group-

theoretic problem called the hidden subgroup problem over Abelian groups [64] (cf. [31]).

Graph isomorphism has a natural reduction to the hidden subgroup problem over the sym-

metric group, so there was some reason to hope that the techniques used in other quantum

algorithms might yield results for graph isomorphism. Unfortunately, developing quantum

algorithms for the hidden subgroup problem over the symmetric group has proved to be quite

difficult and a series of negative results [54, 87, 88] have made it seem increasingly unlikely

that the hidden subgroup problem over the symmetric group will yield faster algorithms for

solving graph isomorphism.

17

The state preparation approach to graph isomorphism [3] is based on preparing a quantum

superposition that represents the isomorphism class of the graph. Let us assume without

loss of generality that the vertices of the graph X are labelled by [n].

Since quantum states are vectors in a complex Hilbert space, any labeling of a graph can

be represented by a state. For example, we can use the 0− 1 vector that corresponds to its

adjacency matrix. This allows us to define a state that represents the isomorphism class of

the graph rather than a particular labeling. In keeping with standard quantum notation3,

we denote the state that represents the isomorphism class of X by |X〉 rather than the

more conventional notation X. We can then define the quantum state |X〉 to be the sum

of the states that correspond to the graphs obtained by relabelling the vertices of X in all

possible ways. Since by definition the graphs X and Y isomorphic if and only if there is

a permutation that transforms X into Y , the set of all permutations of X is equal to the

set of all permutations of Y if X ∼= Y . On the other hand, if X 6∼= Y , then the set of all

permutations of X and the set of all permutations of Y are disjoint. This implies that the

states |X〉 and |Y 〉 for two graphs X and Y are are equal if X and Y are isomorphic and

are orthogonal otherwise. Since the swap test [28] (which we cover in Section 4.5) provides

a means of distinguishing these two cases, the ability to prepare |X〉 suffices to solve graph

isomorphism.

In Chapter 7, we take a first step towards this goal by showing how to prepare |X〉 when

X is a rooted tree. While it is well-known that tree isomorphism can be solved in linear time

classically [4], it is important to know that the state preparation approach at least works on

trees since, if it did not, it would be unlikely to work on more complicated graphs. There

is also some hope that such a quantum algorithm for tree isomorphism could be generalized

to more difficult classes of graphs that generalize trees, such as cone graphs. The main

result of Chapter 7 is an algorithm for preparing an invariant state |T 〉 for a rooted tree

T . Shor observed that isomorphism testing algorithms such as the linear time algorithm for

3The |X〉 notation has certain advantages over the more conventional X notation that will become ap-
parent in Chapter 4.

18

tree isomorphism [4] can be transformed into procedures for efficiently preparing complete

invariant states. This yields an algorithm for computing complete invariant states for trees.

However, all of the isomorphism problems that arise are handled by using the classical

algorithm as a subroutine, so it seems unlikely that the resulting algorithm would lead to

techniques that would be useful in efficient quantum algorithms for classes of graphs that

are difficult classically.

Theorem 2.1.4. Let T be a rooted tree. Then we can prepare a state |T 〉 in polynomial time

such that

(a) if T ′ is a tree isomorphic to T , then |T 〉 = |T ′〉 and

(b) if T ′ is not isomorphic to T , then |T 〉 and |T ′〉 are orthogonal.

Along the way, we also prove a useful lemma that allows one to permute a set of orthogonal

states by all permutations in a given permutation group.

Lemma 2.1.5. Let G be a permutation group of degree k and let U1, . . . , Uk be unitary

matrices on n qubits that can be implemented with a polynomial number of basic operations

such that 〈0|U †i Uj |0〉 = 0 for i 6= j where 〈0| and U †i are the conjugate transposes of |0〉 and

Ui. Then the state

1√
|G|

∑
π∈G

k⊗
i=1

Uπ−1(i) |0〉 (2.1)

can be prepared in time polynomial in k and n.

The symbol ⊗ is called a tensor product and is the quantum analog of concatenating

classical bit strings. Thus, (2.1) is the sum of all vectors that can be obtained by permuting

the states Uπ−1(i) |0〉. The proof of Lemma 2.1.5 involves strong generating sets, whose exis-

tence is a result from permutation group theory that is central to many permutation group

algorithms.

Modulo a number of technical details, the proof of Theorem 2.1.4 works by recursively

preparing the state |Ti〉 for each subtree Ti rooted at a child of the root node of T . It

19

then applies a generalization of Lemma 2.1.5 which allows the states Ui |0〉 to have different

numbers of qubits in order to rearrange these subtrees in all possible ways.

2.2 Isomorphism testing

In the second half of this thesis, we move on to classical algorithms for isomorphism testing.

Our algorithms in this part are primarily classical; however, all of them have quantum

variants as well. The main problem we consider is the group isomorphism problem — a

special case of graph isomorphism that is also of independent interest. In this problem, we

are given two finite groups G and H as multiplications tables that specify the product of

every pair of group elements under the group operation.

Group isomorphism is potentially much easier than graph isomorphism since the classic

generator-enumeration algorithm [44, 74, 84] solves group isomorphism in nlogp n+O(1) time

where p is the smallest prime that divides the order of the group, whereas the best algo-

rithm known for graph isomorphism is much slower. While there are a variety of faster

algorithms [74, 113, 125, 63, 70, 94, 12, 34, 19, 13, 51] for restricted special cases of the

group isomorphism problem, until recently, the generator-enumeration algorithm was still

the fastest algorithm known for general groups over three decades after it was originally

introduced [72, 73].

This part of the thesis is arranged as follows. We introduce the color automorphism

problem in Chapter 8. Color automorphism is one of the two main ingredients in the best

worst-case algorithm known for graph isomorphism [18, 16] and is also used in later chapters.

We review some of the algorithms for restricted special cases of the group isomorphism prob-

lem in Chapter 9. In Chapters 10 – 12, we show the first improvements over the generator-

enumeration algorithm for general groups as well as larger improvements for the hard special

cases of p-groups and solvable groups.

20

2.2.1 p-group isomorphism

The hard case of group isomorphism is conjectured [12, 34, 19] to be the class 2 nilpotent

groups. These groups are “almost Abelian” in the sense that the quotient group G/Z(G)

is Abelian and Z(G) = {x ∈ G | xg = gx for all g ∈ G} is Abelian by definition. However,

these Abelian factors cause the number of candidate isomorphisms to be large, while the

non-Abelian interactions between them defy methods for Abelian groups [74, 113, 125, 63]

based on the Structure Theorem for Finitely Generated Abelian Groups (see Section 3.4).

A p-group is a group whose order is a power of p where p is prime. Testing isomorphism

of class 2 nilpotent groups reduces to p-group isomorphism since every nilpotent group is a

direct product of pi-groups where the pi’s are distinct primes. Therefore, we can consider

p-groups instead of class 2 nilpotent groups. The main result of Chapter 10 builds on work by

Wagner [126] to show an improvement over generator-enumeration for the class of p-groups.

Theorem 2.2.1. p-group isomorphism is decidable in n(1/2) logp n+o(logn) time.

In fact, a slightly sharper bound is possible, as we will see in Chapter 10.

The proof of this result has two main steps. Both steps are closely related to compo-

sition series, which are sequences of subgroups of a group with certain properties. First,

we show that there are most n(1/2) logp n+O(1) composition series4 for a group whose smallest

prime divisor is p. Using this, we derive an n(1/2) logp n+O(1) time Turing reduction to testing

isomorphism of composition series. The second part of the proof involves constructing a

graph of degree p+O(1) that represents the isomorphism class of a composition series. Since

testing isomorphism of graphs of degree bounded by d is in nO(d) time [18], this implies an

n(1/2) logp n+O(p) algorithm for p-group isomorphism. The bound in Theorem 2.2.1 then follows

by using this algorithm when p ≤ o(log n) and the generator-enumeration algorithm when p

is larger.

4A more complicated subclass of composition series was used originally to obtain the same result. However,
Laci Babai pointed out that one can obtain a simpler proof by considering the class of all composition
series.

21

2.2.2 Solvable-group isomorphism

The focus of Chapter 11 is to generalize Theorem 2.2.1 to the class of solvable groups. In

order to accomplish this, we need to describe how the graph for composition series G0 =

1 / · · · / Gm = G is constructed.

A coset of the group G by a subgroup Gi is a set of the form xGi = {xg | g ∈ Gi} where

x ∈ G. One can show that the set G/Gi of all cosets of G with respect to Gi forms a partition

of G and so the cosets yGi that are contained in a coset xGi+i partition xGi+1. The idea is to

construct a tree where the ith level corresponds to the cosets G/Gi. The root node therefore

corresponds to the group G and its children are the cosets of the form xGm−1. In general,

the children of a coset xGi+1 are the cosets yGi such that yGi ⊆ xGi+1. Thus, the children

of each coset are the cosets by the subgroup at the next level in the series that partition it.

Since G was assumed to be a p-group, this tree has degree p + 1. The final step involves

attaching multiplication gadgets to this tree in a careful way that increases the degree only

by a constant.

Before generalizing this construction to solvable groups, we review a few relevant facts

about composition series. In a composition series, the quotients Gi+1/Gi of adjacent sub-

groups are themselves groups and are called the composition factors of G. (The set of

composition factors depends only on G and not on the particular composition series chosen

by the Jordan-Hölder Theorem (see Section 3.5)).

The above construction of the tree for a composition series actually works even when

the group is not a p-group. However, in this case, the degree of the graph will correspond

to the order of the largest composition factor, which may be large. Wagner [126] showed

a trick that allows large composition factors to be eliminated from this tree at the cost

of multiplying the runtime by a factor of no(logn). This allows the degree of the tree to be

reduced to o(log n) assuming that all composition factors occur at the top of the composition

series. Unfortunately, this is not always the case for solvable groups.

We get around this problem using special structural results available for solvable groups.

22

A theorem of Hall [53] shows that every solvable group can be written as a product of

groups that pairwise commute. In contrast to the case of nilpotent groups, this product

is not a direct product, so one cannot trivially reduce to the case of p-groups. However,

Hall’s result allows us to create a generalization of the composition series that consists of the

subgroup of a solvable-group G that contains all the large composition factors, as well as a

composition series for the subgroup that consists of the small composition factors5. Though

the construction becomes considerably more technical, this idea allows us to construct a

low-degree graph that represents the isomorphism class of such a generalized composition

series of a solvable group. This yields the main result of Chapter 11.

Theorem 2.2.2. Solvable-group isomorphism is decidable in n(1/2) logp n+o(logn) deterministic

time where p is the smallest prime dividing the order of the group.

2.2.3 Bidirectional collision detection

While our results in Chapters 10 and 11 already improve on the best algorithms known

for p- and solvable groups, we go even further in Chapter 12 and obtain a speedup for the

case of general group isomorphism as well. The underlying method is a generic bidirectional

collision detection lemma that is applicable to many isomorphism problems. As a result, we

also obtain further speedups for p- and solvable groups.

Our lemma works for any problem for which one can compute a “partial canonical form”

for the objects on which we wish to test isomorphism. Such a “partial canonical form”

encodes the isomorphism class of the object plus some additional information. In the case of

general groups, this additional information is a generating set. For p- and solvable groups,

it is a composition series. As long as the additional pieces of information can be constructed

gradually as a sequence of small steps, this bidirectional collision detection lemma can be

applied. For general groups, each step corresponds to adding an additional generator to

5The simplification of breaking G into two subgroups consisting of the large and small composition factors
was also suggested by Laci Babai. Originally, we achieved the same result using more complex methods.

23

the generating set. For p- and solvable groups, each step corresponds to adding another

intermediate subgroup to the composition series.

The basic idea behind this bidirectional collision detection lemma is to note that the

process of constructing the additional information yields a tree of low degree where the leaves

correspond to “partial canonical forms.” This can be used to deterministically compute two

sets of leaves of size roughly
√
N where N is the total number of leaves, with the property that

the two objects for which we wish to test isomorphism are isomorphic if and only if the two

sets contain leaves that correspond to a common canonical form. This can be determined

efficiently using sorting or hashing, which allows the original isomorphism problem to be

solved in roughly
√
N time. By contrast, the natural algorithm takes roughly N time. We

list some of the main corollaries of this bidirectional collision detection lemma below.

Theorem 2.2.3. Solvable-group isomorphism (and hence p-group isomorphism) is decidable

in n(1/4) logp n+o(logn) deterministic time where p is the smallest prime dividing the order of

the group.

Theorem 2.2.4. General group isomorphism is in n(1/2) logp n+O(1) deterministic time where

p is the smallest prime dividing the order of the group.

Thus, bidirectional collision detection yields square-root speedups over the best previous

algorithms for p-groups, solvable groups and general groups. Square-root speedups are also

possible for many other isomorphism problems including the graph and ring isomorphism

problems.

There is also a quantum variant of our bidirectional collision detection lemma that typi-

cally yields cube-root speedups for the problems that it is applied to. In this way, we obtain

an n(1/6) logp n+O(1) time quantum algorithm for p-group isomorphism, an n(1/6) logp n+o(1) time

quantum algorithm for solvable-group isomorphism and an n(1/3) logp n+O(1) time quantum

algorithm for testing isomorphism of general groups.

24

2.3 Chapter roadmap

In this section, we outline the chapters that follow and mention those which are joint work

with others as well as those that have been published elsewhere. Chapters 3 and 4 cover

basic results in group theory and quantum computing that are relevant to the rest of this

thesis. Chapter 4 is necessary for Chapters 5 – 7 while Chapter 3 is required for Chapters 8

– 12. Chapters 5 – 7 are mostly independent of Chapter 3 and Chapters 8 – 12 are mostly

independent of Chapter 4. Readers familiar with group theory and quantum computation

may wish to skip Chapters 3 and 4.

In Chapter 5, we describe our results for 2D quantum circuits. A version of this chapter

previously appeared [109] in the proceedings of the Conference on the Theory of Quantum

Computation, Communication and Cryptography in 2013. Chapter 6 describes our results on

oracles with internal randomness and is joint work with Aram Harrow that was published in

the journal of Quantum Information and Computation [55]. Our tree isomorphism algorithm

is described in Chapter 7 and was previously posted on the arXiv [110].

Chapter 8 reviews the color automorphism problem and Chapter 9 reviews previ-

ously known results on the group isomorphism problem. Chapter 10 describes a square-

root speedup over the generator-enumeration algorithm for p-group isomorphism, is joint

work with Fabian Wagner and will appear in the journal of Theoretical Computer Sci-

ence [111]. Chapter 11 extends this speedup to solvable groups and previously appeared

on the arXiv [106]. A preliminary version of the work in Chapters 10 and 11 appeared in

the proceedings of the Symposium on Discrete Algorithms in 2013 [108]. The proofs were

later refined (though the results remained the same). It is these refined proofs that appear

in Chapters 10 and 11. In Chapter 12, we introduce our framework for obtaining square-

root speedups for isomorphism problems and apply it to obtain a square-root speedup over

the generator-enumeration algorithm for testing isomorphism of general groups as well as

fourth-root speedups over the generator-enumeration algorithm for p- and solvable-groups.

Chapter 12 was previously posted on the arXiv [107].

25

Chapter 3

GROUP THEORY BASICS

In this chapter, we review basic group theory with emphasis on ideas that are relevant

to the algorithms that appear later in Chapters 8 – 12. For more details on group theory,

see [112, 102] (or other group theory and algebra texts [58, 69, 105, 5, 128, 103]). Section 3.1 is

about groups and subgroups: we start with the definition of a group, the notion of a subgroup

and discuss related concepts including cosets, cyclic groups and Lagrange’s theorem. We

move on to normal subgroups in Section 3.2 and discuss quotient groups, simple groups

and composition series. In Section 3.3, we define homomorphisms and isomorphisms and

discuss the isomorphism theorems. We cover Abelian groups and their decomposition into

cyclic groups in Section 3.4. In Section 3.5, we define central series, derived series and

composition series and define the classes of nilpotent and solvable groups. We cover results

for permutation groups in Section 3.6 including Cayley’s theorem, the decomposition of

permutations into cycles and algorithms for computing orbits and strong generating sets.

Lastly, we discuss isomorphisms and automorphisms of graphs in Section 3.7.

3.1 Groups and subgroups

A group is an abstraction that encompasses many mathematical operations on sets including

addition, multiplication (of non-zero numbers) and composition of permutations. We define

it formally as follows.

Definition 3.1.1. Let G be a set and let ∗ : G×G→ G be a function. The pair (G, ∗) is a

group if the following axioms hold:

Associativity For all x, y, z ∈ G, (x ∗ y) ∗ z = x ∗ (y ∗ z).

Identity There exists e ∈ G such that for all x ∈ G, e ∗ x = x ∗ e = x.

26

Inverses For every x ∈ G, there exists y ∈ G such that x∗y = y ∗x = e where e is as above.

First, we mention a few notational conventions. Usually, the operation ∗ is clear from

the context and we denote the group (G, ∗) by just G. We also often abbreviate x ∗ y as

xy; there is no ambiguity as long as we know what group x and y belong to. The group

operation is often referred to as multiplication since the notation is similar. Due to the

associativity axiom, we normally omit parenthesis and write (xy)z = x(yz) as xyz. If the

group is additive, we write x+ y instead of xy.

It is easy to see that the identity element e is unique, for if e and f both satisfy the

identity axiom then ef = f when we think of e as an identity, but, on the other hand ef = e

when we think of f as the identity. Thus, e = f . We therefore denote the unique identity

element of the group G by 1G or just 1 if G is clear from the context. The exception to this

convention is additive groups where we denote the identity by 0.

The inverse of an element x ∈ G is also unique. Let y, z ∈ G such that xy = yx = 1

and xz = zx = 1. Then yxz = y which implies that z = y. We therefore denote the unique

inverse of x by x−1. In an additive group, we denote the inverse of x by −x.

A group G is finite if the number of elements it contains is finite and is infinite otherwise.

We will mostly only be concerned with finite groups in this thesis.

A subgroup of a group G is a subset H of G that is itself a group when ∗ is restricted to

H ×H. It is easy to show the following simpler characterization of subgroups.

Proposition 3.1.2. Let G be a group and let H be a subset of G. Then H is a subgroup of

G (denoted H ≤ G) if and only if all of the following hold:

Closure For all x, y ∈ H, xy ∈ H.

Identity 1G ∈ H.

Inverses For all x ∈ H, x−1 ∈ H.

Note that we allow the case where H = G when we say that H is a subgroup of G. If

the elements of H form a proper subset of the elements of G, then we say that H is a proper

27

subgroup of G and write H < G. The improper subgroup of G is G itself. The set {1} is

always a subgroup of G which we denote by 1 and call the trivial subgroup.

The identity 1H of the subgroupH coincides with the identity 1G of the groupG; similarly,

inverses taken over the subgroup H coincide with inverses taken over the group G.

Given two groups G and H, we can construct a new larger group called the external

direct product of G and H which is denoted by G × H. The elements of this group are

{(g, h) | g ∈ G and h ∈ H} and the product of two elements (g1, h1) and (g2, h2) of G × H

is defined to be (g1g2, h1h2). Usually, we abbreviate the term external direct product to

direct product. The adjective external distinguishes the above construction from internal

direct products which are equivalent but are defined differently. We’ll discuss internal direct

products further in Section 3.2, since they are defined terms of normal subgroups.

If S is a subset of a group G, then the subgroup of G generated by S (denoted 〈S〉) is the

set of elements that can be obtained by finite sequences of group multiplication and inversion

operations. Equivalently, it can be as the intersection of all subgroups of G that contain S.

If G = 〈S〉, we say that S is a generating set for G. A group is finitely generated if it has a

finite generating set.

Let H be a subgroup of a group G. If x ∈ G, then the set xH = {xh | h ∈ H} is called a

left coset of H in G. Similarly, the set Hx = {hx | h ∈ H} is called a right coset of H in G.

The set of all left cosets of H in G is denoted G/H. The size of of G/H is called the index

of H in G and is denoted by [G : H]. An element of the coset xH is called a representative.

A set that contains exactly one representative for each left coset is called a complete left

transversal. Complete right transversals are defined analogously.

Proposition 3.1.3. Let H be a subgroup of a group G. Then G/H is a partition of G.

Proof. Clearly, every x ∈ G is contained in the coset xH. Suppose that x, y ∈ G such that

xH ∩ yH 6= ∅. Then xh1 = yh2 for some hi ∈ H. Therefore, xh1h
−1
2 = y so y ∈ xH which

implies that xH = yH.Therefore, every pair of cosets is either disjoint or equal.

The order of a group G is the size of the set G and is denoted by |G|. Lagrange’s theorem

28

relates the orders of a group to the orders of its subgroups.

Theorem 3.1.4 (Lagrange). Let H be a subgroup of a finite group G. Then |H| divides |G|.

Proof. This follows from the preceding proposition since it is easy to see that all cosets of H

in G have the same cardinality.

The order of an element x of G (denoted |x|) is the smallest positive integer k such that

xk = 1. If no such k exists, then x has infinite order and we write |x| =∞.

A group G is called cyclic if G = 〈x〉. In this case, G =
{
xk
∣∣ k ∈ Z

}
where we define

xk =
∏|k|

i=1 x
−1 if k < 0, xk =

∏k
i=1 x if k > 0 and xk = 1 if k = 0. One can easily verify

that, if i, j ∈ Z, then xi ·xj = xi+j and (xi)j = xij as one would expect from this exponential

notation. For any x ∈ G, we always have |x| = |〈x〉|. This observation implies the following

corollary of Lagrange’s theorem.

Corollary 3.1.5. Let x be an element of a finite group G. Then |x| divides |G|.

3.2 Normal subgroups and quotients

We now consider the circumstances under which the cosets G/H of a subgroup H in G

themselves form a group. For this we need to define a way of multiplying two cosets.

More generally, if A and B are subsets of a group G, we define their product A · B =

{ab | a ∈ A and b ∈ B}. We can apply this operation to cosets xH and yH of H in G, but

the result xH · yH is not always a coset of H in G. Since x ∈ xH, we see that xH · yH

contains the coset xyH. On the other hand,

xH · yH = xy(y−1Hy) ·H

This is equal to xyH if and only if (y−1Hy) = H. Since we want the product of any pair of

cosets to yield another coset, we need gHg−1 = H to hold for all g ∈ G. This is precisely

the definition of a normal subgroup.

Definition 3.2.1. A subgroup H of G is a normal subgroup of G (denoted H E G) if

gHg−1 = H for all g ∈ G.

29

If H is a proper normal subgroup of G, then we write H / G. As alluded to above,

(G/H, ·) is a group if and only if H E G; in this case, the product of two cosets xH and yH

is xyH.

If H is a (not necessarily normal) subgroup of G and g ∈ G, then the set gHg−1 is called

the conjugate of H by g and is written more compactly as Hg. If x, g ∈ G, then the conjugate

of x by g is gxg−1 and is denoted more compactly by xg.

The trivial and improper subgroups of a group are always normal; a group is called simple

if it does not have any proper nontrivial normal subgroups.

Direct products can also be defined in terms of normal subgroups. If G and H are normal

subgroups of K such that G∩H = 1, then the internal direct product of G and H is defined

to be GH = {gh | g ∈ G, h ∈ H}. We’ll show that (g1h1)(g2h2) = (g1g2)(h1h2) for all gi ∈ G

and hi ∈ H. To prove this, it suffices to show that gh = hg for all g ∈ G and h ∈ H. This

is true if and only if each ghg−1h−1 = 1. But ghg−1 ∈ H and hg−1h−1 ∈ G which implies

that ghg−1h−1 ∈ G ∩H = 1. External and internal direct products are therefore essentially

equivalent, are both referred to simply as direct products and the notation G × H is used

for both.

3.3 Group homorphisms and isomorphisms

Now we move on to homomorphism and isomorphisms which allow us to relate the structure

of one group to another. We start with the definition of a homomorphism.

Definition 3.3.1. Let G and H be groups. A function φ : G → H is a homomorphism if,

for all x, y ∈ G, φ(xy) = φ(x)φ(y).

Note that the multiplication of x by y is performed in G while the multiplication of φ(x)

by φ(y) is in H. Thus, a homomorphism relates the operation of G to the operation of H.

It is easy to see that every homomorphism φ satisfies φ(1) = 1. The mapping φ : G → H

defined by φ(x) = 1 for all x ∈ G is called the trivial homomorphism. Homomorphisms also

respect inverses in the sense that φ(x−1) = (φ(x))−1

30

An injective homomorphism is called a monomorphism and a surjective homomorphism

is called an epimorphism. A homomorphism that is bijective is called an isomorphism. Two

groups G and H are isomorphic (denoted G ∼= H) if there exists an isomorphism between

them. Intuitively, this means that the groups are the same except that the elements have

different names. The set of all isomorphisms from G to H is denoted by Iso(G,H).

An isomorphism from a groupG to itself is called an automorphism. The identity is always

an automorphism. The set Aut(G) of all automorphisms of G form a group under function

composition called the automorphism group of G. For every g ∈ G, define ιg : G → G

by ιg(x) = xg. Each ιg is called an inner automorphism and the set Inn(G) of all inner

automorphisms is a normal subgroup of Aut(G). The quotient Out(G) = Aut(G)/Inn(G) is

called the outer automorphism group of G and its elements are called outer automorphisms.

3.3.1 Isomorphism theorems

Every homomorphism φ : G → H gives rise to two important subgroups. The kernel of φ

is the subgroup kerφ = {x ∈ G | φ(x) = 1}. It is easy to verify that the kernel is a normal

subgroup of G. The second subgroup is the image of φ which is defined as Imφ = φ[G]. The

image of a homomorphism is always a subgroup of H, but it need not be normal. The first

isomorphism theorem relates the kernel to the image.

Theorem 3.3.2 (First isomorphism theorem). Let φ : G→ H be a homomorphism. Then

G/ kerφ ∼= Imφ

The second and third isomorphism theorems can be obtained from the first by applying

it to the right homomorphisms.

Theorem 3.3.3 (Second isomorphism theorem). Let G be a group, K ≤ G and N E G.

Then

KN

N
∼=

K

K ∩N

31

Note that KN ≤ G, since (k1n1)(k2n2) = (k1k2)(k−1
2 n1k2n2), k1k2 ∈ K and k−1

2 n1k2n2 ∈

N since N E G. (The other subgroup conditions are also easy to verify.) It is also easy to

check that K ∩ N E K. The third isomorphism theorem allows us to cancel denominators

in quotient groups in a manner analogous to fractions.

Theorem 3.3.4 (Third isomorphism theorem). Let G be a group, N E G and H E G with

N ≤ H. Then
G/N

H/N
∼= G/H

3.4 Abelian groups

An important class of groups are the Abelian groups where xy = yx for all elements x and y in

the group. The center of a group G is defined to be Z(G) = {z ∈ G | xz = zx for all x ∈ G}.

The subgroup Z(G) is always Abelian and is a normal subgroup ofG. Every group also always

has a quotient that is Abelian. The commutator of x, y ∈ G is defined to be [x, y] = xyx−1y−1.

It is easy to see that [x, y] = 1 if and only if xy = yx. The subgroup G′ = [G,G] generated

by all commutators of elements of G is called the derived subgroup or commutator subgroup

of G. We can think of G′ as all the ways in which two elements of G might not commute.

The derived subgroup G′ is a normal subgroup of G and the Abelianization of G is defined

as G/G′. The quotient G/G′ is Abelian since

(xG′)(yG′) = xyG′

= [x, y]yxG′

= (yG′)(xG′)

3.4.1 The structure of Abelian groups

The structure of finitely generated Abelian groups is fully understood and is defined in terms

of the cyclic groups so first we consider the isomorphism classes of cyclic groups. Two finite

32

cyclic groups are isomorphic if and only if they have the same order. We denote the cyclic

group of order n by Zn = Z/nZ where Z is the group of integers under addition. All infinite

cyclic groups are isomorphic to Z (and hence to each other by transitivity).

The structure theorem for finitely generated Abelian groups can be stated either in terms

of elementary divisors or invariant factors1. Both forms are equivalent but sometimes one

is more convenient than the other.

Theorem 3.4.1 (The structure of finitely generated Abelian groups (elementary divisor

version)). Let G be a finitely generated Abelian group. Then there exist (not necessarily

distinct) primes p1, . . . , pk, positive integers e1, . . . , ek and a positive integer m such that

G ∼= Zpe11
× · · · × Zpekk × Zm

Moreover, this decomposition is unique up to reordering the factors.

Theorem 3.4.2 (The structure of finitely generated Abelian groups (invariant factor ver-

sion)). Let G be a finitely generated Abelian group. Then there exist positive integers

d1, . . . , dk and m such that di | di+1 for each i and

G ∼= Zd1 × · · · × Zdk × Zm

Moreover, this decomposition is unique up to reordering the factors.

This theorem is quite powerful and its proof is more involved than the other results

considered up to this point. One way to prove it is to choose a finite generating set of G and

write down an integer matrix that corresponds to the linear dependence relations between

these generators. By computing a canonical form of this matrix known as the smith normal

form, one can obtain the structure constants in the above theorem.

1These terms come from a more general version of the theorem for finitely-generated modules over a
principal ideal domain (cf. [104]).

33

3.5 Series of subgroups

In this section, we introduce the notion of a series of a group.

Definition 3.5.1. Let G be a group. A series for G is a sequence of subgroups G0 = 1 <

· · · < Gm = G.

The length of a series is the number of subgroups in the series minus one (i.e. m in the

definition above). Two series for groups G and H are isomorphic if there is an isomorphism

φ : G → H that sends each subgroup in the series for G to the corresponding subgroup in

the series for H.

Almost all important types of series fall under the class of subnormal series which are

series where Gi / Gi+1 for each i. In a subnormal series, it is not necessarily the case that

each Gi is normal in the entire group G, as it is only required to be normal in Gi+1. When

each Gi is a normal subgroup of G, we say that the series is a normal series. There are

several subclasses of series that can be used to relax the notion of an Abelian group. The

first of these is the notion of a central series.

Definition 3.5.2. Let G be a group. A central series for G is a normal series

G0 = 1 / · · · / Gm = G

such that Gi+1/Gi ≤ Z(G/Gi).

Not all groups have a central series. If a group does have a central series, it is called

nilpotent. The length of the shortest central series of a group is called its nilpotency class.

The nilpotency class can be thought of as a measure of how far a nilpotent group is from

being Abelian. An important subclass of nilpotent groups is the nilpotent groups of class 2.

These are those groups G where G/Z(G) is Abelian; in such a group, every pair of elements

commutes up to a central element. We now consider a more general class of groups.

A class of groups closely related to the nilpotent groups are the groups whose order is a

power of a prime p. Such a group is called a p-group. It can be shown that every p-group

34

is nilpotent so the p-groups form another subclass of the nilpotent groups. In fact, every

nilpotent group is a direct product of pi-groups where the pi’s are distinct primes.

Definition 3.5.3. Let G be a group. The derived series of G is

· · · / · · · / G(1) / G(0) = G

where G(i+1) = [G(i), G(i)] is the ith derived subgroup.

In general, it need not be the case that the derived series terminates with the identity

subgroup. (In the case of an infinite group, it may not even terminate at all). If there exists

a finite k such that G(k) = 1, then G is a solvable group and the least such k is called the

derived length of G. The condition Gi+1/Gi ≤ Z(G/Gi) in the definition of a nilpotent group

is equivalent to the condition [Gi+1, G] E Gi. From this, we see that every nilpotent group

is solvable. However, the converse does not hold.

An essential definition for Part II is the notion of a composition series.

Definition 3.5.4. Let G be a group. A composition series for G is a subnormal series

G0 = 1 / · · · / Gm = G such that each Gi+1/Gi is simple.

Alternatively, a composition series can be equivalently defined as a maximal subnormal

series. Unlike central series, every group has a composition series. The factors of a compo-

sition series are called composition factors ; by the Jordan-Hölder Theorem (cf. [102, 105]),

the multiset of composition factors is determined up to isomorphism by G. It can be shown

that a group is solvable if and only if all of its composition factors are cyclic.

3.6 Permutation groups

In this section, we cover the basics of permutation group theory. For more details, see [40].

Let Ω be a set. Then a permutation π of Ω is a bijection from Ω to itself. It is easy to

verify that the set SΩ of all permutations of Ω forms a group under composition of functions.

We call this the symmetric group on Ω. A permutation group G on Ω is a subgroup of SΩ.

The degree of G is equal to |Ω|. For each positive integer n, we define Sn = S[n].

35

Cayley’s theorem tells us that every group is isomorphic to a subgroup of a symmetric

group.

Theorem 3.6.1 (Cayley’s theorem). Let G be a group. Then G is isomorphic to the subgroup

of SG defined by {πgα = gα for all α ∈ G | g ∈ G}.

A cycle is a permutation π where there exist distinct α1, . . . , αk ∈ Ω such that παi = αi+1

for 1 ≤ i < k and παk = α1. We denote the cycle π by (α1 . . . αk). The orbit Gα of an

element α ∈ Ω under the action of a permutation group G is is the set {gα | g ∈ G}. Now

let π ∈ SΩ. We can partition Ω into its orbits under the subgroup 〈π〉 generated by π. Let

Ωi = {α1, . . . , αni} denote the ith such orbit and let m be the number of orbits. It is easy to

see that the restriction π
∣∣
Ωi

: Ωi → Ωi of π is a cycle and is an element of SΩi . Then

π = π
∣∣
Ω1
· · · π

∣∣
Ωm

This is called the cycle decomposition of π.

Let α ∈ Ω, ∆ ⊆ Ω and let G be a permutation group on Ω. The orbit G∆ of the subset

∆ under the permutation group G is is the set {gβ | g ∈ G, β ∈ Ω}. The stabilizer subgroup

of α is the set Gα = {g ∈ G | gα = α}. The Orbit-Stabilizer Theorem relates the orbit of an

element to its stabilizer subgroup.

Theorem 3.6.2. Let G be a group of permutations on a set Ω and let α ∈ Ω. Then

|G/Gα| = |Gα|

Stabilizers can also be defined for subsets of Ω as well as individual elements. In this case

there are two different types of stabilizers. Let ∆ ⊆ Ω. The pointwise stabilizer of ∆ isG(∆) =

{g ∈ G | gβ = β for all β ∈ ∆}. The setwise stabilizer of ∆ is G∆ = {g ∈ G | g∆ = ∆}. As

we will see later in this section, the pointwise stabilizer can be computed in polynomial time.

The complexity of computing the setwise worst case in the worst case is not known, but

there is evidence that it is NP-hard. Efficient algorithms [76, 18, 16] are known for cases

where G has certain structural properties and are one of the building blocks for the current

36

best algorithm for graph isomorphism [16]. We will discuss the complexity of computing the

setwise stabilizer further later in Chapter 8.

3.6.1 Strong generating sets

Many algorithms for permutation groups are based on (or at least use) a concept called a

strong generating set [117] (which we will define shortly.) Strong generating sets can be

used to perform many tasks for permutation groups in polynomial time including computing

the order of a permutation group, testing membership in a permutation group, finding any

pointwise stabilizer of a permutation group and determining the kernel of a homomorphism

between permutation groups. As a concrete example, one can use strong generating sets to

solve the Rubik’s cube. To define a strong generating set, we need the notion of a base.

For notational convenience, we define strong generating sets only for subgroups of Sn,

but of course everything we do also works for any permutation group.

Definition 3.6.3. Let G ≤ Sn and define Gi = G(n,...,i+1). Then a subset S ⊆ G is a strong

generating set if Gi = 〈Gi ∩ S〉 for all i.

First, it is obvious that strong generating sets always exist since we can just take a

generating set for each Gi. We will sketch how to compute a strong generating set in

polynomial time. First, a brief digression is necessary since we haven’t yet explained what

polynomial time means for permutation groups.

In computational contexts, a permutation group G on Ω is specified by a generating set

S. A permutation is represented by listing the image of each element in Ω. The complexity

of permutation group algorithms is measured in terms of the size of S and the degree of G.

Note that the input is linear in both of these quantities, so this is consistent with the usual

definition of polynomial time.

To compute a strong generating set for G, define an n×n matrix M indexed by [n] whose

elements are either elements of G or ∅. Initially, we set all entries of M to ∅. If an entry

is not ∅, then we require that Mij ∈ Gi and that it maps i to j. Our plan is to fill in the

37

entries of M using a sifting procedure.

Suppose that π ∈ G. If Mn,π(n) 6= ∅, then let σ = M−1
n,π(n)π ∈ Gn−1. Then we compute

σ(n − 1). Either Mn−1,σ(n−1) 6= ∅ or M−1
n−1,σ(n−1)σ ∈ Gn−2. Continuing in this manner, we

eventually obtain σ = M−1
i+1,ki+1

· · ·M−1
n,kn

π ∈ Gi where either i = 1 or Mi,σ(i) = ∅. If i = 1,

then we have π = Mn,kn · · ·M2,k2 . When Mi,σ(i) = ∅, we update M by setting Mi,σ(i) = σ.

We call the procedure just described in this paragraph sifting by π.

We repeatedly sift elements of G until the entries of M that are not ∅ form a strong

generating set. Let T be a set that is initialized to S. At each step we choose an element π

from T and sift by π. Whenever a new element σ is added to M by setting Mi,σ(i) = σ, we

add all products of the forms Mi,σ(i)Mjk and MjkMi,σ(i) where Mjk 6= ∅ to T . This procedure

continues until T is empty.

It is clear that this procedure halts in polynomial time since an element can be sifted in

polynomial time and at most |S| + n4 elements are ever added to T . We claim that when

it halts, the elements of T form a strong generating set. The elements of M contained in

Gi are Si = {Mjk 6= ∅ | j ≤ i}. The argument that Gi = 〈Si〉 is slightly more involved and

we will not give it here; however, it follows from the fact that any product of elements of M

must sift to the identity after the algorithm has terminated (cf. [120]).

For more details on the analysis as well as more carefully optimized variants of this

algorithm, see [114].

3.7 Isomorphisms and automorphisms of graphs

One important application of group theory we will see later in this chapter is symmetries of

graphs. Let X and Y be graphs. A bijection φ : X → Y is a graph isomorphism if each pair

(x, y) is an edge if and only if (φ(x), φ(y)) is an edge. Two graphs are isomorphic if there

is an isomorphism between them. Intuitively, this means that the graphs have the same

structure but the elements have different labels. An graph automorphism is an isomorphism

from a graph to itself. The set Aut(X) denotes the group of all automorphisms of the graph

X.

38

The isomorphisms from a graph X to a graph Y are closely related to the automorphism

groups of X and Y . Suppose that φ, θ : X → Y are isomorphisms. Then φ−1θ ∈ Aut(X)

so θ ∈ φAut(X). Thus, the set Iso(X, Y) of all isomorphisms from X to Y is the coset

φAut(X) of the automorphism group. The problem of testing if two graphs are isomorphic

is equivalent to the problem of computing generators of the automorphism group under

Turing reductions.

39

Chapter 4

QUANTUM COMPUTING BASICS

In this chapter, we introduce the basic quantum computing background that is required

for the rest of this work. For a more extensive treatment of the subject, see [89]. In Sec-

tion 4.2, we introduce qubits and Dirac notation. We introduce elementary operations and

universal gate sets in Section 4.3. We show that entanglement can be used to move a quantum

state from one register to another using only local operations in Section 4.4. In Section 4.5,

we introduce the swap test which allows us to compare quantum states under certain con-

ditions. In Section 4.6, we discuss Grover’s algorithm which shows that brute force search

over a set of size N takes only O(
√
N) time on a quantum computer. Finally, we cover the

hidden subgroup problem in Section 4.7, which is the basis of most exponential speedups

over classical algorithms.

4.1 Quantum states and operations

In this section, we describe the basics of quantum computation without regard for efficiency.

While the state of a classical computer is described by a binary string, the state of a quantum

computer is a complex vector in CN for some N . The standard basis vectors for this space

are denoted by |k〉 which corresponds to the N -dimensional column vector that has 0 in all

of its entries except the kth which is 1 where 0 ≤ k < N . A general state is denoted by |ψ〉

and has the form

|ψ〉 =
N∑
k=0

αk |k〉

The state |ψ〉 is called a ket. The amplitude of |k〉 is αk and the phase of |k〉 is αk/ |αk|. The

complex conjugate transpose of a vector is the vector one obtains by taking the transpose of

the vector and then taking the complex conjugate of each element. We denote the complex

40

conjugate transpose of |ψ〉 by 〈ψ| (which is called a bra). The outer product |j〉 〈k| denotes

the N×N matrix that has a 1 at (j, k) and 0 elsewhere. For general states |ψ〉 =
∑N

k=0 αk |k〉

and |φ〉 =
∑N

k=0 βk |k〉,

|ψ〉 〈φ| =
N∑

j,k=0

αjβ
∗
k |j〉 〈k|

The inner product of two states |ψ〉 and |φ〉 is denoted 〈ψ|φ〉 and is sometimes also called a

braket (hence the names bra and ket).

4.1.1 Unitary matrices

An N×N matrix U is unitary if UU † = I where U † denotes the complex conjugate transpose

which is the transpose of the matrix one obtains by taking the complex conjugate of each

element of U . Multiplication by a unitary matrix is one class of quantum operations that

can be performed on CN .

4.1.2 Measurements

Unlike a classical computer, we cannot directly inspect the current state of a quantum com-

puter. Instead, we must perform measurements on the state in order to recover information

about it. After a measurement is performed, we obtain each measurement outcome with some

probability (which may be 0 for some measurement outcomes) and the state is transformed

into a new state. This is an important difference from classical computing since inspecting

a classical bit string does not change it.

The most basic measurement simply projects onto the standard basis. In this case, the

measurement outcomes are simply the labels 0 ≤ k < N of the standard basis vectors. If

the state is |ψ〉 =
∑N−1

k=0 αk |k〉 before the measurement is performed, than with probability

|αk|2 / ‖ψ‖2, outcome k occurs and the state becomes |k〉 after the measurement. For conve-

nience, we will require from now on that all states are normalized so that ‖ψ‖ = 1. There is

nothing special here about the standard basis. More generally, if B = {|ψk〉 | 1 ≤ k ≤ N} is

41

an arbitrary basis of CN , then we can also perform a projective measurement onto the basis

B.

In the most general setting, a measurement can be any collection of matrices

{Mj | 1 ≤ j ≤ m} such that
∑m

j=1M
†
jMj = I. Each matrix Mj is then referred to as the jth

measurement operator. When the measurement is performed on a state |ψ〉, with probability

〈ψ|M †
jMj |ψ〉 outcome j occurs and the state is transformed into

Mj |ψ〉√
〈ψ|M †

jMj |ψ〉

From these equations, one can see that the states |ψ〉 and eiθ |ψ〉 (where θ ∈ R) are indis-

tinguishable under any measurements. We therefore can multiply a quantum state by any

complex number of norm 1 without changing the behavior of the system.

4.1.3 Density matrices

Up until now, we have represented quantum states by vectors of the form

|ψ〉 =
N∑
k=0

αk |k〉

From now on, we will refer to such states as a pure states, in order to distinguish them from

the more general class of mixed states, which we will now introduce. In this case, the state

of a quantum system is a mixture of a pure states. In other words, there is a collection of

states |ψi〉 and probabilities pi such that the system is in state |ψi〉 with probability pi. Such

a state is represented by the density matrix

ρ =
∑
i

pi |ψi〉 〈ψi| (4.1)

For brevity, the density matrix |ψ〉 〈ψ| for a pure state |ψ〉 is often denoted by φ. Using this

convention, the above equation becomes ρ =
∑

i piψi.

Mixed states typically occur when one measures part of the quantum system but leaves

the rest of it undisturbed. In this case, each of the states |ψi〉 is the state that remains when

measurement outcome i occurs (which happens with probability pi).

42

A matrix M is Hermitian if M = M †. We say that a Hermitian matrix is positive

semidefinite if all of its eigenvalues are nonegative. The trace trM of a matrix M is defined

to be the sum of its diagonal entries in any basis. It is a basic property of the trace that it

is independent of the basis chosen. If M is Hermitian, than the trace is also the sum of the

eigenvalues of M . A density matrix can alternatively be defined as a positive semidefinite

matrix ρ such that tr ρ = 1. In general, the state of a quantum system can be any density

matrix. By diagonalization, this definition is equivalent to (4.1).

If the system is in state ρ where ρ is a density matrix, then applying a unitary U results in

the state UρU †. Applying the measurement results in outcome j with probability trM †
jMjρ

and transforms the system into the state

MjρM
†
j

trM †
jMjρ

One can verify that these definitions are consistent with the definitions previously given for

pure states.

4.2 Tensor products and qubits

In the previous section, we took an abstract approach without worrying about how states

are actually constructed. On a classical computer, the basic unit of information is the bit

which takes values in {0, 1}. On a quantum computer, the basic unit of information is the

qubit. When the state is pure, a qubit takes values in the complex vector space C2. When it

is a mixed state, a qubit is represented by a 2× 2 density matrix.

On a classical computer, the state space of two smaller m- and n-bit systems is the

direct product of their state spaces and the global state is simply the concatenation of the

states of the subsystems. The tensor product is the quantum analogue of concatenation. We

define the tensor product of dimensions M and N to be the MN -dimensional complex space

CM ⊗CN ; it is spanned by tensor products of vectors of the form |j〉⊗ |k〉 which we define to

be linearly independent and orthogonal. The tensor product |ψ〉⊗ |φ〉 is defined by requiring

that the operator ⊗ is bilinear. We often abbreviate |ψ〉⊗ |φ〉 as |ψ〉 |φ〉, |ψ, φ〉 or |ψφ〉. It is

43

important to note that ψφ does not denote multiplication in this context, even when ψ and

φ are numbers.

Let |ψ〉 =
∑M−1

j=0

∑
k = 0N−1αjk |jk〉 and |φ〉 =

∑M−1
j=0

∑N−1
k=0 βjk |jk〉 be pure states in

CM ⊗CN . The inner product of |ψ〉 and |φ〉 is defined to be 〈ψ|φ〉 =
∑M−1

j=0

∑N−1
k=0 αβ

∗. It is

often convenient to refer to the components of a tensor product as registers. For example, in

the basis state |jk〉 = |j〉 ⊗ |k〉 in the above superpositions, |j〉 is stored in the first register

and |k〉 is stored in the second. Using this terminology, if U and V are M ×M and N ×N

unitary matrices, than U ⊗ V corresponds to applying U to the M -dimensional register and

V to the N -dimensional register. Formally, U ⊗ V is defined by

(U ⊗ V)(|ψ〉 ⊗ |φ〉) = (U |ψ〉)⊗ (V |φ〉)

for all |ψ〉 ∈ CM and |φ〉 ∈ CN . If {Aj | 1 ≤ j ≤ a} and {Bk | 1 ≤ k ≤ b} are measure-

ment operators on CM and CN , then {Aj ⊗Bk | 1 ≤ j ≤ a and 1 ≤ k ≤ b} is a measurement

operator on CM ⊗ CN .

If the density matrix of the M -dimensional register is ρ and the state of the N -dimensional

register is σ, then the density matrix for the overall system is ρ⊗ σ. In general, the state of

the overall system is an MN ×MN density matrix.

Since quantum systems are combined by taking tensor products, all states on a quantum

computer are built from tensor products of qubits. Therefore, the state space of an n-qubit

quantum computer is (C2)⊗n =
⊗n

k=1 C2 ∼= C2n . As we often do with classical computers, we

will work from a higher level of abstraction and deal with N -dimensional registers. However,

it is important to remember that in the end everything must be done in terms of qubits1.

1Just as one could construct a classical computer in which the basic unit of information had more than 2
values, it is conceivable that one could implement a quantum computer the basic unit of information was
a d-valued register. However, since these can be implemented in terms of qubits, we shall assume that
qubits are the basic unit of storage.

44

4.3 Elementary operations

In the last section, we introduced qubits: the elementary storage primitives used on a quan-

tum computer to construct larger quantum registers. In this section, we discuss the elemen-

tary operations from which all other quantum operations are built. A composition of the

basic operations (or gates) introduced in this section will be called a quantum circuit. When

we say that something can be done on a quantum computer in time T , we mean that there

is a quantum circuit with T gates that accomplishes this task.

Because quantum error correction can only handle a finite set of gates, it isn’t feasible

to implement arbitrary quantum operations directly. Instead there is a small set of gates

that can be performed fault-tolerantly and all other logical operations must be created by

composing these gates. A set of gates is called universal if compositions of gates in the set

can approximate any other operation to an arbitrary degree of precision. One example of a

universal gate set consists of the Hadamard, π/8 and CNOT gates. We will now introduce

each of the gates in this set. The Hadamard gate acts on a single qubit and is represented

by the 2× 2 unitary matrix

H =
1√
2

1 1

1 −1


This matrix maps the state |0〉 to the superposition (|0〉 + |1〉)/

√
2. When the input state

is |1〉, the output is (|0〉 − |1〉)/
√

2. Thus, in general, it sends |k〉 to (|0〉 + (−1)k |1〉)/
√

2,

so the Hadamard gate creates a superposition of the same basis states for both inputs but

multiplies the coefficient of |1〉 by −1 in the output state when the input is |1〉. The π/8

gate is also a single qubit gate and has the effect of multiplying the phase of |1〉 by eiπ/4; it

is represented by the 2× 2 unitary matrix1 0

0 eiπ/4


The controlled-NOT (CNOT) gate is a two-qubit gate. If the input is a basis state |j〉 |k〉

where j, k ∈ {0, 1}, then the output is |j〉 |j ⊕ k〉 where ⊕ denotes addition modulo 2. It is

45

represented by the 4× 4 unitary matrix

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


While the Hadamard, π/8 and CNOT gates are sufficient to approximate any N × N

unitary matrix, there are also several other useful gates that we will now introduce. The

Pauli gates are a set of single-qubit operations that form a group under multiplication (up

to global phase). They are given by the 2× 2 unitary matrices

I =

1 0

0 1

 X = σX =

0 1

1 0

 Y = σY =

0 −i

i 0

 Z = σZ =

1 0

0 −1


The CNOT gate we introduced earlier is a special case of a controlled operation. In

general, if U is a unitary acting on an N -dimensional register then a controlled-U operation

with n controls is an operation that acts on the space (C2)⊗n⊗CN . If the input is |b1 · · · bn〉⊗

|ψ〉 where each bk ∈ {0, 1} and |ψ〉 ∈ CN , then the output is |b1 · · · bn〉⊗(U |ψ〉) if each bk = 1

and |b1 · · · bn〉 ⊗ |ψ〉 otherwise. The unitary matrix for this operation is given by

CU = (I − |1n〉 〈1n|)⊗ I + |1n〉 〈1n| ⊗ U

We note that the CNOT operation is recovered from this formula when U = X and n = 1.

Another important controlled operation is the Toffoli gate. In this case, U = X and n = 2;

this operation has the effect of taking the AND of the first two qubits and XORing it into

the third when the input is a computational basis state. One can also consider the problem

of implementing a controlled operation for some fixed U and general n. Barenco et al.

showed [20] that this problem can be solved using O(n2) basic operations.

4.4 Quantum teleportation

In this section we introduce quantum teleportation [21]. As we shall see later in Chapter 5,

teleportation has applications to efficiently implementing quantum circuits in 2D quantum

46

architectures.

Quantum teleportation allows the information in a qubit to be moved to a distant location

using a phenomenon known as quantum entanglement. A pure state |ψ〉 in CM ⊗ CN is

separable if |ψ〉 = |ψ1〉 |ψ2〉 where |ψ1〉 ∈ CM and |ψ2〉 ∈ CN ; it is entangled if no such

decomposition exists.

The classic examples of entangled states are the Bell basis which we denote by

|Φ0〉 =
|00〉+ |11〉√

2
|Φ1〉 =

|01〉+ |10〉√
2

|Φ2〉 =
|01〉 − |10〉√

2
|Φ3〉 =

|00〉 − |11〉√
2

Up to global phase, these can be written as |Φ`〉AB = σB` |Φ0〉AB. (The superscripts A and

B are simply labels that allow us to refer to the corresponding registers.) In the quantum

teleportation setting, Alice has a state |ψ〉S = α |0〉S +β |1〉S that she wishes to send to Bob.

The two parties are not allowed to send quantum states to each other but each have one

qubit of a Bell state σB` |Φ0〉 and can communicate classically.

To perform quantum teleportation, Alice performs a measurement in the Bell basis on

the SA registers. If the measurement outcome is |Φk〉, then a simple calculation shows that

the resulting state is

|Φk〉SA ⊗ σ`σk |ψ〉B

Alice then sends the classical measurement outcome k to Bob; since ` is known, Bob then

causes the overall state to become

|Φk〉SA ⊗ |ψ〉B

up to global phase by applying the Pauli operation (σ`σk)
−1 to his register B. Observe

that Alice’s state |ψ〉 has been recovered in Bob’s register. This process only uses local

operations, entanglement and classical communication, so it can be interpreted as showing

that entanglement combined with classical communication yields quantum communication.

4.5 The swap test

As we mentioned in Chapters 1 and 2, one way of approaching isomorphism problems from

a quantum perspective is to prepare a quantum state that represents the isomorphism class

47

of an object [3]. In the case of two graphs X and Y , the desired states |X〉 and |Y 〉 have the

property that |X〉 = |Y 〉 if X ∼= Y and 〈X|Y 〉 = 0 if X 6∼= Y .

In order to make use of such states, we need a way to compare two orthonormal states.

This is of course easy for computational basis states. It can also be done in the case where

|X〉 and |Y 〉 can be prepared efficiently using the quantum circuits UX and UY applied to

the state |0〉. In this case, we can simply prepare the state |X〉, apply U †Y and measure in

the computational basis. If |X〉 = |Y 〉, then we will observe |0〉 while if 〈X|Y 〉 = 0, we

will observe a computational basis state that is orthogonal |0〉. This latter claim is a simple

consequence of the fact that unitary matrices respect the inner product.

However, we would also like a way to compare states that are prepared using non-unitary

procedures such as those that involve measurements. The swap test [28] can compare pairs

of arbitrary states. It does not depend on how the states are prepared so any method can

be used. In fact, the swap test provides a method for estimating the absolute value of

inner product between two states, so we can do more than just distinguish equal states from

orthogonal states.

We now give a description of the swap test. Let |ψ〉 and |φ〉 be the two states in CN

that we wish to compare. The swap test is performed by preparing a qubit |c〉 in the state

1√
2

(|0〉+ |1〉) and applying a swap controlled by |c〉 to the states |ψ〉 and |φ〉. This results

in the state

1√
2

(|0〉 |ψ〉 |φ〉+ |1〉 |φ〉 |ψ〉)

A Hadamard gate is then applied to the control qubit and it is measured in the computational

basis. A simple calculation shows that the probability of measuring 0 is Pr(0) = (1 +

|〈ψ|φ〉|2)/2. Therefore, if |ψ〉 = |φ〉, then the swap test will always output |0〉. However, if

〈ψ|φ〉 = 0 then 0 will be observed with probability exactly 1/2. Thus, the swap test allows

these two cases to be distinguished with one-sided error. By repeating the swap test on more

pairs of states, the probability of error can be made arbitrarily close to 1.

48

4.6 Grover’s algorithm

In this section, we’ll explore Grover’s algorithm [52, 25]2, which we will apply to isomorphism

testing later in Chapter 12.

Grover’s algorithm can be interpreted as a quantum analogue of brute-force search. Sup-

pose that we are trying to solve a difficult problem. An obvious algorithm is to perform a

brute force search in which we enumerate all candidates for solutions and test if each of them

really is a solution. If the space being searched has size N , this takes Θ(N) time classically

even when we allow randomized algorithms. On a quantum computer, we can use Grover’s

algorithm to accomplish this task in Θ(
√
NpolylogN) time.

4.6.1 The algorithm

The notion of an oracle is essential in Grover’s algorithm. Assume3 that N = 2n and let

f : {0, 1}n → {0, 1} be a function such that f(x) = 1 if and only if x is a solution to the search

problem. Then the oracle for f is Of : Cn⊗C2 → Cn⊗C2 where Of |x〉 |y〉 = |x〉 |y ⊕ f(x)〉.

When Of is applied to a state |x〉
(
|0〉−|1〉

2

)
, we get (−1)f(x) |x〉

(
|0〉−|1〉

2

)
. Thus, the phase of

each basis state that corresponds to a solution is multiplied by −1. Since |0〉−|1〉
2

= HX |0〉,

this state can be initialized efficiently so we can view the oracle as acting on the phases

in this way. Since it is more convenient for Grover’s algorithm, we define the operation

O′f : Cn → Cn where O′f |x〉 = (−1)f(x) |x〉 and use it instead of Of .

We start with the state |0〉. The first step in Grover’s algorithm is transform this into

the state

|ψ〉 =
1√
N

N−1∑
x=0

|x〉 (4.2)

This is accomplished by applying a Hadamard gate to every qubit.

Grover’s algorithm works by applying the Grover iteration G = H⊗n(2 |0n〉 〈0|−I)H⊗nO′f
k times where k is a carefully chosen positive integer which we shall discuss later. Note that

2We follow the description from [89].

3Note that we can always round N up to the next power of 2.

49

2 |0n〉 〈0|−I is the operation that multiplies the phase of the basis state |0〉 by −1 and leaves

all other phases unchanged. This operation can therefore be implemented using a controlled

AND operation in conjunction with single-qubit gates.

4.6.2 Analysis

We will now sketch the analysis of Grover’s algorithm. First, we note that

H⊗n(2 |0n〉 〈0| − I)H⊗n = 2 |ψ〉 〈ψ| − I

so

G = (2 |ψ〉 〈ψ| − I)O′f

Let M = |f−1(1)| be the number of solutions in the search problem. The main idea

is to consider the two dimensional subspace S spanned by the uniform superposition

|α〉 = 1√
N−M

∑
x∈f−1(0) |x〉 of all non-solutions and the uniform superposition |β〉 =

1√
M

∑
x∈f−1(1) |x〉 of all solutions. It is easy to see that

|ψ〉 =

√
N −M
N

|α〉+

√
M

N
|β〉

so the initial state before any Grover iterations have been performed is in the subspace S.

This also implies that 2 |ψ〉 〈ψ| − I maps vectors in S into S. It is easy to verify that on the

subspace S, O′f is equivalent to the operation

2 |α〉 〈α| − I

so O′f preserves the subspace S as well.

By the preceding paragraph, we can restrict our analysis to the subspace S. Each Grover

iteration then corresponds to the operation

(2 |ψ〉 〈ψ| − I) (2 |α〉 〈α| − I)

which is a reflection about |α〉 followed by a reflection about |ψ〉. Thus, each Grover iteration

is a rotation in S. One then shows that each Grover iteration rotates towards the solutions

50

|β〉 by an angle of θ = Θ(
√
M/N). Since we need to rotate by a total angle of about π/2, it

follows that we can obtain a good approximation to |β〉 after O(
√
N/M) Grover iterations.

It is worth noting that — as described — this algorithm requires that we know the number of

solutions M beforehand. Of course, this is not the case in real search problems. Fortunately,

this assumption was eliminated in subsequent work [25].

4.6.3 Collision detection

As we shall see later in Chapter 12, an application of Grover’s algorithm that has important

implications for isomorphism testing is the collision detection problem. In this problem, we

are given function f : [N]→ [N] that is k-1 where k ≥ 2. That is, for each y in the image of

f , there are exactly k values x ∈ [N] such that f(x) = y. The problem is to find a collision;

this is a pair of distinct elements x1 6= x2 ∈ [N] such that f(x1) = f(x2).

We can solve this problem by applying Grover’s algorithm as in [26]. First, we choose a

set A of size 3
√
N/k uniformly at random. We can test if A contains a collision in O(3

√
N/k)

time by hashing. If it does not, there are M = (k − 1) 3
√
N/k = Θ(k2/3N1/3) values x ∈ [N]

such that x 6∈ A but f(x) ∈ f [A]. We can construct an oracle Og that tests this condition

using a circuit that implements binary search since A can be sorted beforehand in time

O(3
√
N/k log(N/k)). This takes O(logN) time plus a query to Of . By applying Grover’s

algorithm to Og, we obtain an algorithm that solves the collision problem in O(
√
N/M) =

O(3
√
N/k) iterations. This translates to Õ(3

√
N/k) time and O(3

√
N/k) queries to Of .

4.7 The hidden subgroup problem

The hidden subgroup problem, is at the heart of most exponential quantum speedups (cf. [39,

115, 116, 38]) and is closely related to isomorphism testing. It is especially relevant to

this work since many isomorphism testing problems can be formulated as hidden subgroup

problems.

In this problem, we are given a generating set S, a group G, and a function f : G → A

such that f(x) = f(y) if and only if xy−1 ∈ H for some unknown subgroup H and an

51

arbitrary set A. As with Grover’s algorithm, we are able to access f via an oracle Of and

our goal is to compute a generating set for the hidden subgroup H.

The hidden subgroup problem has important applications. For instance, integer fac-

torization reduces to the hidden subgroup problem on the group Z. This is the basis of

Shor’s [115] algorithm which can factor integers in polynomial time. Shor’s algorithm [115]

for solving the discrete logarithm problem is similarly based on a hidden subgroup problem

over a finite Abelian group [64] (cf. [31]).

The problem of testing isomorphism of two graphs reduces to computing generators for

the automorphism group of a graph. To see that this is an instance of the hidden subgroup

problem over the symmetric group (cf. [41]), let X be a graph and for any π ∈ Sym(X), let

Xπ denote the graph obtained by relabeling the vertices of the graph according to π. We

then define the function f : Sym(X) → A by f(π) = Xπ where A is the set of all graphs

on |X| vertices. The subgroup hidden by f is then Aut(G), so solving this hidden subgroup

problem is equivalent to computing a generating set for the automorphism group.

A similar reduction is possible for the group isomorphism problem. In fact, the reduction

is the same as for graph isomorphism except that the concepts for graphs are replaced with

the analogous concepts for groups. Group isomorphism reduces to the problem of computing

the automorphism group of the group via a clever counting argument4. Let us suppose that

we wish to compute a generating set for the automorphism group of G. For π ∈ Sym(G),

let Gπ be the group obtained by relabeling the elements of G according to the permutation

π. Define the function f : Sym(G) → A by f(π) = Gπ where A is the set of all groups of

size |G|. Then solving this hidden subgroup problem is equivalent to computing generators

for Aut(G). It is worth noting that the hidden subgroup problems for graph and group

isomorphism are both non-Abelian.

Unfortunately, progress has been extremely limited on finding efficient quantum algo-

rithms for non-Abelian hidden subgroup problems. Even for the Dihedral group of order

4James Wilson (personal communication)

52

2N (which has a cyclic normal subgroup of order N), the best quantum algorithm known

requires 2Õ(
√
N) time [98, 67, 66].

A more successful area of research has been the study of quantum algorithms for graph

isomorphism based on the symmetric hidden subgroup problem. However, most of the re-

sults are negative. While it is known that there is a measurement that solves the symmetric

hidden subgroup problem [41], there is no evidence that this measurement can be performed

efficiently. A series of results [54, 87] have since shown that the measurement must sat-

isfy a series of increasingly onerous requirements which make it increasingly unlikely that

it can be implemented efficiently. Most recently, it was shown [88] that the methods used

for the dihedral hidden subgroup problem cannot solve the symmetric hidden subgroup

problem efficiently enough to outperform the best classical algorithm known for graph iso-

morphism [18, 16]. It is still conceivable that there could be an efficient quantum algorithm

for the symmetric hidden subgroup problem. However, these results do strongly suggest that

new ideas would be required and it is unclear what they would be.

Much more success has been achieved for Abelian groups. In this case, Kitaev [64]

(cf. [31]) showed that the hidden subgroup problem can be solved in quantum polynomial

time.

4.7.1 Shor’s algorithm

Though the rest of this thesis does not depend on it, we present the the ideas behind Shor’s

algorithm for finite cyclic groups [115] in this section in order to give a flavor for the Fourier

sampling methods used in quantum algorithms for the Abelian hidden subgroup problem.

The algorithm for the Abelian hidden subgroup problem follows the same framework. The

concepts are simply generalized from cyclic groups to Abelian groups using representation

theory (the study of homomorphisms from groups to complex invertible matrices).

For the cyclic hidden subgroup problem, our group G = ZN is cyclic. This implies that

H is also cyclic since every subgroup of a cyclic group is also cyclic. Let r be the smallest

nonnegative integer such that H = 〈r〉. We note that the subgroup H is then simply all

53

nonnegative multiples of r that are less than N . Moreover, H ∼= ZN/r. Our goal will be to

compute r.

For this, we require the notion of a quantum Fourier transform. This is simply a unitary

version of the usual discrete Fourier transform and is defined by the matrix

F =

[
1√
N
ωxy
]

0≤x,y<N

where ω = e2πi/N . It is easy to verify that this matrix is unitary. It can also be implemented

using poly(n) basic operations [115].

The first step is to prepare a uniform superposition

1√
N

∑
x∈ZN

|x〉

of all group elements. Then we compute f by evaluating the oracle Of in a second register

1√
N

∑
x∈ZN

|x〉 |f(x)〉

By measuring the second register in the computational basis, we obtain the coset state

|zH〉 =
1√
N/r

N/r−1∑
x=0

|xr + z〉 |f(z)〉

for some z ∈ ZN . (Note that we are assuming that computations in the first register are

performed modulo N so the value in this register is always at least 0 and less than N .)

By discarding the second register and applying the quantum Fourier transform to the first

register, we obtain

√
r

N

N/r−1∑
x=0

N−1∑
y=0

ω(xr+z)y |y〉 =

√
r

N

N−1∑
y=0

ωzy
N/r−1∑
x=0

ωxyr |y〉

By considering the powers of ω on the unit circle in the complex plane,
∑N/r−1

j=0 ωjkr is N/r

if k is a multiple of N/r and 0 otherwise, so this simplifies to

√
r

N

r−1∑
k=0

ωzkN/r |kN/r〉

54

so measuring in the computational basis yields a multiple of N/r. The group of all such

multiples forms the subgroup 〈N/r〉 of ZN which has order r. Thus, repeating this process

log r ≤ O(logN) times, we obtain a generating set for 〈N/r〉 with high probability. We can

then recover N/r by taking the greatest common divisor of the generating set. Finally, we

obtain r by dividing N by N/r.

There is a classical reduction from factoring integers to order finding on the group Z×N .

A modification (cf. [89]) of the above algorithm yields an algorithm for order finding on this

group, which results in a quantum algorithm for factoring integers.

55

Part I

QUANTUM COMPUTING

56

Chapter 5

2D QUANTUM CIRCUITS

5.1 Introduction

As discussed in Chapters 1 and 2, quantum algorithms are typically formulated in an abstract

model that allows interactions between arbitrary pairs of qubits. However, on a physical

quantum computing device, the qubits are positioned in space and only neighboring qubits

are allowed to interact. One common arrangement that is used for the qubits is a two-

dimensional grid. Since it is usually possible for operations that act on disjoint sets of qubits

to be performed simultaneously, many quantum computing technologies also offer a large

amount of parallelism. These two considerations were the motivation for the kD nearest-

neighbor two-qubit concurrent (kD NTC) quantum architecture [124] (cf. [32]), in which the

qubits are arranged on the kD grid Zk and operations on disjoint sets of qubits are allowed

to be done in parallel. We show this grid along with an example set of operations that could

be performed simultaneously in Figure 5.1a for the case where k = 2.

Another important aspect of a practical quantum computing architecture is that of a

classical controller, which is a classical computer that decides which quantum operations

should be performed at each point in the computation. The classical controller is allowed

to make these decisions by means of a randomized polynomial-time computation that can

depend on the original input to the problem, any intermediate measurement outcomes and

the operations chosen at previous steps.

57

(a) Interactions in the 2D

NTC architecture: the grid

lines indicate the two-qubit

interactions which can be per-

formed

(b) An example of concurrent

interactions in the 2D NTC

architecture: the components

connected by the thick red

edges indicate concurrent in-

teractions and the thick red

circles indicate single-qubit

interactions

A special case of models of quantum computation that allow a classical controller is one-

way quantum computing [95], which performs computations via a series of measurements

on quantum states. The idea of using a classical controller to determine which operations

to apply at each step is also implicit in the pre- and post-processing stages of Shor’s algo-

rithm [115], and is often assumed for fault-tolerant quantum computation. Since quantum

operations are far more expensive than classical operations, we are primarily concerned with

the depth of the quantum circuit and do not count the operations performed by the classical

controller as long as they take polynomial time.

In this chapter, we study both the classical-controller kD NTC (kD CCNTC) architecture

— a classical controller model where interactions are restricted to a kD grid — as well as the

non-adaptive kD NTC 1 (NANTC) architecture where no classical controller is used and the

1The original NTC architecture described by Van Meter and Itoh [124] is in fact NANTC; however, we

58

operations applied cannot depend on intermediate measurement outcomes. The CCNTC

model ignores the cost of offline computations performed by the classical controller and

assumes that there are no classical locality restrictions. Since quantum computing technology

is much less developed than classical computing technology, the clock rates of quantum

computers are much lower than those of their classical counterparts. This makes ignoring

the cost of classical computations a realistic assumption. Because quantum computers are

already forced to be parallel devices in order to perform operations fault tolerantly [2], the

total runtime of a quantum circuit is proportional to the depth of the corresponding quantum

circuit. The restriction that interactions are between neighbors on a kD grid comes from

the underlying physical device: in most technologies, only qubits that are spatially close can

interact.

Another related architecture that is useful to keep in mind for the purpose of comparison

is the classical-controller abstract concurrent (CCAC) architecture. This model of quantum

computation allows the use of a classical controller and but places no restrictions on which

pairs of qubits can interact. In other words, all pairs of qubits are considered to be neighbors.

This is the abstract architecture in which most quantum algorithms are formulated.

5.1.1 Definitions

Before stating the main results of this chapter, we formally define models of computation

and the measures of complexity that are required. Recall from Chapter 4 that the one- and

two-qubit operations that can be performed by the hardware are called the basic operations.

We assume that the basic operations are a universal gate set so that any one- or two-

qubit unitary can be constructed from the basic operations. We also assume that the basic

operations include measurement in the computational basis.

It is useful to distinguish between physical and logical timesteps. During each physical

timestep, we can perform any set of disjoint basic operations. During a logical timestep,

prefer NANTC to avoid confusion with CCNTC where a classical controller is used.

59

we allow any set of disjoint t-qubit operations to be performed. In this chapter, we take

t = O(k) and assume k is constant.

Definition 5.1.1 (NANTC). In the kD NANTC model, computation is performed by apply-

ing a sequence of sets of basic operations S1, . . . , Sd to the kD grid of qubits. We require that

the operations in the set Si are disjoint and are either single-qubit operations or two-qubit

operations between neighbors in the kD grid. The sequence of sets of operations must be

randomized polynomial-time computable from the size n of the input.

In the models where a classical controller is present, the classical controller is invoked

after each physical timestep to determine which operations to apply at the next step.

Definition 5.1.2 (CCAC). Let M be a randomized polynomial-time Turing machine that

takes the input x and the measurement outcomes from the first i physical timesteps and

outputs a set M1, . . . ,M` of disjoint basic operations to apply to the qubits at the i+ 1th

physical timestep. If no more physical timesteps are to be performed, then M outputs the

special symbol �. Computation in the CCAC model is performed at physical timestep i by

using M to compute the set of operations to apply and then applying them to the qubits.

The CCNTC model is similar except that it also requires that two-qubit operations are

only performed between neighbors on the kD grid.

Definition 5.1.3 (CCNTC). Let M be a randomized polynomial-time Turing machine that

takes the input x and the measurement outcomes from the first i physical timesteps and

outputs a set M1, . . . ,M` of disjoint basic operations to be applied to the kD grid of qubits at

the i+ 1th physical timestep. We require that each Mi is either a single-qubit operation or a

two-qubit operation between neighbors in the kD grid. If no more physical timesteps are to

be performed, then M outputs the special symbol �. Computation in the CCNTC model is

performed at physical timestep i by using M to compute the set of operations to apply and

then applying them to the kD grid of qubits.

60

In this chapter, the machine M from Definitions 5.1.2 and 5.1.3 will be deterministic

except for the pre- and post-processing stages of Shor’s algorithm.

For the NANTC model, a quantum circuit is the sequence of basic operations M1, . . . ,M`

to be applied to the kD grid of qubits. For the CCAC and CCNTC models, a quantum circuit

is described by the machine M from Definitions 5.1.2 and 5.1.3. We now define three standard

measures of cost in these models.

Definition 5.1.4. The depth of a quantum circuit is

(a) d for the NANTC model where S1, . . . , Sd is the sequence of operations from Defini-

tion 5.1.1 for an input of size n and

(b) maxx∈{0,1}n maxr dx,r for the CCAC and CCNTC models where dx,r is the number of

physical timesteps it takes for the machine M from Definitions 5.1.2 and 5.1.3 to output

� when the input is x and the random seed is r. The first max is taken is over all

possible inputs x of length n and the second is over all possible random seeds r.

We note that the depth only changes by a constant factor if we use logical timesteps

instead of physical timesteps in the above definition. This is due to our assumption that any

operation performed in a logical timestep acts on at most O(k) = O(1) qubits.

Definition 5.1.5. The size of a quantum circuit is

(a)
∑

i |Si| for the NANTC model where S1, . . . , Sd is the sequence of operations from

Definition 5.1.1 for an input of size n and

(b) maxx∈{0,1}n maxr sx,r for the CCAC and CCNTC models where Sx,r is the total number

of operations applied when the input is x and the random seed is r. The first max is

taken over all possible inputs x of length n and the second is over all possible random

seeds r.

In the next definition, we assume that the qubits are indexed by N for the CCAC model.

Definition 5.1.6. The width of a quantum circuit is

61

(a) the size of the smallest hypercube that contains all of qubits acted on by operations in

the sets Si for the NANTC model where S1, . . . , Sd is the sequence of operations from

Definition 5.1.1 for an input of size n,

(b) maxx∈{0,1}n |Ax| for the CCAC model where Ax is the smallest subset of N such that

every qubit acted on is contained in Ax for input x and all random seeds r and

(c) maxx∈{0,1}n |Ax| for the CCNTC model where Ax is the smallest hypercube in Zk such

that every qubit acted on is contained in Ax for input x and all random seeds r

Typically, the depth is the most important metric to optimize since it is proportional to

the amount of time required to execute the quantum operations. The width is also impor-

tant since the number of qubits is currently quite limited but the size is largely irrelevant.

Moreover, if parallelism is properly exploited then we expect the size to be roughly the depth

times the width.

5.1.2 Results

In this subsection, we state the main results of this chapter. Our first result allows the

standard classical controller abstract concurrent (CCAC) architecture to be simulated in the

kD CCNTC architecture with constant factor overhead in the depth. We accomplish this

using a 2D CCNTC teleportation scheme that allows arbitrary interactions on disjoint sets of

qubits to be performed in constant depth. (See Chapter 4 for the basic idea behind quantum

teleportation.)

Theorem 5.1.7. Suppose that C is a CCAC quantum circuit with depth d, size s and width

n. Then C can be simulated in O(d) depth, O(sn) size and n2 width in the 2D CCNTC

model.

This result justifies the standard assumption that non-local interactions can be performed

efficiently. Simulating each of the d timesteps from the CCAC circuit in the 2D CCNTC

model requires an O(n) time classical computation; this can be reduced to O(log n) time if

the classical controller is a parallel device or if it includes a simple classical circuit. Since the

62

clock speeds of classical devices are currently much faster than those of quantum devices,

this overhead is not likely to be significant.

Corollary 5.1.8. Let E be a quantum operation on n qubits. Let d1 and d2 be the minimum

depths2 required to implement E with error at most ε using poly(n) size and poly(n) width in

the CCAC and kD CCNTC models respectively where k ≥ 2. Then d1 = Θ(d2).

It is possible to implement Shor’s algorithm [115] in constant depth in the CCAC

model [27] which implies that it can also be implemented in constant depth in the 2D

CCNTC model.

Corollary 5.1.9. Shor’s algorithm can be implemented in constant depth, polynomial size

and polynomial width in the 2D CCNTC model.

Since controlled-U operations and fanouts can also be performed in constant depth and

polynomial width in the CCAC model [57, 27, 121], we also have the following corollary.

Corollary 5.1.10. Controlled-U operations with n controls and fanouts with n targets can

be implemented in constant depth, poly(n) size and poly(n) width in the 2D CCNTC model.

Our main technical result allows any subset of qubits to be reordered in constant depth.

Theorem 5.1.7 follows from this as a corollary.

Theorem 5.1.11. Suppose that we have an n × n grid where all qubits except those in the

first column are in the state |0〉. Let T ⊆ {0, . . . , n− 1} and let π : T → {0, . . . , n− 1} be a

1−1 map such that for all j ∈ T with π(j) = 0, [0, j−1] ⊆ T . Set m = |{j ∈ T | π(j) 6= 0}|.

Then we can move each qubit at (0, j) to (π(j), 0) for all j ∈ T in O(1) depth, O(mn) size

and (m+ 1)n ≤ n2 width in the 2D CCNTC model.

Previous work showed that any operation in the Clifford group can be implemented in

constant depth in the one-way model [97]. In particular, this implies that the reordering of

2Here, we assume that there is a minimum depth required to implement E in the CCAC model when the
size and width are poly(n).

63

Theorem 5.1.11 can be performed in constant depth in the CCNTC model. However, this

can require a large number of qubits, since in the one-way model, qubits are not reused once

they are measured. Therefore, since measurements are used to perform all computations in

the one-way model, the number of qubits required is comparable to the number of gates.

Upper bounds for the depth of quantum circuits when converting between various ar-

chitectures with no classical controller were previously studied by Cheung, Maslov and Sev-

erini [30]. Their results imply that the CCAC model can be simulated in the kD CCNTC

model with O(k
√
n) factor depth overhead, O(n) size overhead and no width overhead. In

contrast to our results, their techniques are based on applying swap gates to move the inter-

acting qubits next to each other and do not perform any measurements.

Implementations of Shor’s algorithm in the kD CCNTC model with various super-

constant depths were previously known for k = 1 and k = 2. Fowler, Devitt and Hol-

lenberg [45] showed a 1D CCNTC circuit for Shor’s algorithm which requires O(n3) depth,

O(n4) size and O(n) width where n is the number of bits in the integer which is being fac-

tored. Maslov [78] showed that any stabilizer circuit can be implemented in linear depth

in the 1D CCNTC model, from which the result of Fowler, Devitt and Hollenberg [45] can

be recovered. Kutin [68] gave a more efficient 1D CCNTC circuit which uses O(n2) depth,

O(n3) size and O(n) width. For the 2D CCNTC model, Pham and Svore [92] showed an im-

plementation of Shor’s algorithm in polylogarithmic depth, polynomial size and polynomial

width.

Our result that controlled-U operations can be performed in constant depth, polynomial

width and polynomial size in the CCNTC model was previously known to hold in the CCAC

model. This line of work was started by Moore [86] who showed that parity and fanout are

equivalent and posed the question of whether fanout has constant-depth circuits. Høyer and

Špalek [57] proved that if fanout has constant-depth circuits then controlled-U operations can

also be implemented in constant depth with inverse polynomial error. Raussendorf, Browne

and Briegel [96] showed that any Clifford operation can be performed in constant depth on

a one-way quantum computer while Browne, Kashefi and Predrix [27] proved that one-way

64

quantum computation is equivalent to unitary quantum circuits with fanout. Combined

with the aforementioned result of Høyer and Špalek [57], this implies that constant depth

adaptive circuits for fanout can be used to implement controlled-U operations with inverse

polynomial error in constant depth in the CCAC model. Takahashi and Tani [121] reduced

the size of this circuit by a polynomial and made it exact.

In many technologies, measurements are much more costly than unitary operations. For

this reason, we also consider the non-adaptive kD NANTC model. Here, there is no classi-

cal controller and the operations applied depend only on the size of the input and not on

intermediate measurement outcomes. Our result in this model is a characterization of the

complexity of controlled-U operations and fanouts.

Theorem 5.1.12. The depth required for controlled-U operations with n controls and fanouts

with n targets in the kD NANTC model is Θ(k
√
n). Moreover, this depth can be achieved with

size Θ(n) and width Θ(n).

If the clock speeds of the quantum computer and its classical controller are comparable,

then operations implemented using Theorem 5.1.12 are significantly faster than those imple-

mented using Corollary 5.1.10. For this reason, Theorem 5.1.12 may become a better option

as quantum computing technology matures.

The layout of the rest of this chapter is as follows. In Section 5.2, we review quantum

teleportation and describe teleportation chains. In Section 5.3, we describe our 2D telepor-

tation scheme and show that it allows arbitrary interactions to be implemented in constant

depth in the 2D CCNTC model. In Section 5.4, we show an algorithm that implements

controlled-U operations and fanouts for the kD NANTC model in depth O(k
√
n). In Sec-

tion 5.5, we describe how our techniques can be applied to obtain kD NANTC quantum

circuits for fanout with depth O(k
√
n). In Section 5.6, we prove a matching lower bound for

a class of operations that includes controlled-U operations and fanouts.

65

5.2 Quantum teleportation chains

As we shall see, teleportation is a useful primitive that allows non-local interactions to be

performed in a constant-depth circuit in the kD CCNTC model.

We briefly recall the essentials of the quantum teleportation procedure [21]. For a more

detailed description, see Chapter 4. Recall that in quantum teleportation, Alice has a state

|ψ〉S that she wishes to send to Bob and Alice and Bob share a Bell pair |Φ`〉AB. After

performing a Bell measurement on the registers S and A, Alice sends the measurement

outcome k to Bob. Bob is then able to recover the state |ψ〉A by applying the Pauli operation

σ`σk to his register B. The point of this procedure is that Alice has succeeded in sending a

quantum state to Bob using only entanglement and classical communication. No quantum

communication is necessary.

Let us now consider how quantum teleportation chains can be used in the the 1D CCNTC

model model to teleport qubits arbitrary distances in constant depth. The underlying idea

is very similar to the “wires for qubits” used in one-way quantum computation [95] and

work by Copsey et al. on quantum architecture [36] . Suppose that we have a qubit in

the state |ψ〉S along with m Bell states
∣∣Φ`j

〉AjBj . These are arranged on a line so that the

overall state is |ψ〉S
⊗m

j=1

∣∣Φ`j

〉AjBj . Our goal is to move qubit S to Bm. One way to do

this is to first teleport S to B1 by performing a Bell measurement on SA1. We then store

the measurement outcome k1 but do not apply the Pauli operation that would allow us to

recover the state |ψ〉. From now on, we refer to this Pauli operation as the correcting Pauli

operation. At this point, the state of B1 is σ`1σk1 |ψ〉. Continuing this process, we obtain

the state
⊗m

j=1

∣∣Φkj

〉∏1
j=m

(
σ`jσkj

)
|ψ〉Bm . Since

∏1
j=m

(
σ`jσkj

)
is just a Pauli operation, we

obtain the state
⊗m

j=1

∣∣Φkj

〉
|ψ〉Bm in a single quantum operation. The crucial point here is

that all of the Bell measurements are performed on disjoint pairs of qubits so they can all

be done in parallel. Thus, we can perform a non-local interaction of arbitrary distance in

constant depth. It is important to note that this is not possible without a classical controller

since otherwise there is no way to compute the correcting Pauli operation.

66

5.3 Depth complexity in the kD CCNTC model

In this section, we show that an arbitrary set of CCAC interactions corresponding to basic

operations can be performed in constant depth in the 2D CCNTC model. We assume that

there are n qubits on which the interactions are to be performed and store these in the

first column of a 2D n × n CCNTC grid. The qubit at location (i, j) is denoted by qi,j.

Since we must handle interactions between qubits that are not neighbors, we may as well

assume that the original n qubits are stored in the first column q0,0, . . . , q0,n−1 of qubits. The

remaining columns are used as ancillas to implement teleportation chains. We teleport each

of the n qubits horizontally to the right so that interacting pairs are in adjacent columns.

Since these teleportations are on disjoint sets of qubits, they can be performed in parallel

as in [95, 97, 123]. A second set of vertical teleportation chains is then used to move all

the qubits down to the first row. At this point, the interacting qubits are neighbors so the

interactions may be implemented directly. We then perform the reverse teleportations to

move the qubits back to their original positions.

5.3.1 An example of arbitrary interactions in the 2D CCNTC model

We show an example in Figure 5.2. The desired interactions are shown in Figure 5.2a.

The layout of the data qubits in the 2D grid is shown in Figure 5.2b; the ancilla qubits

are used to implement the teleportation chains and are initially set to |0〉. We start by

horizontally teleporting the qubits that interact to adjacent columns in Figure 5.2c where

the teleportation chains are denoted by the dotted red arrows. The red double arrow indicates

a swap operation; this is just a less expensive way of achieving the same result when the

qubits are neighbors. The next step is to vertically teleport the data qubits down to the first

row as shown in Figure 5.2d. Finally, all interacting qubits are now neighbors so we perform

the desired interactions in Figure 5.2e. The final reverse teleportations are not shown but

can be obtained by reversing the arrows in Figures 5.2c and 5.2d.

67

(a) (b) (c)

(d) (e)

Figure 5.2: Performing an arbitrary set of interactions in the 2D CCNTC model. The qubits

crosshatched green are the data qubits and the qubits shaded with diagonal downward blue

lines are ancilla qubits

68

5.3.2 An algorithm for performing arbitrary interactions in the 2D CCNTC model

In order to define our algorithm, we first show how to perform an arbitrary reordering of the

positions of the qubits in constant depth. We assume that there are n data qubits located

in the first column of the n × n grid; the remaining qubits are in the state |0〉. We let

T ⊆ {0, . . . , n− 1} be a subset of row indexes on which a 1− 1 map π : T → {0, . . . , n− 1}

is to be applied. This 1 − 1 map describes where the qubits with row indexes in T are to

be moved to on the x-axis. The reason that we specify T explicitly is because this allows

us to only perform teleportations on qubits that have row indexes in T . If |T | = o(n)

then this can result in a circuit that has asymptotically smaller size. The reordering can be

applied using Algorithm 1, which is based on the same technique as Figure 5.2. The notation

teleport(qi1,j1 , qi2,j2) where i1 = i2 or j1 = j2 means that a teleportation chain is applied to

move the state of qubit at (i1, j1) along the line to (i2, j2).

Algorithm 1 The algorithm for performing an arbitrary reordering of a subset of the qubits

in the 2D CCNTC model
Require: The n data qubits are in the first column, T ⊆ {0, . . . , n − 1} and π : T →

{0, . . . , n− 1} is a 1− 1 map. For all j ∈ T such that π(j) = 0, {k ∈ T c | k < j} = ∅

Ensure: Each qubit at (0, j) is moved to (π(j), 0) for all j ∈ T

1: function Reorder(T , π)

2: for j ∈ T do

3: teleport(q0,j, qπ(j),j)

4: end for

5: for j ∈ T do

6: teleport(qπ(j),j, qπ(j),0)

7: end for

8: end function

Our main technical result follows immediately from Algorithm 1.

69

Theorem 5.1.11. Suppose that we have an n × n grid where all qubits except those in the

first column are in the state |0〉. Let T ⊆ {0, . . . , n− 1} and let π : T → {0, . . . , n− 1} be a

1−1 map such that for all j ∈ T with π(j) = 0, [0, j−1] ⊆ T . Set m = |{j ∈ T | π(j) 6= 0}|.

Then we can move each qubit at (0, j) to (π(j), 0) for all j ∈ T in O(1) depth, O(mn) size

and (m+ 1)n ≤ n2 width in the 2D CCNTC model.

We note that the teleport operations in Algorithm 1 require an O(n) time classical com-

putation to determine the correcting Pauli matrix (see Section 5.2). Since this computation

simply involves multiplying O(n) Pauli matrices, it can be done more efficiently in O(log n)

time by arranging the multiplications in a binary tree. The O(log n) runtime requires either

that the classical controller is a parallel device or that it includes a special classical circuit

for computing the correcting Pauli operation. Since classical operations are much faster than

quantum operations on current devices, this overhead is unlikely to be a problem.

It is now straightforward to describe the algorithm for performing arbitrary interac-

tions.We first note that an arbitrary set of interactions can be defined by disjoint one and

two element subsets Jk of {0, . . . , n− 1} and basic operations Mk where 1 ≤ k ≤ ` and the

values in Jk denote the qubits on which the operation Mk is to be applied. The pseudocode

for performing arbitrary interactions in the 2D CCNTC model is shown in Algorithm 2.

The following theorem is a direct consequence of Algorithm 2.

Theorem 5.1.7. Suppose that C is a CCAC quantum circuit with depth d, size s and width

n. Then C can be simulated in O(d) depth, O(sn) size and n2 width in the 2D CCNTC

model.

Recalling the discussion following Theorem 5.1.11, we see that each of the O(d) timesteps

requires an O(n) time classical computation if the classical controller is a sequential device

or a O(log n) time computation if it is parallel or includes a simple classical circuit. The

time required to perform a single quantum operation is currently much longer than the time

required to execute an instruction on a classical processor so this overhead is likely to be

negligible.

70

Algorithm 2 The algorithm for performing arbitrary interactions in the 2D CCNTC model

Require: The n inputs are in the first column, each Jk is a disjoint one or two element

subset of {0, . . . , n− 1}, each Mk is a basic operation and |Jk1| ≤ |Jk2| for k1 ≤ k2

Ensure: The interactions specified by Jk and Mk are applied

1: function Interact(J1, . . . , J`, M1, . . . ,M`)

2: T := (); i := 0

3: for k := 1, . . . , ` do

4: if |Jk| = 1 then

5: i := 1

6: else

7: {j1, j2} := Jk where j1 < j2; (π(j1), π(j2)) := (i, i+ 1)

8: Append the elements of Jk to T

9: i := i+ 2

10: end if

11: end for

12: Reorder(T, π); i := 0

13: for k := 1, . . . , ` do

14: if |Jk| = 1 then

15: {j} := Jk

16: Apply Mk to q0,j

17: i := 1

18: else

19: Apply Mk to qi,0, qi+1,0

20: i := i+ 2

21: end if

22: end for

23: Perform the reverse teleportations to move the qubits back to their original positions

24: end function

71

The rest of our results for the kD CCNTC model follow from Theorem 5.1.7. Let Dn
denote the set of all n× n density matrices. A general quantum operation is represented as

a completely positive trace preserving (CPTP) map E : Dn → Dn. Obviously, any circuit

in the 2D CCNTC model can also be applied when arbitrary interactions are allowed. The

following corollary is immediate.

Corollary 5.1.8. Let E : Dn → Dn be a CPTP map and let ε ≥ 0. Let d1 and d2 be the

minimum depths required to implement E with error at most ε in the CCAC and kD CCNTC

models respectively where k ≥ 2. Then d1 = Θ(d2).

It is known that Shor’s algorithm can be implemented in constant depth, polynomial size

and polynomial width in the CCAC model [27] from which we obtain another corollary.

Corollary 5.1.9. Shor’s algorithm can be implemented in constant depth, polynomial size

and polynomial width in the 2D CCNTC model.

Because controlled-U operations and fanouts with unbounded numbers of control qubits

or targets can be performed in constant depth, polynomial size and polynomial width in the

CCAC model [57, 27, 121], we have the following result.

Corollary 5.1.10. Controlled-U operations with n controls and fanouts with n targets can

be implemented in constant depth, poly(n) size and poly(n) width in the 2D CCNTC model.

5.4 Controlled operations in the kD NANTC model

In this section, we show how to control a single-qubit U operation by n controls using O(k
√
n)

operations in the kD NANTC model. We start with an m × m grid; for reasons that will

become clear later, we require that m is odd. The control qubits are placed such that they

are not at adjacent grid points; the central 3× 3 square has no controls except when m = 3.

This is illustrated in Figures 5.3a, 5.4a, 5.5a and 5.6a for the cases where m = 3, m = 5,

m = 7 and m = 9. Let c be the center of the grid which corresponds to the target qubit. The

circuit works by considering each square ring in the grid with center c (i.e., a set of points

72

in the grid that all have the same distance to the center under the `∞ norm). We start with

the outermost such ring and propagate its control values into the next ring. At each such

step, some of the control values are combined so that all the values can fit into the smaller

ring. This continues until we reach a 3× 3 ring at which point we apply a special sequence

of operations to finish applying the controlled operation to the central qubit. We will show

that each stage can be implemented in constant depth so the overall depth is O(
√
n).

(a) (b) (c) (d)

Figure 5.3: A controlled operation on a 3 × 3 grid. The qubits crosshatched green are the

data qubits, the qubits shaded with diagonal upward orange lines are ancilla qubits which

store intermediate data and the qubits shaded with diagonal downward blue lines are ancilla

qubits which are currently unused.

5.4.1 The base case: the 3× 3 grid

We now describe how this circuit works in greater detail. First, consider the case where

m = 3. The grid starts as shown in Figure 5.3a; note that we do not force the central 3× 3

square to be devoid of controls in this case since this is the entire grid. All ancilla qubits

start in the state |0〉. We start by setting the lower left and upper right corner ancilla qubits

to the ANDs of their neighboring controls as shown in Figure 5.3b. Both of these operations

are disjoint, so this can be done in one logical timestep. The next step is to swap these two

corner qubits with the vertical middle qubits so they can interact with the central target

qubit; this is done in Figure 5.3c. Finally, we apply a U operation to the target qubit and

73

control by the two middle qubits in Figure 5.3d.

At this point, the target qubit has the desired value; however, there are two other ancilla

qubits in Figure 5.3d that must have their values uncomputed. This is done by applying the

operations of Figures 5.3b–c in reverse order.

(a) (b) (c)

(d) (e) (f)

Figure 5.4: A controlled operation on a 5 × 5 grid. See Figure 5.3 for the meaning of the

colors and shading used.

5.4.2 An example of the general case: the 5× 5 grid

We now consider an example of the general case where m = 5 as shown in Figure 5.4a. The

first step is to propagate the values of the outer ring inwards; since the inner ring is 3 × 3,

74

there are no controls in the inner ring so this can be done as shown in Figure 5.4b. We then

rotate the inner ring as in Figure 5.4c. At this point, the remaining operations to perform are

the same as in the 3× 3 case and are shown in Figures 5.4d–f. At this point the target qubit

has the desired value so we uncompute the intermediate ancillas by applying the operations

of Figures 5.4b–e in reverse order.

The same idea applies to an m×m grid except that when the inner rings have controls

(i.e. for m ≥ 7), the controls from the outer ring must be combined with those in the inner

ring at the same time they are propagated inwards. See Section 5.7 for examples of the 7×7

and 9× 9 cases.

5.4.3 An algorithm for controlled-U operations in O(
√
n) depth in the 2D NANTC model

We now present the algorithm used in Figures 5.3 – 5.6 for the general m×m grid. Consider

an odd m > 3. We denote the coordinates of the qubits on this grid by (x, y) where 0 ≤ x, y <

m. Let G be the set {0, . . . ,m−1}2 of all points on the grid and let c = ((m−1)/2, (m−1)/2)

be the central point. As discussed previously, the geometry induced by the `∞ norm is useful

for reasoning about this grid. From now on, all distances in this subsection are understood

to be with respect to the `∞ norm.

We will say that the kth ring is the set of points that have distance (m − 1)/2 − k to c

so the zeroth ring is outermost; we denote by Rk = (rk0 , . . . , r
k
`k

) the points of the kth ring

where rk0 is the bottom left corner and the rest of the points are in clockwise order.

The ring Rk contains 4
(
m−1

2
− k
)

controls so the entire grid has n =

4
∑

3<m−2k≤m
(
m−1

2
− k
)

= (1/2)(m2 − 9/2) controls for m > 3. In the case where m = 3,

there are 4 controls. Thus, it is indeed the case that the depth is O(
√
n).

We denote by qi,j the value stored at the point (i, j) and assume the operation to apply

to the target is U . The notation CU(y, x1, . . . , x`) denotes applying a controlled-U operation

to qubit y conditional on x1, . . . , x`. To apply a swap operation to qubits x and y, we write

swap(x, y). The pseudocode for the main algorithm is shown in Algorithm 3; the auxiliary

functions are shown in Algorithms 4 and 5.

75

Algorithm 3 The algorithm for implementing a controlled-U operation on an m×m grid

Require: m is odd

Ensure: A controlled-U operation is applied to the target

1: function Control(m)

2: k := 0

3: while m− 2k ≥ 3 do

4: Control-Stage(k)

5: k := k + 1

6: end while

7: Uncompute the intermediate ancillas by repeating all operations except for the final

CU operation in reverse order

8: end function

9: function Control-Stage(k) . k is the depth of the recursive call

10: if k > 0 then

11: Control-Clockwise(k)

12: Rotate(k)

13: end if

14: if m− 2k = 3 then . In this case, we have a 3× 3 grid

15: qk,k ← qk,k ⊕ qk,k+1 ∧ qk+1,k

16: qk+2,k+2 ← qk+2,k+2 ⊕ qk+1,k+2 ∧ qk+2,k+1

17: swap(qk,k, qk,k+1)

18: swap(qk+2,k+1, qk+2,k+2)

19: CU(qk+1,k+1, qk,k+1, qk+2,k+1)

20: end if

21: end function

76

Algorithm 4 The CONTROL-CLOCKWISE operation

1: function Control-Clockwise(k)

2: C = ((k, k), (k,m− k− 1), (m− k− 1,m− k− 1), (m− k− 1, k)) . The corners of Rk

3: D = ((0, 1), (1, 0), (0,−1), (−1, 0)) . The directions to follow between the corners of

Rk

4: for i := 0, . . . , 3 do

5: i− := i− 1 mod 4

6: i+ := i+ 1 mod 4

7: qCi ← qCi ⊕ qCi−Di ∧ qCi+Di− . Compute the corner ancilla

8: Let s0, . . . , s`k/4 be the points in Rk from Ci to Ci+ excluding Ci+

9: j := 2

10: while j < `k/4− 1 do . Store the AND of two values in each ancilla in L except

for the last

11: qLj ← qLj ⊕ qLj−Di ∧ qLj+Di−
12: j := j + 2

13: end while

14: p := L`k/4−1

15: if m− 2k > 3 then . For the last ancilla, use three controls unless we have a

5× 5 grid

16: qp ← qp ∧ qp−Di ∧ qp+Di− ∧ qp+Di
17: else

18: qp ← qp ∧ qp−Di ∧ qp+Di−
19: end if

20: end for

21: end function

77

Algorithm 5 The ROTATE operations

1: function Rotate(k)

2: i := 1

3: while i ≤ `k do

4: i+ := i+ 1 mod `k

5: swap(qrki , qrki+
)

6: i := i+ 2

7: end while

8: end function

The following theorem is an immediate consequence of Algorithm 3.

Theorem 5.4.1. Controlled-U operations with n controls have depth O(
√
n), size O(n) and

width O(n) in the 2D NANTC model.

5.4.4 Generalization to the kD NANTC model

In this section, we discuss how the circuit can be generalized to k dimensions. The algorithm

works in the same way except the ring Rk is replaced by the grid points on the surface of the

hypercube formed by the points at `∞ distance (m− 1)/2− k from the center c of the grid.

We proceed as before and propagate the controls on Rk into Rk+1 until we obtain a grid of

width 3. Since the number of controls on a kD grid of length m is O(mk), we obtain a circuit

of depth O(k
√
n) for implementing a controlled-U operation with n controls. The constant

depends on k, but we assumed that k is constant in Section 5.1. From this, we obtain the

following result.

Theorem 5.4.2. Controlled-U operations with n controls have depth O(k
√
n), size O(n) and

width O(n) in the kD NANTC model.

78

5.5 Fanout operations

In this section, we describe quantum circuits for fanout. In this case, we have a single control

qubit and our goal is to XOR it into each of the target qubits. The construction of fanout

circuits is adapted from Algorithm 3; the circuits are the same except that the qubit that was

the target becomes the control qubit and qubits that were the controls become the targets.

Let n be the number of targets. In the case of the circuit of Section 5.4, we simply apply all

operations in reverse order and replace each Toffoli gate y ← y⊕ x1 ∧ . . .∧ xn with a fanout

operation xj ← xj ⊕ y for all 1 ≤ j ≤ n. This yields a kD NANTC fanout circuit of depth

O(k
√
n). We have shown the following.

Theorem 5.5.1. fanouts to n targets have depth O(k
√
n), size O(n) and width O(n) in the

kD NANTC model.

5.6 Optimality

In this section, we prove that the depth, size and width of the circuits generated by Al-

gorithm 3 (and its kD generalization) are optimal for the NANTC model. A similar lower

bound for addition is discussed in [33]. These lower bounds hold regardless of where the

controls and target qubits are located on the kD grid. They also hold for a more general

class of operations that contains the controlled-U operations and fanouts.

Since each qubit is acted on by a constant number of operations in Algorithm 3, the size

of the circuit is O(n). This is clearly optimal since any circuit that implements a controlled

operation must act on each of the controls.

Theorem 5.6.1. Any NANTC quantum circuit that implements a non-trivial controlled-U

operation with n controls has size Ω(n).

The trace norm of a density matrix ρ (denoted ‖ρ‖tr) is equal to (1/2) tr |ρ| (the (1/2)

factor ensures that ‖ρ− σ‖1 is the probability of distinguishing ρ and σ with the best possible

measurement). Consider a general quantum operation E : Dn → Dn represented as a CPTP

79

map. We will use an operator version of the trace norm defined by ‖E‖tr = supρ∈D ‖E(ρ)‖1; if

E1 and E2 are two CPTP maps then ‖E1 − E2‖tr is the probability of distinguishing between

them on the worst possible input. Thus, it is a measure of how much these operations differ.

We will also make use of the partial trace. If x is a qubit, then we will denote the partial

trace over all qubits except x by tr¬x = trZk\{x}.

Controlled-U operations are special case of a more general class of operations.

Definition 5.6.2. Let E : Dn → Dn be a CPTP map. We say that E is ε-input sensitive if

there exists a qubit y such that for Ω(n) qubits x, there exists a CPTP map F : Dn → Dn
acting only on x such that ‖tr¬y(EF − E)‖tr ≥ ε.

Intuitively, an ε-input sensitive operation is a generalization of a Toffoli gate where mod-

ifying some input qubit x yields a different value on the output with probability ε. Similarly,

we can define ε-output sensitive operations which are generalizations of fanout.

Definition 5.6.3. Let E : Dn → Dn be a CPTP map. We say that E is ε-output sensitive

if there exists a qubit x such that for Ω(n) qubits y, there exists a CPTP map F : Dn → Dn
acting only on x such that ‖tr¬y(EF − E)‖tr ≥ ε.

We say that E is ε-sensitive if it is ε-input or ε-output sensitive. A family {E : Dn → Dn}

of CPTP maps is ε-sensitive if every En is ε-sensitive. Our lower bounds will apply to all

families of ε-sensitive operations. All proofs will be for the case of ε-input sensitive operations

but the argument of ε-output sensitive operations is all but identical.

Theorem 5.6.4. Let {En : Dn → Dn} be a family of ε-sensitive operations. Then any family

of kD NANTC circuits {Cn} such that ‖En − Cn‖tr < ε/2 for all n has size Ω(n).

Proof. Suppose that Cn has size o(n). Assume En is ε-input sensitive and choose a qubit y as

in definition Definition 5.6.2 (the case where it is ε-output sensitive is very similar). There

are Ω(n) qubits x such that there exists a CPTP map F : Dn → Dn acting only on x such

that ‖tr¬y(EnF − En)‖tr ≥ ε. For large n, there is such an x which is not acted on by Cn.

80

Then tr¬y CnF = tr¬y Cn. Now

‖tr¬y(Cn − En)‖tr = ‖tr¬y(CnF − En)‖tr (5.1)

≥
∣∣‖tr¬y(CnF − EnF)‖tr − ‖tr¬y(EnF − En)‖tr

∣∣ (5.2)

> ε/2 (5.3)

which is a contradiction.

We call a controlled-U operation non-trivial if U 6= I. It is easy to prove the following.

Lemma 5.6.5. Non-trivial controlled-U operations and fanouts are 1-sensitive.

We now obtain a corollary of Theorem 5.6.4 of which Theorem 5.6.1 is a special case.

Corollary 5.6.6. Let {En : Dn → Dn} denote a family of controlled-U operations or fanouts.

Any family of kD NANTC circuits {Cn} such that ‖Cn − En‖tr < 1/2 has size Ω(n).

This shows that the circuits generated by Algorithm 3 (and its kD generalization) have

optimal size. Next, we will show that ε-sensitive kD NTC circuits have depth Ω(k
√
n). For

this we require the following easy lemma.

Lemma 5.6.7. For any subset S ⊆ Zk and any x ∈ Zk, there exists a subset T ⊆ S of size

Ω(|S|) such that for all y ∈ T , ‖x− y‖1 = Ω(k
√
|S|).

We are now ready to prove our depth lower bound.

Theorem 5.6.8. Let {En : Dn → Dn} be a family of ε-sensitive operations. Then any family

of kD NANTC circuits {Cn} such that ‖En − Cn‖tr < ε/2 for all n has depth Ω(k
√
n).

Proof. Suppose {Cn} has depth t = o(k
√
n). Assume that En is ε-input sensitive (the case

where it is ε-output sensitive is very similar) and choose a qubit y as in Definition 5.6.2. There

is a set S of Ω(n) qubits such that for each x ∈ S, there exists a CPTP map F : Dn → Dn
acting only on x with ‖tr¬y(EnF − En)‖tr ≥ ε. Let c > 0 be the hidden constant in the

expression Ω(k
√
|S|) from Lemma 5.6.7. For sufficiently large n, the depth of Cn is strictly

less than c k
√
n. Let Gi be the set of disjoint one- and two-qubit operations that are performed

at timestep 1 ≤ i ≤ t in Cn. For an operation M ∈ Gi, let us say that M is active if

81

(a) M acts non-trivially on y or

(b) there is an operation M ′ ∈ Gj with i < j ≤ t such that M ′ is active and M and M ′

act non-trivially on a common qubit

Let us say that a qubit x influences y if there exists an active operation M ∈ Gi that

acts non-trivially on x. Suppose x influences y after t timesteps. Because all operations act

on pairs of adjacent qubits, the `1 distance between x and y is at most t. By Lemma 5.6.7,

there exists a subset T of S of size Ω(n) such that ‖x− y‖1 ≥ c k
√
n for all x ∈ T . Because

t < c k
√
n, x does not influence y for x ∈ T . Let us fix some x ∈ T . Choosing a F acting only

on x as in Definition 5.6.2, we have

‖tr¬y(Cn − En)‖tr = ‖tr¬y(FCn − En)‖tr (5.4)

≥
∣∣‖tr¬y(CnF − EnF)‖tr − ‖tr¬y(EnF − En)‖tr

∣∣ (5.5)

> ε/2 (5.6)

which is a contradiction.

By Lemma 5.6.5, we obtain the following corollary.

Corollary 5.6.9. Let {En : Dn → Dn} denote a family of controlled-U operations or fanouts.

Any family of kD NANTC circuits {Cn} such that ‖Cn − En‖tr < 1/2 has depth Ω(k
√
n).

From Theorems 5.4.2 and 5.5.1 and Corollaries 5.6.6 and 5.6.9, we conclude that the

circuits generated by Algorithm 3 and its kD generalization are optimal in their depth, size

and width.

Theorem 5.1.12. The depth required for controlled-U operations with n controls and fanouts

with n targets in the kD NANTC model is Θ(k
√
n). Moreover, this depth can be achieved with

size Θ(n) and width Θ(n).

5.7 More Examples

We now present the implementation of controlled-U operations in 7×7 and 9×9 2D NANTC

grids. This is shown for m = 7 in Figure 5.5. As before, it is necessary to uncompute the

82

intermediate ancillas by applying the operations of Figures 5.5b–g in reverse order. We

also show the case where m = 9 in Figure 5.6. In this case, we apply the operations of

Figures 5.6b–i in reverse order to uncompute the intermediate ancillas.

83

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.5: A controlled operation on a 7 × 7 grid. See Figure 5.3 for the meaning of the

colors and shadings used.

84

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.6: A controlled operation on a 9 × 9 grid. See Figure 5.3 for the meaning of the

colors and shadings used.

85

(j)

Figure 5.6: A controlled operation on a 9× 9 grid (continued).

5.8 Conclusion

In this chapter, we saw that quantum teleportation can be used to implement quantum cir-

cuits with arbitrary interactions in a 2D architecture where only operations between neigh-

boring qubits are allowed with only a constant factor increase in the depth. However, this

comes at the cost of a quadratic increase in the width of the quantum circuit. Interestingly,

we can show that this quadratic increase in width is necessary in some cases, so that the

width requirements are essentially optimal. This result, along with methods that reduce the

number of qubits required in certain cases, will be the subject of a future work.

86

Chapter 6

USELESSNESS AND INFINITY-VS-ONE SEPARATIONS

6.1 Introduction

Oracles are an important conceptual framework for understanding quantum speedups. They

may represent subroutines whose code we cannot usefully examine, or an unknown physical

system whose properties we would like to estimate. When used by a quantum computer, the

most general form of an oracle is a possibly noisy quantum operation that can be applied

to an n-qubit input. However, oracles this general have no obvious classical analogue, which

makes it difficult to compare the ability of classical and quantum computers to efficiently

interrogate oracles. This was the original motivation of the standard oracle model, in which f

is a function from [N] = {1, . . . , N} to {0, 1}, and the oracle Of acts for a classical computer

by mapping x, y to x, y ⊕ f(x), and for a quantum computer as a unitary that maps |x, y〉

to |x, y ⊕ f(x)〉. One way to justify the standard oracle model is that if there is a (not

necessarily reversible) classical circuit computing f , then Of can be simulated by computing

f , XORing the answer onto the target, and uncomputing f .

In this chapter, we consider other forms of oracles that are more general than the standard

oracle model, but nevertheless permit comparison between classical and quantum query

complexities. Meyer and Pommersheim [83] generalized the standard model by letting A be a

deterministic classical algorithm. The oracle then maps each basis state |x, y〉 to
∣∣x, πA(x)(y)

〉
where each πA(x) is a permutation. We further generalize the model by replacing A with a

randomized classical algorithm. The random coins used by A are internal to the oracle and

cannot be accessed externally. We call this concept an oracle with internal randomness. Note

that even if A takes no input, the oracle can still be interesting since it may apply different

permutations depending on its internal coin flips.

87

Oracles with internal randomness correspond naturally to the situation in which a (quan-

tum or classical) computer seeks to determine properties of a device that acts in a noisy or

otherwise non-deterministic manner. One simple example is an oracle that “misfires”, i.e.

when queried, the oracle does nothing with probability p and responds according to the

standard oracle model with probability 1 − p. This model was considered in [99], which

found, somewhat surprisingly, that the square-root advantage of Grover search disappears

(i.e. there is an Ω(N) quantum query lower bound for computing the OR function) for any

constant p > 0.

The rest of this chapter is divided into two parts. First, we explore various examples of

oracles with internal randomness that demonstrate the power of the model. We will see that

in some cases (e.g. Theorems 6.3.1 and 6.3.2), this can even result in problems solvable with

one quantum query that are completely unsolvable using classical queries.

In the second part, we consider the question of when oracle problems can be solved with

any nontrivial advantage; i.e. a probability of success better than could be obtained by

simply guessing the answer according to the prior distribution. For an example of when such

advantage is not possible, consider the parity function on N bits. If these bits are drawn

from the uniform distribution, then any classical algorithm making ≤ N − 1 queries—or

any quantum algorithm making ≤ N
2
− 1 queries—will not be able to guess the parity with

any nontrivial advantage. In Section 6.4, we consider the problem of when some number of

queries are useless for solving an oracle problem. Informally, our main result is roughly that

k quantum queries are useless if and only if 2k classical queries are useless (this is formalized

in Theorem 6.4.7). However, a subtlety arises in our theorem when oracles have internal

randomness, in that the 2k classical queries need to be considered as k pairs, each of which

uses a separate sample from the internal randomness of the oracle.

In the unbounded-error query complexity regime, similar results were obtained 15 years

ago by Farhi, Goldstone, Gutman and Sipser [42] for the case of the parity function. More

recently, Montanaro, Nishimura and Raymond [85] proved a similar result for any binary

function f , using techniques that do not readily generalize to non-binary f . One direction

88

of the special case of our result for deterministic permutative oracles was proved by Meyer

and Pommersheim [82]. Our proof is arguably simpler and more operational. We introduce

an analogue of gate teleportation [50] for oracles by showing that oracles can be (a) encoded

into states analogous to Choi-Jamio lkowski states, and (b) retrieved from those states with

an exponentially small, but heralded, success probability (i.e. the procedure outputs a flag

that tells us whether it succeeded or failed). We expect that this characterization will be

useful for future study of query complexity in the regime where any nonzero advantage is

sought.

Finally, our encoding can be used to construct infinity-vs-one separations from any sep-

aration between classical and quantum uselessness (see Theorems 6.5.1 and 6.5.2).

6.2 Conventions for oracles

Throughout this chapter, we deal with oracles that have either one or two inputs. Single-

input oracles are those which simply apply an operation to the input. When an oracle

has two inputs, we call the first of these the control and the second the target in analogy

with controlled operations. The control is never modified by the oracle but the target is

transformed depending on the state of the control.

6.3 Examples of infinity-vs-one query-complexity separations

In this section, we discuss problems that can be solved using a single quantum query but

cannot be solved classically even with an unlimited number of queries. Such a separation is

far stronger even than exponential separations. To achieve such infinity-vs-one separations,

it is necessary (but not sufficient) for the oracle to have internal randomness, since otherwise

one could simulate the quantum algorithm classically with exponential overhead. The key

point is that internal randomness effectively causes a different oracle to be used for each

query so such a simulation is not possible in this case.

89

6.3.1 Distinguishing involutions with no fixed points from cycles of length at least three

Our first example of an infinity-vs-one separation is given by the problem of distinguishing

involutions from cycles of length at least three. Define

INV =
{
π ∈ SN

∣∣ π2 = 1 and πx 6= x for all x ∈ [N]
}

This is the set of involutions in SN with no fixed points. Let

CYC = {π ∈ SN | π is a cycle of length N}

For any nonempty subset S of SN , define OS to be the oracle with a control x ∈ [N] and a

target y ∈ [N] that acts according to Algorithm 6.

Algorithm 6 The oracle for the problem of distinguishing involutions with no fixed points

from cycles of length at least three

1: Select π ∈ S uniformly at random

2: Compute π(x) where x is the value of the control

3: Add π(x) to the target y modulo N

Theorem 6.3.1. When N ≥ 3, classical algorithms with unbounded error cannot solve the

problem of distinguishing cycles from involutions with no fixed points using any number of

queries.

Proof. In this problem, an oracle OS is given which is either OINV or OCYC; the problem is

to determine which of these is the case. Consider querying the oracle when the control is x.

Then π(x) is a uniformly random value in [N] \ {x} for both cases so this problem cannot

be solved by a classical algorithm. Since multiple classical queries to this oracle will also be

uncorrelated by the above argument, it follows that no classical algorithm can distinguish

involutions from cycles.

However, when N ≥ 3, the problem can be solved by a quantum algorithm using a single

query to the oracle as shown in Algorithm 7.

90

Algorithm 7 The quantum algorithm for distinguishing involutions with no fixed points

from cycles

1: Prepare the state 1√
N

∑N
x=1 |x〉

2: Apply OS to obtain the state 1√
N

∑N
x=1 |x, π(x)〉

3: Apply the swap test to 1√
N

∑N
x=1 |x, π(x)〉

4: if the swap test outputs “symmetric” then return “INV”

5: else return “CYC”

6: end if

We now show that the above algorithm effectively counts the number of transpositions

in an arbitrary permutation which is sufficient to distinguish involutions from cycles. Our

proof relies on the swap test [28] which provides a way of estimating the absolute value of

the inner product of two quantum states. See Chapter 4 for a description of the swap test.

Theorem 6.3.2. Quantum algorithms can solve the problem of distinguishing cycles from

involutions with no fixed points using a single query with one-sided error 1/2 when N ≥ 3.

Proof. Consider a general state ρAB on two identical systems A and B. Then applying

the swap test to this system (where the swap exchanges A and B) outputs 0 with proba-

bility Pr(0) = 1+tr ρABF
2

where F is a swap operation. Applying this formula to the state

1√
N

∑N
x=1 |x, π(x)〉, the probability of observing 0 is

Pr(0) =
1 + (1/N)

∑
xy 〈π(y)|x〉 〈y|π(x)〉

2
(6.1)

=
1 + (1/N) |{(x, y) | π(x) = y and π(y) = x}|

2
(6.2)

Since N ≥ 3, this probability is 1/2 if π ∈ CYC and is 1 if π ∈ INV.

Hence, there is an infinity-vs-one separation in the unbounded-error classical and quan-

tum query complexities for this problem. This analysis can also be applied to obtain an

algorithm for estimating the number of transpositions in any permutation.

91

6.3.2 An infinity-vs-Θ(n) separation for a modification of Simon’s problem

We now show how to modify Simon’s problem [116] to obtain an infinity-vs-Θ(n) separation

between the classical and quantum query complexities. Recall that for Simon’s problem, we

are given oracle access to a function f : Zn2 → Zn2 and f(x) = f(y) if and only if x = y+a for

some fixed element a ∈ Zn2 and our task is to determine a. Classically, exponentially many

queries are required; however, quantumly at each step we learn a vector that is orthogonal

to a so that the expected number of queries required is Θ(n). The crucial point here is that

this algorithm will return a vector orthogonal to a for any f that is constant and distinct

on the cosets {x, x+ a}, so if f changes between calls to the oracle and a does not, then the

quantum algorithm will not be affected.

Our randomized oracle is defined as follows. Fix some unknown a ∈ Zn2 . Then construct

an oracle Oa : |x〉 |y〉 7→ |x〉 |y + f(x)〉 where f : Zn2 → Zn2 is selected uniformly at random

at each call subject to the constraint that f(x) = f(y) if and only if x = y+ a. The problem

is then to determine a.

Classically, this cannot be done since each query to the oracle results in a random number;

however, the quantum algorithm still requires only Θ(n) queries.

6.3.3 An infinity-vs-one separation for the hidden linear structure problem

Beaudrap, Cleve and Watrous [38] introduced the hidden linear structure problem where we

are given a blackbox that performs the mapping |x〉 |y〉 7→ |x〉 |π(y + sx)〉 where π ∈ Sq and

s ∈ GF (q) for q = 2n. The problem is to find s. By extending quantum Fourier transforms

to GF (q), Beaudrap, Cleve and Watrous [38] show that this problem can be solved exactly

using a single quantum query but classical algorithms require Ω(
√
q) queries to determine s.

They are able to achieve such a query complexity separation by using a non-standard (but

still deterministic) oracle model. In the 10 years since their paper, it is still an open question

whether such separations are possible in the standard oracle model.

We propose the following randomized variant of their oracle problem. Fix some (un-

92

known) s ∈ GF (q). Then define the oracle by Os : |x〉 |y〉 7→ |x〉 |π(y + sx)〉 where π is

selected uniformly at random for each query. The goal is still to determine s. Since the

quantum algorithm only uses one query it is unaffected by this change; however, classically

the output of the oracle is completely random at each query so we obtain an infinity-vs-one

separation.

The three separations shown are examples of a more general phenomenon in which ran-

domness can be used to amplify a modest quantum-vs-classical query separation into an

unbounded one. We defer this discussion to Section 6.5.

6.4 Uselessness for oracles with internal randomness

We now turn to the general problem of when some number of queries are useless for solving

an oracle problem. Equivalently we can ask when it is possible to answer an oracle problem

with any positive advantage over guessing.

To define oracle problems, we use a slightly more compact notation than in previous

sections. An oracle π is defined by a collection of permutations πx,r ∈ SM , where x ∈ [N] is

input by the algorithm, and r is the internal randomness which is distributed according to

R. Overloading notation, we say that if the oracle is queried k times, then r = (r1, . . . , rk)

is distributed according to Rk, which may not necessarily be an i.i.d. distribution.

To describe the problem we want to solve, we follow the notation of Meyer and Pom-

mersheim [83] while adding internal randomness to the oracle. We are promised that our

oracle belongs to a set C, which in general may be a strict subset of all functions from

[N]× supp(R) to SM . The set C is partitioned into sets {Cj}, and our goal is to determine

which Cj contains π. By an abuse of notation, we say that C is our oracle problem. Queries

are made to an oracle Oπ which acts by |x〉 |y〉 7→ |x〉 |πx,r(y)〉.

The oracle problem C is a worst-case problem for which we demand that algorithms work

well for all choices of π ∈ C. However, we also consider average-case problems in which π

is distributed according to a known distribution µ. The resulting oracle problem is denoted

(C, µ).

93

Before stating our own results, we describe the main result of [82]. In their model there

is no internal randomness, so the action of the oracle is simply πx ∈ SM for each x ∈ [N].

If x = (x1, . . . , xk) and y = (y1, . . . , yk), then define πx(y) = (πx1(y1), . . . , πxk(yk)). Their

result may then be stated as follows.

Definition 6.4.1 (Classical uselessness[82]). k classical queries are useless for the oracle

problem (C, µ) if for all x ∈ [N]k, y ∈ [M]k, z ∈ [M]k and j, Pr(π ∈ Cj | πx(y) = z) =

Pr(π ∈ Cj), where π is distributed according to µ.

Definition 6.4.2 (Quantum uselessness[82]). k quantum queries are useless for the oracle

problem (C, µ) if for any k-query quantum algorithm run on any initial state and any POVM

measurement {Ms} which is made on the output of the algorithm, Pr(π ∈ Cj | s) = Pr(π ∈

Cj) for all j and s, where π is distributed according to µ.

We pause to briefly comment on the connection to unbounded-error query complexity.

Unbounded-error query complexity typically refers to binary problems, i.e. when C is parti-

tioned into C0, C1 and the goal is to determine which one π belongs to with success probability

> 1/2. In this case, the statement that k (quantum or classical) queries are useless for (C, µ)

(for some µ) is equivalent to the unbounded-error query complexity of C being > k. This is

stated precisely and proved in Section 6.8.

The main result of [82] is the following theorem.

Theorem 6.4.3 (Classical uselessness implies quantum uselessness[82]). For any determin-

istic oracle problem (C, µ), if 2k classical queries are useless then k quantum queries are

useless.

We will give an alternate proof of this theorem, establish a converse, and generalize it to

oracles with internal randomness.

6.4.1 Definitions of Classical Uselessness

In order to characterize uselessness for oracles with internal randomness, we first need to

extend the definitions to this case. As above, we define πx,r(y) = (πx1,r1(y1), . . . πxk,rk(yk)).

94

One natural definition of uselessness in this setting is that a classical algorithm ignorant

of the oracle’s internal randomness should not be able to gain any nontrivial advantage in

learning which Cj contains π.

Definition 6.4.4 (Weak classical uselessness). If (C, µ) is an oracle problem, then k classical

queries are weakly useless if for all x ∈ [N]k, y, z ∈ [M]k and j, Pr(π ∈ Cj | πx,r(y) = z) =

Pr(π ∈ Cj), where π and r are distributed according to µ and Rk.

It is easy to see that if 2k classical queries are weakly useless then k quantum queries

need not be useless since Algorithm 7 is a counterexample. The proper classical analog of

quantum uselessness is obtained by allowing k pairs of classical queries each of which share

a seed.

A much stronger definition of uselessness would be to allow the classical algorithm to see,

or equivalently to choose, the internal random bits used by the oracle.

Definition 6.4.5 (Strong classical uselessness). If (C, µ) is an oracle problem, then k clas-

sical queries are strongly useless if for all x ∈ [N]k, y, z ∈ [M]k and all possible values

r ∈ supp(Rk),

Pr(π ∈ Cj | πx,r(y) = z) = Pr(π ∈ Cj) (6.3)

for all j, where π is distributed according to µ.

We will see later that strong classical uselessness for 2k queries is sufficiently powerful to

imply quantum uselessness for k queries. However, it is in fact too strong, so the definition

must be weakened as follows.

Definition 6.4.6 (Pairwise classical uselessness). If (C, µ) is an oracle problem, then 2k

classical queries are pairwise useless if for all x,x′ ∈ [N]k, y,y′, z, z′ ∈ [M]k and j, Pr(π ∈

Cj | πx,r(y) = z, πx′,r(y′) = z′) = Pr(π ∈ Cj), where π and r are distributed according to µ

and Rk.

95

This definition ensures that each pair of query values (xi, x
′
i) shares the same random

seed ri. We will see later that this corresponds precisely (in the unbounded error setting) to

the power of quantum queries, because the density matrix resulting from a quantum query

depends on only one random seed, while the different row and column indices interrogate

two different choices of x, y.

It is important to note that weak classical uselessness and pairwise classical uselessness

are not comparable: there exist problems that satisfy weak classical uselessness but not

pairwise classical uselessness and vice versa. Section 6.3.1 gives an example where two

classical queries are weakly useless but not pairwise useless. For an example of a problem

where two classical queries are not weakly useless but are pairwise useless, let C be the set

of all balanced binary functions on {0, 1} and let f be chosen uniformly at random from C.

Consider the task of determining the function implemented by the oracle that acts for the ith

query by |x〉 7→ |x⊕ f(ri)〉 where ri is the ith random seed; let r1 be uniformly distributed

in {0, 1} and let ri = 0 for i ≥ 2. Clearly, two classical queries with the random seeds r1 and

r2 determine f . However, two classical queries that share the random seed r1 yield no useful

information.

It is easy to show that uselessness does not depend on the distribution µ(π ∈ Cj) over

the classes provided the probability of each class is positive. However, it does depend on the

conditional distribution of the oracle within each class. Consider the problem of determining

the parity of a binary function f : [N]→ {0, 1}; by tweaking the conditional distribution of

f for each parity, we can cause f(1) to be equal to the parity of f with high probability so a

single query to f wouldn’t be useless. On the other hand, if the conditional distribution for

f were uniform, N − 1 classical queries would be useless.

6.4.2 Uselessness results

Our main result in this section is the following equivalence:

Theorem 6.4.7. For any oracle problem (C, µ), k quantum queries are useless if and only

96

if 2k classical queries are pairwise useless.

For deterministic oracles, weak, pairwise and strong classical uselessness are all the same.

In this case, Theorem 6.4.7 can be simplified to the following strengthening of Theorem 6.4.3.

Corollary 6.4.8. For any deterministic oracle problem (C, µ), k quantum queries are useless

if and only if 2k classical queries are useless.

6.4.3 Encoding oracles in states

In this section, we will prove Theorem 6.4.7. Our strategy will be to show that in the

unbounded-error setting, the optimal algorithms make a series of fixed queries and then

measure the resulting states. The key ingredient is to show that oracles can be encoded in

states in a way that is perfectly efficient in terms of queries (i.e. one oracle call creates one

state, and one state simulates one oracle call), albeit at a cost of producing the output “I

don’t know” most of the time. We define these encodings first for deterministic oracles.

Definition 6.4.9. Let Oπ be a deterministic permutation oracle that maps |x, y〉 ∈ CN⊗CM

to |x, πx(y)〉. Then define the encoding of π to be |ψπ〉 = 1√
NM

∑
x∈[N],y∈[M] |x〉

X |y〉Y |πx(y)〉Z.

Here X, Y, Z label different registers for notational convenience.

Clearly one use of Oπ allows the creation of one copy of |ψπ〉; simply prepare the state

1√
NM

∑
x,y |x〉

X |y〉Y |y〉Z and apply Oπ to registers XZ. We will see shortly that one copy

of |ψπ〉 can in turn simulate one use of Oπ, albeit with a very high, but heralded, failure

probability. Before proving this result, we show how Definition 6.4.9 generalizes to oracles

with internal randomness.

Definition 6.4.10. Let Oπ be an oracle whose action is defined by Oπ(|x〉 〈x′| ⊗

|y〉 〈y′| = Er∼R |x〉 〈x′| ⊗ |πx,r(y)〉 〈πx′,r(y′)|. For each r, define the deterministic ora-

cle Oπ,r by Oπ,r |x, y〉 = |x, πx,r(y)〉 and define the encoding for fixed r to be |ψπ,r〉 =

1√
NM

∑
x∈[N],y∈[M] |x〉

X |y〉Y |πx,r(y)〉Z.

97

Now we define encodings of oracles with randomness.

Definition 6.4.11. If Oπ is an oracle with internal randomness, then define the encoding

of Oπ to be ρπ = Erψπ,r.

For convenience, we use the standard convention mentioned in Section 4.1 that ψ =

|ψ〉〈ψ|. The utility of considering encodings comes from the following operational equiva-

lence.

Theorem 6.4.12. (a) One use of Oπ can create one copy of ρπ.

(b) It is possible to consume one copy of ρπ and simulate Oπ with success probability

1/NM2. The simulation outputs a classical flag indicating success or failure.

In both cases, the run time required is linear in the number of qubits, i.e. O(logNM).

We point out that in the simulation, failure destroys not only the encoding, but also the

state input to the oracle. Nevertheless, this simulation is enough to distinguish the case

when k queries are useless from the case when they are not.

Additionally, Theorem 6.4.12 is stated implicitly in terms of a distribution R. In the case

of k queries correlated according to Rk, we have the following variant:

Theorem 6.4.13. (a) k uses of Oπ can create ρkπ = Er∼Rk [ψπ,r1 ⊗ · · · ⊗ ψπ,rk].

(b) It is possible to consume ρkπ and simulate k uses of Oπ with success probability

1/NkM2k, again with a flag indicating success or failure.

As a corollary, for correlated internal randomness in the unbounded-error scenario, we can

permit algorithms to make the k oracle calls in any order. We will only prove Theorem 6.4.13,

since it subsumes Theorem 6.4.12.

Proof. To create ρkπ, we simply apply Oπ k times to
(

1√
NM

∑
x,y |x〉

X |y〉Y |y〉Z
)⊗k

.

For the second reduction, suppose we are given a copy of ρkπ and would like to apply Oπ
to simulate the ith query of some algorithm. If we condition on r, then ρkπ becomes the state

ψπ,r1 ⊗ · · · ⊗ ψπ,rk . We will use the ith component of this state to simulate our query.

98

Suppose we want to simulate the action of Oπ,ri on the state |x′〉X
′
|y′〉Y

′
. Define

A =
∑
x∈[N]

|x〉X 〈x, x|XX
′
⊗ 1√

M

∑
y∈[M]

〈y, y|Y Y
′

Since AA† =
∑

x |x〉〈x| = IN , it follows that A†A ≤ IN2M2 and {A,
√
I − A†A} comprise

a valid collection of measurement operators. Our simulation will apply this measurement,

with outcome A labeled success, and
√
I − A†A labeled failure.

Upon outcome
√
I − A†A, the algorithm declares failure. If this occurs at any step

of a multi-query algorithm, then the algorithm should guess j according to the a priori

distribution µ. Thus, for the purposes of determining whether the algorithm outperforms

the best guessing strategy, it then suffices to consider only the cases when outcome A occurs.

Upon outcome A, the state |ψπ,ri〉
XY Z |x′〉X

′
|y′〉Y

′
is mapped to the (unnormalized) state

1√
NM2
|x′〉X |πx,ri(y′)〉

Z . Since the normalization is independent of the input, this means that

A occurs with probability 1/NM2 regardless of the input state. Conditioned on this outcome,

the resulting map is precisely the action of Oπ,ri .

The overall algorithm succeeds when each of the k queries succeeds. Since each query

succeeds with probability 1/NM2, the overall algorithm succeeds with probability 1/NkM2k.

Armed with our notion of encoding, it is straightforward to characterize quantum use-

lessness.

Corollary 6.4.14. Define σj = Eπ∈Cjρ
k
π. Then k quantum queries are useless if and only if

all the σj are the same.

Proof. By Theorem 6.4.13, any k-query algorithm can WLOG create ρkπ, resulting in the

state σj if π is drawn randomly from Cj. The algorithm then proceeds to determine which

σj it holds, using no further oracle queries. If all the σj are equal, then it can learn nothing

about j. Conversely, if some σj is different from the others, then there is a measurement

that will be able to guess j with positive advantage.

99

To conclude the proof of Theorem 6.4.7, observe that the quantity on the LHS of Defini-

tion 6.4.6 is tr (|x〉 〈x′| ⊗ |y〉 〈y′| ⊗ |z〉 〈z′|)Eπ∈Cjµ(π)ρkπ = tr (|x〉 〈x′| ⊗ |y〉 〈y′| ⊗ |z〉 〈z′|)σj
which will be independent of j for all x,x′,y,y′, z, z′ if and only if all of the σj are iden-

tical. Since we can simulate this measurement using 2k classical queries, the application of

Corollary 6.4.14, completes the proof of Theorem 6.4.7.

Theorem 6.4.15. Suppose that for some oracle problem k classical queries are weakly useless

but k quantum queries are not useless. Then there exists an oracle problem in which this

separation holds where the oracle acts by bitwise XOR.

Proof. Consider an oracle problem (C, µ) for which k classical queries are weakly useless but

k quantum queries are not useless. The oracle acts by O : |x〉 |y〉 7→ |x〉 |πx,ri(y)〉 on the ith

call. We can define a new oracle O′ : |x〉 |y〉 |z〉 7→ |x〉 |y〉 |z ⊕ πx,ri(y)〉. Our new oracle O′

can be used to prepare the encoding for O so k queries to O′ can simulate any quantum

algorithm that uses k queries to O. Classically, O′ can be simulated using O so we conclude

that k classical queries to O′ are weakly useless.

6.5 Amplifying separations

We now leverage our results to obtain a general method of amplifying any separation between

classical and quantum uselessness. Let (C, µ) be an oracle problem where C is partitioned

into {Ci} and rj is the jth random seed. For each π ∈ C, we have an oracle Oπ. Suppose that

k classical queries are weakly useless but k quantum queries are not useless. Let us define

the oracle Oi : |x1〉 · · · |xk〉 |y1〉 · · · |yk〉 7→ |x1〉 · · · |xk〉 |πx1,r1(y1)〉 · · · |πxk,rk(yk)〉 where π is

selected from Ci according to µ (this is done independently for each query), r is distributed

according to Rk and a fresh random seed r is used for every query to Oi. Consider the

problem of determining i where the oracle Oi is given with probability µ(π ∈ Ci).

Theorem 6.5.1. Any number of classical queries to the oracle Oi is weakly useless for

determining i.

100

Proof. Clearly, a single query to Oi is equivalent to k queries to the original oracle which are

weakly useless by assumption. We conclude that a single classical query to the new oracle is

weakly useless. We now show that ` classical queries are weakly useless for any ` ≥ 1. Let

xj ∈ [N]k, yj, zj ∈ [M]k and let each rj be sampled independently from Rk where 1 ≤ j ≤ `.

We must prove that

Pr(i | πjxj ,rj(yj) = zj, j = 1, . . . , `) = Pr(i) (6.4)

where each πj is sampled independently from Ci according to µ. This condition is equivalent

to

Pr(πjxj ,rj(yj) = zj, j = 1, . . . , ` | i) = Pr(πjxj ,rj(yj) = zj, j = 1, . . . , `) (6.5)

Note that by construction,

Pr(πjxj ,rj(yj) = zj, j = 1, . . . , ` | i) =
∏
j

Pr(πjxj ,rj(yj) = zj | i)

By our assumption that k classical queries to the original oracle are weakly useless, we have

that Pr(i | πxj ,rj(yj) = zj) = Pr(i) or equivalently Pr(πxj ,rj(yj) = zj | i) = Pr(πxj ,rj(yj) =

zj). Therefore,

101

Pr(πjxj ,rj(yj) = zj, j = 1, . . . , `) =
∑
i

Pr(πjxj ,rj(yj) = zj, j = 1, . . . , ` | i) Pr(i) (6.6)

=
∑
i

(∏
j

Pr(πjxj ,rj(yj) = zj | i)

)
Pr(i) (6.7)

=
∑
i

(∏
j

Pr(πjxj ,rj(yj) = zj)

)
Pr(i) (6.8)

=
∏
j

Pr(πjxj ,rj(yj) = zj) (6.9)

=
∏
j

Pr(πjxj ,rj(yj) = zj | i) (6.10)

= Pr(πjxj ,rj(yj) = zj, j = 1, . . . , ` | i) (6.11)

which is the desired result.

We conclude that no matter how many classical queries are made to Oi, no information

is obtained about i. On the other hand, we have the following result:

Theorem 6.5.2. A single quantum query to Oi is not useless for determining i.

Proof. One can use a single quantum query to Oi to construct the state ρkπ as described in

Theorem 6.4.13. Applying Theorem 6.4.13, this state may be used to guess i with higher

probability than random guessing since k quantum queries are not useless.

Thus, we have constructed an infinity-vs-one separation in unbounded-error classical and

quantum query complexities from an arbitrary initial separation. One can also construct

an infinity-vs-one separation in the bounded-error setting from an arbitrary separation in

the unbounded setting; the construction is straightforward and we defer the details to Ap-

pendix 6.7.

102

6.6 Alternate proofs of uselessness

In this section, we present alternate proofs of various uselessness theorems. These proofs

do not rely on the idea of encoding oracles into states, but instead give direct arguments,

so they are more self-contained, although also longer. First we prove that pairwise classical

uselessness implies quantum uselessness.

Proof. The proof is an extension of the technique used by Meyer and Pommersheim [82].

Suppose that 2k classical queries are pairwise useless. Consider an oracle π that acts by

Oiπ : |x, y, z〉 7→ |x, πx,ri , z〉 for the ith query. (The first two registers are the usual input

and output registers for the oracle, while the third register is for auxilliary computations

by the algorithm in between oracle calls.) Note that, as before, the ri variables may obey

an arbitrary joint distribution so different queries are not necessarily independent. Consider

an arbitrary k-query quantum algorithm with initial state ρ0 and POVM {Ms}. For the ith

query, the algorithm queries the oracle and then applies an arbitrary unitary transformation

Ui. This yields the final state

ρπ = UkOkπ . . . U1O1
πρ0O1

π
†
U †1 . . .Okπ

†
U †k (6.12)

Let us fix the random seed used for the ith query as ri. The final state is then

ρπ,r = UkPrk . . . U1Pr1ρ0P
†
r1
U †1 . . . P

†
rk
U †k (6.13)

where Pri denotes the permutative action |x, y, z〉 7→ |x, πx,ri(y), z〉 of the oracle when the

random seed is fixed to ri. Let A be a matrix, L = (x, y, z) and L′ = (x′, y′, z′). Then

(
PriAP

†
ri

)
L,L′

=
〈
x, π−1

x,ri
(y), z

∣∣A ∣∣x′, π−1
x′,ri

(y′), z′
〉

(6.14)

= Aπ·,ri (L),π·,ri (L
′) (6.15)

103

where π·,ri(L) = (x, π−1
x,ri

(y), z). Then the state after the i+ 1th query (for the fixed values r

of the seeds) is

ρi+1,r = Ui+1Pri+1
ρi,rP

†
ri+1

U †i+1 (6.16)

so that the matrix elements are

(ρi+1,r)L,L′ =
∑
K,K′

(Ui+1)L,K(ρi,r)π·,ri+1 (K),π·,ri+1 (K′)(U
†
i+1)K′,L′ (6.17)

This value is a function of L, L′, π·,ri+1
(K) and π·,ri+1

(K ′). Therefore, the final state ρπ,r =

ρk,r may be written as

ρπ,r =
∑
I

QI(πx,r(y), πx′,r(y′)) (6.18)

where I = (L1, . . . , Lk, L
′
1 . . . , L

′
k). Let Eπ|π∈Cj denote the expectation over π according to

the distribution Pr(π | π ∈ Cj). Then for any j,

Eπ|π∈Cjρπ,r =
∑
I

Eπ|π∈CjQI(πx,r(y), πx′,r(y′)) (6.19)

=
∑
I

∑
w,w′

Eπ|π∈CjQI(πx,r(y), πx′,r(y′))[πx,r(y) = w, πx′,r(y′) = w′] (6.20)

where w = (w1, . . . , wk) and w′ = (w′1, . . . , w
′
k)

=
∑
I

∑
w,w′

QI(w,w
′)Eπ|π∈Cj [πx,r(y) = w, πx′,r(y′) = w′] (6.21)

=
∑
I

∑
w,w′

QI(w,w
′) Pr(πx,r(y) = w, πx′,r(y′) = w′ | π ∈ Cj) (6.22)

(6.23)

Taking the expectation over the random seeds r,

104

Eπ|π∈CjErρπ,r =
∑
I

∑
w,w′

QI(w,w
′)Er Pr(πx,r(y) = w, πx′,r(y′) = w′ | π ∈ Cj) (6.24)

=
∑
I

∑
w,w′

QI(w,w
′) Pr(πx,r(y) = w, πx′,r(y′) = w′ | π ∈ Cj) (6.25)

=
∑
I

∑
w,w′

QI(w,w
′) Pr(π ∈ Cj | πx,r(y) = w, πx′,r(y′) = w′) (6.26)

· Pr(πx,r(y) = w, πx′,r(y′) = w′)

Pr(π ∈ Cj)
(6.27)

=
∑
I

∑
w,w′

QI(w,w
′) Pr(πx,r(y) = w, πx′,r(y′) = w′) (6.28)

by pairwise classical uselessness

= EπEr
∑
I

∑
w,w′

QI(w,w
′)[πx,r(y) = w, πx′,r(y′) = w′] (6.29)

= EπEr
∑
I

QI(πx,r(y), πx′,r(y′)) (6.30)

= EπErρπ,r (6.31)

(6.32)

Defining ρπ = Erρπ,r, this may be written as

Eπ|π∈Cjρπ = Eπρπ (6.33)

Note that for a random π ∈ C, the state after running the algorithm is Eπρπ and for a

random π ∈ Cj the state is Eπ|π∈Cjρπ. Now, consider the probability that π ∈ Cj given the

measurement outcome s. We have

Pr(π ∈ Cj | s) =
Pr(s | π ∈ Cj) Pr(π ∈ Cj)

Pr(s)
(6.34)

=
trMsEπ|π∈Cjρf

trMsEπρπ
Pr(π ∈ Cj) (6.35)

= Pr(π ∈ Cj) (6.36)

105

as claimed.

Next, we prove that quantum uselessness implies classical uselessness, but in the special

case of standard oracles that act via XOR but with internal randomness. Specifically, con-

sider an oracle that acts by Oif : |x, y, z〉 7→ |x, y ⊕ f(x, ri), z〉 for the ith query. As before,

we allow the ri variables to be drawn from an arbitrary joint distribution.

Proof. Suppose that k quantum queries are useless. This means that for any POVM {Ms}

and quantum algorithm run on any initial state ρ0, Pr(f ∈ Cj | s) = Pr(f ∈ Cj) for all j.

Since Pr(f ∈ Cj | s) =
Pr(s|f∈Cj) Pr(f∈Cj)

Pr(s)
, this implies that

Pr(s | f ∈ Cj) = Pr(s) (6.37)

for all j. Let us choose the initial state

ρ0 =

(
1

N

∑
x,x′

|x〉 〈x′| ⊗ |0〉 〈0|

)⊗k
(6.38)

and the algorithm defined by the unitary operator
⊗k

i=1Oif . The result of running the

algorithm assuming a particular function f and fixed seeds r is then

ρf,r =

(
k⊗
i=1

Oif

)
ρ0

(
k⊗
i=1

Oif

)†
(6.39)

=
1

Nk

k⊗
i=1

∑
x,x′

|x, f(x, ri)〉 〈x′, f(x′, ri)| (6.40)

For a particular function f , the state after running the algorithm is

ρf = Erρf,r (6.41)

=
1

Nk
Er

k⊗
i=1

∑
x,x′

|x, f(x, ri)〉 〈x′, f(x′, ri)| (6.42)

106

Now

Pr(s) = Ef Pr(s | f) (6.43)

= trMsEfρf (6.44)

= trMsρC (6.45)

Similarly,

Pr(s | f ∈ Cj) = Ef |f∈Cj Pr(s | f) (6.46)

= trMsEf |f∈Cjρf (6.47)

= trMsρCj (6.48)

Since Pr(s | f ∈ Cj) = Pr(f ∈ Cj), this implies that

trMs(ρCj − ρC) = 0 (6.49)

for all POVMs {Ms} which means that

ρCj = ρC (6.50)

1

Nk
ErEf |f∈Cj

k⊗
i=1

∑
x,x′

|x, f(x, ri)〉 〈x′, f(x′, ri)| =
1

Nk
ErEf

k⊗
i=1

∑
x,x′

|x, f(x, ri)〉 〈x′, f(x′, ri)|

(6.51)

Equating the ((x1, y1, . . . , xk, yk), (x
′
1, y
′
1, . . . , x

′
k, y
′
k)) elements of these matrices, we have that

ErEf |f∈Cj [f(x, r) = y, f(x′, r) = y′] = ErEf [f(x, r) = y, f(x′, r) = y′] (6.52)

Er Pr(f(x, r) = y, f(x′, r) = y′ | f ∈ Cj) = Er Pr(f(x, r) = y, f(x′, r) = y′) (6.53)

Pr(f(x, r) = y, f(x′, r) = y′ | f ∈ Cj) = Pr(f(x, r) = y, f(x′, r) = y′) (6.54)

107

Applying Bayes’ rule, we have

Pr(f ∈ Cj | f(x, r) = y, f(x′, r) = y′) =
Pr(f(x, r) = y, f(x′, r) = y′ | f ∈ Cj) Pr(f ∈ Cj)

Pr(f(x, r) = y, f(x′, r) = y′)

(6.55)

= Pr(f ∈ Cj) (6.56)

which is precisely the definition of pairwise classical uselessness in the case of oracles that

act by XOR.

Combining this with Theorem 6.4.7, we have the following result

Corollary 6.6.1. For any oracle problem (C, µ) in the standard model with internal ran-

domness, k quantum queries are useless if and only if 2k classical queries are pairwise useless

Since pairwise classical uselessness is equivalent to classical uselessness when f is deter-

ministic, we have the following corollary.

Corollary 6.6.2. If k quantum queries are useless for an oracle problem (C, µ) in the stan-

dard model, then 2k classical queries are useless.

108

6.7 Bounded-error infinity-vs-one separations

We now show how to obtain an infinity-vs-one separation in the bounded-error regime from

an arbitrary separation between the classical and quantum uselessness. Consider the oracle

Oi as defined above. By Theorem 6.5.2, there exists a single-query quantum algorithm A, a

POVM {Ms} and an i′ such that for some s, Pr(i = i′ | s) > Pr(i = i′). Equivalently,

Pr(s | i = i′) > Pr(s) (6.57)

Pr(s | i = i′)(1− Pr(i = i′)) > Pr(s | i 6= i′) Pr(i 6= i′) (6.58)

Pr(s | i = i′) > Pr(s | i 6= i′) (6.59)

Pr(s | i = i′) = Pr(s | i 6= i′) + ε (6.60)

for some ε > 0. Consider the problem of deciding if i = i′ by querying Oi. By running

A some large number of times T and using majority voting and Chernoff bounds, we may

decide if i = i′ with bounded error. Although T may be quite large, the gap is large since it

is a separation between an infinite number of classical queries and a finite number of classical

queries.

Corollary 6.7.1. The bounded-error quantum query complexity of deciding if i = i′ using

Oi is finite.

By Theorem 6.5.1, Pr(i | πjxj ,rj(yj) = zj, j = 1, . . .) = Pr(i) for all ` ≥ 1 and xj ∈ [N]k,

yj, zj ∈ [M]k. Thus, Pr(i = i′ | πjxj ,rj(yj) = zj, j = 1, . . .) = Pr(i = i′) and Pr(i 6= i′ |

πjxj ,rj(yj) = zj, j = 1, . . .) = Pr(i 6= i′) so ` queries are weakly useless for deciding if i = i′.

Corollary 6.7.2. Any number of classical queries to the oracle Oi is weakly useless for

deciding if i = i′; thus no classical algorithm can decide if i = i′ with unbounded error no

matter how many queries are made.

We can construct a new oracle O′i that simulates T queries to Oi using an independent

random seed for each query. From this we obtain the following.

109

Corollary 6.7.3. The bounded-error quantum query complexity of deciding if i = i′ using

O′i is 1.

Corollary 6.7.4. Any number of classical queries to the oracle O′i is weakly useless for

deciding if i = i′; thus no classical algorithm can decide if i = i′ with unbounded error no

matter how many queries are made.

Thus, we have constructed an infinity-vs-one separation between the bounded-error quan-

tum query complexity and the unbounded-error classical query complexity from an arbitrary

initial separation. This comes at the price of large inputs for the constructed oracle.

6.8 Relation between uselessness and unbounded query complexity

In this section, we define binary oracle problems to be those where our goal is to output a

single bit, or equivalently, where C is partitioned into only two sets C0, C1, and our goal is

to determine whether π ∈ C0 or π ∈ C1.

Proposition 6.8.1. Let C be a binary oracle problem. Then the unbounded quantum (resp.

classical) query complexity of C is > k if and only if there exists a distribution µ with

µ(C0) = µ(C1) = 1/2 such that k quantum (resp. classical) queries are useless for (C, µ).

Equivalently we could demand that 0 < µ(C0) < 1 because reweighting 0-inputs and

1-inputs does not affect the uselessness properties of a distribution. (The same does not hold

for changing the probabilities within the class of 0-inputs or 1-inputs.) However, we need to

avoid the trivial case in which a distribution is useless because the answer is already known

perfectly from the prior distribution µ.

Proof. The “if” direction is easy. If such a µ exists, then by the definition of uselessness, no

algorithm can achieve success probability > 1/2 with ≤ k queries.

For the converse, we use Yao’s minimax principle, which states that there exists a dis-

tribution µ for which no k-query algorithm can achieve success probability > 1/2. Since it

110

is always possible to achieve success probaiblity max(µ(C−1(0)), µ(C−1(1))) by guessing, we

must also have µ(C−1(0)) = µ(C−1(1)) = 1/2.

A natural generalization of unbounded-error query complexity to non-binary problems

would be to define success as guessing the right answer with probability > maxj µ(Cj). In

this case, uselessness is now a strictly stronger statement whenever µ is such that µ(Cj)

is not the same for each j. To see this, let ν be the distribution over π obtained after

making some number of queries. Uselessness states that µ(Cj) = ν(Cj) for each j, whereas

unbounded-error query complexity depends only on whether maxj µ(Cj) = maxj ν(Cj).

111

Chapter 7

A QUANTUM ALGORITHM FOR TREE ISOMORPHISM

7.1 Introduction

The problem of deciding if two graphs are isomorphic has many practical applications such

as searching for an unknown molecule in a chemical database [65], verification of hierarchical

circuits [129] and generating application specific instruction sets [35]. As we mentioned in

Chapter 2, graph isomorphism is not known to be solvable in polynomial time despite a great

deal of effort to develop an efficient algorithm. These efforts culminated in Luks’ discovery

in 1983 of a 2O(
√
n logn) time classical algorithm [18, 16], which has not been improved since.

Another approach this problem which has received much attention is that of quantum

algorithms for graph isomorphism. However, no super-polynomial quantum speedups are

known even for special cases of the graph isomorphism problem.

One of the major approaches to developing efficient quantum algorithms for the graph

isomorphism problem is the hidden subgroup problem (HSP), which is the basis for many

super-polynomial quantum speedups including Shor’s algorithm for factoring [115] and sev-

eral others [39, 116, 38].

Unfortunately, a string of negative results has shown that is increasingly unlikely that

the hidden subgroup approach will work for graph isomorphism. While it was shown that

there exists a quantum measurement that can solve the HSP on the symmetric group [41], it

is not known if this measurement can be implemented efficiently and there is evidence that

it cannot be. This line of work was started by Moore, Russell and Schulman’s proof [87] that

strong Fourier sampling (the standard approach to HSPs) is ineffective for the symmetric

group. Hallgren, Moore, Rotteler, Russell and Sen showed the stronger result [54] that

the measurement for the HSP over the symmetric group must involve entanglement over

112

Ω(n log n) coset states. Finally, Moore, Russell and Sniady proved [88] that the sieve methods

used to obtain a quantum speedup for the dihedral HSP [98, 67, 66] cannot significantly

outperform the best classical algorithms known for graph isomorphism [18, 16].

Because of these results, other approaches to quantum algorithms for graph isomorphism

are of great interest. One of the most promising is the state preparation approach [3], which

aims to prepare a complete invariant state that represents the isomorphism class of the graph.

This complete invariant state corresponds to the superposition of all permutations of the

graph. Since the sets of permutations of two graphs coincide if they are isomorphic and are

disjoint if they are non-isomorphic, the complete invariant states for two isomorphic graphs

are equal and the complete invariant states for two non-isomorphic graphs are orthogonal.

Because the swap test [28] provides a means of distinguishing orthogonal states, the problem

of testing isomorphism of two graphs reduces to the ability to prepare complete invariant

states. Unfortunately, it is not currently known how to prepare complete invariant states for

classes of graphs that are considered difficult classically.

In this chapter, we take a small step towards a state-preparation based algorithm for

graph isomorphism by developing a quantum algorithm for rooted tree isomorphism. By

considering all possible roots in one of the trees, it is also possible to efficiently decide if two

unrooted trees are isomorphic. Although tree isomorphism can be decided in linear time

on a classical computer [4], our goal is to make progress on the state preparation approach

to graph isomorphism rather than to provide a speedup over classical algorithms for tree

isomorphism.

Shor observed1 that an isomorphism testing algorithm can be used to prepare a complete

invariant state. Combined with the linear time classical algorithm from [4], this implies

that complete invariant states can be efficiently prepared for trees. However, the resulting

algorithm uses the classical algorithm as a subroutine to solve all of the isomorphism problems

that it encounters. Consequently, this approach does not seem likely to be useful for classes

1Aram Harrow (personal communication).

113

of graphs for which we do not have efficient classical algorithms.

By contrast, the quantum algorithm for tree isomorphism shown in this chapter relies

on techniques that are fundamentally quantum and our techniques are potentially useful for

quantum algorithms for more general classes of graphs. All of the runtimes we will give

correspond to the depth in the CCAC model introduced in Chapter 5. We concern ourselves

only with the runtime and ignore the width and size of the quantum circuits involved.

Our algorithm is based on an efficient solution to what we call the quantum state sym-

metrization problem. In the basic formulation of this problem, we are given a collection of

mutually orthogonal states {|ψi〉 | 1 ≤ i ≤ `} and a permutation group G of degree ` and

must compute the superposition

1√
|G|

∑
π∈G

⊗̀
i=1

∣∣ψπ(i)

〉
of all permutations of

⊗`
i=1 |ψi〉 by elements of G. We accomplish this using strong generating

sets for permutation groups [117].

Because our tree isomorphism algorithm will need to apply our state symmetrization

procedure to states that correspond to subtrees of possibly differing sizes, we need an efficient

algorithm for a more general version of the state symmetrization problem that allows the ψi’s

to have different sizes. However, we show that our algorithm for state symmetrization can

be generalized to account for this difficulty. (We shall define this more general version of the

state symmetrization problem in the next section, but the precise definition is unimportant

for the purposes of the present discussion.)

Our isomorphism algorithm then works roughly as follows. Let T be the rooted tree

for which we wish to prepare the complete invariant state. We recursively compute the

complete invariant state for each subtree corresponding to a child of the root of T . Our

idea is then to apply our state symmetrization algorithm to remove all information about

the order in which these subtrees appear in T . However, there is a difficulty: some of

the subtrees may be isomorphic and will therefore have the same complete invariant state,

which makes it impossible to apply our state symmetrization procedure. Fortunately, we

114

are able to overcome this difficulty by adding extra information to the states corresponding

to each subtree. This makes different isomorphic subtrees correspond to distinct states;

however, after applying our state symmetrization procedure to the states corresponding to

the subtrees, we nonetheless still obtain a state for T that depends only on its isomorphism

class. In this way, we obtain a recursive procedure for preparing a complete invariant state

for a rooted tree T .

7.2 A quantum algorithm for state symmetrization

Our first step is to develop an efficient quantum algorithm for the state symmetrization

problem. In addition to being used as a subroutine in our algorithm for tree isomorphism,

the state symmetrization problem is related to graph isomorphism. Let |ψ1〉 , . . . , |ψn〉 be a

sequence of orthonormal states and let G be a subgroup of Sn. The problem is to prepare the

state 1√
|G|

∑
π∈G

⊗n
i=1

∣∣ψπ(i)

〉
. Consider a graph X. As mentioned in the previous section, if

it were possible to efficiently prepare the complete invariant state

|X〉 =

√
|Aut(X)|

n!

∑
π∈Sn/Aut(X)

|Xπ〉

then we could solve the graph isomorphism problem efficiently using the swap test [28].

The crucial difference between the state symmetrization problem and the state preparation

approach to graph isomorphism is that in the former, symmetrization is performed over a

sequence of orthonormal states and it is not clear that graph isomorphism can be cast in

this framework.

First, we define the more general version of the state symmetrization problem as promised

in Section 7.1. For this, we need a generalized notion of orthogonal states.

Definition 7.2.1. Let di ∈ N and |ψi〉 ∈ Cdi for each 1 ≤ i ≤ ` and let G be a permutation

group of degree `. Then the collection {|ψi〉 | 1 ≤ i ≤ `} of states is G-symmeterizable if

there is a unitary matrix V that can be implemented in poly(log
∑`

i=1 di) time that takes a

permutation
⊗`

i=1

∣∣ψπ(i)

〉
where π ∈ G and outputs |π〉 =

⊗`
i=1 |π(i)〉.

115

If a collection of states is G-symmeterizable for every permutation group G of degree `,

then we say that it is symmeterizable.

Before showing our algorithm for symmetrizing collections of G-symmeterizable states

later in Subsection 7.2.3, we consider two special cases of Definition 7.2.1 that are relevant

to our quantum algorithm for tree isomorphism and also motivate Definition 7.2.1.

7.2.1 Collections of efficiently-preparable orthonormal states

The first special case of symmeterizable states is the situation where we have a collection{
|ψi〉 ∈ Cd

∣∣ 1 ≤ i ≤ `
}

of orthogonal states of the same dimension, along with unitary matri-

ces Ui (that can be implemented in poly(d`) time) such that |ψi〉 = Ui |0〉 for each 1 ≤ i ≤ `.

In order to prove that the collection
{
|ψi〉 ∈ Cd

∣∣ 1 ≤ i ≤ `
}

of orthonormal states is G-

symmeterizable for any permutation group G, we require the following lemma.

Lemma 7.2.2. Suppose that
{
|ψi〉 ∈ Cd

∣∣ 1 ≤ i ≤ `
}

is a collection of orthonormal states of

dimension d where each |ψi〉 = Ui |0〉 for some unitary Ui that can be implemented in time

ti. Let t =
∑`

i=1 ti. Then we can implement a unitary U in 4t + O(1) time such that each

|ψi〉 = U |i〉.

Proof. Suppose that the initial state is the computational basis state |j〉. We start by adding

a second register initialized to |0〉 to obtain |j〉 |0〉. Then, for each 1 ≤ i ≤ `, we apply a

Ui operation to the second register that is controlled by i on the first register. This yields

the state |j〉 |ψj〉. Let C̃Ui denote XORing i into the first register and then applying a

Ui operation to the first register where both operations are controlled by 0 on the second

register. For each 1 ≤ i ≤ `, we then apply the operation

(I ⊗ Ui) · C̃Ui · (I ⊗ Ui)†

to the two registers. Since the above operation effectively sets the first register to |0〉 and

then applies a Ui operation that is controlled by |ψi〉 on the second register, this yields the

state |ψj〉 |ψj〉.

116

Now, we need to uncompute the second register. Let ĈUi denote applying a Ui operation

to the second register that is controlled by 0 on the first register. By performing the operation

(Ui ⊗ I) · ĈUi

†
· (Ui ⊗ I)†

on the two registers for each 1 ≤ i ≤ ` , we obtain |ψj〉 |0〉. From this, we can get the desired

state |ψj〉 by discarding the constant register |0〉. Thus, we can efficiently implement an

unitary U such that each |ψi〉 = U |i〉. The complexity claimed follows by noting that Toffoli

gates with an arbitrary number of controls can be implemented in O(1) time [57, 27, 121].

It follows that the collection of orthonormal states
{
|ψi〉 ∈ Cd

∣∣ 1 ≤ i ≤ `
}

is symmeteri-

zable.

Corollary 7.2.3. Let
{
|ψi〉 ∈ Cd

∣∣ 1 ≤ i ≤ `
}

be a collection of orthonormal states of di-

mension d where each |ψi〉 = Ui |0〉 and each Ui can be implemented in time ti. Let

t =
∑`

i=1 ti. Then we can implement a unitary V in 4t + O(1) time such that each

V
(⊗`

i=1

∣∣ψπ(i)

〉)
=
⊗`

i=1 |π(i)〉.

Proof. Define V = (U †)⊗` where U is as in Lemma 7.2.2. The result then follows immediately

from Lemma 7.2.2.

7.2.2 Delimited orthonormal states

We call the collections of symmeterizable states that arise in our algorithm for tree isomor-

phism delimited orthonormal states. Essentially, a collection of delimited orthonormal states

is one in which each state starts with a special separator state that can be distinguished from

the other parts of all of the states in the collection. Given a quantum state that corresponds

to a permutation of the states in the collection, we can then use the separator states to find

the boundaries between the elements of the permutation. This allows us to compute the

permutation.

Before we give a formal definition of delimited orthonormal states, some additional no-

tation is necessary. In what follows, we shall deal with spaces of the form (C5)
⊗n

. Thus, our

117

qudits2 are 5-dimensional. We do this because it allows us to maintain two separate systems

of binary numbers that are mutually orthogonal as well as a special fifth basis state that is

used to pad states of different lengths. Let us denote the basis states by |0〉, |1〉, |0̄〉, |1̄〉 and

|�〉. For a natural number j, we let |j〉 denote the binary representation of j using |0〉 and |1〉

and |j̄〉 denote the binary representation of j using |0̄〉 and |1̄〉. Let C = 〈|0〉 , |1〉 , |0̄〉 , |1̄〉〉.

We are now ready to give our definition.

Definition 7.2.4. Let each |ψi〉 ∈ C⊗ni for 1 ≤ i ≤ `. Then {|ψi〉 | 1 ≤ i ≤ `} is a collection

of delimited orthonormal quantum states if the following hold.

(a) There exists a separator state |φ〉 ∈ span{|0̄〉 , |1̄〉} for some m ∈ N such that, for each

1 ≤ i ≤ `, |ψi〉 = |φ〉 ⊗
∣∣∣ψ̃i〉 for some state

∣∣∣ψ̃i〉 ∈ span{|0〉 , |1〉}

(b) If ni = nj, then 〈ψi|ψj〉 = [i = j]

(c) For each 1 ≤ i ≤ `, there exists a unitary matrix Ui that can be implemented in time

ti such that |ψi〉 = Ui |0〉

The idea behind this definition is that given a permutation
⊗`

i=1

∣∣ψπ(i)

〉
of the states

{|ψi〉 | 1 ≤ i ≤ `}, we can take advantage of the separator state |φ〉 to find the beginning and

end of each state
∣∣ψπ(i)

〉
. We then pad those

∣∣ψπ(i)

〉
that contain fewer than max`i=1 ni qudits

by appending copies of the state |�〉. This results in a collection of orthonormal states that

are all of the same dimension so we can then apply Lemma 7.2.2 to recover |π〉.

Lemma 7.2.5. Suppose that {|ψi〉 ∈ C⊗ni | 1 ≤ i ≤ `} is a collection of delimited orthonor-

mal states where each |ψi〉 = Ui |0〉 and each unitary Ui can be implemented in ti time.

Let |φ〉 ∈ C⊗m be a separator state such that there exists a unitary matrix that can be

implemented in O(logm) time that maps |0〉 to |φ〉. Let n =
∑`

i=1 ni and t =
∑`

i=1 ti.

Let ∆ = nmax − nmin where nmax = max`i=1 ni and nmin = min`i=1 ni. Then we can im-

plement a unitary V in 4t + O(`n∆ + `n(log∗ log `) log n) time such that, for any π ∈ S`,

V
(⊗`

i=1

∣∣ψπ(i)

〉)
=
(⊗`

i=1 |π(i)〉
)
|0〉⊗r where r is chosen so that V is a square matrix.

2A qudit is like a qubit, but can have any number of dimensions. A d-dimensional qudit can always be
simulated by O(log d) qubits.

118

In the following proof we sometimes say that we set a register to a value for the sake of

brevity. Of course, one cannot set an arbitrary state to a second arbitrary state on a quantum

computer. However, we only use this terminology for new registers that are initialized to |0〉.

Proof. To show how to implement V , suppose that the input state is

⊗̀
i=1

∣∣ψπ(i)

〉Qi (7.1)

for some unknown π ∈ S` where we have used the letter Qi to label ith register. Now let∣∣∣ψ̂i〉 = |ψi〉 ⊗ |�〉⊗(nmax−ni) for each 1 ≤ i ≤ `. Let R be a unitary such that R |0〉 = |�〉.

Since R is a single qudit operation, it can be implemented in constant time. Letting Ûi =

Ui⊗R⊗(nmax−ni), we see that Ûi |0〉 =
∣∣∣ψ̂i〉 and Ûi can be implemented in t̂i = max{ti, O(1)} =

ti +O(1) time.

Our goal is to transform (7.1) into

⊗̀
i=1

∣∣∣ψ̂π(i)

〉Q̂i
(7.2)

where we have used the letter Q̂i instead of Qi to label the ith register since its size is now

potentially different. Since
∣∣∣ψ̂i〉 ∈ (C5)⊗nmax for each 1 ≤ i ≤ `, we can apply Lemma 7.2.2

to recover |π〉. The first step in performing this transformation is to compute the index

at which the ith state ψπ(i) starts for each i. We accomplish this by appending ` registers

initialized to |0〉 to obtain the state(⊗̀
i=1

∣∣ψπ(i)

〉Qi)(⊗̀
i=1

|0〉Ci
)

We then seek to store the index of the 5-valued qudit that each
∣∣ψπ(i)

〉
starts at in register

Ci. Clearly, the first qudit of
∣∣ψπ(1)

〉
has index 1 in (7.1). To compute the index of the first

qudit in
⊗`

i=1

∣∣ψπ(i)

〉
for each 2 ≤ i ≤ `, we proceed as follows.

For each 2 ≤ j ≤ n, we compute the number c′j of qudits of index less than j

at which a copy of the separating state |φ〉 starts. This is possible because |φ〉 is in

119

span {|0̄〉 , |1̄〉}⊗dlogm+1e
, while each

∣∣∣ψ′π(i)

〉
is in span {|0〉 , |1〉}⊗ni where

∣∣ψπ(i)

〉
= |φ〉

∣∣∣ψ′π(i)

〉
.

(Recall that 〈x|ȳ〉 = 0 for all x and y.) The value c′j is then stored in a register labelled by

C ′j. Since addition of two r-bit numbers can be done in O(log∗ r) time [27, 122] and Toffoli

gates with arbitrary numbers of controls can be performed in constant time [57, 27, 121],

this takes O((log∗ log `) log j) time for each j. We then set register i to j if the separating

state |φ〉 starts at index j and c′j = i − 1. This can be done using a constant number of

Toffoli gates. Since the above steps must be done for all 2 ≤ i ≤ ` and 2 ≤ j ≤ n, the total

time for this step is O(`n(log∗ log `) log n). Letting k(i) be the index of the qudit at which∣∣ψπ(i)

〉
starts for each 1 ≤ i ≤ `, the state becomes(⊗̀

i=1

∣∣ψπ(i)

〉Qi)(⊗̀
i=1

|k(i)〉Ci
)

after uncomputing and discarding the registers labelled by C(i,j).

Now that the values k(i) are available, we transform each state
∣∣ψπ(i)

〉
into

∣∣∣ψ̂π(i)

〉
as

follows. First, we append `nmax − n qudits initialized to |�〉 to obtain the state(⊗̀
i=1

∣∣ψπ(i)

〉Qi)(⊗̀
i=1

|k(i)〉Ci
)(⊗̀

i=1

∣∣�nmax−ni
〉Pi)

in O(1) time.

Then, for each 1 ≤ i ≤ ` and each 1 ≤ j ≤ n, we apply controlled swaps conditioned on

register Ci being in the state |j〉 (i.e. k(i) = j) to move the qudits in register Pi immediately

to the right of register Qi. This can be done in O(∆) time for each i and j. The total time

needed for this step is therefore O(`n∆). The state then becomes(⊗̀
i=1

∣∣∣ψ̂π(i)

〉Q̂i)(⊗̀
i=1

|k(i)〉Ci
)

Note that the Pi registers are no longer present since they have combined with the Qi registers

to create the Q̂i registers.

We are now almost ready to apply Lemma 7.2.2. First, we need to uncompute and discard

the Ci registers. To accomplish this, we note that k(i) is equal to (i−1)nmax−s(i)+1 where

120

s(i) is the number of |�〉 states at qudits with indexes less than (i − 1)nmax + 1. For each

1 ≤ i ≤ `, we compute s(i) and store it in a new register labelled by Si. Computing all of

the values s(i) takes O(`(log∗ log `nmax) log `nmax) time. All of the Ci registers can then be

uncomputed in O(log∗ log `nmax) time after which they can be discarded. The Si registers can

then be uncomputed and discarded in O(`(log∗ log `nmax) log `nmax). The total time required

for all of the steps in this stage is then O(`(log∗ log `nmax) log `nmax). After this is done, our

state is ⊗̀
i=1

∣∣∣ψ̂π(i)

〉Q̂i
as in (7.2). By applying Lemma 7.2.2, we obtain the state

|π〉 =
⊗̀
i=1

|π(i)〉

in 4t time. Appending |0〉⊗r, we obtain the desired state

|π〉 |0〉⊗r

Adding up the complexity for each step above, we find that the overall time complexity

is 4t+O(`n∆ + `n(log∗ log `) log n) as claimed.

One immediate consequence of Lemma 7.2.5 is that delimited states are weakly orthogo-

nal. This fact yields powerful primitives for state symmetrization that form the core of our

quantum algorithm for tree isomorphism.

7.2.3 The algorithm for performing symmetrization

In this subsection, we show an algorithm for symmetrizing collections of symmeterizable

states. Since we already know that orthogonal states and delimited states are symmeteriz-

able, this implies algorithms for symmetrizing collections of orthogonal and delimited states

as well. Recall the definition of complete left transversals from Section 3.1.

121

Lemma 7.2.6. Let {|ψi〉 | 1 ≤ i ≤ `} be a collection of G-symmeterizable states where di ∈ N

and |ψi〉 ∈ Cdi for each 1 ≤ i ≤ `. Assume that the unitary matrix V that maps each permu-

tation
⊗`

i=1

∣∣ψπ(i)

〉
where π ∈ G to |π〉 =

⊗`
i=1 |π(i)〉 can be implemented in time t′. Further

suppose that we are given a complete left transversal Ri for each quotient G(`,...,i)/G(`,...,i−1)

where i > 1. Then we can prepare the state

1√
|G|

∑
π∈G

⊗̀
i=1

∣∣ψπ(i)

〉
in t′ +O(` log `) time.

First, we note that the requirement that the complete left transversals Ri are given as

part of the input can be easily satisfied. This is because there are efficient algorithms [117,

15, 14, 114] for computing a strong generating set (defined in Section 3.6). Given a strong

generating set, it is then easy to recover a set of complete transversals. Thus the assumption

that we are given the complete left transversals is for convenience only and can be eliminated.

Throughout this chapter, we often write expressions of the form π = π1 · · · π` where π and

πi are permutations for each 1 ≤ i ≤ `. The notation πi refers to a permutation while π(i)

refers to the image of i under the permutation π.

Proof. Every element of G can be expressed uniquely as a product π` · · · π2 where each

πi ∈ Ri. For convenience, we let Gi = G(`,...,i) for each 1 < i ≤ `. Our plan is to create a su-

perposition of all permutations over the group G and then transform it into the superposition

of all permutations of the state
⊗`

i=1 |ψi〉.

Since we cannot directly create the superposition of all permutations in G, the first step

is to prepare the superposition

⊗̀
i=2

1√
|Ri|

∑
πi∈Ri

|πi〉 =
1√
|G|

∑
π=π`···π2
πi∈Ri

⊗̀
i=2

|πi〉

of all permutations in G represented in terms of the complete left transversals Ri. This can

be done in O(log `) time.

122

Next, we need to convert each state
⊗`

i=1 |πi〉 in the superposition into the state |π〉 =⊗`
i=1 |π(i)〉 so that we can use the unitary matrix V † to obtain the desired state. To do

this, it suffices to show that we can efficiently compose two permutations since π = π` · · · π2.

Now, if ρ, σ ∈ S`, then (ρσ)(i) = j if and only if there exists k ∈ [`] such that σ(i) = k and

ρ(k) = j. This observation yields a quantum circuit for computing the composition of two

permutations in O(`) time. Thus, we can compose ` − 1 permutations in O(` log `) time.

Adding another set of registers, this allows us to obtain the state

1√
|G|

∑
π=π`···π2
πi∈Ri

(⊗̀
i=2

|πi〉

)
|π〉

in O(` log `) time where |π〉 =
⊗`

i=1 |π(i)〉.

Now, if ρ` and σ` are distinct elements of R`, then ρ−1
` σ` 6∈ G`−1 so ρ`(`) 6= σ`(`). Thus,

each element of R` may be identified with a number in [`]. This implies that if we are given

π ∈ G, we can compute the unique π` such that π = π2 · · · π` where each πi ∈ Ri in O(1)

time using controlled operations. Thus, we can compute the state

1√
|G|

∑
π=π2···π`
πi∈Ri

(
`−1⊗
i=2

|πi〉

)
|π〉
∣∣π−1
` π
〉

by uncomputing π` in O(log `) time. By continuing in this manner, we obtain the state

1√
|G|

∑
π=π2···π`
πi∈Ri

|π〉
∣∣π2 · · · π−1

` π
〉

in O(` log `) time.

The permutation π2 · · · π−1
` π must fix each 2 ≤ i ≤ ` so it follows that π2 · · · π−1

` π is the

identity permutation. Therefore, we can uncompute π2 · · · π−1
` π as well to obtain in O(1)

time
1√
|G|

∑
π=π2···π`
πi∈Ri

|π〉 =
1√
|G|

∑
π∈G

|π〉

Finally, we apply the unitary V † which yields the desired state

1√
|G|

∑
π∈G

⊗̀
i=1

∣∣ψπ(i)

〉

123

in time t.

Adding up the complexities for each step, we obtain an overall runtime of t + O(` log `)

as claimed.

By combining Lemma 7.2.6 with Corollary 7.2.3 and Lemma 7.2.5, we obtain two useful

corollaries.

Corollary 7.2.7. Let
{
|ψi〉 ∈ Cd

∣∣ 1 ≤ i ≤ `
}

be a collection of orthonormal states of di-

mension d where each |ψi〉 = Ui |0〉 and each Ui can be implemented in ti time. Let G be a

permutation group of degree ` and assume that we are given a complete left transversal Ri

for each quotient G(`,...,i)/G(`,...,i−1) where i > 1. Then we can prepare the state

1√
|G|

∑
π∈G

⊗̀
i=1

∣∣ψπ(i)

〉
in 4t+O(` log `) time where t =

∑`
i=1 ti.

The next corollary forms the core of our quantum algorithm for tree isomorphism.

Corollary 7.2.8. Suppose that {|ψi〉 ∈ C⊗ni | 1 ≤ i ≤ `} is a collection of delimited or-

thonormal states where each |ψi〉 = Ui |0〉 and each unitary Ui can be implemented in ti

time. Let |φ〉 ∈ C⊗m be a separator state such that there exists a unitary matrix that can

be implemented in O(logm) time that maps |0〉 to |φ〉. Let n =
∑`

i=1 ni and t =
∑`

i=1 ti.

Let ∆ = nmax − nmin where nmax = max`i=1 ni and nmin = min`i=1 ni. Let G be a permuta-

tion group of degree ` and assume that we are given a complete left transversal Ri for each

quotient G(`,...,i)/G(`,...,i−1) where i > 1. Then we can prepare the state

1√
|G|

∑
π∈G

⊗̀
i=1

∣∣ψπ(i)

〉
in 4t+O(`n∆ + `n(log∗ log `) log n) time.

124

7.3 A quantum algorithm for tree isomorphism

In this section, we give our algorithm for tree isomorphism and analyze its complexity. We

use 5-valued qudits with the same notational conventions as in Subsection 7.2.2. The basis

state |�〉 is not used here as it is reserved for the internal implementation of Corollary 7.2.8.

The idea behind the algorithm is to recursively compute a complete invariant state |Ti〉 for

each subtree Ti rooted at a child of the root. This collection of states is not delimited.

However, we can modify it to make it delimited. An application of Corollary 7.2.8 then

yields a complete invariant state |T 〉 for the rooted tree T .

Theorem 7.3.1. Let T be a rooted tree with n nodes. Then we can compute in O(n5)

time a complete invariant state |T 〉 such that if T ′ is another rooted tree with n nodes, then

〈T |T ′〉 = [T ∼= T ′].

Proof. We show by induction that there is a unitary matrix U such that U |0〉 = |T 〉.

If n = 1, then we define |T 〉 = |0〉. Otherwise, let T1, . . . , T` be the subtrees of T rooted

at the children of the root. We recursively compute a complete invariant state |Ti〉 = Ui |0〉

for each Ti. Let m be the depth of T and let |φ〉 be the state |m̄〉 with the correct number

of |0̄〉 qudits prepended so that it uses exactly dlog n + 1e qudits. We then prepend |φ〉 to

each invariant state |Ti〉. Since the state |φ〉 is not used in the states |Ti〉, this almost gives

us a collection of delimited states. However, it may be the case that Ti ∼= Tj for some i 6= j,

in which case we have |Ti〉 = |Tj〉, so that |Ti〉 and |Tj〉 are not orthogonal.

We can correct this by prepending the state |k(i)〉 to each state |Ti〉 where k(i) is the

number of trees Tj ∼= Ti where j < i. We accomplish this as follows. For reasons of efficiency

that will become clear in the complexity analysis, we handle the subtrees that have a number

of nodes distinct from all others separately. To this end, we let v be the vector of all indexes

1 ≤ i ≤ ` such that |{Tj | |Ti| = |Tj| , 1 ≤ j ≤ `}| = 1 listed in order of increasing |Ti|.

Let CP be the unitary matrix that acts on a pair of registers by adding one to the second

register if all of the qudits in the first register are in the state |0〉. Then (Ui⊗I) ·CP ·(U †i ⊗I)

adds one to the second register if the first register is in the state |Ti〉. For each i 6∈ v, we

125

apply this operation to each |Tj〉 such that j < i and Tj and Ti have the same number of

nodes. In this way, each state |Ti〉 with i 6∈ v is transformed into |φ〉
∣∣∣k̂(i)

〉
|Ti〉 where

∣∣∣k̂(i)
〉

is the state |k(i)〉 padded with the right number of zeros to ensure that it uses exactly dlog ne

qudits. Each state |Ti〉 with i ∈ v is transformed into |φ〉 |0〉dlogne−1 |1〉 |Ti〉. This gives us a

collection of delimited orthonormal states.

We apply Corollary 7.2.8 to obtain the state

∣∣∣T̂〉 =
1√

(`− |v|)!

∑
π∈S(`−|v|)

⊗
i 6∈v

(
|φ〉
∣∣∣k̂(π(i))

〉 ∣∣Tπ(i)

〉)

We then define

|T 〉 =

(⊗
i∈v

|φ〉 |0〉dlogne−1 |1〉 |Ti〉

)∣∣∣T̂〉

Since each state |Ti〉 is a complete invariant for |Ti〉, it follows by induction that |T 〉 is a com-

plete invariant for |T 〉. This step takes time
∑

i∈v ti+5
∑

i 6∈v ti+O(`n∆+`n(log∗ log `) log n).

Accounting for the time required for the other two steps, we find that the total time required

to prepare |T 〉 is ∑
i∈v

ti +
∑
i 6∈v

(5 + 2`i)ti +O(n3) (7.3)

where each `i of the number of subtrees Tj with j < i that have the same size as Ti.

All that remains is to analyze the complexity. Let f(n) denote the time required to

compute |T 〉 when T has n nodes. We will prove by induction on n that f(n) ≤ c1n
c2

where c1 and c2 are positive constants to be determined. Before we can show the recurrence,

we need to introduce some notation. Let P (n − 1) denote the set of all vectors of natural

numbers that sum to n−1. For any ~n ∈ P (n−1), let κi(~n, x) denote the number of elements

of ~n at indexes less than i that are equal to x ∈ N. Let V (~n) denote the set of indexes

1 ≤ i ≤ |~n| such that ni occurs only at once index in ~n.

126

Then we have

f(n) ≤ max
~n∈P (n−1)

 ∑
i∈V (~n)

f(ni) +
∑
i 6∈V (~n)

(5 + 2κi(~n, ni))f(ni)

+ c3n
3 for some c3 > 0

≤ max
~n∈P (n−1)

 ∑
i∈V (~n)

f(ni) +
∑
i 6∈V (~n)

(5 + 2κi(~n, ni))f(ni)

+ c3n
3

≤ max
~n′∈P (n−1)

{∑
k∈~n′

max
a,b∈N
ab=k

{g(a)f(b)}

}
+ c3n

3

where

g(a) =

1 if a = 1

a2 + 4a if a ≥ 2

We claim that g(a)f(b) ≤ c1k
c2 where k = ab if c2 ≥ 5. In the case where a = 1, g(a)f(b) =

f(k) and f(k) ≤ c1k
c2 by induction. Therefore, we assume that a ≥ 2. Then

g(a) = a2 + 4a

< 5a2

< a5

Therefore,

g(a)f(b) < a5f(b)

≤ c1a
5

(
k

a

)c2
≤ c1k

c2

if c2 ≥ 5, as we claimed. Consequently, since (n− 1)c ≤ nc − Ω(nc−1) for c ≥ 1, we have

f(n) < c1(n− 1)c2 + c3n
3

≤ c1n
c2 + c3n

3 − c1c4n
c2−1 for some c4 > 0

≤ c1n
c2

127

if c1 ≥ c3/c4. Since c1 > 0 and c2 > 0 are constants that we can choose while c3 is an absolute

constant and c4 is a constant that depends only on c2, it follows that f(n) = O(n5).

7.4 Conclusion

In this chapter, we showed that complete invariant states for trees can be prepared in O(n5)

time on a quantum computer. Our primitive for symmetrizing collections of delimited or-

thonormal states seems powerful and may be of independent interest.

A few open problems still remain. First, it seems unlikely that Ω(n5) time is really

necessary for preparing complete invariant states for trees. Our goal was merely to obtain

polynomial time and we did not attempt to optimize the polynomial. Our analysis is probably

not tight and can likely be modified to get a better upper bound. However, preparing

complete invariant states for trees in nearly linear time (which seems like the correct runtime)

will likely require enhancements to the underlying algorithm as well.

A second question is whether the methods developed in this chapter can be leveraged

to test isomorphism of more complicated types of graphs. Of particular interest are graphs

that generalize trees, such as the cone graphs.

128

Part II

ISOMORPHISM TESTING

129

Chapter 8

THE COLOR AUTOMORPHISM PROBLEM

8.1 Introduction

In this chapter, we survey a group-theoretic problem known as the color automorphism

problem (which we will define later). This problem is important for several reasons. As we

shall see, algorithms for color automorphism can be used to obtain algorithms for testing

isomorphism of bounded-degree graphs, which are used in our group isomorphism algorithms

in Chapters 10 – 12. (However, these later chapters only depend on the statements of

Theorems 8.4.5 and 8.4.7 and do not rely on the proof methods introduced in the present

chapter.) Together with Zemlyachenko’s lemma (which provides a method for reducing the

degree of a graph), an algorithm for bounded-degree graph isomorphism is one of the two

main ingredients in the best algorithm for general graph isomorphism that is currently known.

The first algorithm for the color-automorphism problem was devised by Luks [76], and

was efficient enough to yield the first algorithm for testing isomorphism of graphs of constant

degree. Subsequently, Luks improved [18, 16] his algorithm to the point where it implies that

isomorphism of graphs of degree at most d can be tested in nO(d/ log d) time.

In this chapter, we cover algorithms for the color-automorphism problem and their ap-

plication to the graph isomorphism problem. In Section 8.2, we cover the basics of group

actions. We discuss two algorithms for permutation groups that are needed in the color

automorphism algorithm in Section 8.3. We describe Luks’ original algorithm for color au-

tomorphism [76] and subsequent improvements [16] in Section 8.4. Because it is required

for Zemlyachenko’s lemma which is needed for the algorithm for general graph isomorphism,

we describe the Weisfeiler-Lehman (WL) algorithm in Section 8.5. We then cover Zemly-

achenko’s lemma and the best algorithm [18, 16] known for general graph isomorphism in

130

Section 8.6. We conclude with open questions and possibilities for further improvements in

Section 8.7.

8.2 Group actions

In this section, we cover the basics of group actions, which are a generalization of permutation

groups. For basic background on groups and permutation groups, see Chapter 3.

Given a group G and a set Ω, we say that G acts on Ω if there is a homomorphism

φ : G → Sym(Ω) such that each g ∈ G acts on Ω by the associated permutation φ(g). For

g ∈ G and α ∈ Ω, we denote the action of g on α as g(α) or gα. An action is faithful if

kerφ = {1} and in this case G is isomorphic to a subgroup of Sym(Ω). An action is transitive

if for all α, β ∈ Ω there exists g ∈ G such that gα = β; if an action is intransitive then Ω

may be partitioned into a set of orbits Ω1, . . . ,Ωm such that the restriction of the action of

G to any orbit is transitive (we remark here that each Ωi = Gαi = {gαi | g ∈ G} for any

αi ∈ Ωi). For transitive G, a nonempty subset ∆ ⊆ Ω is called a block if for all g ∈ G, ∆∩g∆

is either empty or equal to ∆. In this case, we call the set of images of ∆ under the action

of G (which partitions Ω) a block system. A trivial block system is the unit partition or the

discrete partition. A block system is minimal if no partition of Ω which more coarse is also a

nontrivial block system. (In other words, one cannot join blocks to obtain another nontrivial

block system.) An action is primitive if it is transitive and has no nontrivial block system.

We see that if an action of G is transitive then its action on any minimal block system is

primitive. Moreover, if H is the subgroup of G which stabilizes some minimal block system

then G/H is primitive and acts faithfully on the blocks.

When the action in question is obvious from the context, we shall sometimes refer to

transitivity and other properties of group actions as if they were properties of the group.

For example, for a permutation group G on Ω we might say that G is transitive. This would

mean that the action of applying the permutations to Ω is transitive.

We can define stabilizers for group actions in the same way that we did for permutation

groups in Section 3.6. For α ∈ Ω, we denote the subgroup of G which fixes α by Gα. For a

131

subset ∆ ⊆ Ω, the setwise stabilizer of ∆ (denoted G∆) is the subgroup which sends every

element of ∆ back into ∆. A subset ∆ ⊆ Ω is called G-stable if G = G∆. The pointwise

stabilizer of ∆ (denoted G(∆)) is the subgroup of G which fixes every element of ∆.

Let us choose α ∈ Ω. There is a close relationship between the set B of all blocks for a

group action and the set S of all subgroups of G that contain Gα.

Theorem 8.2.1. (cf. [40]) The map Ψ : B → S : ∆ 7→ G{∆} is an order-preserving bijection

(with respect to set inclusion) and its inverse is Φ : S → B : H 7→ Ha.

This implies that G is primitive if and only if Gα is a maximal subgroup of G. It follows

that every primitive p-group is of order p and that every primitive Abelian group is cyclic of

prime order.

8.3 Permutation-group algorithms

The color-automorphism algorithms that we will discuss in this chapter rely on two basic

permutation group algorithms. The first of these is capable of computing the kernel of a

homomorphism φ : G → H between two permutation groups. First, we remark that φ can

be compactly specified by its action on a generating set S of G. In order to compute kerφ,

we consider the subgroup K = 〈{(π, φ(π))}π∈S〉 of Sm+n where m and n are the degrees of G

and H. By computing the pointwise stabilizer K(m+n,...,m+1), we obtain the group kerφ×{ι}

from which we can easily compute kerφ.

We shall also need an algorithm for computing a minimal block system of a transitive

permutation group G ≤ Sym(Ω). This may be done recursively by giving an algorithm

(cf. [76, 18]) for computing the smallest block in which a pair α, β ∈ Ω are contained.

To compute the smallest such block, we consider the graph whose nodes correspond to Ω

and whose edges correspond to the images under G of the set {α, β}. The smallest block

containing {α, β} is then the connected component in which {α, β} is contained. We consider

all possible such pairs and choose one which results in a nontrivial block system. We then

continue the process recursively on this block system; the result is a minimal block system

132

for G.

8.4 Bounded-degree graph isomorphism

In this section, we will show how to decide isomorphism of graphs of bounded degree [7, 76,

18, 16]. The algorithm works by computing the subgroup Aute(X) which setwise fixes the

edge e of the connected graph X. Since we represent all groups in terms of their generating

sets, computing a group means we compute a generating set for that group. This suffices

to decide isomorphism of connected graphs of bounded degree. To show this, consider two

graphs X and Y and choose edges eX = {a1, b1} and eY = {a2, b2} in each of these graphs.

We delete these edges from the graphs and add two new nodes c1 and c2; we then connect

each ai and bi to ci and draw an edge between c1 and c2. Denoting the resulting graph by Z,

we compute Aut{c1,c2}(Z). The original graphs X and Y are isomorphic if and only if every

generating set of this group contains a permutation which swaps c1 and c2 for some choice

of the edges eX and eY . By fixing the choice of eX and repeating the reduction for each

possible choice of eY , we can decide isomorphism of connected graphs of bounded degree. It

is easy to see that this allows us to decide isomorphism of arbitrary graphs of bounded degree

since we can split them into their connected components and determine which components

are isomorphic. We shall therefore focus on computing the group Aute(X) where X is a

connected graph of bounded degree.

The algorithm for testing isomorphism of graphs of bounded degree is based on the

tower of subgroups approach that was introduced by Babai [8] in his algorithm for deciding

isomorphism of graphs of bounded color class. The algorithm for bounded-degree graphs is

particularly elegant when formulated in terms of the color automorphism problem [76]. Here,

we are given a set Ω and a permutation group G. Each element of Ω has an associated color

and our goal is to compute the subgroup CΩ(G) of G that maps each element of Ω to some

other element which has the same color. It is clear that this problem is at least as hard

as graph automorphism where one must compute the group of automorphisms of the graph.

Since it is known that the automorphism problem is equivalent to the isomorphism problem

133

under Turing reductions [79] (cf. [23, 56]), we see that the color automorphism problem is

GI-hard. However, this does not seem to be useful for obtaining an efficient algorithm for

graph isomorphism since the color automorphism problem on this group appears to difficult.

In fact, it is known that at least one version of the corresponding canonization problem is

NP-hard [18].

8.4.1 Reduction to the color automorphism problem

The key contribution of Luks’ paper [76] is his Turing reduction from testing isomorphism

of graphs of degree at most d to color automorphism problems for groups in the class Γd−1

on sets of size at most
(
n
d

)
. Here, Γd is the set of all permutation groups whose non-Abelian

composition factors are isomorphic to subgroups of Sd. This class of groups is relevant

because of the following result.

Theorem 8.4.1 (Babai, Cameron and Pálfy [10]). Let G be a primitive permutation group

of degree n in Γd. Then |G| ≤ nw(d) where w(d) = O(d log d).

Let X = (V,E) be a connected graph of degree at most d. As we shall see in the next

subsection, this result allows us to solve the color automorphism problem for a permutation

group in Γd acting on a set of size n in nw(d−1)+O(1) time. For now, we reduce computing

Aute(X) to a linear number of color automorphism problems for groups in Γd−1 acting on

sets of size at most
(
n
d

)
.

We remark that [10] was published after Luks’ original result, which relied on different

techniques. However, we prefer the use of Theorem 8.4.1 since it yields a more efficient and

less complicated algorithm. We now show Luks’ reduction from computing Aute(X) to the

color automorphism problem. Our presentation also uses ideas from [7].

We define Xr = (Vr, Er) to be the subgraph of X which consists of those nodes and edges

that are located on paths of length at most r that include e. However, the automorphism

groups of the graphs Xr still do not have enough structure so we use another trick. Let

Yr+1 = (Vr+1, Fr+1) be the graph obtained from Xr+1 by removing those edges between

134

nodes in Vs+1 \ Vs for 1 ≤ s ≤ r. We let Y = (V, F) = Yt where t is the largest value such

that Xt 6= Xt−1. We can think of computing Aute(X) as a color automorphism problem for

the group Aute(Y) acting on the set of all two element subsets of V where each subset is

colored “edge” if it corresponds to an edge in E \ F and “non-edge” otherwise. Thus, we

can compute Aute(X) efficiently from Aute(Y) assuming that Aute(Y) is in Γd−1 (which we

show later).

Our plan is to show how to compute Aute(Yr+1) given Aute(Yr). To start, we note that

Y1 consists of just the edge e so Aute(Y1) consists of the identity and the permutation which

swaps the endpoints of e. Then clearly, Aute(Y1) ∈ Γd−1. To compute Aute(Yr+1) given

Aute(Yr), we consider the homomorphism φr : Aute(Yr+1) → Aute(Yr) which outputs the

restriction of each automorphism in Aute(Yr+1) to Vr. The kernel of φr is clearly the subgroup

of Aute(Yr+1) that pointwise fixes Vr. Let Ar be the set of all subsets of Vr of at most d

elements and define ρr : Vr+1 \Vr → Ar to map each vertex in Vr+1 \Vr to the set of nodes to

which it is connected in Yr+1. Since Yr+1 has no edges connecting the nodes in Vr+1 \ Vr to

each other, an automorphism of Yr+1 that fixes Vr can map a node in Vr+1 \ Vr to any other

node with the same set of neighbors. Then kerφr is the direct product
Ś

A∈Ar Sym(ρ−1
r (A)),

which we can easily compute. Now by induction, Aute(Yr) is in Γd−1 so Imφr is also in Γd−1.

Since |ρ−1(A)| ≤ d− 1 for any A ∈ Ar, kerφr is in Γd−1 which implies that Aute(Yr+1) is in

Γd−1 since Aute(Yr+1)/ kerφr ∼= Imφr by the first isomorhpism theorem.

To finish computing Aute(Yr+1), we note that Imφr is the subgroup of automorphisms of

Yr that can be extended to automorphisms of Yr+1. Our next goal is to compute Imφr. By

definition, all edges in Fr+1\Fr are from Vr to Vr+1\Vr. Thus, an automorphism π ∈ Aute(Yr)

extends to an automorphism of Yr+1 if and only if it sends each A ∈ Ar to some B ∈ Ar such

that the number of nodes in Vr+1 \Vr that have A as their neighborhood in Yr+1 is equal the

number of nodes that have B as their neighborhood. Equivalently, π must stabilize the sets

Ar,s = {A ∈ Ar | |ρ−1(A)| = s} for all 1 ≤ s ≤ d−1. If we think of Aute(Yr) as acting on Ar
and color each A ∈ Ar according to the set Ar,s in which it is contained, then this is a color

automorphism problem on a set of size at most
(
n
d

)
for a group in Γd−1 so we can compute

135

Imφr. For each generator π ∈ Imφr, we extend π to σ ∈ Aute(Yr+1) as follows. For each

A ∈ Ar and π[A], we consider the nodes ρ−1(A) and ρ−1(π[A]) that have A and π[A] as their

neighborhoods in Yr+1. If A = π[A] then we define σ on ρ−1(A) = ρ−1(π[A]) by an arbitrary

permutation. Otherwise, ρ−1(A) and ρ−1(π[A]) are disjoint and we define σ on ρ−1(A) by an

arbitrary bijection to ρ−1(π[A]). We continue constructing the extension σ of π in this way

by considering subsets A ∈ Ar until σ is defined on all of Vr+1. It is clear that φr(σ) = π.

The preimages of different generators of Imφr are representatives of cosets which generate

the factor group Aute(Yr+1)/ kerφr. It follows that the generators of kerφr together with

a preimage of each generator of Imφr generates Aute(Yr+1). This allows us to compute

Aute(Yr+1) given Aute(Yr). Thus, we can compute Aute(Y) by induction. We then compute

Aute(X) from Aute(Y) as described above.

8.4.2 An algorithm for the color automorphism problem

In this subsection, we present Luks’ algorithm for the color automorphism problem. It is

useful to consider a slightly more general version of the color automorphism problem. Here,

we are given a coset σG where σ ∈ Sym(Ω) and G ≤ Sym(Ω) and a G-stable subset ∆ ⊆ Ω.

The goal is to compute C∆(σG) = {π ∈ σG | ∀α ∈ ∆, πα ∼ α} where α ∼ β means that

α, β ∈ Ω have the same color. (We remark that a coset σG can be represented efficiently by

a representative σg and a generating set forG.) It is easy to show that C∆(σG) is either empty

or a left coset of C∆(G). This means that the output C∆(σG) can always be represented

compactly. It follows from the definition that if Ω = ∆1∪∆2, then CΩ(σG) = C∆1(C∆2(σG)).

Also, if σG =
⋃
i στiH where each τi ∈ G and H ≤ G then C∆(σG) =

⋃
iC∆(στiH).

Given an instance C∆(σG) of the color automorphism problem, we first check if |∆| = 1.

In this case, we return σG if σ respects the color of ∆ and ∅ otherwise (recall that ∆ is

G-stable). If |∆| > 1, we test if G is intransitive on ∆. In this case, we can partition ∆ into

two nonempty G-stable subsets ∆1 and ∆2. We then break the problem up into two smaller

problems by writing C∆(σG) = C∆1(C∆2(σG)). The third case occurs when G is transitive

on ∆. In this case, we compute a minimal block system ∆1, . . . ,∆m for the action of G on

136

∆. We then compute the subgroup H that setwise stabilizes each block ∆i. We note that

in general, computing the setwise stabilizer is GI-hard. However, in this case H is the kernel

of the homomorphism φ : G → Sym({∆1, . . . ,∆m}) which maps each element of G to its

induced action on the blocks and we have already explained how to compute the kernels of

homomorphisms of permutation groups in Section 8.3. We proceed by computing a complete

set of representatives τ1, . . . , τk for the cosets in G/H. Then C∆(σG) =
⋃k
i=1 C∆(στiH);

however, we need to express C∆(σG) as a subcoset of σG. We can do this by computing

each C∆(στiH) = ρiC∆(H). Since we already argued that C∆(σG) is a subcoset of σG, it

follows that C∆(σG) = ρ1〈C∆(H),
{
ρ−1

1 ρi
∣∣ 2 ≤ i ≤ k

}
〉, which has the desired form.

Now let us analyze the running time in terms of the size n of the set Ω and the class Γd

which contains the group G. The only issue is that when G is transitive on ∆, the size of

the set in the sub-problems is not immediately reduced. However, since in that case each

block ∆i is stabilized by H, the case of the algorithm that tests for intransitivity will break

each problem C∆(στiH) into m smaller problems on each of the blocks. Thus, we have that

for each n, at least one of the following inequalities is satisfied.

T (n) ≤
m∑
i=1

T (ni) + poly(n) where {n1, . . . , nm} is an integer partition of n

T (n) ≤ mw(d−1)+1T (n/m) + poly(n) where m is a divisor of n

One can easily verify that T (n) = nw(d−1)+O(1) satisfies both inequalities and is therefore

an upper bound on the runtime.

Theorem 8.4.2 (Babai and Luks [18]). Let G be a permutation group in Γd acting on a

colored set Ω of size n. Then for any σ ∈ Sym(Ω), CΩ(σG) can be computed in nw(d−1)+O(1)

time.

Combining this result with Luks’ reduction from bounded-degree graph isomorphism to

the color automorphism problem, we obtain the following theorem.

137

Theorem 8.4.3 (Luks [76] (cf. [7])). Isomorphism of graphs of degree at most d can be tested

in nO(d2 log d) time.

In fact this result can be slightly generalized. For this, we need to review some basic

definitions for graphs. A colored graph is a graph that associates each vertex with a given

color. Two colored graphs are isomorphic if there is a bijection between their vertex sets

that respects the edges and maps each node to a node of the same color. Since the set of

nodes has size n, one can handle colored graphs as well by simply solving an additional color

automorphism problem. This does not increase the runtime.

Theorem 8.4.4 (Luks [76] (cf. [7])). Isomorphism of colored graphs of degree at most d can

be tested in nO(d2 log d) time.

8.4.3 Faster algorithms for graphs of bounded degree

Although Theorem 8.4.4 is impressive, it is desirable to obtain a more efficient algorithm.

The d log d factor in the exponent comes from the color automorphism algorithm while the

second d factor comes from solving the color automorphism problem on sets of size at most

nd. Thus, if we could improve the reduction to color automorphism to only use sets of

size nO(1), we would obtain an nO(d log d) algorithm. This can be accomplished using a clever

trick [18]. Let us define the graphs Xr and Yr as before. We note that the color automorphism

problem that we must solve to compute Aute(X) given Aute(Y) is on a set of size at most

n2. The sets of size at most nd arise when we compute Aute(Yr+1) from Aute(Yr) via a color

automorphism problem on all d element subsets of Vr. We accomplish this using a different

reduction to the color automorphism problem.

Intuitively, the proof works by noting that we can think of an automorphism of a graph

either as a permutation of the vertices that respects the edges or a permutation of the edges

that induces a well-defined permutation of the vertices. The improved reduction works by

lifting to an action on the edges that contains all of the automorphisms and then selecting

only those permutations of the edges that correspond to permutations of the vertices.

138

More formally, for each node x ∈ Vr, we define dr(x) to be the number of edges from x to

nodes in Vr+1\Vr. We see that a necessary (but not sufficient) condition for an automorphism

π ∈ Aute(Yr) to extend to an automorphism of Yr+1 is that dr(π(x)) = dr(x) for all x ∈ Vr.

Thus, we start by computing the subgroup Hr of Aute(Yr) that respects dr; note that this is

a color automorphism problem on a set of size at most n. We then extend Hr to a group Kr

that acts on the edges in Yr+1 from Vr to Vr+1 \ Vr by allowing edges that share a point in

Vr to be permuted in all possible ways (note that since we already restricted to only those

automorphisms that respect the degrees of the nodes, this group is in Γd−1). Moreover,

Kr contains all permutations of the edges that correspond to automorphisms of Yr+1. The

problem now is that we cannot immediately map Kr back to a group of permutations of

Vr+1. We resolve this by computing the subgroup Lr of Kr that maps every pair of edges

from Vr to Vr+1 \ Vr that have a common endpoint in Vr+1 \ Vr to another pair of edges with

the same property. We do this by considering the action of Kr on all pairs of edges from Vr

to Vr+1 \ Vr; we then color each pair that shares a common endpoint in Vr+1 \ Vr “red” and

all other pairs “blue.” Since the set for this color automorphism problem is of size at most

n4, we can find Lr efficiently. By definition, Lr can also be thought of as an action on Vr+1

and it is easy to show that Lr = Aute(Yr+1). Since all of the sets on which we solve the color

automorphism problem now have size at most n4, we obtain the following theorem.

Theorem 8.4.5 (Babai and Luks [18]). Isomorphism of colored graphs of degree at most d

can be tested in nO(d log d) time.

8.4.4 Further speedups

In this subsection, we shall sketch how to obtain the nO(d/ log d) algorithm [16] for graphs of

degree at most d (which is the best result to date). The socle (denoted soc(G)) of G is the

subgroup generated by the minimal normal subgroups of G. Let G be a primitive group of

degree n which is in Γd and consider soc(G). Using the classification of finite simple groups,

one can show that either (a) G has a Sylow p-subgroup P of index at most nO(d/ log d) or

139

(b) the socle is isomorphic to a direct product of alternating groups of degree at most d.

In the first case, the Sylow p-subgroup can be found efficiently using an algorithm due to

Kantor [60] or a more specialized algorithm from Luks’ original paper [76]. Once this group

has been obtained, one can proceed using techniques similar to those discussed previously.

The more difficult case is when the socle is a direct product of alternating groups. We

shall describe the speedup only in the special case where the socle is isomorphic to a single

alternating group. We shall also assume for simplicity that soc(G) acts as the alternating

group on Ω. This is not true in general since an isomorphism between two groups need

not respect their permutation domains (this is the difference between an isomorphism and

a permutation isomorphism). However, both of these assumptions can be eliminated using

more complex versions of the techniques described here [16].

The first step is to pass to the socle of G. This can be done at essentially zero cost since

one can show [16] that the index of the socle in G is at most nO(log d). We know that the socle

is transitive since G is primitive. We divide Ω into two halves ∆1 and ∆2 arbitrarily and

compute the setwise stabilizer soc(G)∆1 . Since the index of this group in soc(G) is at most

2n, this can be done in time poly(n)2n using more specialized algorithms for permutation

groups [15] (in fact even the more general methods introduced earlier in this chapter suffice

with worse constants in the exponent of the final runtime). This allows us to pass from

soc(G) to the group soc(G)∆1 at the cost of increasing the number of problems by a factor

that is less than 2n. We then decompose into the orbits of Ω under (soc(G))∆1 . Continuing

this process recursively until all sets are singletons results in a total of at most 4n ≤ nO(d/ log d)

problems. This yields the following result.

Theorem 8.4.6 (Babai, Kantor and Luks [16]). Isomorphism of colored graphs of degree at

most d can be tested in nO(d/ log d) time.

With some additional work, these techniques can also be applied to canonization using

the methods of [18] which we describe in the next section.

140

8.4.5 Canonization of graphs of bounded degree

We now discuss how the algorithms described above can be extended to perform graph

canonization: given a graph X, compute a unique representative Can(X) of its isomorphism

class. Canonization is at least as hard as graph isomorphism since given two graphs X and

Y , X ∼= Y if and only if Can(X) = Can(Y).

The main idea behind the algorithm for performing canonization of bounded-degree

graphs [18] is to replace the color automorphism problem with the string placement prob-

lem. Consider the strings x, y ∈ ΣΩ. We say these strings are isomorphic if there ex-

ists π ∈ Sym(Ω) such that πx = y. If G ≤ Sym(Ω), then the strings x and y are G-

isomorphic (denoted x ∼=G y) if there exists g ∈ G such that gx = y. We say that a function

Can(G) : ΣΩ → ΣΩ is a canonical form with respect to G if for all x, y ∈ ΣΩ, Can(x,G) ∼=G x

and x ∼=G y if and only if Can(x,G) = Can(y,G). In the case where G = Sym(Ω), we

omit G and write Can(x). Suppose that Can(G) : ΣΩ → ΣΩ is a canonical form of x

with respect to G. The notion of canonical form can be extended to cosets by defining

Can(x, σG) = Can(σx,G). The canonical placement coset with respect to G is defined to be

CP(x, σG) = {g ∈ G | gx = Can(x, σG)}. It is easy to see that the following properties hold

CP(x, σG) = σCP(σx,G) (8.1)

CP(x, σG) = τAutG(τx) for τ ∈ CP(x, σG) (8.2)

The notation AutG(τx) denotes the group ofG-automorphisms of τx. Babai and Luks [18]

showed that these properties (together with the assumption that CP(x, σG) ⊆ σG) charac-

terize canonical placement functions. That is, any function that satisfies equations 8.1 and

8.2 defines the canonical placement coset for some canonical form with respect to σG. Then

assuming CP is such a function, we obtain a canonical form by computing CP(x, σG) and

defining Can(x, σG) = CP(x, σG)x. Our goal is therefore to define an algorithm which is

efficient and satisfies equations 8.1 and 8.2.

141

Such an algorithm can be defined using techniques similar to those used in the color

automorphism problem. We neglect the optimizations described in Subsection 8.4.4 and

adapt the basic nO(d log d) algorithm to compute canonical placement cosets. We first make

another generalization to the problem to allow recursion. If ∆ is a G-stable subset of Ω then

we define CP∆(x, σG) to be the canonical placement coset of the string x restricted to ∆

(denoted x
∣∣
∆

). As before, there are three cases. If |∆| = 1, then since ∆ is G-stable, any

g ∈ G is an automorphism of x
∣∣
∆

so CP∆(x, σG) = σG. The second case occurs when the

action of G on ∆ is intransitive. Here, we again partition ∆ into two nonempty G-stable

subsets ∆1 and ∆2. We then set CP∆(x, σG) = CP∆1(x,CP∆2(x, σG)). We can think of

this as first placing the substring x
∣∣
∆2

into canonical form and then placing the substring

x
∣∣
∆1

into canonical form. The third case is when G is transitive on G. While the first two

cases were essentially the same as in the algorithm for the color automorphism problem,

performing string placement results in an important difference in the third case.

As before, we compute a minimal block system ∆1, . . . ,∆m for the action of G on ∆.

However, now we must ensure that this minimal block system is constructed in a way which

depends only on G and the natural ordering on Ω (think of Ω as [n]). This can be done by

considering all pairs α, β ∈ Ω and calculating for each pair the smallest block ∆α,β in which

they are contained. We choose among the pairs that yield a nontrivial block, the pair α, β

that comes first under the lexicographic ordering on all pairs. We then obtain a block system

from ∆α,β by computing its images under G. Since there is also a lexicographic ordering on

subsets of Ω, we can continue the process of selecting pairs recursively on this block system

to obtain a minimal block system ∆1, . . . ,∆m. We reiterate that this minimal block system

depends only on G and the natural ordering on Ω.

Once we have computed the minimal block system, we proceed in the same manner

as before with one additional trick. We compute the subgroup H that stabilizes each of

the blocks and a complete set of representatives of τ1, . . . , τm of G/H. We then calcu-

late CP∆(x, στiH) = ρiHi for each i. Next, we reindex so that ρ1x
∣∣
∆

= · · · = ρsx
∣∣
∆
<

ρs+1x
∣∣
∆
≤ · · · ≤ ρmx

∣∣
∆

where ≤ is with respect to the lexicographic order. We then define

142

CP∆(x, σG) = ρ1〈H1, {ρ−1
1 ρi}2≤i≤s〉. One can show [18] that this algorithm satisfies equa-

tions 8.1 and 8.2 from which it follows that it computes the canonical placement coset of

some canonical form. The complexity analysis is the same as for the color automorphism

problem.

In order to compute the canonical form of a graph X of degree at most d, we compute

the graphs Xr and Yr as before and build up the canonical placement coset gradually. At

each step, we have the canonical placement coset of the subgraph Yr and we use the string

canonization algorithm to extend it to the canonical placement coset of Yr+1. As before,

the groups that arise are contained in Γd−1 so that we obtain the same runtime. At this

point the graph still depends on the edge e that we choose. However, this dependency can

be eliminated by computing the canonical form with respect to each edge and then selecting

the one which comes first lexicographically. This yields the following theorem.

Theorem 8.4.7 (Babai and Luks [18]). Canonization of colored graphs of degree at most d

can be performed in nO(d log d) time.

We remark that with more effort, the optimizations of Subsection 8.4.4 can also be applied

to computing canonical forms; this gives an nO(d/ log d) algorithm.

8.5 The WL algorithm

Before discussing Zemlyachenko’s degree reduction lemma, it is necessary to introduce the

WL algorithm. The algorithm is a technique for iteratively recoloring the nodes of a graph

in an attempt to discover restrictions that any automorphisms of the graph must obey. The

algorithm cannot distinguish all non-isomorphic graphs, but it is known to fail only on an

exponentially small fraction [17]. One starts with a graph X and colors each node by its

degree. At each iteration of the WL algorithm, the color of each node is replaced by the pair

consisting of its own color and the multiset of the colors of its neighbors. In order to keep the

amount of space needed to store each color manageable, after each iteration the color of each

node is replaced by its index in the sequence of all colors assigned to nodes where the colors

143

are ordered lexicographically. In this way, the number of colors is reduced to at most n. It

is easy to see that the partition that corresponds to the coloring is a (possibly improper)

refinement of the color partition before the iteration was performed. The WL algorithm

terminates once an iteration fails to produce a proper refinement. It is straightforward to see

that the WL algorithm runs in O(n3) time since it can properly refine a partition at most

n− 1 times. Note that when the WL algorithm terminates, the induced subgraph X(Ci) on

any color class Ci is regular; moreover, the degree of a node in the induced bipartite subgraph

X(Ci, Cj) consisting of the edges between two different color classes Ci and Cj depends only

on the color of the node. (Such graphs are called semiregular.) The WL algorithm can also

be applied to a graph with an arbitrary initial coloring rather than the one where each node

is initially colored by its degree. This will be useful in the algorithm for general graphs.

8.6 Zelmyachenko’s degree reduction lemma and general graph isomorphism

The degree-reduction lemma uses the WL algorithm together with individualization. Given

a graph, we can individualize a given vertex by erasing its current color and replacing it with

the first color in [n] that is not used for any other node. We define the degree of vertex x

in color k to be the number of neighbors of x that have color k. The co-degree of x in color

k is the number of vertexes with color k which are not neighbors of x. The color-degree of

a vertex is the maximum over each color k of the minimum of the degree and co-degree in

color k.

Lemma 8.6.1 (Zemlyachenko, cf. [7]). Let X be a graph. Given a sequence of nodes

x1, . . . , xm in X, we run the following procedure. At iteration i, we individualize xi and

run WL. Then for any d, there exists a sequence x1, . . . , x4n/d of nodes in X such that the

graph Y resulting from the procedure described has color-degree at most d.

All known algorithms [7, 76, 18, 16] for bounded degree graph isomorphism algorithms

are based on the color automorphism problem and therefore apply more generally to graphs

where the degree of each node is bounded by d in every color. Essentially, the algorithm is

144

the same except that one must treat the neighborhood of a node in each color separately.

This results in a more general algorithm with the same runtime. To obtain an even more

general algorithm for graphs of color-degree at most d, we first run the WL algorithm. This

ensures that each X(Ci) is regular and each X(Ci, Cj) is semiregular. If the degree of any

X(Ci) is greater than the degree of its complement, then we replace X(Ci) in X by its

complement. Similarly, if the degree of a node in some X(Ci, Cj) is greater than its degree

in the complement of X(Ci, Cj), then we replace X(Ci, Cj) by its complement. This process

can change the isomorphism class of X. However, when testing if X ∼= Y we can keep track

of the subgraphs that are complemented in X and Y and ensure that they correspond to the

same colors. A similar trick applies to computing canonical forms of graphs of color-degree

d.

Combining Zemlyachenko’s lemma with the nO(d/ log d) algorithm for testing isomorphism

of graphs of degree at most d, we get an n4n/d+O(d/ log d) algorithm for general graphs where d

is a parameter that we can choose. By setting 4n/d = Θ(d/ log d), one finds that the optimal

choice is d = Θ(
√
n log n) which results in the following theorem.

Theorem 8.6.2 (Babai, Kantor and Luks [16]). Graph isomorphism can be decided in

2O(
√
n logn) time.

We remark that in the case of strongly regular graphs, there is a faster 2O(3√n log2 n)

algorithm [119]. It is worth noting that graph canonization can also be performed in the

same time bound by choosing the sequence of vertexes which results in the lexicographically

least adjacency matrix. Essentially the same algorithms also work for colored and directed

graphs.

8.7 Conclusion and open problems

While the results on bounded-degree graph isomorphism [7, 76, 18, 16] are impressive, no

improvements for general graphs have been made in the nearly 30 years since those papers

were published. A related problem posed in [18] is the hypergraph isomorphism problem

145

where one must decide if two hypergraphs with n nodes are isomorphic. For a long time, it

was open even to find a singly-exponential algorithm for this problem until such an algorithm

was found by Luks [75]. Babai and Codenotti [11] later obtained the stronger result that

isomorphism of hypergraphs of rank k (where each hyperedge contains at most k elements)

can be decided in 2Õ(k2√n) time. Combinatorially, it is easy to see that there exists a map

from the set of all graphs on n nodes into the set of all rank 4 hypergraphs with O(
√
n) nodes

such that two graphs are isomorphic if and only if their images under the map are isomorphic.

If such a map could be computed efficiently, it would yield an 2Õ(4√n) algorithm for general

graphs. We consider the problem of whether such a map can be computed efficiently to be

an interesting open question.

For the case of bounded-degree graphs, there are two bottlenecks that one encounters

when attempting to obtain an no(d/ log d) algorithm. These are the bound on the index of the

Sylow p-subgroup P of a primitive group G and the bound on the number of subproblems

one obtains when the socle of the primitive group is a direct product of alternating groups

(see Subsection 8.4.4). The first of these obstacles has since been overcome by advances in

permutation group theory [93] while the second remains intact. Since the algorithm in this

case is quite naive (as it splits the blocks in half arbitrarily) and because the socle in this case

has a great deal of structure, it seems that there should be a more efficient decomposition.

However, it is not immediately clear how one would obtain such an algorithm. We note that

this is an important question since an no(d/ log d) algorithm for graphs of degree at most d would

give a superpolynomial speedup over the best algorithm for general graph isomorphism.

146

Chapter 9

PREVIOUS ALGORITHMS FOR GROUP ISOMORPHISM

Before moving on to our own results in 10 – 12, we review previously known algorithms

for group isomorphism in this chapter. While relatively general and unstructured classes of

groups such as the p- and solvable groups resisted progress until this work, several results

are known about more restricted classes of groups. The simplest and most general of these

(which we call the generator enumeration algorithm) is capable of deciding isomorphism of

general groups in nlogp +O(1) time [44, 74, 84] where p is the smallest prime dividing the order

of the group. We give a complete description of the generator-enumeration algorithm in

Section 9.1. Another simple result is that isomorphism of Abelian groups can be tested in

polynomial time [74, 113, 125, 63] as we will show in Section 9.2. This result can be proved

in various ways, but all of them depend on the structure theorem for finitely generated

Abelian groups. There are also several more recent results for various structured classes of

non-Abelian groups. We briefly survey these in Section 9.3.

9.1 The generator-enumeration algorithm

One of the most basic algorithms are group isomorphism is the generator-enumeration algo-

rithm [44, 74, 84]. The algorithm works by enumerating all possible images a generating set

S for group G could have under an isomorphism to a second group H. The idea is to simply

test if any of these partial mappings extends to a full isomorphism between the groups. As

we shall see, an isomorphism can be defined by its restriction to a generating set; one of

these partial mappings yields an isomorphism if and only if the groups are isomorphic. Since

there are at most n|S| such partial mappings, this results in an n|S|+O(1) time algorithm for

testing isomorphism of general groups. We will also show that every group has a generating

147

set of size at most logp n where p is the smallest prime dividing the order of the group so

this is nlogp n+O(1) time in the worst case. Throughout this thesis, we will use n to denote the

order of the group G.

The first step in showing that this idea actually works is to prove that any isomorphism

can be defined by its restriction to a generating set.

Proposition 9.1.1. Let φ : G→ H be a group isomorphism and let G = 〈S〉. Then for any

isomorphism φ′ : G→ H such that φ(x) = φ′(x) for all x ∈ S, φ = φ′.

Proof. Suppose that φ(x) = φ′(x) for all x ∈ S. We need to show that φ(x) = φ′(x) for all

x ∈ G. For any x ∈ G, we know that x = xε11 · · ·x
εk
k where each xi ∈ S and εi ∈ {−1, 1}.

From this we see that

φ(x) = φ(x1)ε1 · · ·φ(xk)
εk

= φ′(x1)ε1 · · ·φ′(xk)εk

= φ′(xε11 · · ·x
εk
k)

= φ′(x)

as claimed.

Thus, it suffices to iterate over all mappings from S into H. Next, we need a way to

efficiently test if such a map extends to an isomorphism.

Lemma 9.1.2. Let G = 〈S〉 and H be groups of order n and let f : S → H be a function.

Then we can test if f extends to an isomorphism φ : G→ H in O(n3) time.

Proof. We use a trick from [6]. Consider the subgroup K = 〈(x, f(x)) | x ∈ S〉 of G×H. It

is straightforward to show that f extends to an isomorphism from G to H if and only if

(a) |K| = |G| = |H| = n

(b) ρ1[K] = G and ρ2[K] = H where ρi is the projection onto the ith coordinate

148

We will argue that both of these conditions can be verified in O(n3) time. We note that

it suffices to compute the set of elements in K in polynomial time. To do this, we simply

maintain a set A of elements that can be formed as products of the generators (x, f(x)) where

x ∈ S. Initially, A = {(x, f(x)) | x ∈ S}. At each step, we update A by adding inverses of

all elements in A and all products of elements of A. The resulting set is closed under the

group operation, so it is a subgroup of G × H that contains {(x, f(x)) | x ∈ S}. If follows

that A = K and it is easy to see that this procedure runs in polynomial time.

It is worth noting that we have taken no effort to optimize the runtime in the above proof.

With greater care, it is not hard to show that the time complexity O(n3) can be reduced to

O(n log n). Since the input size is O(n2 log n), this improved algorithm takes sublinear time.

Together, Proposition 9.1.1 and Lemma 9.1.2 show that we can test if G and H are

isomorphic in n|S|+O(1) time assuming that we are given a generating set S.

Corollary 9.1.3. Let G and H be groups and let S be a generating set for G. Then we can

test if G ∼= H in n|S|+O(1) time.

Next, we’ll prove that every group G of order n has a generating set of size at most logp n

where p is the smallest prime dividing the order of the group. Moreover, we will show that

such a generating set can be found in polynomial time.

Lemma 9.1.4. Let G be a group of order n > 1 where p is the smallest prime dividing the

order of G. The we can compute a generating set for G of size at most logp n.

Proof. The idea is to build a generating set one element at a time and show that the order of

the subgroup generated grows by a factor of at least p at every step. We start by arbitrarily

choosing an element x1 ∈ G such that x1 6= 1 and let G1 = 〈x1〉. At the ith step where i > 1,

we select an element xi 6∈ Gi−1 and define Gi = 〈x1, . . . , xi〉. Let k be the smallest integer

such that Gk = G.

We claim that k ≤ logp n. To see this, note that each Gi−1 is a proper subgroup of Gi so

[Gi : Gi−1] ≥ p for 1 ≤ i ≤ k. Therefore, pk ≤ n so k ≤ logp n. Moreover, it is clear that the

above computation can be performed in polynomial time.

149

Combining Corollary 9.1.3 with Lemma 9.1.4, shows that we can test if two groups are

isomorphic in nlogp n+O(1) time.

Corollary 9.1.5. Let G and H be groups of order n. Then we can test if G ∼= H in

nlogp n+O(1) time where p is the smallest prime dividing the order of the group.

9.2 Testing isomorphism of Abelian groups

In the previous section, we showed an extremely general algorithm that took quasi-

polynomial time. In this section, we insist on polynomial time but only require the algorithm

to work for Abelian groups. Various authors [74, 113, 125, 63] have shown algorithms that

prove that Abelian group isomorphism is in polynomial time. We give our own proof which

is simpler but results in a larger but still polynomial runtime. We make no effort to opti-

mize the exponents in runtime and it is easy to improve them by taking greater care. Our

algorithm relies on Theorem 3.4.2 which we reproduce here for convenience.

Theorem 3.4.2 (The structure of finitely generated Abelian groups (invariant factor ver-

sion)). Let G be a finitely generated Abelian group. Then there exist positive integers

d1, . . . , dk and m such that di | di+1 for each i and

G ∼= Zd1 × · · · × Zdk × Zm

Moreover, this decomposition is unique up to reordering the factors.

Note that for the finite groups that we consider, m = 0. Our strategy is as follows:

we find an element x of order dk and argue that there exists a subgroup1 K of G such that

G = K×〈x〉. This allows us to recover the structure constant dk. Since K ∼= Zd1×· · ·×Zdk−1
,

we obtain the rest of the di’s recursively.

It is easy to see that we can find an element of order dk in O(n2) time since this is just

an element of maximal order in G. Therefore, we proceed by proving that G = K × 〈x〉 for

some K < G.

1Note that every subgroup of an Abelian group is normal so the direct product is well-defined.

150

Lemma 9.2.1. Let G be an Abelian group and let x be an element of G of maximal order.

Then there is a subgroup K < G such that G = K × 〈x〉. Moreover, we can compute such

an x and K in O(n2 log2 n) time.

Proof. To compute an element x ∈ G of maximal order in polynomial time, we simply

calculate the order of every element of G. To compute a subgroup K such that G = K×〈x〉,

we start by finding an element y1 ∈ G \ 〈x〉. If no such y1 exists, then we can take K = 1.

Otherwise, 〈x〉 and K1 = 〈y1〉 are disjoint subgroups of G. At the ith step for i > 1, we

proceed by choosing yi ∈ G \ 〈x, y1, . . . , yi−1〉 and let Ki = 〈y1, . . . , yi〉. Then Ki and 〈x〉 are

disjoint. We proceed until Kj ×〈x〉 = 〈x, y1, . . . , yj〉 coincides with G. We then stop and set

K = Kj.

An algorithm for testing isomorphism of Abelian groups can be obtained by recursive

application of Lemma 9.2.1.

Theorem 9.2.2. Let G and H be Abelian groups. Then we can test if G ∼= H in O(n2 log3 n)

time.

Proof. Let G be as in Theorem 3.4.2. By Theorem 3.4.2, it suffices to show how to recover the

structure constants di (including their multiplicities). By applying Lemma 9.2.1, we obtain a

decomposition G = K ×〈x〉 where |x| = dk in polynomial time. Since K ∼= Zd1 × · · ·×Zdk−1

by Theorem 3.4.2, we can obtain the remaining structure constants d1, . . . , dk−1 by continuing

recursively with the subgroup K.

It is worth noting that the above bound can be improved to O(n log n) time [63].

9.3 Other algorithms for group isomorphism

Faster algorithms have been obtained for various special cases beyond the Abelian groups.

Le Gall [70] gave a polynomial-time algorithm for groups consisting of a semidirect product

of an Abelian group with a cyclic group of coprime order. Le Gall’s proof was based on

a partial structure theorem for this class of groups. His result was extended to a class of

151

groups with a normal Hall subgroup by Qiao, Sarma and Tang [94] by noting that it was

related to a certain group action on a subgroup called the socle (which we discussed in

Subsection 8.4.4). An Abelian Sylow tower for a group is a normal series whose quotients

are isomorphic to a maximal p-subgroup of G for some prime p that divides the order of the

group. Babai and Qiao [19] showed that testing isomorphism of groups with Abelian Sylow

towers is in polynomial time. Babai, Codenotti, Grochow and Qiao [12] showed an nO(log logn)

time algorithm for the class of groups with no normal Abelian subgroups; the runtime was

later improved to polynomial by Babai, Codenotti and Qiao [34, 13]. The solvable radical

of a group is its unique maximal normal solvable subgroup. The central radical groups

are those where the solvable radical is contained in the center of the group. Grochow and

Qiao [51] generalized the result of Babai, Codenotti, Grochow and Qiao [12] for groups with

no Abelian normal subgroups by showing an nO(log logn) time algorithm for central radical

groups. In another line of work, Lewis and Wilson [71] showed that isomorphism of quotients

of the Heisenberg group can be decided in polynomial time.

152

Chapter 10

P -GROUP ISOMORPHISM

10.1 Introduction

The main result of this chapter is an algorithm that is faster than the generator-enumeration

algorithm for p-groups, which are believed to be the hard case of group isomorphism [12, 34,

19]. Before this work, obtaining an n(1−ε) logp n+O(1) algorithm where ε > 0 was discussed as

a longstanding open problem [72]1.

Theorem 10.1.1. p-group isomorphism is decidable in nmin{(1/2) logp n+O(p log p), logp n} time.

In particular, n(1/2) logp n+O(logn/ log logn) and n(1/2) logn+O(1) are upper bounds on its time com-

plexity.

Theorem 2.2.1 from Chapter 2 then follows as a corollary, as promised.

The first step in our algorithm reduces group isomorphism to many instances of

composition-series isomorphism. (Two composition series are isomorphic if there exists an

isomorphism that maps each subgroup in the first series to the corresponding subgroup in

the second series.)

Theorem 10.1.2. Testing isomorphism of two groups G and H is n(1/2) logp n+O(1) time Tur-

ing reducible to testing isomorphism of composition series for G and H where p is the smallest

prime dividing the order of the group.

This bound can be proved by counting the number of composition series using a simple

argument. We are grateful to Laci Babai for pointing this out as it simplifies our algorithm.

1Subsequent to the initial version of [111], James Wilson (personal communication) showed an upper
bound of nc logp n+O(1) where c < 1/4 for the p-group isomorphism algorithm from [90]. However, the
analysis has not been published.

153

Our second step is to reduce p-group composition-series isomorphism to testing isomor-

phism of graphs of degree p+O(1). We accomplish this by constructing a tree with a node of

each coset for each of the intermediate subgroups in the composition series. By adding certain

gadgets that encode the multiplication table of the group, we show that composition series

for two p-groups are isomorphic if and only if the graphs resulting from this construction are

isomorphic. By applying the nO(d log d) time algorithm stated in Theorem 8.4.5 [76, 18] for

testing isomorphism of graphs of degree at most d, we obtain an nO(p) time algorithm for p-

group composition-series isomorphism. Combining this result with our reduction from group

isomorphism to composition-series isomorphism yields an n(1/2) logp n+O(p) time algorithm for

testing isomorphism of p-groups. Combining this algorithm with the generator-enumeration

algorithm completes the proof of Theorem 10.1.1.

Recall that the canonical form of a class of objects is a function that maps each object to

a unique representative of its isomorphism class. Since canonical forms of graphs of degree

at most d can be computed in nO(d log d) time by Theorem 8.4.7 [76, 18], Theorem 10.1.1 can

be modified to perform p-group canonization in the same complexity bound. (It is worth

noting that Luks showed that there is a faster nO(d/ log d) algorithm for testing isomorphism

of graphs of degree at most d by Theorem 8.4.6 [16], but it does not improve our results.)

If p ≤ α is small, we compute the canonical form of the graph that arises from each choice

of composition series and choose the one that comes first lexicographically. A canonical

multiplication table for the p-group is then recovered from this canonical form. When p > α,

we use a variant of the generator-enumeration algorithm that performs group canonization.

For the necessary background on group theory, see Chapter 3. In Section 10.2, we start

by reducing group isomorphism to composition-series isomorphism. In Section 10.3, we

present the reduction from p-group composition-series isomorphism to low-degree graph iso-

morphism. In Section 10.4, we derive our algorithms for p-group isomorphism.

154

10.2 Reducing group isomorphism to composition-series isomorphism

In this section, we prove an upper bound on the number of composition series for a group

and provide a simple method for enumerating all such composition series. Originally [108],

we used a more complex construction to enumerate all composition series within a particular

class and an upper bound was proved on the size of this class of composition series. However,

Laci Babai pointed out that the upper bound actually holds for the class of all composition

series. This allows us to employ a much simpler argument.

Lemma 10.2.1. Let G be a group. Then the number of composition series for G is at most

n(1/2) logp n+O(1) where p is the smallest prime dividing the order of G. Moreover, one can

enumerate all composition series for G in n(1/2) logp n+O(1) time.

Proof. We show that one can enumerate a class of chains that contains all maximal chains

of subgroups in nlogp n+O(1) time. Since every maximal chain of subgroups contains at most

one composition series as a subchain, this suffices to prove the result.

We start by choosing the first nontrivial subgroup in the series. Each of these is generated

by a single element so there are at most n choices. If we have a chain G0 = 1 < · · · < Gk

of subgroups of G, then the next subgroup in the chain can be chosen in at most |G/Gk|

ways since different representatives of the same coset generate the same subgroup. Since

each |Gi+1| ≥ p |Gi|, we see that the number of choices |G/Gk| for Gk+1 is at most n/pk.

Therefore, the total number of choices required to construct a chain of subgroups in this

manner is at most

blogp nc−1∏
k=0

(n/pk) ≤ p
∑dlogp ne
k=0 k

= p(1/2) log2
p n+O(logp n)

≤ n(1/2) logp n+O(1)

155

Since the set of subgroup chains enumerated by this process includes all maximal chains

of subgroups, the result follows.

We say that two composition series G0 = 1 / · · · / Gm = G and H0 = 1 / · · · / Hm′ = H

are isomorphic if there exists an isomorphism φ : G→ H such that each φ[Gi] = Hi. (Note

that if these composition series are isomorphic, then m = m′.) It is now very easy to obtain

the Turing reduction from group isomorphism to composition series isomorphism.

Theorem 10.1.2. Testing isomorphism of two groups G and H is n(1/2) logp n+O(1) time Tur-

ing reducible to testing isomorphism of composition series for G and H where p is the smallest

prime dividing the order of the group.

Proof. Let G and H be groups. Fix a composition series S for G. If G ∼= H, then some

composition series S ′ for H will be isomorphic to S. Thus, testing isomorphism of G and H

reduces to testing if S is isomorphic to some composition series for S ′. The result is then

immediate from Lemma 10.2.1.

The reduction also applies to reducing group canonization to composition series canon-

ization. For the convenience of the reader, we explicitly define canonical forms for groups

and composition series.

Definition 10.2.2. A map CanGrp is a canonical form for groups if for each group G,

CanGrp(G) is an n×n multiplication table with elements in [n] that is isomorphic to G, such

that, if G and H are groups, G ∼= H if and only if CanGrp(G) = CanGrp(H).

Definition 10.2.3. A map CanComp is a canonical form for composition series if for each

composition series S for a group G with subgroup chain G0 = 1 < · · · < Gm = G,

CanComp(S) = (M,ψ[G0], . . . , ψ[Gm]) such that the following hold.

(a) M is an n× n matrix with entries in [n].

(b) M is the multiplication table for a group that is isomorphic to G under ψ : G→ [n].

(c) If S and S ′ are composition series then S ∼= S ′ if and only if CanComp(S) =

CanComp(S ′).

156

Theorem 10.2.4. Computing the canonical form of a group is n(1/2) logp n+O(1) time Turing

reducible to computing canonical forms of composition series for the group where p is the

smallest prime dividing the order of the group.

Proof. LetG be a group. We use Lemma 10.2.1 to enumerate all of the at most n(1/2) logp n+O(1)

composition series S for G and compute the canonical form of each one. From each such

canonical form, we extract the multiplication table and define CanGrp(G) to be the lexico-

graphically least matrix among all such multiplication tables. Since two groups are isomor-

phic if and only if the sets of isomorphism classes of their composition series coincide, it

follows that CanGrp is a canonical form.

10.3 Composition-series isomorphism and canonization

In this section, we reduce composition-series isomorphism to low-degree graph isomorphism.

We also extend the reduction to perform composition-series canonization instead of isomor-

phism testing. We shall make use of the following result of Babai and Luks [76, 18] that we

discussed in Chapter 8.

Theorem 8.4.7 (Babai and Luks [18]). Canonization of colored graphs of degree at most d

can be performed in nO(d log d) time.

10.3.1 Isomorphism testing

To test if two composition series are isomorphic, we construct a tree by starting with the

whole group G and decomposing it into its cosets G/Gm−1; we then further decompose each

coset in G/Gm−1 into the cosets G/Gm−2 that it contains. This process is repeated until we

reach the trivial group G0 = 1. We make this precise with the following definition.

Definition 10.3.1. Let G be a group and consider the composition series S given by the

subgroups G0 = 1 / · · · /Gm = G. Then T (S) is defined to be the rooted tree whose nodes are⋃
iG/Gi. The root node is G. The leaf nodes are {x} ∈ G/1 which we identify with x ∈ G.

For each node xGi+1 ∈ G/Gi+1, there is an edge to each yGi such that yGi ⊆ xGi+1.

157

We now use this tree to define a graph that encodes the multiplication table of G. The

idea is to attach a multiplication gadget to the nodes x, y, z ∈ G for each entry xy = z in

the multiplication table. If we did this naively, each node x ∈ G would have degree Ω(n).

We address this problem by defining a variant of the rooted product [46] which we call a leaf

product. Let T1 and T2 be rooted trees. The leaf product of T1 and T2 (denoted T1 � T2) is

the tree obtained by creating a copy of T2 for each leaf node of T1 and identifying the root

of each copy with one of the leaf nodes. We denote by L(T) the set of leaves of the tree T .

Definition 10.3.2. Let T1 and T2 be trees rooted at r1 and r2. Then the leaf product T1�T2

is the tree rooted at r1 with vertex set

V (T1) ∪ {(x, y) | x ∈ L(T1) and y ∈ V (T2) \ {r2}}

The set of edges is

E(T1) ∪ {(x, (x, y)) | x ∈ L(T1) and (r2, y) ∈ E(T2)}

∪ {((x, y), (x, z)) | x ∈ L(T1) and (y, z) ∈ E(T2) where y, z 6= r2}

Leaf products are non-commutative but are associative if we identify the tuples (x, (y, z)),

((x, y), z) with (x, y, z) in the vertex set. (This is the same sense in which cross products are

associative.) We shall make this identification from now on as it simplifies our notation.

Since we will need to consider isomorphisms of leaf products of trees, it is also useful to

define leaf products of tree isomorphisms.

Definition 10.3.3. For each 1 ≤ i ≤ k, let Ti and T ′i be trees rooted at ri and r′i and let

φi : Ti → T ′i be an isomorphism. Then the leaf product
⊙k

i=1 φi :
⊙k

i=1 Ti →
⊙k

i=1 T
′
i sends

each (x1, . . . , xj) to (φ1(x1), . . . , φj(xj)) where each xi ∈ L(Ti) for i < j, xj ∈ V (Tj) \ {rj}

and j ≤ k.

For a bijection φ between the leaves of two trees, we shall use the notation φ̂ to denote

the unique isomorphism between the trees to which φ extends (when such an isomorphism

exists). The following extension of leaf products is convenient. For each 1 ≤ i ≤ k, let φi be

158

a bijection from the leaves of Ti to the leaves of T ′i that extends uniquely to an isomorphism

φ̂i : Ti → T ′i . Then we define
⊙k

i=1 φi =
⊙k

i=1 φ̂i.

It is easy to see that
⊙k

i=1 φi is an isomorphism from
⊙k

i=1 Ti to
⊙k

i=1 T
′
i .

Proposition 10.3.4. For each 1 ≤ i ≤ k, let Ti and T ′i be rooted trees and let φi be a

bijection between the leaves of Ti and T ′i such that φi extends uniquely to an isomorphism

from Ti to T ′i . Then
⊙k

i=1 φi :
⊙k

i=1 Ti →
⊙k

i=1 T
′
i is a well-defined isomorphism.

As we mentioned earlier, simply attaching multiplication gadgets to the leaves of the tree

T (S) would result in a tree of large degree. We resolve this problem by considering the tree

T (S)� T (S) instead. We show how to construct multiplication gadgets so that each of the

n2 leaf nodes is involved in only a constant number of edges. This causes the resulting graph

to have degree p+O(1) when G is a p-group. The details of this construction are described

in the following definition.

Definition 10.3.5. Let G be a group and let S be a composition series. Let M be the tree

with a root connected to three nodes ←, → and = with colors “left”, “right” and “equals”

respectively. To construct X(S), we start with the tree T (S) � T (S) � M and connect

multiplication gadgets to the leaf nodes. For each x, y ∈ G, we create the path ((x, y,←

), (y, x,→), (xy, y,=)). The nodes other than the leaf nodes in X(S) are colored “internal.”

The graph X(S) is a cone graph; that is, a rooted tree with additional edges between

nodes at the same level. We call the edges that form the tree in a cone graph tree edges and

the edges between nodes at the same level cross edges.

Our next goal is to show that two composition series S and S ′ are isomorphic if and

only if X(S) and X(S ′) are isomorphic. Let Comp be the class of composition series for

finite groups and let CompTree be the class of graphs that are isomorphic to a graph

X(S) for some composition series S. For each pair of composition series S and S ′ and each

isomorphism φ : S → S ′, we overload the symbol X from Definition 10.3.5 by defining

X(φ) : X(S)→ X(S ′) to be φ� φ� idM .

159

We seek to show that for two composition series S and S ′, the map XS,S′ : Iso(S, S ′) →

Iso(X(S), X(S ′)) given by φ 7→ X(φ) is surjective and can be evaluated in polynomial time.

We note that in particular, this result shows that X can be used to reduce composition series

isomorphism to testing isomorphism of the resulting graphs. We start by showing that any

isomorphism between S and S ′ maps to an isomorphism between X(S) and X(S ′).

Lemma 10.3.6. For each pair of composition series S and S ′, XS,S′ : Iso(S, S ′) →

Iso(X(S), X(S ′)) is well-defined.

Proof. Let G0 = 1 / · · · / Gm = G and H0 = 1 / · · · / Hm = H be the subgroup chains for

the composition series S and S ′ and let φ : S → S ′ be an isomorphism. We can view φ as

a bijection from the leaves of T (S) to the leaves of T (S ′). Since each φ[Gi] = Hi, we see

that φ extends to a unique isomorphism φ̂ : T (S) → T (S ′). By Proposition 10.3.4, X(φ) :

T (S)�T (S)�M → T (S ′)�T (S ′)�M is a tree isomorphism. Then by Definition 10.3.5, we

just need to show that X(φ) respects the cross edges representing the multiplication gadgets.

Let x, y ∈ G. Then X(S) contains the path ((x, y,←), (y, x,→), (xy, y,=)). In H,

X(S ′) contains the path ((φ(x), φ(y),←), (φ(y), φ(x),→), (φ(xy), φ(y),=)) since φ(x)φ(y) =

φ(xy). By definition, we see that X(φ) maps the path ((x, y,←), (y, x,→), (xy, y,=)) in

X(S) to the path ((φ(x), φ(y),←), (φ(y), φ(x),→), (φ(xy), φ(y),=)) in X(S ′). Since X(S)

and X(S ′) have equal numbers of cross edges, it follows that X(φ) : X(S) → X(S ′) is an

isomorphism.

Next, we show that each XS,S′ is surjective. This is more difficult and is accomplished

by the next two results. We first show that every isomorphism from X(S) to X(S ′) can be

expressed as a leaf product.

Lemma 10.3.7. Let S and S ′ be composition series for the groups G and H and let θ :

X(S)→ X(S ′) be an isomorphism. Define φ : G→ H to be θ
∣∣
G

. Then

(a) θ = φ� φ� idM and

(b) φ : S → S ′ is an isomorphism.

160

Proof. First, we prove part (a). It is clear that φ is a bijection between G and H that extends

uniquely to an isomorphism from T (S) to T (S ′). Let x, y ∈ G. We will say a path from x to

y is left-right if it starts at x, moves to a node colored “left” along tree edges (away from the

root), follows a cross edge to a node colored “right” and then moves to y along tree edges

(towards the root). Since the only cross edge in X(S) colored (“left”, “right”) between the

subtrees of T (S)� T (S)�M rooted at x and y is ((x, y,←), (y, x,→)), there is exactly one

left-right path from x to y. We denote this path by P (x, y).

Since θ maps the root of X(S) to the root of X(S ′), θ maps left-right paths to left-right

paths. Therefore, θ sends P (x, y) to P (φ(x), φ(y)) so the node (x, y,←) in X(S) is mapped

to the node (φ(x), φ(y),←) in X(S ′).

For part (b), we let x, y, z ∈ G such that xy = z. This multiplication rule is represented

in X(S) by the path ((x, y,←), (y, x,→), (z, y,=)). By part (a), we know that θ maps this

path to ((φ(x), φ(y),←), (φ(y), φ(x),→), (φ(z), φ(y),=)). This implies that φ(x)φ(y) = φ(z)

in H so that φ is an isomorphism from G to H.

Let G0 = 1 / · · · / Gm = G and H0 = 1 / · · · / Hm = H be the chains of subgroups in

the composition series S and S ′. It remains to show that each φ[Gi] = Hi. Since φ is an

isomorphism from G to H, it follows that φ(1) = 1. This implies that θ maps each node Gi

in X(S) to the node Hi in X(S ′). Then because the elements of Gi correspond precisely to

those nodes x ∈ G such that x is a descendant of the node Gi in T (S)�T (S)�M , it follows

that φ[Gi] = Hi. Thus, φ is an isomorphism from S to S ′.

Theorem 10.3.8. For each pair of composition series S and S ′, XS,S′ is a bijection. More-

over, both X(S) and X(φ) where φ ∈ Iso(S, S ′) can be computed in polynomial time.

Proof. Combining Lemmas 10.3.6 and 10.3.7 shows that each XS,S′ is surjective. To see

that it is injective, we note that if φ, ψ ∈ Iso(S, S ′) and X(φ) = X(ψ) then φ � φ � idM =

ψ�ψ� idM so φ = ψ. Since X is defined in terms of leaf products and leaf products can be

evaluated in polynomial time, X can also be evaluated in polynomial time.

The correctness of our reduction follows.

161

Corollary 10.3.9. Let S and S ′ be composition series. Then S ∼= S ′ if and only if X(S) ∼=

X(S ′).

In order to obtain an efficient algorithm for p-group composition-series isomorphism, we

must show that the degree of the graph is not too large.

Lemma 10.3.10. Let G be a group with a composition series S such that α is an upper

bound for the order of any factor. Then the graph X(S) has degree at most max{α + 1, 4}

and size O(n2).

Proof. The tree T (S) has size O(n) and degree α+ 1 while the tree M has size 4 and degree

3. Therefore T (S)� T (S)�M (and hence X(S)) has size O(n2) and degree max{α+ 1, 4}.

Adding the edges for the multiplication gadgets in X(S) increases the degrees of the leaves

of T (S)� T (S)�M to at most 3, so X(S) also has degree max{α + 1, 4}.

We are now in a position to obtain an algorithm for composition-series isomorphism.

Theorem 10.3.11. Let S and S ′ be composition series such that α is an upper bound for

the order of any factor. Then we can test if S ∼= S ′ in nO(α logα) time.

Proof. We can compute the graphs X(S) and X(S ′) in polynomial time. By Corollary 10.3.9,

S ∼= S ′ if and only if X(S) ∼= X(S ′). By Lemma 10.3.10, the number of nodes in X(S) is

O(n2) and the degree is at most max{α+1, 4} = O(α). Then we can test if X(S) ∼= X(S ′) in

nO(α logα) time using the bounded-degree graph isomorphism algorithm from Theorem 8.4.7.

10.3.2 Canonization

We also show how to compute canonical forms of composition series. This result is also use-

ful for further improving the efficiency of the algorithm for p-group isomorphism (see Chap-

ter 12). Our high-level strategy for constructing a canonical form for a composition series

S is to compute the canonical form of the graph X(S). We then reconstruct a composition

series Y (CanGraph(X(S))) isomorphic to S by inspecting the structure of CanGraph(X(S)).

162

Definition 10.3.12. For each composition series S for a group G and a graph A ∼= X(S),

we fix an arbitrary isomorphism π : X(S)→ A. We define Y (A) to be the composition series

π[1] / · · · / π[G] for the group with elements π[G], where we define π(x)π(y) = π(z) if there

exists a path (aπ(x), aπ(y), aπ(z)) colored (“left”, “right”, “equals”), such that aπ(x), aπ(y) and

aπ(z) are descendants of x, y and z in the image of the tree T (S)� T (S)�M under π.

For each pair of composition series S and S ′ for groups G and H, graphs A ∼= X(S) and

A′ ∼= X(S ′), let π : X(S)→ A and π′ : X(S ′)→ A′ be the fixed isomorphisms chosen above.

Then for each isomorphism θ : A→ A′, we define Y (θ) : π[G]→ π′[H] to be θ
∣∣
π[G]

.

First, we need to show that each Y (A) is well-defined.

Lemma 10.3.13. Let S be a composition series, let A be a graph and let π : X(S) → A

be an isomorphism. Then Y (A) is a well-defined composition series that can be computed in

polynomial time and Y (π) is an isomorphism from S to Y (A).

Proof. Let G0 = 1 / · · · / Gm = G be the subgroup chain for S. We note that the height of

T (S) � T (S) �M is 2m + 1 where m is the composition length of S. Now, G is the group

consisting of the elements at a distance of m from the root so π[G] is independent of which

isomorphism π : X(S) → A we consider. Moreover, we can compute π[G] in polynomial

time. For each x, y, z ∈ G, xy = z if and only if there exists a path ((x, y,←), (y, x,→

), (z, y,=)) in X(S). Equivalently, xy = z if and only if there exists a path (ax, ay, az)

colored (“left”, “right”, “equals”) where ax, ay and az are descendants of x, y and z in

T (S)� T (S)�M .

Consider the set of elements π[G]. For each π(x), π(y), π(z) ∈ π[G], define π(x)π(y) =

π(z) if and only if there exists a path (aπ(x), aπ(y), aπ(z)) colored (“left”, “right”, “equals”)

where aπ(x), aπ(y) and aπ(z) are descendants of π(x), π(y) and π(z) in the image of T (S) �

T (S)�M under π. Then π[G] is a group that we can compute in polynomial time and Y (π)

is a group isomorphism from G to π[G].

Now, for each Gi, π[Gi] consists of the nodes in π[G] that are descendants of the node

π(Gi). Each node π(Gi) is the node on the path from the root of A to π(1) at distance m− i

163

from the root. The node π(1) is the identity of the group π[G] and can therefore be found

by inspecting the multiplication rules of π[G]. Thus, we can compute each set of nodes π[Gi]

in polynomial time independently of π. This yields a composition series π[1] / · · · / π[G] that

does not depend on the choice of π. From Definition 10.3.12, we see that this composition

series is in fact Y (A). Moreover, Y (π) is an isomorphism from S to Y (A).

As for X, we define YA,A′ : Iso(A,A′) → Iso(Y (A), Y (A′)) by θ 7→ Y (θ) for each pair of

graphs A,A′ ∈ CompTree. In order to compute canonical forms, we shall need to show

that each YA,A′ is surjective and can be evaluated in polynomial time.

Theorem 10.3.14. For each pair of graphs A,A′ ∈ CompTree, YA,A′ is a bijection. More-

over, both Y (A) and Y (θ) where θ ∈ Iso(A,A′) can be computed in polynomial time.

Proof. Let S and S ′ be composition series with chains of subgroups G0 = 1 / · · · / Gm = G

and H0 = 1 / · · · /Hm = H, let A ∼= X(S) and A′ ∼= X(S ′) be graphs, and let π : X(S)→ A,

π′ : X(S)→ A′ and θ : A→ A′ be isomorphisms.

First, we observe that Y respects composition. Since ψ = θπ is an isomorphism from

X(S) to A′, Lemma 10.3.13 implies that Y (ψ) = Y (θ)Y (π) is an isomorphism from S

to Y (A′) and that Y (π) is an isomorphism from S to Y (A). It follows that Y (θ) =

Y (ψ)(Y (π))−1 is an isomorphism from Y (A) to Y (A′). Thus, YA,A′ is a well-defined function.

To show that YA,A′ is bijective, we first note that Y X = IComp, which implies that

YX(S),X(S′) is surjective. Lemma 10.3.7 implies that YX(S),X(S′) is also injective. Now, for

each θ : A → A′, we have θ = π′ρπ−1 for some isomorphism ρ : X(S) → X(S ′). Therefore,

Y (θ) = Y (π′)Y (ρ)Y (π−1). Since YX(S),X(S′) is a bijection, we see that YA,A′ is also a bijection.

The fact that Y can be evaluated in polynomial time follows from Definition 10.3.12 and

Lemma 10.3.13.

To devise an algorithm for composition series canonization, we utilize X and Y together

with the canonical form for graphs of bounded degree Theorem 8.4.7 (which we denote by

CanGraph).

164

Theorem 10.3.15. The map Y ◦ CanGraph ◦X is a canonical form for composition series.

If S is a composition series such that α is an upper bound for the order of any factor, then

we can compute CanComp(S) = (Y ◦ CanGraph ◦X)(S) in nO(α logα) time.

Proof. Let S and S ′ be composition series. First, X(S) ∼= CanGraph(X(S)) by Theo-

rem 10.3.8 which implies that S ∼= Y (CanGraph(X(S))) by Theorem 10.3.14.

If S ∼= S ′, then X(S) ∼= X(S ′) by Corollary 10.3.9 and CanGraph(X(S)) =

CanGraph(X(S ′)), so Y (CanGraph(X(S))) = Y (CanGraph(X(S ′))). On the other hand, if

S 6∼= S ′, then X(S) 6∼= X(S ′) by Theorem 10.3.8 and CanGraph(X(S)) 6∼= CanGraph(X(S ′))

so Y (CanGraph(X(S))) 6∼= Y (CanGraph(X(S ′))) by Theorem 10.3.14. In particular,

Y (CanGraph(X(S))) 6= Y (CanGraph(X(S ′))). Thus, Y ◦ CanGraph ◦ X is a canonical form

for composition series.

By Theorems 10.3.8 and 10.3.14, X and Y can be evaluated in polynomial time since

the graph CanGraph(X(S)) has size O(n2) and degree α+O(1) by Lemma 10.3.10. Then by

Theorem 8.4.7, computing the canonical form of X(S) takes nO(α logα) time.

10.4 Algorithms for p-group isomorphism and canonization

The intermediate results of Sections 10.2 and 10.3 put us in a position to prove Theo-

rem 10.1.1.

Theorem 10.1.1. p-group isomorphism is decidable in nmin{(1/2) logp n+O(p log p), logp n} time.

In particular, n(1/2) logp n+O(logn/ log logn) and n(1/2) logn+O(1) are upper bounds on its time com-

plexity.

Proof. Combining Theorems 10.1.2 and 10.3.11 yields an n(1/2) logp n+O(p log p) time algorithm

for testing isomorphism of p-groups. On the other hand, every p-group has a generating set

of size at most logp n so the generator-enumeration algorithm runs in nlogp n+O(1) time for

p-groups. Combining these two algorithms shows that p-group isomorphism is decidable in

nmin{(1/2) logp n+O(p log p), logp n} time.

165

Let α = log n/(log log n)2. By upper bounding min{(1/2) logp n + O(p log p), logp n}

with (1/2) logp n + O(p log p) when p ≤ α and with logp n when p > α, we see that

min{(1/2) logp n + O(p), logp n} is upper bounded by (1/2) logp n + O(log n/ log log n).

The upper bound (1/2) log n + O(1) can be obtained by showing that the maximum of

(1/2) logp n+O(p log p) for p ≤ α is attained at p = 2.

We remark that the above algorithm relies on the nO(d log d) algorithm from Theo-

rem 8.4.7 [76, 18] for computing canonical forms of graphs of degree d rather than the

faster nO(d/ log d) algorithm [18, 16] for testing isomorphism of such graphs. This does not

change the result as polylog(d) factors in the exponent of the graph isomorphism testing

procedure require us to choose a different cutoff α in the proof of Theorem 10.1.1 but do not

affect the final result.

We now adapt our algorithm to perform p-group canonization. The main tool we are

missing for this result is the ability to compute the canonical form of a p-group in nlogp n+O(1)

time. Given a total order on an alphabet Σ, define the standard order on Σ∗ by x ≺ y

if |x| < |y| or |x| = |y| and x comes before y lexicographically. We adapt the generator-

enumeration algorithm to perform canonization using a lemma that orders the elements of

a group using a generating set. We start by defining the ordering.

Definition 10.4.1. Let G be a group with an ordered generating set g = (g1, . . . , gk). Define

a total order ≺g on G by x ≺g y if wg(x) ≺ wg(y) where each wg(x) = (x1, . . . , xj) is the

first word in {g1, . . . , gk}∗ under the standard ordering such that x = x1 · · ·xj.

Lemma 10.4.2. Let G and H be groups with ordered generating sets g = (g1, . . . , gk) and

h = (h1, . . . , hk), and let x, y ∈ G. Then

(a) ≺g is a total ordering on G.

(b) if φ : G→ H is an isomorphism such that each φ(gi) = hi, then x ≺g y if and only if

φ(x) ≺h φ(y).

166

(c) we can decide if x ≺g y in O(n |g|) time.

Proof. Let S = {g1, . . . , gk}. For part (a), it is clear that≺g is a total order since wg : G→ S∗

is clearly injective and the standard ordering on S∗ is a total order.

For part (b), consider an isomorphism φ : G → H such that each φ(gi) = hi. Then if

wg(x) = (x1, . . . , xj), wh(φ(x)) = (φ(x1), . . . , φ(xj)). Thus, x ≺g y if and only if wg(x) ≺

wg(y) (by definition of φ) if and only if wh(φ(x)) ≺ wh(φ(y)) if and only if x ≺h y.

For part (c), it suffices to show how to compute wg(x) in polynomial time. Consider

the Cayley graph Cay(G,S) for the group G with generating set S. Then the word wg(x)

corresponds to the edges in the minimum length path from 1 to x in Cay(G,S) that comes

first lexicographically. We can find this path in O(n |g|) time by visiting the nodes in breadth-

first order starting with 1. At the jth stage, we know wg(y) for all y ∈ G at a distance of at

most j from the root. We then compute wg(x) for each x at a distance of j+ 1 from the root

by selecting the minimal word wg(x) : gx,y over all edges (x, y) associated with an element

gx,y of S.

We utilize this order to permute the rows and columns of the multiplication table of the

group.

Definition 10.4.3. Let G be a group and let g be an ordered generating set for G. We

relabel each element of G by its position in the ordering ≺g. We then permute the rows and

columns of the resulting multiplication table so that the elements for the rows and columns

appear in the order 1, . . . , n and denote the result by Mg.

Clearly, Mg defines a group isomorphic to G. The following lemma provides a means of

adapting the generator-enumeration algorithm to group canonization.

Lemma 10.4.4. Let G and H be groups, let G` and H` be the collections of all ordered

generating sets of G and H of size at most `, and define M`(G) = {Mg | g ∈ G`}. Then

(a) If G 6∼= H, then M`(G) ∩M`(H) = ∅.

(b) If G ∼= H, then M`(G) = M`(H).

167

Proof. For part (a), suppose G 6∼= H but M ∈M`(G)∩M`(H). Then G would be isomorphic

to the group defined by the multiplication table M which is also isomorphic to H.

For part (b), fix an isomorphism φ : G→ H. We claim that Mg = Mφ(g) for each g ∈ G`.

We know from Lemma 10.4.2 that for x, y ∈ G, x ≺g y if and only if φ(x) ≺φ(g) φ(y). Since

φ(x)φ(y) = φ(xy), it follows that Mg = Mφ(g). Therefore, M`(G) = M`(H).

Recall that the rank of a group is the size of a minimal generating set.

Corollary 10.4.5. Let G be a group. Then we can compute a canonical form for G in

nrank(G)+O(1) time.

Proof. We first determine the rank of G in nrank(G)+O(1) time by brute force. Then we

compute the set Grank(G) and choose CanGrp(G) = Mg where g ∈ Grank(G) to be the element

that comes first lexicographically. The fact that the map defined by this computation is a

canonical form is immediate from Lemma 10.4.4.

It is now easy to adapt Theorem 10.1.1 to perform p-group canonization.

Theorem 10.4.6. p-group canonization is in nmin{(1/2) logp n+O(p log p), logp n} time.

Proof. Let G be a p-group. Combining Theorems 10.2.4 and 10.3.15 yields an

n(1/2) logp n+O(p log p) time algorithm for group canonization while Corollary 10.4.5 gives an

nlogp n+O(1) time algorithm. The result then follows from the same argument used in the

proof of Theorem 10.1.1.

168

Chapter 11

SOLVABLE-GROUP ISOMORPHISM

11.1 Introduction

In Chapter 10, we showed a square-root speedup over the generator-enumeration algorithm

for the class of p-groups. This chapter extends that result to the class of solvable groups

using Hall’s theory of Sylow bases [53], which we shall introduce in this chapter.

Since the algorithm for solvable-group isomorphism presented in this chapter has much

in common with the algorithm for p-group isomorphism from Chapter 10, we start by briefly

reviewing that algorithm. Recall that the algorithm of Chapter 10 has two main steps:

1) an n(1/2) logp n+O(1) time Turing reduction from group isomorphism to composition-series

isomorphism and

2) an algorithm for testing p-group composition series isomorphism in nO(p log p) time.

Step (1) follows by bounding the number of composition series. For step (2), we construct

rooted trees whose levels represent the factors in the composition series; the multiplication

table is then encoded by attaching gadgets to the leaves. Since the orders of the composition

factors bound the number of children at the corresponding levels of the tree and each leaf is

connected to a constant number of gadgets, the resulting graph has degree at most p+O(1).

This yields a polynomial-time many-one reduction from composition-series isomorphism to

low-degree graph isomorphism. Combining this with the nO(d log d) time algorithm of Theo-

rem 8.4.5 [76, 18] for testing isomorphism of graphs of degree at most d yields an nO(p log p)

time algorithm for p-group composition-series isomorphism as claimed in step (2).

As we showed in Chapter 10, combining steps (1) and (2) yields an n(1/2) logp n+O(p log p)

algorithm for p-groups (we will refer to this as the graph-isomorphism component of the

p-group algorithm). This algorithm is faster than generator-enumeration when p is small

169

and slower when it is large. (We consider a prime small if it is at most α = log n/(log log n)2

and large if it is greater than α.) By choosing between these two algorithms according to

the value of p, we obtain an n(1/2) logp n+O(logn/ log logn) time algorithm; this gives a square root

speedup over generator enumeration regardless of the value of p.

Our main result leverages Hall’s theory of Sylow bases [53] to extend this algorithm to

solvable groups.

Theorem 11.1.1. Solvable-group isomorphism is decidable in n(1/2) logp n+O(logn/ log logn) de-

terministic time.

The algorithm for solvable groups follows the same framework but is more complicated.

The main conceptual challenge is that solvable groups can have composition factors of large

order as well as other composition factors of small order. This is problematic since both

generator enumeration and the graph-isomorphism based p-group algorithm just described

will take roughly nlogp n time for a group that has many small composition factors and one

large composition factor.

In order to overcome this obstacle, we need a way to (in effect) apply the graph-

isomorphism component of the p-group algorithm to the part of the group that corresponds

to the small prime factors while applying the generator-enumeration algorithm to the part

of the group that corresponds to large prime factors. Since these two parts of a solvable

group do not form a direct product decomposition, we need a way of actually combining

these two algorithms since we cannot separate the group into independent parts and run the

algorithms separately.

Wagner [127] gave a method for reducing the degree of the graph by restricting the

isomorphism to be fixed on the quotient of G by a subgroup Gi in the composition series. If

there is a subgroup Gi in the composition series whose prime divisors are all large, then the

number of ways of fixing the isomorphism on the quotient G/Gi is relatively small so we can

test isomorphism of the composition series. Thus, we could handle large composition factors

if we had a way of moving all the large primes to the top of the composition series.

170

Since it is not clear that there is always a composition series with all the large primes

at the top, we use a different structure. The key idea in our algorithm for solvable-group

isomorphism is to use Sylow bases to separate the large and small prime divisors1 (according

to the threshold α = log n/ log log n) into subgroups P1 and P2 of G such that G = P1P2.

We call the pair (P1, P2) an α-decomposition for G and define it formally later. We also let

(Q1, Q2) be an α-decomposition for H. The correctness of this step is guaranteed by the

following lemma which follows easily from Hall’s theorems [53].

Lemma 11.1.2. For any α, solvable-group isomorphism is deterministic polynomial-time

Turing-reducible to testing isomorphism of α-decompositions of the group.

As a corollary, we obtain Theorem 2.2.2 as claimed in Chapter 2.

We then choose a composition series S2 for P2 and a composition series S ′2 for Q2. There

is no need to choose composition series for P1 and Q1 since we plan to apply Wagner’s degree

reduction trick to these subgroups. We call the pairs (P1, S2) and (Q1, S
′
2) α-composition

pairs for G and H. We say that (P1, S2) is isomorphic to (Q1, S
′
2) if there is an isomorphism

from G to H that restricts to isomorphisms from P1 to Q1 and S2 to S ′2. By enumerating

all possible composition series as in the case for p-groups, we can reduce the problem to

α-composition pair isomorphism.

Lemma 11.1.3. Testing isomorphism of the α-decompositions (P1, P2) and (Q1, Q2) of the

groups G and H is n(1/2) logp n+O(1) deterministic time Turing reducible to testing isomorphism

of α-composition pairs for (P1, P2) and (Q1, Q2) where p is the smallest prime dividing the

order of the group.

It remains to show how to test if two α-composition pairs are isomorphic. Solving this

problem is the main challenge in generalizing the p-group algorithm to solvable groups. As

before, we accomplish this by constructing a graph. However, now our graph for G must

1We thank Laci Babai for suggesting this simplification. An earlier version of this chapter broke G into
many factors, which made it more complicated.

171

represent both the decomposition G = P1P2 and the composition series S2. We start by

constructing a tree; the top of the tree corresponds to the subgroup P1 while the bottom

corresponds to S2. The degree of the top part of the tree is reduced to a constant using

Wagner’s trick at the cost of a factor of nα+O(1). Extra gadgets are used to require any

isomorphism to respect the decomposition G = P1P2. The multiplication table is repre-

sented by attaching gadgets to the leaves in the same way as before. The result is a graph

that has degree α + O(1) and represents the isomorphism class of the α-composition pair

(P1, S2). Combining with the nO(d log d) time algorithm of Theorem 8.4.5 [76, 18] for testing

isomorphism of graphs of degree at most d completes the proof of Theorem 11.1.1.

As in the case of p-groups, we extend our algorithm for solvable-group isomorphism

to compute canonical forms of solvable groups within the same amount of time. Later, in

Chapter 12, we will show how to combine this canonization algorithm with a general collision

detection framework to reduce the 1/2 in the exponent of Theorem 11.1.1 to 1/4.

In Section 11.2, we reduce solvable-group isomorphism to α-decomposition isomorphism

and from α-decomposition isomorphism to α-composition pair isomorphism. In Section 11.3,

we present the reduction from α-composition pair isomorphism to low-degree graph isomor-

phism. In Section 11.4, we derive our algorithms for solvable-group isomorphism.

11.2 Reducing solvable-group isomorphism to α-composition pair isomor-
phism

In this section, we define the notions of α-decompositions and α-composition pairs and show

Turing reductions from solvable-group isomorphism to α-decomposition isomorphism and

from α-decomposition isomorphism to α-composition isomorphism. The first reduction can

be done in polynomial time using Hall’s theorems [53] while the second follows by counting

the number of composition series.

From now on, we assume for convenience that the groups G and H have the same order;

if this is not the case, then G and H are not isomorphic. We let α be a parameter that we

will later set to log n/(log log n)2. We start with the definition of an α-decomposition.

172

Definition 11.2.1. Let G be a group. An α-decomposition of G is a pair of subgroups

(P1, P2) such that

(a) G = P1P2,

(b) every prime dividing |P1| is greater than α and

(c) every prime dividing |P2| is at most α

We say that the α-decompositions (P1, P2) and (Q1, Q2) for the groups G and H are

isomorphic if there is an isomorphism φ : G → H such that φ[Pi] = Qi for each i. In order

to reduce solvable-group isomorphism to α-decomposition isomorphism, we now recall two

of Hall’s theorems. First, we need to define a Sylow basis.

Definition 11.2.2 (Hall [53], cf. [102]). Let G be a group whose order has the prime factor-

ization n =
∏`

i=1 p
ei
i . A Sylow basis for G is a set {P ′i | 1 ≤ i ≤ `} where each P ′i is a Sylow

pi-subgroup of G and P ′iP
′
j = P ′jP

′
i for all i and j.

In a Sylow basis {P ′i | 1 ≤ i ≤ `}, we will always assume that each P ′i is a Sylow pi-

subgroup of G. We say that the Sylow bases {Pi | 1 ≤ i ≤ `} of G and {Qi | 1 ≤ i ≤ `} of

H are isomorphic if there exists an isomorphism φ : G → H such that φ[Pi] = Qi for all i.

It is easy to construct an α-decomposition from a Sylow basis by letting P1 be the product

of the Sylow subgroups that correspond to primes that are greater than α and letting P2 be

the product of the Sylow subgroups that correspond to primes that are less than α.

The following theorem is useful for proving that the reduction from solvable-group iso-

morphism to α-decomposition isomorphism takes polynomial time.

Theorem 11.2.3 (Hall [53], cf. [102]). A group G is solvable if and only if it has a Sylow

basis.

Two Sylow bases {P ′i | 1 ≤ i ≤ `} and {Q′i | 1 ≤ i ≤ `} of G are conjugate if there exists

g ∈ G such that for all i, P ′gi = Q′i.

Theorem 11.2.4 (Hall [53], cf. [102]). Any two Sylow bases of a solvable group are conjugate.

173

Notice that this implies that the group G has at most n Sylow bases. We also require

the ability to compute a Sylow basis of a solvable group. This was shown by Kantor and

Taylor [61] in the setting of permutation groups so it also holds in our case where the group

is specified by its Cayley table.

Theorem 11.2.5 (Kantor and Taylor [61]). A Sylow basis of a solvable group can be com-

puted deterministically in polynomial time.

Armed with these results, it is now easy to reduce solvable-group isomorphism to α-

decomposition isomorphism. The following lemma from the introduction explains why our

results are restricted to the class of solvable groups.

Lemma 11.1.2. For any α, solvable-group isomorphism is deterministic polynomial-time

Turing-reducible to testing isomorphism of α-decompositions of the group.

Proof. Let G and H be solvable groups of order n =
∏`

i=1 p
ei
i . We compute a Sylow

basis {P ′i | 1 ≤ i ≤ `} for G. Define P1 =
∏

i:pi>α
P ′i and P2 =

∏
i:pi≤α P

′
i ; this is an α-

decomposition for G. We compute a Sylow basis {Q′i | 1 ≤ i ≤ `} for H and consider all of

its n conjugates
{
Q′hi

∣∣ 1 ≤ i ≤ `
}

where h ∈ H. For each of these, we define Q1 =
∏

i:pi<α
Q′i

and Q2 =
∏

i:pi≤αQ
′
i) and test if the α-decompositions (P1, P2) and (Q1, Q2) are isomorphic.

We claim that G ∼= H if and only if (P1, P2) is isomorphic to one of the (Q1, Q2) computed

above.

Clearly, if G and H are not isomorphic then no α-decomposition of G is isomorphic to an

α-decomposition of H. If φ : G→ H is an isomorphism, then {φ[P ′i] | 1 ≤ i ≤ `} is a Sylow

basis for H. By Theorem 11.2.4, it is equal to some conjugate of {Q′i | 1 ≤ i ≤ `}. Then

(Q1, Q2) = (
∏
i:pi<α

φ[P ′i],
∏
i:pi≤α

φ[P ′i])

is an α-decomposition for H that is isomorphic to (P1, P2) and our reduction will test if

(P1, P2) is isomorphic to (Q1, Q2).

174

Next, we reduce α-decomposition isomorphism to α-composition pair isomorphism. First,

we define the notion of an α-composition pair.

Definition 11.2.6. An α-composition pair for an α-decomposition (P1, P2) of a solvable

group G is a pair (P1, S2) where S2 is a composition series for P2.

For convenience, we will sometimes say that (P1, S2) is an α-composition pair for G.

Let (P1, S2) and (Q1, S
′
2) be a α-decompositions for G and H. Then (P1, S2) and (Q1, S

′
2)

are isomorphic if there is an isomorphism φ from (P1, P2) to (Q1, Q2) which restricts to an

isomorphism from S2 to S ′2.

The reduction from α-decomposition isomorphism to α-composition pair isomorphism,

requires an upper bound on the number of composition series for a group and a way to

enumerate all composition series. This was accomplished by Lemma 10.2.1 from Chapter 10

which we restate here for convenience.

Lemma 10.2.1. Let G be a group. Then the number of composition series for G is at most

n(1/2) logp n+O(1) where p is the smallest prime dividing the order of G. Moreover, one can

enumerate all composition series for G in n(1/2) logp n+O(1) time.

We are now ready to derive the reduction from α-decomposition isomorphism to testing

isomorphism of α-composition pairs.

Lemma 11.1.3. Testing isomorphism of the α-decompositions (P1, P2) and (Q1, Q2) of the

groups G and H is n(1/2) logp n+O(1) deterministic time Turing reducible to testing isomorphism

of α-composition pairs for (P1, P2) and (Q1, Q2) where p is the smallest prime dividing the

order of the group.

Proof. Let S2 be an arbitrary composition series for P2. For each composition series S ′2 for

Q2, we test if the α-composition pairs (P1, S2) and (Q1, S
′
2) are isomorphic. If φ : (P1, P2)→

(Q1, Q2) is an isomorphism, then (Q1, φ[S2]) is an α-composition pair for H that is isomorphic

to (P1, S2). Thus, the α-decompositions (P1, P2) and (Q1, Q2) are isomorphic if and only if

175

the α-composition pair (P1, S2) is isomorphic to (Q1, S
′
2) for some composition series S ′2 for

Q2. The order of Q2 is at most n; the smallest prime dividing the order of Q2 is equal to the

smallest prime dividing the order of H by Definition 11.2.1. The complexity then follows

from Lemma 10.2.1.

Putting together Lemmas 11.1.2 and 11.1.3 immediately results in the following corollary.

Corollary 11.2.7. For any α, testing isomorphism of the solvable groups G and H is

n(1/2) logp n+O(1) deterministic polynomial-time Turing-reducible to testing isomorphism of α-

composition pairs for G and H where p is the smallest prime dividing the order of the group.

We can also prove Turing reductions from solvable-group canonization to α-decomposition

canonization and from α-decomposition canonization to α-composition canonization. For the

convenience of the reader, we explicitly define canonical forms of α-decompositions and α-

decomposition pairs. The definition of the canonical form of a group was already given in

Definition 10.2.2.

Definition 11.2.8. A map Canα-Decomp is a canonical form for α-decompositions if for each

α-decomposition (P1, P2) of a group G, Canα-Decomp(P1, P2) = (M,ψ[P1], ψ[M2]) such that

the following hold.

(a) M is an n× n matrix with entries in [n].

(b) M is the multiplication table for a group that is isomorphic to G under the isomorphism

ψ : G→ [n].

(c) If (P1, P2) and (Q1, Q2) are α-decompositions then (P1, P2) ∼= (Q1, Q2) if and only if

Canα-Decomp(P1, P2) = Canα-Decomp(Q1, Q2).

Definition 11.2.9. A map Canα-Pair is a canonical form for α-composition pairs if for each

α-composition pair (P1, S2 = (P2,0 = 1 < · · · < P2,m = P2)) of an α-decomposition (P1, P2) of

a group G, Canα-Pair(P1, S2) = (M,ψ[P1], ψ[P2,0], . . . , ψ[P2,m]) such that the following hold.

(a) M is an n× n matrix with entries in [n].

(b) M is the multiplication table for a group that is isomorphic to G under ψ : G→ [n].

176

(c) If (P1, S2) and (Q1, S
′
2) are α-decompositions then (P1, S2) ∼= (Q1, S

′
2) if and only if

Canα-Pair(P1, S2) = Canα-Pair(Q1, S
′
2).

Our canonical form reductions now follow via similar techniques.

Lemma 11.2.10. Computing the canonical form of a solvable group is polynomial-time

Turing reducible to computing canonical forms of α-decompositions for the group where p is

the smallest prime dividing the order of the group.

Proof. Let G be a solvable group of order n =
∏`

i=1 p
ei
i . For each Sylow basis {P ′i | 1 ≤ i ≤ `}

of G, we let P1 =
∏

i:pi>α
P ′i and P2 =

∏
i:pi≤α P

′
i and compute Canα-Decomp(P1, P2). We de-

fine CanGrp(G) to be the multiplication table of the lexicographically least of these canonical

forms. Since two groups are isomorphic if and only if the sets of isomorphism classes of their

α-decompositions coincide, it follows that CanGrp is a canonical form. By Theorem 11.2.4,

there are at most n Sylow bases for G which can be enumerated in polynomial time. Thus,

the reduction can be performed in polynomial time.

Lemma 11.2.11. Computing the canonical form of an α-decomposition of a group is

n(1/2) logp n+O(1) time Turing reducible to computing canonical forms of α-composition pairs

for the group where p is the smallest prime dividing the order of the group.

Proof. Let (P1, P2) be an α-decomposition of a group G. We use Lemma 10.2.1 to

enumerate all of the at most n(1/2) logp n+O(1) composition series S2 for P2. We define

Canα-Decomp(P1, P2) = (M,ψ[P1], ψ[P2,m]) where (M,ψ[P1], ψ[P2,0], . . . , ψ[P2,m]) is the lexi-

cographically least canonical form of the α-composition pairs (P1, S2) that result from this

process. It follows from Definition 11.2.9 that Canα-Decomp is a canonical form.

Combining Lemmas 11.2.10 and 11.2.11 yields the following corollary.

Corollary 11.2.12. Computing the canonical form of a solvable group is n(1/2) logp n+O(1)

time Turing reducible to computing canonical forms of α-composition pairs for the group

where p is the smallest prime dividing the order of the group.

177

11.3 α-composition-pair isomorphism and canonization

In this section, we show our reduction from α-composition pair isomorphism to low-degree

graph isomorphism. Our reduction also extends to reducing α-composition pair canonization

to computing canonical forms of low-degree graphs. Our proofs follow an outline similar to

the analogous reduction from composition series isomorphism to low-degree graph isomor-

phism in the case of p-groups, but are more complex due to the more general structure of

solvable groups.

11.3.1 Isomorphism testing

At a high level, our algorithm consists of the following steps. First, we augment our α-

composition pair (P1, P2) by choosing an ordered generating set g for the subgroup P1 (which

corresponds to the large primes) to obtain the augmented α-composition pair (P1, S2,g). We

say that a mapping φ : G→ H is an isomorphism between the augmented α-decompositions

(P1, S2,g) and (Q1, S
′
2,h) for G and H if φ is an α-composition pair isomorphism for (P1, S2)

and (Q1, S
′
2) and φ(g) = h. The reason for choosing an augmented α-composition pair is so

that we can reduce the degree of the part of the graph we construct that corresponds to P1

using the trick due to Wagner [126] mentioned in Section 11.1.

Since one can fix an ordered generating set g for P1 and consider all possible ordered

generating sets for Q1, it is easy to see that α-composition pair isomorphism is nlogα n+O(1)

Turing-reducible to augmented α-composition pair isomorphism. (Recall that we will later

set α = log n/ log log n so this is nO(logn/ log logn) time and is less than the complexity we are

aiming for.) We state this in the following lemma.

Lemma 11.3.1. Testing isomorphism of the α-composition pairs (P1, S2) and (Q1, S
′
2) for

the solvable groups G and H is nlogα n+O(1) deterministic time Turing reducible to testing iso-

morphism of augmented α-composition pairs for (P1, S2) and (Q1, S
′
2) where p is the smallest

prime dividing the order of the group.

We then construct a tree whose leaves represent the elements of G; by using the ordered

178

generating set g chosen above, we are able to ensure that the degree of this tree is at most

α + O(1). By augmenting this tree with gadgets that represent the multiplication table of

the group, we obtain an object that represents the isomorphism class of the augmented α-

composition pair (P1, P2,g). The final step of the algorithm is to apply the following result

of Babai and Luks [76, 18] mentioned in Chapter 8.

Theorem 8.4.7 (Babai and Luks [18]). Canonization of colored graphs of degree at most d

can be performed in nO(d log d) time.

The main challenge compared to p-group isomorphism is dealing with the fact that some

of the prime divisors of a solvable group can be small while others may be large. This is

the main reason why the correctness proof is significantly more complex than for p-groups.

Since a p-group has exactly one prime divisor, it was possible to handle the cases of small

and large primes separately using a graph-isomorphism based p-group algorithm (which is

fast when the prime is small) and the generator-enumeration algorithm (which is fast when

the prime is large). On the other hand, for solvable groups, it is necessary to design a hybrid

algorithm that is fast for both cases simultaneously.

As mentioned above, the first step in the graph construction is to define a tree for an

augmented α-composition pair (P1, P2,g). We do this by constructing trees T1 and T2 whose

leaves correspond to the elements of P1 and P2. In order to define the part of the tree

corresponding to P1, we need a way to canonically order the elements of a group given an

ordered generating set. This is accomplished by Definition 10.4.1 and Lemma 10.4.2. We

restate them here for convenience.

Definition 10.4.1. Let G be a group with an ordered generating set g = (g1, . . . , gk). Define

a total order ≺g on G by x ≺g y if wg(x) ≺ wg(y) where each wg(x) = (x1, . . . , xj) is the

first word in {g1, . . . , gk}∗ under the standard ordering such that x = x1 · · ·xj.

Lemma 10.4.2. Let G and H be groups with ordered generating sets g = (g1, . . . , gk) and

h = (h1, . . . , hk), and let x, y ∈ G. Then

179

(a) ≺g is a total ordering on G.

(b) if φ : G→ H is an isomorphism such that each φ(gi) = hi, then x ≺g y if and only if

φ(x) ≺h φ(y).

(c) we can decide if x ≺g y in O(n |g|) time.

Now we can define the tree that corresponds to P1. We do this by choosing a balanced

binary tree whose leaves are elements of P1. The choice of this tree is arbitrary so long as

it depends only on ≺g. The reason for constructing the trees for P1 and P2 separately is

that this allows us to ensure that the tree for P1 has only constant degree. Otherwise, it

would have degree Ω(n) for groups divisible by large primes which would result in a very

slow algorithm. Later on, we will combine the trees for P1 and P2 to obtain a tree whose

leaves correspond to elements of G.

Definition 11.3.2. Let P1 be a group with ordered generating set g = (g1, . . . , gk). To

construct the rooted tree T (P1,g), we create a leaf node for each element of P1 and color

each node by the number that corresponds to its position in the ordering ≺g; we then arrange

the nodes on a line from smallest to largest according to their colors. We attach a parent

node to each pair of adjacent leaves starting with the smallest pair; if |P1| is odd, we attach

a single parent node to the last leaf. We then arrange the parent nodes just generated on a

line according to the ordering on their children and add new parent nodes for them in the

same way. We continue in this manner until we obtain a single root node from which all the

leaves are descended; this yields the tree T (P1,g).

Next, we define the tree T (S2) for the S2 using Definition 10.3.1 from Chapter 10. We

also need a way to combine the trees for P1 and S2. For this, we need the notion of a leaf

product from Definition 10.3.2. We are now finally in a position to define the tree for a

augmented α-composition pair.

Definition 11.3.3. Let (P1, S2,g) be an augmented α-composition pair for a solvable group

G. We define T (P1, S2,g) = T (P1,g)� T (S2).

180

Figure 11.1: The graph X(P1, S2,g) with the multiplication gadget for xy = z where z = xy,

∗−1(x) = (x1, x2), ∗−1(y) = (y1, y2) and ∗−1(z) = (z1, z2)

As in the case of p-groups, we cannot attach the aforementioned multiplication gadgets

directly to the tree T (P1, S2,g) because each leaf be attached to n gadgets and would thus

have degree Ω(n); this would cause our algorithm to be extremely slow. We resolve this by

utilizing the leaf product of T (P1, S2,g) with itself so that each multiplication gadget is only

attached to a constant number of leaves.

The following notation is convenient as it allows us to easily associate elements of G with

181

nodes in the tree T (P1, S2,g). Let ∗ : {(x1, x2) | xi ∈ Pi} → G by ∗(x1, x2) = x1x2 and note

that this is a bijection. Similarly, we define • : {(x1, x2) | xi ∈ Qi} → H by •(x1, x2) = x1x2.

We can then represent each x ∈ G by the node ∗−1(x) in T (P1, S2,g) and attach the gadget

for each multiplication rule xy = z to the nodes ∗−1(x), ∗−1(y) and ∗−1(z). We formalize

this in the following definition.

Definition 11.3.4. Let (P1, S2,g) be an augmented α-composition pair for a solvable group

G and define M to be the tree with a root connected to three nodes ←, → and = with

colors “left”, “right” and “equals” respectively. We construct X(P1, S2,g) by starting

with the tree T (P1, S2,g) � T (P1, S2,g) � M and connecting multiplication gadgets to the

leaf nodes. For each x, y ∈ G, we create the path ((∗−1(x), ∗−1(y),←), (∗−1(y), ∗−1(x),→

), (∗−1(xy), ∗−1(y),=)). We color each node (x1, 1) where x1 ∈ P1 “second identity.” Fi-

nally, we color the remaining nodes “internal.”

The graph X(P1, S2,g) can be thought of a rooted tree with edges added between some

nodes at the same levels. The edges from the original tree are called tree edges and the edges

between nodes at the same level are called cross edges. We show X(P1, S2,g) in Figure 11.1.

The correctness of our reduction is based on the fact that two augmented composition

pairs (P1, S2,g) and (Q1, S
′
2,h) are isomorphic if and only if X(P1, S2,g) and X(Q1, S

′
2,h)

are isomorphic. We prove this in the remainder of this subsection.

Some additional terminology is required for the proof. We define ACP to be the

class of augmented composition pairs for finite solvable groups and let ACPTree be the

class of graphs that are isomorphic to the graph X(P1, S2,g) for some augmented com-

position pair (P1, S2,g). We overload the symbol X from Definition 11.3.4 by defining

X(φ) : X(P1, S2,g) → X(Q1, S
′
2,h) to be φ

∣∣
P1
� φ

∣∣
P2
� φ

∣∣
P1
� φ

∣∣
P2
� idM for each α-

composition pair isomorphism φ : (P1, S2,g)→ (Q1, S
′
2,h).

In order to prove the correctness of our reduction, we need to show that the aug-

mented α-composition pairs (P1, S2,g) and (Q1, S
′
2,h) are isomorphic if and only if the

graphs X(P1, S2,g) and X(Q1, S
′
2,h) are isomorphic. The forward direction of the impli-

182

cation is equivalent to the assertion that X(P1,S2,g),(Q1,S′2,h) : Iso((P1, S2,g), (Q1, S
′
2,h)) →

Iso(X(P1, S2,g), X(Q1, S
′
2,h)) is well-defined. Proving the converse is more difficult and is

one of the main lemmas of this subsection.

Lemma 11.3.5. Let (P1, S2,g) and (Q1, S
′
2,h) be augmented α-composition pairs for the

solvable groups G and H. Then the map

X(P1,S2,g),(Q1,S′2,h) : Iso((P1, S2,g), (Q1, S
′
2,h))→ Iso(X(P1, S2,g), X(Q1, S

′
2,h))

is well-defined.

Before proceeding with the proof, it is convenient to introduce additional notation. Let

x, y ∈ G. Consider the sequence of nodes that starts at ∗−1(x), follows tree edges (away

from the root) to a node colored “left”, follows a cross edge to a node colored “right”, then

follows tree edges (towards the root) to ∗−1(y), follows tree edges (away from the root) back

to the same node colored “right” and finally follows a cross edge to a node colored “equal”;

we call this a W -sequence from x to y to xy since its shape resembles a W (see Figure 11.1).

Since W -sequences correspond to multiplication gadgets, there is exactly one W -sequence

from ∗−1(x) to ∗−1(y): namely, the one that results from the multiplication gadget

((∗−1(x), ∗−1(y),←), (∗−1(y), ∗−1(x),→), (∗−1(xy), ∗−1(y),=)).

Therefore, we denote the W -sequence from x to y to xy by W (x, y). We now proceed with

our proof.

Proof. Consider the augmented α-composition pairs (P1, S2,g) and (Q1, S
′
2,h) for the solv-

able groups G and H. Let φ : (P1, S2,g) → (Q1, S
′
2,h) be an isomorphism and let P2,0 =

1 / · · · / P2,m = P2 and Q2,0 = 1 / · · · / Q2,m = Q2 be the subgroup chains for S2 and

S ′2. Because φ(g) = h, it follows from Lemma 10.4.2 that φ
∣∣
P1

extends to a unique iso-

morphism between the rooted colored trees T (P1,g) and T (Q1,h). Moreover, since each

φ[P2,i] = Q2,i, we see that φ
∣∣
P2

extends to a unique isomorphism from T (S2) to T (S ′2).

183

Thus, φ
∣∣
P1
� φ

∣∣
P2

is an isomorphism from T (P1,g) � T (S2) to T (Q1,h) � T (S ′2); therefore,

X(φ) = φ
∣∣
P1
� φ
∣∣
P2
� φ
∣∣
P1
� φ
∣∣
P2
� idM is a tree isomorphism.

Let x, y ∈ G and let ∗−1(x) = (x1, x2). Then X(φ) maps ∗−1(x) to (φ(x1), φ(x2)) =

•−1(φ(x)) as φ(x) = φ(x1)φ(x2). Similarly, recalling that we identified expressions of

the forms ((x1, x2), (y1, y2)) and (x1, x2, y1, y2), we see that X(φ) maps (∗−1(x), ∗−1(y)) to

(•−1(φ(x)), •−1(φ(y)))

Consider the path

((∗−1(x), ∗−1(y),←), (∗−1(y), ∗−1(x),→), (∗−1(xy), ∗−1(y),=))

in X(P1, S2,g). The image of this path under X(φ) is

((•−1(φ(x)), •−1(φ(y)),←), (•−1(φ(y)), •−1(φ(x)),→), (•−1(φ(xy)), •−1(φ(y)),=)).

By Definition 11.3.4, this path is one of the multiplication gadgets in X(Q1, S
′
2,h). Thus,

X(φ) maps each W -sequence in X(P1, S2,g) to a W -sequence in X(Q1, S
′
2,h). Moreover,

X(φ) maps each node (x1, 1) to (φ(x1), 1), so it respects the “second identity” color. This

implies that X(P1, S2,g) ∼= X(Q1, S
′
2,h) since both graphs have the same number of multi-

plication gadgets (and hence the same number of W -sequences).

In order to show if that if the graphs X(P1, S2,g) and X(Q1, S
′
2,h) are isomorphic then

so are the augmented α-composition pairs (P1, S2,g) and (Q1, S
′
2,h), it suffices to show that

the map X(P1,S2,g),(Q1,S′2,h) : Iso((P1, S2,g), (Q1, S
′
2,h)) → Iso(X(P1, S2,g), X(Q1, S

′
2,h)) is

surjective. This is the key to our correctness proof and implies that augmented α-composition

pair isomorphism reduces to testing isomorphism of the resulting graphs. To do this, we

need to show that every isomorphism from X(P1, S2,g) to X(Q1, S
′
2,h) can be written as

a leaf product of group isomorphisms. We accomplish this by restricting the isomorphism

between the graphs to certain subsets of nodes and showing that the isomorphism is the leaf

product of these restrictions (which turn out to be group isomorphisms). An isomorphism

θ : X(P1, S2,g)→ X(Q1, S
′
2,h) induces the bijection φ = • ◦ θ ◦ ∗−1 : G→ H. We call this

φ the induced bijection for θ.

184

Lemma 11.3.6. Let X(P1, S2,g) and X(Q1, S
′
2,h) be augmented α-composition pairs for

the solvable groups G and H, let θ : X(P1, S2,g)→ X(Q1, S
′
2,h) be an isomorphism and let

φ be its induced bijection. Then

(a) φ : G→ H is a group isomorphism,

(b) φ1 = φ
∣∣
P1

: P1 → Q1 and φ2 = φ
∣∣
P2

: P2 → Q2 are group isomorphisms,

(c) θ = φ1 � φ2 � φ1 � φ2 � idM and

(d) φ : (P1, S2,g)→ (Q1, S
′
2,h) is an augmented α-composition pair isomorphism.

Proof. Let us start with part (a). It follows from the assumption that θ is an isomorphism

(and hence bijective) that φ is a bijection.

Let x, y ∈ G. Now, θ maps the nodes ∗−1(x) and ∗−1(y) in X(P1, S2,g) to •−1(φ(x)) and

•−1(φ(y)) by definition of φ. It follows that θ maps the W -sequence W (x, y) from x to y

to xy in X(P1, S2,g) to the W -sequence W (φ(x), φ(y)) in X(Q1, S
′
2,h). Now, since θ maps

∗−1(xy) to •−1(φ(xy)), it follows that the W -sequence W (φ(x), φ(y)) in X(Q1, S
′
2,h) is from

φ(x) to φ(y) to φ(xy). Therefore, by Definition 11.3.4, φ(xy) = φ(x)φ(y) so φ is a group

isomorphism.

Now we prove (b). Let x1 ∈ P1. Because θ respects the “second identity” color, it

follows that it maps (x1, 1) to (x′1, 1) for some x′1 ∈ Q1. Then x′1 = φ(x1) which implies that

φ[P1] = Q1.

Now let x2 ∈ P2. Because φ is an isomorphism, φ(1) = 1; thus, θ sends the node (1, 1) to

(1, 1) which implies that it maps 1 to 1. Thus, for some x′2 ∈ Q2,

θ(1, x2) = (1, x′2)

θ(∗−1(x2)) = •−1(x′2)

φ(x2) = x′2.

Thus, θ(1, x2) = (1, φ(x2)) so φ[P2] = Q2 and φ2 is a group isomorphism.

For part (c), let x, y ∈ G and ∗−1(x) = (x1, x2). By part (b), θ sends the node x1 to

185

φ1(x1). Therefore, for some x′2 ∈ Q2,

θ(x1, x2) = (φ(x1), x′2)

•(θ(x1, x2)) = φ(x1)x′2

φ(x) = φ(x1)x′2.

Since φ(x) = φ(x1)φ(x2), this implies that x′2 = φ(x2) so θ maps ∗−1(x) = (x1, x2) to

•−1(φ(x)) = (φ(x1), φ(x2)).

Now consider a node (∗−1(x), ∗−1(y), `) where x, y ∈ G and ` ∈ {←,→,=}. As

(∗−1(x), ∗−1(y)) is in the subtree rooted at ∗−1(x), θ sends it to a node of the form

(•−1(φ(x)), •−1(b)) for some b ∈ H. Similarly, θ maps the node (∗−1(y), ∗−1(x)) to a

node of the form (•−1(φ(y)), •−1(a)) for some a ∈ H. Now, because (∗−1(x), ∗−1(y))

and (∗−1(y), ∗−1(x)) are in the W -sequence from x to y to xy, (•−1(φ(x)), •−1(b)) and

(•−1(φ(y)), •−1(a)) are in the W -sequence from φ(x) to φ(y) to φ(xy). Then by Def-

inition 11.3.4, a = φ(x) and b = φ(y). Therefore, θ maps (∗−1(x), ∗−1(y)) to

(∗−1(φ(x)), ∗−1(φ(y))). Because of the coloring of the leaves in Definition 11.3.4, it follows

that θ = φ1 � φ2 � φ1 � φ2 � idM .

Finally, let us prove part (d). We already know that φ is a group isomorphism by part

(a). By part (b), we know that each φ[Pi] = Qi.

Let P2,0 = 1/ · · ·/P2,m = P2 and Q2,0 = 1/ · · ·/Q2,m = Q2 be the subgroup chains for S2

and S ′2. We need to show that each φ[P2,i] = Q2,i. By part (c), θ maps (1, 1) in X(P1, S2,g)

to (1, 1) in X(Q1, S
′
2,h). Now the path from the root of X(P1, S2,g) to (1, 1) contains the

nodes (1, P2,m), . . . , (1, P2,0) (in that order). Moreover, the descendants of the node (1, P2,i)

that are in P1×P2 are {(1, x2) | x2 ∈ P2,i}. Similarly, the path from the root of X(Q1, S
′
2,h)

to (1, 1) contains the nodes (1, Q2,m), . . . , (1, Q2,0) (in that order) and the descendants of the

node (1, Q2,i) that are also in Q1 × Q2 are {(1, x′2) | x′2 ∈ Q2,i}. Therefore, θ maps each set

{(1, x2) | x2 ∈ P2,i} to {(1, x′2) | x′2 ∈ Q2,i}. Then, by definition of φ, φ[P2,i] = Q2,i and part

(d) is proved.

We now prove that X(P1,S2,g),(Q1,S′2,h) is bijective. For isomorphism testing, we only need

186

to show that it is surjective. However, we will need it to be injective later when we discuss

canonical forms.

Theorem 11.3.7. Let (P1, S2,g) and (Q1, S
′
2,h) be augmented α-composition pairs for the

solvable groups G and H. Then X(P1,S2,g),(Q1,S′2,h) is a bijection. Moreover, both X(P1, S2,g)

and X(φ) where φ ∈ Iso((P1, S2,g), (Q1, S
′
2,h)) can be computed in polynomial time.

Proof. The graph X(P1,S2,g),(Q1,S′2,h) is well-defined by Lemma 11.3.5. Let θ : X(P1, S2,g)→

X(Q1, S
′
2,h) be an isomorphism. By Lemma 11.3.6, the induced bijection φ : (P1, S2,g) →

(Q1, S
′
2,h) is an isomorphism and θ = φ1 � φ2 � φ1 � φ2 � idM where each φi = φ

∣∣
Pi

. Then

X(φ) = θ so X(P1,S2,g),(Q1,S′2,h) is surjective.

Let φ, ψ : (P1, S2,g) → (Q1, S
′
2,h) be isomorphisms and suppose that X(φ) = X(ψ).

Then φ1 � φ2 � φ1 � φ2 � idM = ψ1 � ψ2 � ψ1 � ψ2 � idM where each φi = φ
∣∣
Pi

and each

ψi = ψ
∣∣
Pi

. Therefore, each φi = ψi so X(P1,S2,g),(Q1,S′2,h) is injective.

Correctness of our reduction now follows.

Corollary 11.3.8. Let (P1, S2,g) and (Q1, S
′
2,h) be augmented α-composition pairs for the

solvable groups G and H. Then (P1, S2,g) ∼= (Q1, S
′
2,h) if and only if X(P1, S2,g) ∼=

X(Q1, S
′
2,h).

Because X is defined in terms of leaf products of structures that can be computed in

polynomial time, it is immediate that X can also be evaluated in polynomial time.

Lemma 11.3.9. Let (P1, S2,g) and (Q1, S
′
2,h) be augmented α-composition pairs for the

solvable groups G and H and let φ : (P1, S2,g)→ (Q1, S
′
2,h) be an isomorphism. Then both

X(P1, S2,g) and X(φ) can be computed in polynomial time.

The last ingredient that we require for our algorithm for augmented α-composition pair

isomorphism is a bound on the degree of the graph.

Lemma 11.3.10. Let (P1, S2,g) be an augmented α-composition pair for the solvable group

G. Then the graph X(P1, S2,g) has degree at most max{α + 1, 4} and size O(n2).

187

Proof. The trees T (P1,g), T (S2) and M have degrees 3, at most α + 1 and 3 respectively.

Since |P1| |P2| = n, the size of T (P1,g)�T (S2) is O(n). Thus, T (P1,g)�T (S2)�T (P1,g)�

T (S2)�M has size O(n2) and degree at most max{α + 1, 4}.

Finally, we obtain our result for augmented α-composition pair isomorphism.

Theorem 11.3.11. Let (P1, S2,g) and (Q1, S
′
2,h) be augmented α-composition pairs for the

solvable groups G and H. Then we can test if (P1, S2,g) ∼= (Q1, S
′
2,h) in nO(α logα) time.

Proof. By Lemma 11.3.9, we can compute the graphs X(P1, S2,g) and X(Q1, S
′
2,h) in

polynomial time. By Lemma 11.3.10 and Theorem 8.4.7, we can decide if X(P1, S2,g) ∼=

X(Q1, S
′
2,h) in nO(α logα) time. Finally, Corollary 11.3.8 tells us that (P1, S2,g) ∼= (Q1, S

′
2,h)

if and only if X(P1, S2,g) ∼= X(Q1, S
′
2,h).

Using Lemma 11.3.1, we obtain the following corollary.

Corollary 11.3.12. Let (P1, S2) and (Q1, S
′
2) be α-composition pairs for the solvable groups

G and H. Then we can test if (P1, S2) ∼= (Q1, S
′
2) in nlogα n+O(α logα) time.

11.3.2 Canonization

In this subsection, we extend our results for testing isomorphism of α-composition pairs

to canonization. As we shall we in Chapter 12, this result can be leveraged to obtain

faster algorithms for solvable-group isomorphism via collision arguments. Our canonization

algorithm requires another map Y that reverses the action of X by sending back to the

augmented α-composition pairs from which they arise. We start with the definition for Y .

As with X, we overload notation so that Y can also be applied to isomorphisms between

graphs.

Definition 11.3.13. For each augmented α-composition pair (P1, S2,g) for a solvable group

G and each graph A ∼= X(P1, S2,g), we fix an arbitrary isomorphism π : X(P1, S2,g) → A.

Let P2,0 = 1 / · · · / P2,m = P2 be the subgroup chain for S2. Then we define Y (A) =

(π[P1 × {1}], π[{1} × P2,0] / · · · / π[{1} × P2,m], π(g)).

188

Here, π[{(x1, x2) | xi ∈ Pi}] is interpreted as a group containing each π[{1} × P2,i] as a

subgroup. For each xi, yi, zi ∈ Pi, we define π(x1, x2)π(y1, y2) = π(z1, z2) if and only if there

exists a path (aπ(x)aπ(y), aπ(z)) colored (“left”, “right”, “equals”), such that aπ(x), aπ(y) and

aπ(z) are descendants of the nodes π(x1, x2), π(y1, y2) and π(z1, z2) in the image of the tree

T (P1,g)� T (S2)� T (P1,g)� T (S2)�M under π.

Let (P1, S2,g) and (Q1, S
′
2,h) be augmented α-composition pairs for the groups G and H

and consider the graphs A ∼= X(P1, S2,g) and A′ ∼= X(Q1, S
′
2,h). Let π : X(P1, S2,g) →

A and π′ : X(Q1, S
′
2,h) → A′ be the fixed isomorphisms chosen above. Then for each

isomorphism θ : A→ A′, we define Y (θ) : π[{(x1, x2) | xi ∈ Pi}]→ π′[{(x1, x2) | xi ∈ Qi}] to

be θ
∣∣
π[{(x1,x2) | xi∈Pi}]

.

As for X, we define YA,A′ : Iso(A,A′) → Iso(Y (A), Y (A′)) by θ 7→ Y (θ) for each pair of

graphs A,A′ ∈ ACPTree.

Our first step is to show that Y is well-defined. Once this is proved, we can leverage

Theorem 11.3.7 to show that each YA,A′ is bijective. This allows us to define a canonical

form for augmented α-composition pairs in terms of CanGraph, X and Y .

Lemma 11.3.14. Let (P1, S2,g) be an augmented α-composition pair for the solvable group

G, let A be a graph and let π : X(P1, S2,g)→ A be an isomorphism. Then Y (A) is a well-

defined augmented composition pair and can be computed in polynomial time. Moreover,

Y (π) : (P1, S2,g)→ Y (A) is an isomorphism.

Proof. We claim that π[{(x1, x2) | xi ∈ Pi}] is indeed a group if interpreted according to Defi-

nition 11.3.13. Let xi, yi, zi ∈ Pi. Then π(x1, x2)π(y1, y2) = π(z1, z2) if and only if there exists

a path (aπ(x)aπ(y), aπ(z)) colored (“left”, “right”, “equals”), such that aπ(x), aπ(y) and aπ(z) are

descendants of the nodes π(x1, x2), π(y1, y2) and π(z1, z2) in A. Since π is an isomorphism,

this is equivalent to the existence of a path (axay, az) colored (“left”, “right”, “equals”), such

that ax, ay and az are descendants of the nodes (x1, x2), (y1, y2) and (z1, z2) in X(P1, S2,g).

This is in turn equivalent to the existence of a W -sequence from x to y to z where

x = x1x2, y = y1y2 and z = z1z2. By definition, this W -sequence exists if and only if xy = z.

189

Therefore, π[{(x1, x2) | xi ∈ Pi}] is a group and Y (π) is a group isomorphism from G to

π[{(x1, x2) | xi ∈ Pi}]. It is immediate that Y (A) is an augmented α-composition pair and

Y (π) is an augmented α-composition pair isomorphism.

Now we show how to compute Y (A) in polynomial time. Let ` = dlog |P1|e and let the

subgroup chain for S2 be P2,0 = 1 / · · · / P2,m. Then ` is the height of T (P1,g) and m is the

height of T (S2). Thus, by Definition 11.3.4, π[P1 × {1}] consists of the nodes in A colored

“second identity” at a depth of `+m from the root.

To compute each π[{1}× P2,k], we first find the node π(1, 1); this is the identity element

of the group π[{(x1, x2) | xi ∈ Pi}]. The node π(1, P2,k) is the node on the path from the

root to π(1, 1) in A that is at a distance of `+ k from the root. Then, by Definition 11.3.4,

each π[{1}×P2,k] consists of the nodes in A descended from π(1, P2,k) that are at a distance

of m− k from π(1, P2).

Now we can show that each YA,A′ is surjective.

Theorem 11.3.15. Consider the graphs A,A′ ∈ ACPTree. Then YA,A′ is a bijection and

both Y (A) and Y (θ) where θ ∈ Iso(Y (A), Y (A′)) can be computed in polynomial time.

Proof. Let (P1, S2,g) and (Q1, S
′
2,h) be augmented α-composition pairs for the solvable

groups G and H such that π : X(P1, S2,g)→ A, π′ : X(Q1, S
′
2,h)→ A′ and θ : A→ A′ are

isomorphisms.

First, we observe that Y respects composition and let ψ = θπ : X(P1, S2,g)→ A′. Since

θ and π are isomorphisms so is ψ; Lemma 11.3.14 then implies that Y (ψ) = Y (θ)Y (π) is

also an isomorphism. Therefore, Y (θ) = Y (ψ)(Y (π))−1 is an isomorphism and so YA,A′ is a

well-defined function.

Now we prove that YA,A′ is a bijection. It follows from Definitions 11.3.4 and 11.3.13

that Y X = IACP. By Theorem 11.3.7, X(P1,S2,g),(Q1,S′2,h) is bijective; this implies that

YX(P1,S2,g),X(Q1,S′2,h) is also bijective since the identity is bijective. Now we just need to show

that YA,A′ is bijective. For each isomorphism θ : A → A′, there exists an isomorphism ρ :

190

X(P1, S2,g)→ X(Q1, S
′
2,h) such that θ = π′ρπ−1. It follows that Y (θ) = Y (π′)Y (ρ)Y (π−1)

from which we see that YA,A′ is indeed bijective.

We already showed that Y (A) can be computed in polynomial time in Lemma 11.3.14 and

it follows easily from Definition 11.3.13 that Y (θ) can be computed in polynomial time.

While Theorem 11.3.15 is enough to obtain our canonization results, we point out that

X and Y form a category equivalence when viewed as functors. Moreover, the results of this

section can be derived from this more general fact.

To construct our canonical form for augmented α-composition pairs, we convert our

augmented α-composition pairs to graphs of degree at most α+O(1) by applying X. Then

we compute the canonical form of the resulting graph using Theorem 8.4.7 and convert it

back into an augmented α-composition pair by applying Y . We use CanGraph to denote the

map from graphs to their canonical forms from Theorem 8.4.7.

Theorem 11.3.16. Y ◦ CanGraph ◦ X is a canonical form for augmented α-composition

pairs. Moreover, for any α-composition pair (P1, S2,g), we can compute (Y ◦ CanGraph ◦

X)(P1, S2,g) in nO(α logα) time.

Proof. Consider two α-composition pairs (P1, S2,g) and (Q1, S
′
2,h) for the solvable groups

G and H. By Corollary 11.3.8, (P1, S2,g) ∼= (Q1, S
′
2,h) if and only if

X(P1, S2,g) ∼= X(Q1, S
′
2,h).

Thus, (P1, S2,g) ∼= (Q1, S
′
2,h) if and only if

CanGraph(X(P1, S2,g)) = CanGraph(X(Q1, S
′
2,h))

Now, clearly, if (P1, S2,g) ∼= (Q1, S
′
2,h),

Y (CanGraph(X(P1, S2,g))) = Y (CanGraph(X(Q1, S
′
2,h)))

191

On the other hand, if (P1, S2,g) 6∼= (Q1, S
′
2,h), then

CanGraph(X(P1, S2,g)) 6∼= CanGraph(X(Q1, S
′
2,h))

Y (CanGraph(X(P1, S2,g))) 6∼= Y (CanGraph(X(Q1, S
′
2,h)))

Y (CanGraph(X(P1, S2,g))) 6= Y (CanGraph(X(Q1, S
′
2,h))).

Thus, Y ◦CanGraph◦X is a complete invariant. Also, X(P1, S2,g) ∼= CanGraph(X(P1, S2,g))

so since Y X = IACP, we have (P1, S2,g) ∼= Y (CanGraph(X(P1, S2,g))) by Theorem 11.3.15.

Thus, Y ◦ CanGraph ◦X is a canonical form.

Lastly, we show that Y (CanGraph(X(P1, S2,g))) can be computed in nO(α logα) time.

By Theorem 11.3.7, we can compute X(P1, S2,g) in polynomial time. By Lemma 11.3.10

and Theorem 8.4.7, it takes nO(α logα) time to compute CanGraph(X(P1, S2,g)). Finally,

by Theorem 11.3.15, we can compute Y (CanGraph(X(P1, S2,g))) in polynomial time from

CanGraph(X(P1, S2,g)).

The following corollary is now easily proved. We include the bound on the space required

since it will be relevant in Chapter 12.

Corollary 11.3.17. Canonization of α-composition pairs can be done deterministically in

nlogα n+O(α logα) time using nlogα n+O(1) space.

Proof. Let (P1, S2) be an α-composition pair. Note that the algorithm of Theorem 8.4.7 can

be performed in polynomial space. The result then follows by enumerating the nlogα n ways of

choosing the fixed generators g. For each such choice, we apply Theorem 11.3.16 to compute

the canonical form of the augmented α-decomposition pair (P1, S2,g) in nO(α logα) time. We

then chose the lexicographically least of these as the canonical form of (P1, S2).

11.4 Algorithms for solvable-group isomorphism and canonization

Armed with the results of Sections 11.2 and 11.3, it is easy to prove Theorem 11.1.1 as

claimed at the beginning of this chapter.

192

Theorem 11.1.1. Solvable-group isomorphism is decidable in n(1/2) logp n+O(logn/ log logn) de-

terministic time.

Proof. Let α be a parameter to be chosen later. By combining Lemma 11.2.7 and

Corollary 11.3.12, we obtain an n(1/2) logp n+logα n+O(α logα) time algorithm for solvable-group

isomorphism. The optimal choice for α is log n/(log log n)2. The complexity is then

n(1/2) logp n+O(logn/ log logn) as claimed.

Our algorithm for solvable-group canonization follows by a similar argument.

Theorem 11.4.1. Solvable-group canonization is in n(1/2) logp n+O(logn/ log logn) deterministic

time.

Proof. Let α be a parameter to be chosen later. By combining Corollaries 11.2.12

and 11.3.17, we obtain an n(1/2) logp n+logα n+O(α logα)) time algorithm for solvable-group can-

onization. The optimal choice for α is α = log n/(log log n)2. The complexity is again

n(1/2) logp n+O(logn/ log logn) as claimed.

193

Chapter 12

BIDIRECTIONAL COLLISION DETECTION

12.1 Introduction

In the last few chapters, we focused on the group isomorphism problem. In this chapter, we

take a more general view and study generic isomorphism problems. In such a problem, we are

given two algebraic or combinatorial objects and must decide if they have the same structure.

This chapter introduces a general technique for obtaining deterministic speedups for many

isomorphism problems. We apply the resulting lemmas to improve the best algorithms known

for a number of isomorphism-testing problems including several classes of groups.

In bidirectional collision detection, we consider structures that restrict the isomorphisms

between objects in some class. For example, given any ordered generating sets for two

groups, there is at most one isomorphism that maps the first ordered generating set to the

second. The idea behind bidirectional collision detection applies to objects with isomorphism-

restricting structures that can be split in half. To test isomorphism between two objects A

and B, we then choose the first half of the structure for A in all possible ways and choose

the second half arbitrarily; the structure for B is constructed by choosing the first half

arbitrarily and the second half in all possible ways. If A and B are isomorphic, the arbitrary

choice made for the first half of the structure for B will correspond to some choice for the

first half of the structure for A and the arbitrary choice for the second half of the structure

for A will correspond to some choice for the second half of the structure for B. Since we

only have to enumerate roughly the square root of the number of isomorphism-restricting

structures, bidirectional collision detection yields a square-root speedup over the naive brute-

force algorithm for many isomorphism problems.

We apply bidirectional collision detection to several theoretical algorithms for isomor-

194

phism testing. First, we utilize bidirectional collision detection to obtain a faster algorithm

for the group isomorphism problem.

The purpose of this chapter is to introduce bidirectional collision detection — a new tech-

nique for obtaining deterministic speedups by relating isomorphism testing in many classes

of objects to collision detection. Since bidirectional collision detection in particular applies

to the class of collision problems that arise in group isomorphism, we obtain a deterministic

square-root speedup over the best previous algorithm for general groups.

Theorem 12.1.1. General group isomorphism is decidable in n(1/2) logp n+O(1) deterministic

time where p is the smallest prime dividing the order of the group.

In Chapter 10, we showed a deterministic square-root speedup over the generator-

enumeration algorithm for the class of p-groups. We generalized this result to the hard

special case of solvable groups in Chapter 11. This chapter uses bidirectional collision de-

tection to obtain the improved bounds of Chapters 10 and 11 for general groups. Since

the techniques used in Chapters 10 and 11 are independent of bidirectional collision detec-

tion, we can combine these ideas to obtain a deterministic fourth-root speedup over the

generator-enumeration algorithm for the class of solvable groups.

Theorem 12.1.2. Solvable-group isomorphism is decidable in n(1/4) logp n+O(logn/ log logn) de-

terministic time where p is the smallest prime dividing the order of the group.

While randomized analogues of our algorithms also exist [108], they do not improve on

the time and space requirements of our deterministic algorithms.

Bidirectional collision detection can also be applied to the ring isomorphism problem

to obtain a square-root speedup over the natural analogue of the generator-enumeration

algorithm for rings.

In the case of graph isomorphism, bidirectional collision detection can be used to reduce

the constant in the exponent of the best general algorithm previously known [16] by a factor

of 1/
√

2. This is achieved by using bidirectional collision detection to obtain an improved

195

version of Zemlyachenko’s lemma which is then combined with the nO(d/ log d) algorithm [16,

77] for computing canonical forms of graphs of degree at most d.

While most algorithms for isomorphism problems can be implemented in polynomial

space, our algorithms require space roughly equal to their runtimes. By breaking the under-

lying bidirectional collision problem up into blocks, we show that the generator-enumeration

algorithm and our algorithm are extreme points of our time-space tradeoff TS = nlogp n+O(1)

for general group isomorphism. For solvable groups, we get a time-space tradeoff of TS =

n(1/2) logp n+O(logn/ log logn). Using a modification of the quantum algorithm for collision de-

tection [26], we obtain quantum time-space tradeoffs of T
√
S = n(1/2) logp n+O(1) for general

groups and T
√
S = n(1/4) logp n+O(logn/ log logn) for solvable groups. Analogous time-space

tradeoffs exist in general for the classes of objects that we consider.

Laci Babai and Eugene Luks (personal communication) have since combined bidirectional

collision detection with other ideas to obtain an n(1/4) logp n+O(log logn) algorithm for general

groups. This extends our result for solvable groups to the general case.

We start by introducing the framework for bidirectional collision-detection Section 12.2.

The rest of the chapter applies these lemmas to various isomorphism problems to obtain

speedups. In Section 12.3, we combine bidirectional collision detection with the generator-

enumeration algorithm to obtain our deterministic square-root speedup for general group

isomorphism. We show a deterministic fourth-root speedup over generator-enumeration for

solvable-group isomorphism in Section 12.4. In Section 12.5, we discuss a deterministic

square-root speedup for the ring isomorphism problem. In Section 12.6, we show a speedup

for worst-case graph isomorphism. We conclude with the current state of the art and open

problems in Section 12.7.

12.2 Bidirectional collision detection lemmas

In this section, we prove a general lemma that yields a deterministic speedup for isomorphism

testing in any class with objects whose structure “splits” in a certain way. Later in this

chapter, we shall see that our lemma is sufficiently powerful to yield speedups for several

196

well-known isomorphism problems. First, we introduce the idea behind bidirectional collision

detection by applying it to a toy problem involving binary functions.

12.2.1 Bidirectional collision detection and the NPN classification of binary functions

Consider the class of all binary functions on n variables. Under the negation-permutation-

negation (NPN) classification of binary functions (cf. [118, 49]), two functions are equivalent

if they can be made equal by negating some subset of the input variables, permuting the

input variables and possibly negating the output variable. A natural problem is then to

test if two binary functions given as truth tables are NPN-equivalent. By considering all

possible combinations of negations and permutations, we obtain a deterministic O(4nn!)

time algorithm for testing NPN-equivalence. Luks [75] reduced this to 2O(n) time using his

algorithm for hypergraph isomorphism.

In order to illustrate bidirectional collision detection, we shall consider a simpler variant of

the NPN-equivalence problem. Let us say that two binary functions are negation-equivalent

if they can be made equal by negating some subset of their inputs. Consider the problem of

testing if two binary functions given as truth tables are negation-equivalent. An obvious way

to test if two binary functions f and g of n variables are negation equivalent is to negate the

inputs of f according to the 2n possible subsets. Negating each subset yields a new function

f ′ and we can test if f ′ = g in O(2n) time. The functions f and g are negation-equivalent

if and only if f ′ = g where f ′ is the function that arises from negating some subset of the

variables. Therefore, we can test if f and g are negation equivalent deterministically in O(4n)

time using a naive algorithm.

We can do better using bidirectional collision detection. Consider two binary functions

f and g of n variables. Let A be the set of all binary functions that can be obtained from f

by negating a subset of the first n/2 variables and let B be the set of binary functions that

can be obtained from g by negating a subset of the last n/2 variables. Then f and g are

negation-equivalent if and only if A and B contain a common element. We can test if this is

the case by sorting the sets A and B lexicographically and merging the results. Since |A| =

197

|B| = 2n/2, this can be done deterministically in O(n2(3/2)n) time while the naive algorithm

requires O(4n) operations. Thus, bidirectional collision detection uses quadratically fewer

comparisons. Since the sizes of the objects we consider are typically small, square-root

speedups typically apply to the time complexity as well as to the number of high-level

operations required on the objects involved.

12.2.2 General bidirectional collision detection lemmas

Let C be the class in which we wish to test isomorphism. We associate a tree T (A) to each

object A ∈ C. Each path in T (A) from the root to a leaf represents a series of choices

that capture the structure of A. For example, in the class of groups, each node on such a

path will correspond to a choice of a generator so that paths from the root correspond to

generating sets. We then define a “partial canonical form” function CanC that maps each pair

consisting of an object A ∈ C and a leaf of T (A) to an object in C that is isomorphic to A.

For each isomorphism φ : A→ B where B ∈ C, we require that there exists an isomorphism

T (φ) : T (A)→ T (B) such that the corresponding leaves in T (A) and T (B) are mapped to

the same object by CanC. Thus, we can think of CanC as computing a canonical form of an

object A ∈ C with respect to the choices that correspond to a leaf of T (A). Let Tree be the

class of finite rooted trees and let L be a function that maps each tree to its set of leafs.

We formalize these ideas with following definition.

Definition 12.2.1. The triple (C, T ,CanC) is a collision system if C is a class of objects, T

and CanC are functions such that

(a) for each A ∈ C, T (A) is a rooted tree,

(b) for each isomorphism φ : A→ B with A,B ∈ C, T (φ) : T (A)→ T (B) is a rooted tree

isomorphism,

(c) for each A ∈ C and each leaf x in T (A), CanC(A, x) is an object in C isomorphic to A

and

(d) for all A,B ∈ C each leaf x in T (A), and every isomorphism φ : A→ B, CanC(A, x) =

198

CanC(B, T (φ)(x))

The idea behind bidirectional collision detection in its most general form is to compute

subtrees T1(A) of T (A) and T2(B) such that A ∼= B if and only if there exist leaves x in T1(A)

and y in T2(B) such that CanC(A, x) = CanC(B, y). We formalize this with the following

definition.

Definition 12.2.2. Let (C, T ,CanC) be a collision system and let T1 : C → Tree and

T2 : C → Tree be functions such that for each A ∈ C, the leaves of T1(A) and T2(A) are

subsets of the leaves of T (A). Then the pair (T1, T2) is a strategy for (C, T ,CanC) if for each

A,B ∈ C such that φ : A → B is an isomorphism, there exists a leaf x of T1(A) such that

φ(x) is a leaf of T2(B).

This yields the most general form of our bidirectional collision detection lemma. The

proof follows very easily from the definition. We use L(U) to denote the leaves of a tree U .

We denote by |A| is the size of the description of A.

Lemma 12.2.3. Let (T1, T2) be a strategy for a collision system (C, T ,CanC) such that for

each A ∈ C, t(m) upper bounds the time required to compute T1(A) and T2(A) and `(m)

upper bounds the size of the description of each node in T (A) where m = |A| = |B|. Define

k = |L(T1(A))| + |L(T2(B))|. Then for A,B ∈ C, we can Turing-reduce testing if A ∼= B

to evaluating k calls to CanC of the forms CanC(A, ·) and Can(B, ·) deterministically in

O(t(m) + k log(k) + `(m)) time.

Proof. Compute the trees T1(A) and T2(B) and collect the objects CanC(A, x) and CanC(B, y)

for all leaves x of T1(A) and y of T2(B) into two lists A and B. Then determine if the lists

have a common entry by sorting and merging them.

Usually, this lemma is too general to be especially useful. However, for most of the classes

of objects we consider, the tree T (A) satisfies bounds on the degrees of its nodes that allow

us to prove a more specialized and useful lemma. First, we need another definition. For a

tree U , we let h(U) denote its height.

199

Definition 12.2.4 (Deterministic computational assumptions). A collision system

(C, T ,CanC) is bounded by b if for all A,B ∈ C

(a) each b(A) = (b0(A), . . . , bh(T (A))−1(A)) where each bi : C → N,

(b) each bi(A) ≥ 2,

(c) the number of children of any node at each distance i from the root is at most bi(A),

(d) each bi(A) can be computed in poly(m) time where m = |A| = |B| and

(e) if A ∼= B, then each bi(A) = bi(B).

We will also need the ability to compute the tree T (A) incrementally.

Definition 12.2.5. A collision system (C, T ,CanC) is oracular if

(a) given A ∈ C, we can compute the label of the root node of T (A) in poly(m) time and

(b) given the label of a node in T (A) for some A ∈ C, we can compute the set of labels of

its children in poly(m) time

We define bmax(A) = max
h(T (A))−1
i=0 bi(A). Define each Nj,k(A) =

∏k
i=j bi(A) and define

N(A) = N0,h(T (A))−1. Our additional assumptions allow us to prove the following time-space

tradeoff.

Lemma 12.2.6. Let (C, T ,CanC) be an oracular collision system bounded by b and let A,B ∈

C. Then using space poly(m) ≤ S ≤
√
N(A)/bmax(A) · poly(m), we can Turing-reduce

testing if A ∼= B to evaluating O(
√
N(A)/bmax(A)) calls to CanC of the forms CanC(A, ·) and

Can(B, ·) deterministically in T = N(A) log(S)·poly(m)
S

time where m = |A| = |B|. In particular,

if we set S =
√
N(A)/bmax(A) · poly(m), the reduction takes time T =

√
N(A) log(N(A)) ·

poly(m).

Proof. Note that each N0,j(A) is an upper bound on the number of nodes at distance j from

the root and since each bi(A) ≥ 2 by Definition 12.2.4, O(N0,j(A)) is an upper bound on

the number of nodes within distance j of the root. We start by computing a k(A) such that

N0,k(A)(A) and Nk(A)+1,h(T (A))−1(A) are both within a factor of
√
bmax(A) of

√
N(A). To do

200

this, we let j be the largest natural number such that N0,j(A) ≤
√
N(A)/bmax(A) and set

k(A) = j + 1.

To test if A ∼= B, we first check if h(T (A)) = h(T (B)) and each bi(A) = bi(B). If not,

then A 6∼= B. Otherwise, each Ni,j(A) = Ni,j(B) so k(A) = k(B) and we define T1(A) to

be the subtree of T (A) that consists of all nodes within a distance of k(A) of the root plus

arbitrary paths from each node at distance k(A) to leaves of T (A). We let T2(B) be a subtree

of T (B) that consists of an arbitrary path of length k(B) from the root of T (B) to a node

v and the subtree of T (B) rooted at v.

We claim that there are leaves x in T1(A) and y in T2(B) such that CanC(A, x) =

CanC(B, y) if and only if A ∼= B. If A 6∼= B, then for any leaves x of T1(A) and y of T2(B), we

have CanC(A, x) ∼= A and CanC(B, y) ∼= B by Definition 12.2.1 so CanC(A, x) 6= CanC(B, y).

Otherwise, if φ : A → B is an isomorphism, then T (φ) : T (A) → T (B) is also an isomor-

phism by Definition 12.2.1. Therefore u = (T (φ))−1(v) is at a distance of k(A) from the

root of T (A) so u is in T1(A). Now, there exists a leaf x in T1(A) that is in the subtree

of T (A) rooted at u. Since T2(B) contains the subtree of T (B) rooted at v, it follows that

y = T (φ)(x) is a leaf of T2(B). Thus, CanC(A, x) = CanC(B, y) by Definition 12.2.1.

Thus, we can decide isomorphism by determining if there exist leaves x in T1(A) and

y in T2(B) such that CanC(A, x) = CanC(B, y). We note that there are surjections ι1(A) :

[b0]× · · · × [bk(A)]→ L(T1(A)) and ι2(B) : [bN(B)+1]× · · · × [bh(T (B))−1]→ L(T2(B)) that can

be evaluated in poly(m) time. In order to test if A ∼= B using space O(S), we break up the

sets [b0]×· · ·×[bk(A)] and [bk(B)+1]×· · ·×[bh(T2)−1] into chunks of size ∆1 = S/s and ∆2 = S/s

where s = poly(m) upper bounds the space required for nodes in T (A) and T (B). For each

pair of chunks U of [b0] × · · · × [bk(A)] and W of [bk(B)+1] × · · · × [bh(T2)−1], we test if there

is an u ∈ U and a w ∈ W such that CanC(A, ι1(A)(u) = CanC(B, ι2(B)(w)). This can be

accomplished in O(S log(S) ·poly(m) by computing CanC(A, ι1(A)(u) and CanC(B, ι2(B)(w))

for all u ∈ U and w ∈ W and sorting and merging the resulting lists. Since the number of

pairs of chunks is at most

201

N0,k(A)Nk(B)+1,h(T2(B))−1

∆1∆2

≤ N(A) · poly(m)

S2

the overall time complexity is T = N(A) log(S)·poly(m)
S

.

We remark that, in the above proof, we have constructed the tree T1(A) by adding all

children of each node in T (A) at a distance of less than k(A) from the root and then following

an arbitrary path from each node at a distance of k(A) to a leaf of T (A). Similarly, T2(B)

was constructed by choosing an arbitrary child of each node at a distance of less than k(B)

from the root and selecting all children of the nodes at distances at least k(B) from the

root. This is a special case of a more general strategy which could be more efficient for some

problems. Let W1 and W2 partition {0, . . . , h(T (A))− 1}. To construct T1(A), we select all

children when the distance from the root of T (A) is contained in W1 and select an arbitrary

child when it is in W2. The tree T2(B), is constructed by selecting all children when the

distance from the root of T (B) is contained in W2 and selecting an arbitrary child when it

is in W1. How efficient this strategy is depends on the problem under consideration. For the

problems discussed in this chapter, there is no advantage but it is possible that it could be

useful in other settings.

We can also prove a quantum time-space tradeoff. However, this requires different com-

putational assumptions. Randomized algorithms also exist; however, they are no better than

the deterministic algorithms that result from Lemma 12.2.6.

Definition 12.2.7 (Quantum computational assumptions). A pair (M, ι) is an index for

a collision system (C, T ,CanC) if M : C → N is a function and for each A ∈ C, ι(A) :

[M(A)]→ U(A) is a bijection such that

(a) L(T (A)) ⊆ U(A),

(b) M(A) can be computed in poly(m) time and

(c) ι(A) can be evaluated in poly(m) time.

We now show that a quantum time-space tradeoff exists for every indexable collision

202

system. Our proof uses a simple modification of the algorithm for quantum collision detec-

tion [26].

Lemma 12.2.8. Let (M, ι) be an index for an oracular collision system (C, T ,Can) and let

A,B ∈ C. Then using space poly(m) ≤ S ≤ 3
√
|L(T (A))| · poly(m) where m = |A| = |B|, we

can Turing-reduce testing if A ∼= B to evaluating calls of CanC of the forms CanC(A, ·) and

CanC(B, ·) quantumly in T =
√
|M(A)| /S · poly(m) time.

Proof. Let A be a list obtained by computing CanC(A, x) for S/poly(m) leafs in T (A).

This can be done in O(Sh(T (A)) · poly(m)) time by traversing the tree using depth-first

search until the required number of leaves are found. Given k ∈ [M(B)], we can test if

CanC(A, x) = CanC(B, ι(B)(k)) for some x ∈ A in O(log(S) · poly(m) time. If A ∼= B, then

there are at least S/poly(m) numbers m such that CanC(A, x) = CanC(B, ι(B)(m)) for some

x ∈ A. It follows that we can decide if such a collision exists and therefore if A ∼= B in

T = (
√
M(B)/S + Sh(T (A))) · poly(m) time using Grover’s algorithm [52, 25].

In the problems we apply this lemma to, M(A) = |L(T (A))| · poly(m), h(T (A)) =

O(logM(A)), and CanC can be evaluated in poly(m) time so setting S = 3
√
|L(T (A))|, yields

a quantum algorithm for testing isomorphism that runs in time T = 3
√
|L(T (A))| · poly(m).

12.3 General group isomorphism

We now prove a generalization of Theorem 12.1.1 by giving a deterministic time-space trade-

off for group isomorphism. This is accomplished by applying our bidirectional collision

detection lemmas to a tree of ordered generating sets of subgroups of G. We call an ordered

generating set g = (g1, . . . , gk) for a subgroup of G non-redundant if gj 6∈ 〈gi | 1 ≤ i < j〉 for

each j ≤ k. First, we define the tree T (G) for each group G and the tree isomorphism T (φ)

on each group isomorphism φ.

Definition 12.3.1. For each group G, the nodes of the tree T (G) are the non-redundant

ordered generating sets of subgroups of G. The root is the empty ordered generating set. Each

203

ordered generating set (g1, . . . , gk) of a proper subgroup of G has an edge to (g1, . . . , gk, gk+1)

for each gk+1 ∈ G \ {gj | 1 ≤ j ≤ k}.

If G and H are groups and φ : G → H is an isomorphism, we define T (φ) : T (G) →

T (H) by T (φ)(g1, . . . , gk) = (φ(g1), . . . , φ(gk)) for each (g1, . . . , gk) ∈ V (T (G)).

It is clear that T : Grp→ Tree satisfies properties (a) and (b) of Definition 12.2.1. The

next step is to define CanGrp. For this, we require the following lemma. It is an immediate

consequence of Lemma 10.4.2.

Lemma 12.3.2. There is a function CanGrp such that

(a) for a group G and an ordered generating set g for G, CanGrp(G,g) is a multiplication

table for a group isomorphic to G and

(b) if g and h are ordered generating sets for the groups G and H and φ : G → H is an

isomorphism such that φ(g) = h, then CanGrp(G,g) = CanGrp(H,h).

While this lemma may seem powerful, its proof is actually fairly simple. Given an ordered

generating set g for a group G, we define an isomorphism-invariant total order ≺g on G as

follows. For each x ∈ G, we let wg(x) be the lexicographically first word over g whose

product is equal to g. To compare two elements x, y ∈ G, we can then compare the words

wg(x) and wh(y) lexicographically. We then define CanGrp(G,g) to be the multiplication

table of G with the elements permuted according to their positions in the ordering ≺g.

Theorem 12.3.3. Let G and H be groups let p be the smallest prime divisor of the order of

the group.

(a) Using space poly(n) ≤ S ≤ n(1/2) logp n+O(1), we can decide if G ∼= H deterministi-

cally in T = nlogp n+O(1)/S time. In particular, setting S = n(1/2) logp n+O(1) yields a

deterministic n(1/2) logp n+O(1) time algorithm.

(b) Using space poly(n) ≤ S ≤ |L(T (G))| ≤ n(1/3) logp n+O(1), we can decide if G ∼= H

quantumly in T = n(1/2) logp n+O(1)/
√
S time. In particular, setting S = n(1/3) logp n+O(1)

yields an n(1/3) logp n+O(1) time quantum algorithm.

204

Proof. By Lemma 12.3.2, (Grp, T ,CanGrp) is an oracular collision system. To prove part

(a), we define each bi(K) = |K| for each group K and observe that b is a bound for

(Grp, T ,CanGrp). Applying Lemma 12.2.6, we can decide if G ∼= H determinstically using

space poly(n) ≤ S ≤ n(1/2) logp n+O(1) in T = nlogp n+O(1)/S time.

Now we prove part (b). For each group K, let p(K) be the smallest prime divisor of |K|

and define U(K) = [|K|]logp(K)|K|; let M(K) = |K|logp(K)|K| and let ι(K) : M(K) → U(K)

be an arbitrary bijection that can be evaluated in poly(|K|). Then (M, ι) is an index for

(Grp, T ,CanGrp) so by Lemma 12.2.8, we can decide if G ∼= H quantumly using poly(n) ≤

S ≤ 3
√
|L(T (G))| · poly(n) space in T = n(1/2) logp n+O(1)/

√
S time.

12.4 Solvable-group isomorphism

In this section, we show a deterministic fourth-root speedup over the generator-enumeration

algorithm for the class of solvable groups. This speedup is obtained by combining bidi-

rectional collision detection with the algorithm from Chapter 11, which gave a square-root

speedup over generator enumeration. We start by recalling the high-level structure of this

algorithm.

Recall the definition of α-decompositions and α-composition pairs from Definitions 11.2.1

and 11.2.6. The algorithm can then be formulated as follows. First, we reduce solvable-

group isomorphism to α-decomposition isomorphism in deterministic polynomial time using

Lemma 11.1.2. Next, we use Lemma 11.1.3 to reduce from α-decomposition isomorphism

to α-composition pair isomorphism in n(1/2) logp n+O(1) deterministic time. Finally, we apply

Corollary 11.3.12 to solve α-composition pair isomorphism in nlogα n+O(α logα) deterministic

time.

In order to apply bidirectional collision detection to obtain an additional square-root

speedup, we need to improve Lemma 11.1.3 by formulating the choice of the α-composition

pair as a collision system. In order to do this, we need to represent the choices made when

choosing a composition series as a tree. For this, we require some additional terminology.

A subgroup H ≤ G is subnormal (denoted H// G) if there is a chain of subgroups

205

H / H1 / Hk / G. We call a chain of subgroups of the form 1 / G1 / · · · / Gk// G a partial

composition series since it can be extended to a composition series. We construct a tree that

corresponds to starting with the partial composition series 1// G and growing it by adding

one subgroup at a time until we reach the composition series at the leaves.

Definition 12.4.1. For each group G, the nodes of the tree T (G) are the partial composition

series of G. The root is the partial composition series 1// G. The children of each partial

composition series 1 / G1 / · · · / Gk// G of G are the partial composition series 1 / G1 / · · · /

Gk+1// G.

Now we are in a position to define the tree of choices for constructing a α-composition

pair of an α-decomposition.

Definition 12.4.2. For each α-decomposition (P1, P2) for a group G, we define T (P1, P2) to

be the tree T (P2). If (P1, P2) and (Q1, Q2) are α-decompositions and φ : (P1, P2)→ (Q1, Q2)

is an isomorphism, we define T (φ) : T (P1, P2)→ T (Q1, Q2) by T (φ)[S2]) = φ[S2]) for each

partial composition series S2 for P2.

It is now easy to see that (α-Decomp, T ,Canα-Decomp) is a collision system where

α-Decomp is the class of all α-decompositions and isomorphisms and Canα-Decomp is defined

by the algorithm of Corollary 11.3.17. In order to show that it is oracular, we need to show

that the children of any node in the tree T (G) can be computed in polynomial time.

Lemma 12.4.3. Let 1 /G1 / · · · /Gk// G be a partial composition series of G. Then we can

compute all partial composition series of the form 1 /G1 / · · · /Gk+1// G determinstically in

poly(n) time.

Proof. A subgroup Gk+1 contains Gk as a normal subgroup if and only if Gk+1 ≤ NG(Gk).

The partial composition series of the form 1 / G1 / · · · / Gk+1// G therefore correspond to

the subgroups Gk+1 = 〈Gk, g〉 for some g ∈ NG(Gk) where Gk+1/Gk is simple and Gk+1// G.

Simplicity can be tested in polynomial time by computing normal closures of the cyclic

206

subgroups; subnormality can be tested in polynomial time by checking if some Ki = Gk+1

where K1 = 〈GG
k+1〉 and each Ki+1 = 〈GKi

k+1〉 (cf. [103]).

We can now obtain an improved version of Lemma 11.1.3.

Lemma 12.4.4. Testing isomorphism of the α-decompositions (P1, P2) and (Q1, Q2) of the

groups G and H is Turing reducible to α-composition pair canonization

(a) determinsitically using space poly(n) ≤ S ≤ n(1/4) logp n+O(1) and time T =

n(1/2) logp n+O(1)/S

(b) quantumly using space poly(n) ≤ S ≤ n(1/6) logp n+O(1) and time T = n(1/4) logp n+O(1)/
√
S

where p is the smallest prime divisor of the order of the group.

Proof. By Lemma 12.4.3, (α-Decomp, T ,Canα-Decomp) is an oracular collision system. For

each α-decomposition (R1, R2) for a group K, define bi(R1, R2) = |R1| /(p(R1))i for 0 ≤ i <

`(R1) and bi(R1, R2) = |R2| /p(R2) for `(R1) ≤ i < `(R1) + `(R2) where p(K) is the smallest

prime dividing the order of K and `(K) is the composition length of K for each group K.

Then b is a bound for (α-Decomp, T ,Canα-Decomp). Since
∏`(K)−1

i=0 (|K| /(p(K))i ≤ |K|) ≤

|K|(1/2) logp(K)|K|+O(1) for each group K (see Lemma 10.2.1),

N(P1, P2) =

`(P1)+`(P2)−1∏
i=0

bi(A)

≤ |P1|(1/2) logp(P1)|P1|+O(1) · |P2|(1/2) logp(P2)|P2|+O(1)

≤ (|P1| |P2|)(1/2)(logp(P1)|P1|+logp(P2)|P2|)+O(1)

≤ n(1/2) logp n+O(1)

and a similar formula holds for (Q1, Q2). Part (a) is then immediate from Lemma 12.2.6.

For part (b), we observe that there is a natural bijection ι(R1, R2) : [b0(R1, R2)] ×

· · · [b`(R1)+`(R2)−1(R1, R2)]→ U(R1, R2) where U(R1, R2) is a set that contains L(T (R1, R2))

for each α-decomposition (R1, R2). Then (N, ι) is an index for (α-Decomp, T ,Canα-Decomp)

and part (b) follows from Lemma 12.2.8.

207

Our improved and generalized algorithms for solvable-group isomorphism now follow.

Theorem 12.4.5. Solvable-group isomorphism can be solved

(a) determinsitically using space nO(logn/ log logn) ≤ S ≤ n(1/4) logp n and time

T = n(1/2) logp n+O(logn/ log logn)/S

(b) quantumly using space nO(logn/ log logn) ≤ S ≤ n(1/6) logp n+O(1) and time

T = n(1/4) logp n+O(logn/ log logn)/
√
S

where p is the smallest prime divisor of the order of the group.

Proof. Combining the reductions of Lemma 11.1.2, Lemma 12.4.4 and Corollary 11.3.17

yields algorithms for solvable-group isomorphism. Choosing α = log n/(log log n)2 completes

the proof.

12.5 Ring isomorphism

Similar results to those given for groups in the previous subsection can also be obtained for

rings. Since the argument is very similar, we provide only a sketch. LetR be a ring. We define

T (R) to be the tree consisting of non-redundant ordered generating sets of the additive group

of R in the same way as for groups. The main issue is that CanGrp only deals with a single

operations since it is for groups whereas for rings we have two operations. Let r be an ordered

generating set of the additive group of R. We address this issue by defining CanRing(R, r)

to be the addition and multiplication tables of R with their elements relabeled according to

their positions in the ordering ≺r defined according to the additive group of R. Now, if Q is

a ring and φ : R → Q is a ring isomorphism, then CanRing(R, r) = CanRing(Q, φ(r)). The

same arguments used in the case of groups then imply the following result.

Theorem 12.5.1. Let R and Q be rings of size n and let p be the smallest prime divisor of

n. Then

(a) using space poly(n) ≤ S ≤ n(1/2) logp n+O(1), we can decide if R ∼= Q determinstically in

T = nlogp n+O(1)/S time. In particular, setting S = n(1/2) logp n+O(1) yields a determinis-

tic n(1/2) logp n+O(1) time algorithm.

208

(b) using space poly(n) ≤ S ≤ |L(T (R))| ≤ n(1/3) logp n+O(1), we can decide if R ∼= Q

quantumly in T = n(1/2) logp n+O(1)/
√
S time. In particular, setting S = n(1/3) logp n+O(1)

yields an n(1/3) logp n+O(1) time quantum algorithm.

12.6 Worst-case graph isomorphism

We now show how bidirectional collision detection can be applied to obtain a speedup over

the best algorithm previously known for graph isomorphism [16]. We start by reviewing the

high-level structure of that algorithm. Since Luks showed an ncd/ log d time algorithm [16]

for testing isomorphism of graphs of color-degree at most d (see Chapter 8), one strategy

for obtaining an algorithm for testing isomorphism of general graphs is to Turing-reduce

testing isomorphism of arbitrary graphs to many instances of testing isomorphism of graphs

of smaller color-degree. (The color-degree of a node is at most d if for every color, either

there are no more than d neighbors with that color or there are no more than d non-neighbors

with that color.) Given a graph, the color-degree may be reduced as follows. Suppose that

we wish to ensure that the color-degree is at most d. We choose a vertex with color-degree

more than d and individualize it by replacing its color with a new color that is distinct from

all other colors in the graph. The partition induced by the new coloring is then refined

using a process (cf. [7]) that takes into account the colors of the nodes and the structure of

the graph. Repeating this process, one can show that after a sequence of 4n/d nodes have

been chosen, the graph has color-degree at most d. Two algorithms A1 and A are defined

below based on the procedure we just sketched. Algorithm A1 takes a sequence of nodes as

input and outputs the coloring that results from applying the above process. Algorithm A2

takes a sequence of nodes and outputs the next node in the sequence chosen according to the

above process. This results in the following lemma, which is a slightly strengthened version

of Lemma 8.6.1.

Lemma 12.6.1 (Zemlyachenko, cf. [7]). Let X and Y be graphs of size n. There is a

deterministic polynomial-time algorithm A1 that takes a graph and a sequence of vertexes as

209

its input such that

(a) if φ : X → Y is an isomorphism, then for any sequence of nodes x1, . . . , xm in X, φ is

also an isomorphism from A1(X, (x1, . . . , xm)) to A1(Y, (φ(x1), . . . , φ(xm))) and

(b) if X 6∼= Y , then for all sequences of nodes x1, . . . , xm and y1, . . . , ym in X and Y ,

A1(X, (x1, . . . , xm)) 6∼= A1(Y, (y1, . . . , ym)).

Moreover, we also have a deterministic polynomial-time algorithm A2 that takes a graph

and a sequence of vertexes as its input such that

(c) algorithm A returns a set of nodes and

(d) if we start with the empty sequence () and choose 4n/d nodes x1, . . . , x4n/d in X by

successive calls to A2 such that each xi is in the set of nodes returned by A2 at the ith

call, then A1(X, (x1, . . . , x4n/d)) has color-degree at most d.

To obtain an algorithm for graph isomorphism, we compute a sequence of 4n/d nodes

x1, . . . , x4n/d in X using A such that A1(X, (x1, . . . , x4n/d)) has color-degree at most d; we

then consider all n4n/d possible sequences y1, . . . , y4n/d of 4n/d nodes in Y and check if

A1(X, (x1, . . . , x4n/d)) ∼= A1(Y, (y1, . . . , y4n/d)) for one of these sequences. This occurs if and

only if X ∼= Y . By combining with an ncd/ log d algorithm [16] for computing canonical forms

of graphs of color-degree at most d, we obtain an n4n/d+cd/ log d+O(1) algorithm for graph

isomorphism where d is a parameter that we choose. Minimizing the runtime over d, we get

d = c′
√
n log n where c′ is a constant we choose. This yields the best algorithm known for

graph isomorphism that we mentioned in Chapter 8.

Theorem 8.6.2 (Babai, Kantor and Luks [16]). Graph isomorphism can be decided in

2O(
√
n logn) time.

Optimizing the constant in the exponent by choosing c′ =
√

2/c, we obtain a runtime of

2(4
√

2c)
√
n logn+O(logn).

Our contribution to this problem is to note that bidirectional collision detection can be

applied to Lemma 12.6.1 in order to reduce the total number of sequences of nodes that must

be considered to at most 2n2n/d. First, we define the tree T d(X) for each graph X.

210

Definition 12.6.2. For each graph X, T d(X) is a tree whose nodes are sequences of nodes

in X rooted at the empty sequence (). To construct T d(X), we start at the root and define

its children to be {(x1) | x1 ∈ A2(X, ())}; for a node (x1, . . . , xk) with k < 4 |X| /d, we define

its children to be {(x1, . . . , xk, xk+1) | xk+1 ∈ A2(X, (x1, . . . , xk))}.

If X and Y are graphs and φ : X → Y is an isomorphism, we define T d(φ) : T d(X) →

T d(Y) by T d(φ)(x1, . . . , xk) = (φ(x1), . . . , φ(xk)) for each (x1, . . . , xk) ∈ V (T (X)).

Thus, all of the nodes of T (X) are sequences (x1, . . . , xk) of at most 4n/d nodes that can

be extended to a sequence (x1, . . . , x4n/d) of 4n/d nodes such that A1(X, (x1, . . . , x4n/d)) has

color-degree at most d.

For a sequence of nodes (x1, . . . , xk) in a graph X, let CanGraph(X, (x1, . . . , xk)) be the

graph obtained by computing a canonical form of A1(X, (x1, . . . , xk)).

Lemma 12.6.3. For each d, we can Turing-reduce testing isomorphism of the graphs X

and Y to calls to calls to CanGraph on graphs of color-degree at most d deterministically in

n2n/d+O(1) time.

Proof. It follows from Definition 12.6.2 and Lemma 12.6.1 that (Graph, T d, A1) is an orac-

ular collision system. Letting each bi(Z) = |Z| for each graph Z, we see that b is a bound

for (Graph, T , A1). Then result then follows from Lemma 12.2.6.

We remark that a time-space tradeoff (which we omit) also exists for this problem.

Combining this result with Luks’ algorithm [16, 77] for computing canonical forms of

graphs of color-degree at most d in ncd/ log d time, we obtain a speedup over the best algorithm

previously known graph isomorphism.

Theorem 12.6.4. Graph isomorphism can be decided in 2(4
√
c)
√
n logn+O(logn) deterministic

time.

Proof. Let X and Y be graphs of size n and let d ≤ n be a parameter that we shall

chose later. By Lemma 12.6.3 and Theorem 8.6.2, we can test if X ∼= Y deterministically

211

in n2n/d+cd/ log d+O(1) time. Optimizing over d, we find that d = c′
√
n log n where c′ is a

constant we choose. The optimal choice is c′ = 1/
√
c which yields an overall complexity of

2(4
√
c)
√
n logn +O(log n).

This reduces the constant in the exponent of the previous best runtime of

2(4
√

2c)
√
n logn+O(logn) by a factor of 1/

√
2. We can also prove a quantum analogue of Theo-

rem 12.6.4.

Theorem 12.6.5. Graph isomorphism can be decided in 2(4
√

2c/3)
√
n logn+O(logn) quantum

time.

Proof. Let X and Y be graphs of size n. By Lemma 12.6.3, (Graph, T d,CanGraph) is an

oracular collision system. For each graph Z, let U(Z) = [|Z|]4|Z|/d, define M(Z) = |Z|4|Z|/d

and let ι(Z) : [M(Z)] → U(Z) be an arbitrary bijection that can be evaluated in poly(|Z|)

time. Applying Lemma 12.2.8 and setting S = n4n/3d+O(1) yields an n4n/3d+cd/ log d+O(1) time

quantum algorithm. Optimizing over d as in the deterministic case, d = c′
√
n log n where

c′ is a constant we choose. The optimal choice is now c′ =
√

2/3c which yields an overall

complexity of 2(4
√

2c/3)
√
n logn+O(logn).

Time space tradeoff analogues of Theorems 12.6.4 and 12.6.5 also hold and are easy to

prove using the same techniques.

12.7 Conclusion

In this chapter, we introduced the bidirectional collision-detection technique and used it to

obtain speedups over the previous best algorithms for the group, ring and graph isomorphism

problems. We summarize the state of the art for the isomorphism problems considered in

this chapter in Table 12.1. We use the notation T δ to indicate that the original runtime T

has been reduced to T δ.

It is interesting to note that there is currently no advantage for randomized algorithms

over deterministic algorithms in this regime. We consider the question of whether such

212

Class of objects Runtime Paradigm Speedup

General groups n(1/2) logn+O(1) Deterministic T 1/2

General groups n(1/3) logn+O(1) Quantum T 2/3

Solvable groups n(1/4) logn+O(logn/ log logn) Deterministic T 1/2

Solvable groups n(1/6) logn+O(logn/ log logn) Quantum T 1/2

Rings n(1/2) logn+O(1) Deterministic T 1/2

Rings n(1/3) logn+O(1) Quantum T 2/3

Graphs 24
√
c
√
n logn+O(logn) Deterministic T 1/

√
2

Graphs 24
√

2c/3
√
n logn+O(1) Quantum T 1

Table 12.1: Algorithms for isomorphism problems

algorithms exist to be an interesting open problem; the techniques used in the author’s

previous work [108] for constructing faster randomized algorithms no longer suffice so new

ideas appear to be required.

213

Chapter 13

CONCLUSION

In this thesis, we studied various problems in quantum computing and isomorphism

testing. In Chapter 5, we addressed the problem of mapping quantum algorithms into

practical quantum architectures. This is important since abstract quantum algorithms can

perform interactions between arbitrary pairs of qubits, while in a physical implementation

of a quantum computer, only qubits that neighbor each other in space can interact. The

main result of Chapter 5 showed that any abstract quantum algorithm can be mapped into

a natural two-dimensional architecture with only a constant factor increase in the depth.

Since this architecture models many quantum computing technologies, our result justifies

the assumptions made in many quantum algorithms.

Next, in Chapter 6 we studied an extension of the standard oracle model that results when

the oracle is allowed to behave differently based on the outcomes of private coin flips. While

this model might seem odd at first glance, it is quite natural from a quantum mechanics

perspective, since such oracles correspond to random physical processes. We introduced the

notion of an infinity-vs-one separation, which arises when a quantum algorithm can solve an

oracle problem using a single query but classical algorithms cannot solve it no matter how

many queries are used. We also studied when some number of classical or quantum queries

can learn anything about the solution to an oracle problem, and showed (roughly speaking)

that k quantum queries can extract information if and only if 2k classical queries can extract

information.

In Chapter 7, we moved on to the tree isomorphism problem. While there are efficient

classical algorithms [4] for tree isomorphism, we considered the problem of computing a

quantum state that represents the isomorphism classes of trees. This is known as the state

214

preparation approach to graph isomorphism [3], and is a promising approach to developing

efficient quantum algorithms for the graph isomorphism problem. It is therefore important

to know that it at least works for trees, since otherwise there would be no hope of using

the state preparation approach to test isomorphism of classes of graphs that seem difficult

classically. Along the way, we also developed state symmetrization primitives for rearranging

permutations of quantum states from certain types collections of states. These primitives

may be of interest in other contexts as well.

While Chapter 7 fits into both the quantum computation and isomorphism testing themes

of this thesis, in Chapter 10, we move firmly into the domain of isomorphism testing by

studying the group isomorphism problem. For several decades, the best worst-case algorithm

known for sufficiently general classes of groups was the generator-enumeration algorithm,

which is essentially brute force. Our main result in Chapter 10 is a square-root speedup

over the generator-enumeration algorithm. Thus, our result answers in the affirmative a

longstanding open problem [72, 73]. By introducing additional group theoretic machinery,

we are able to generalize this speedup to the larger class of solvable groups in Chapter 11.

In Chapter 12, we consider not only the group isomorphism problem, but also isomor-

phism problems for many other objects as well. In fact, our main result gives a general lemma

for obtaining square-root speedups over algorithms for any isomorphism problem that sat-

isfies certain mild assumptions. In particular, this lemma allows us to obtain a square-root

speedup over the generator-enumeration algorithm for the problem of testing isomorphism

of arbitrary groups. By combining this idea with the methods of Chapters 10 and 11, we also

further improve our results for p- and solvable group isomorphism by obtaining fourth-root

speedups.

13.1 Open problems

We leave several problems open. In a work that builds on Chapter 5, we will show that

the quadratic increase in the number of qubits needed when simulating abstract quantum

circuits is sometimes unavoidable. However, we will also show that in some cases, we can

215

retain only a constant factor increase in the depth while using significantly fewer qubits.

One interesting potential application of the results in Chapter 6 would be to devise a

protocol which could be used to prove that a black box is in fact a quantum computer.

While it is easy to see how to use the results of Chapter 6 to prove that a device has some

quantum characteristics, it is not obvious how prove that it has the full power of a universal

quantum computer.

The main problem left open by Chapter 7 is the question of whether complete invariant

states can be efficiently prepared for classes of graphs that appear to be difficult classically.

A less ambitious problem is to improve the O(n5) time algorithm of Theorem 7.3.1. It seems

like the correct runtime should be O(n log n) time, but it is not immediately clear how we

can do better than O(n5) time.

The main open question in group isomorphism is whether there is a polynomial time

algorithm. A less ambitious open problem — that would still be a huge breakthrough — is

to show that group isomorphism can be solved in no(logn) time. Achieving these results for

p- or solvable groups would be almost as impressive of a breakthrough.

Another interesting question is whether the bidirectional collision detection techniques of

Chapter 12 can be improved beyond providing square-root speedups using randomization.

While matching lower bounds exist for general collision problems, it is not clear if these

lower bounds extend to isomorphism problems. Obtaining either a better upper bound or a

matching lower bound would be intriguing.

216

BIBLIOGRAPHY

[1] D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with constant error.
In Proceedings of the twenty-ninth annual ACM symposium on Theory of computing,
pages 176–188, 1997.

[2] D. Aharonov, M. Ben-Or, R. Impagliazzo, and N. Nisan. Limitations of noisy reversible
computation. 1996, quant-ph/9611028.

[3] D. Aharonov and A. Ta-Shma. Adiabatic quantum state generation and statistical
zero knowledge. In Proceedings of the Thirty-Fifth Annual ACM Symposium on the
Theory of Computing, pages 20–29, 2003.

[4] A. A. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

[5] M. Artin. Algebra. Pearson Prentice Hall, 2010.

[6] L. Babai. Bounded round interactive proofs in finite groups. SIAM Journal on Discrete
Mathematics, 5(1):88–111, 1992.

[7] L. Babai. Moderately exponential bound for graph isomorphism. In Proceedings of the
1981 International FCT-Conference on Fundamentals of Computation Theory, pages
34–50, 1981.

[8] L. Babai. Monte-Carlo algorithms in graph isomorphism testing. Technical report,
Université de Montréal, 2010.

[9] L. Babai. Trading group theory for randomness. In Proceedings of the Seventeenth
Annual ACM Symposium on the Theory of Computing, pages 421–429, 1985.

[10] L. Babai, P. Cameron, and P. Pálfy. On the orders of primitive groups with restricted
nonabelian composition factors. Journal of Algebra, 79(1):161–168, 1982.

[11] L. Babai and P. Codenotti. Isomorphism of hypergraphs of low rank in moderately
exponential time. In IEEE 49th Annual IEEE Symposium on the Foundations of Com-
puter Science, pages 667–676, 2008.

http://arxiv.org/abs/quant-ph/9611028

217

[12] L. Babai, P. Codenotti, J. A. Grochow, and Y. Qiao. Code equivalence and group
isomorphism. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1395–1408, 2011.

[13] L. Babai, P. Codenotti, and Y. Qiao. Polynomial-time isomorphism test for groups with
no abelian normal subgroups (extended abstract). In 39th International Colloquium
on Automata, Languages and Programming, pages 51–62, 2012.

[14] L. Babai, G. Cooperman, L. Finkelstein, E. Luks, and Á. Seress. Fast monte carlo algo-
rithms for permutation groups. Journal of Computer and System Sciences, 50(2):296–
308, 1995.

[15] L. Babai, G. Cooperman, L. Finkelstein, and Á. Seress. Nearly linear time algorithms
for permutation groups with a small base. In Proceedings of the 1991 international
symposium on Symbolic and algebraic computation, pages 200–209, 1991.

[16] L. Babai, W. M. Kantor, and E. M. Luks. Computational complexity and the clas-
sification of finite simple groups. In Proceedings of the 24th Annual Symposium on
Foundations of Computer Science, pages 162–171, 1983.

[17] L. Babai and L. Kucera. Canonical labelling of graphs in linear average time. In 20th
Annual Symposium on the Foundations of Computer Science, pages 39–46, 1979.

[18] L. Babai and E. M. Luks. Canonical labeling of graphs. In Proceedings of the Fifteenth
Annual ACM Symposium on Theory of Computing, pages 171–183, 1983.

[19] L. Babai and Y. Qiao. Polynomial-time isomorphism test for groups with abelian Sylow
towers. In 29th International Symposium on Theoretical Aspects of Computer Science,
pages 453–464, 2012.

[20] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor,
T. Sleator, J. A. Smolin, and H. Weinfurter. Elementary gates for quantum com-
putation. Physical Review A, 52(5):3457–3467, 1995.

[21] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters.
Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen
channels. Physical Review Letters, 70(13):1895, 1993.

[22] H. U. Besche, B. Eick, and E. A. O’Brien. A millennium project: Constructing small
groups. International Journal of Algebra and Computation, 12(5):623–644, 2002.

218

[23] K. Booth and C. Colbourn. Problems polynomially equivalent to graph isomorphism.
Computer Science Department, University of Waterloo, 1979.

[24] R. B. Boppana, J. H̊astad, and S. Zachos. Does coNP have short interactive proofs?
Information Processing Letters, 25(2):127–132, 1987.

[25] M. Boyer, G. Brassard, P. Høyer, and A. Tapp. Tight bounds on quantum searching.
1996, quant-ph/9605034.

[26] G. Brassard, P. Hoyer, and A. Tapp. Quantum algorithm for the collision problem.
1997, quant-ph/9705002.

[27] D. E. Browne, E. Kashefi, and S. Perdrix. Computational depth complexity of
measurement-based quantum computation. In In Proceedings of the Fifth Conference
on the Theory of Quantum Computation, Communication and Cryptography, 2010.

[28] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf. Quantum fingerprinting. Physical
Review Letters, 87(16):167902, 2001.

[29] A. Chattopadhyay, J. Torán, and F. Wagner. Graph isomorphism is not AC0 reducible
to group isomorphism. In IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, pages 317–326, 2010.

[30] D. Cheung, D. Maslov, and S. Severini. Translation techniques between quantum
circuit architectures. In Workshop on Quantum Information Processing, 2007.

[31] A. M. Childs and W. Van Dam. Quantum algorithms for algebraic problems. Reviews
of Modern Physics, 82(1):1, 2010, 0812.0380.

[32] B.-S. Choi and R. Van Meter. An Θ(
√
n)-depth quantum adder on a 2D NTC quan-

tum computer architecture. ACM Journal on Emerging Technologies in Computing
Systems, 8(3):24, 2012, 1008.5093.

[33] B.-S. Choi and R. Van Meter. On the effect of quantum interaction distance on quan-
tum addition circuits. ACM Journal on Emerging Technologies in Computing Systems,
7(3):11:1–11:17, 2011.

[34] P. Codenotti. Testing Isomorphism of Combinatorial and Algebraic Structures. PhD
thesis, University of Chicago, 2011.

[35] J. Cong, Y. Fan, G. Han, and Z. Zhang. Application-specific instruction generation
for configurable processor architectures. In Proceedings of the 2004 ACM/SIGDA 12th
International Symposium on Field Programmable Gate Arrays, pages 183–189, 2004.

http://arxiv.org/abs/quant-ph/9605034
http://arxiv.org/abs/quant-ph/9705002
http://arxiv.org/abs/0812.0380
http://arxiv.org/abs/1008.5093

219

[36] D. Copsey, M. Oskin, F. Impens, T. Metodiev, A. Cross, F. T. Chong, I. L. Chuang,
and J. Kubiatowicz. Toward a scalable, silicon-based quantum computing architecture.
IEEE Journal of Selected Topics in Quantum Electronics, 9(6):1552–1569, 2003.

[37] P. Darga, K. Sakallah, and I. Markov. Faster symmetry discovery using sparsity of
symmetries. In Proceedings of the 45th annual Design Automation Conference, pages
149–154, 2008.

[38] J. N. De Beaudrap, R. Cleve, and J. Watrous. Sharp quantum versus classical query
complexity separations. Algorithmica, 34(4):449–461, 2002, quant-ph/0011065.

[39] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation. In
Royal Society of London, 1992.

[40] J. Dixon and B. Mortimer. Permutation Groups. Graduate Texts in Mathematics
Series. Springer-Verlag, 1996.

[41] M. Ettinger and P. Hoyer. A quantum observable for the graph isomorphism problem.
1999, quant-ph/9901029.

[42] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. Limit on the speed of quantum
computation in determining parity. Physical Review Letters, 81(24):5442–5444, 1998.

[43] W. Feit and J. Thompson. Solvability of groups of odd order. Pacific journal of
mathematics, 13(3):775–1029, 1963.

[44] V. Felsch and J. Neubüser. On a programme for the determination of the automorphism
group of a finite group. In Computational Problems in Abstract Algebra, pages 59–60,
1970.

[45] A. G. Fowler, S. J. Devitt, and L. C. L. Hollenberg. Implementation of Shor’s algorithm
on a linear nearest neighbour qubit array. 2004, quant-ph/0402196.

[46] C. D. Godsil and B. D. McKay. A new graph product and its spectrum. Bulletin of
the Australian Mathematical Society, 18(1):21–28, 1978.

[47] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their valid-
ity or all languages in NP have zero-knowledge proof systems. Journal of the ACM,
38(3):690–728, 1991.

[48] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on computing, 18(1):186–208, 1989.

http://arxiv.org/abs/quant-ph/0011065
http://arxiv.org/abs/quant-ph/9901029
http://arxiv.org/abs/quant-ph/0402196

220

[49] S. Golomb. On the classification of boolean functions. IRE Transactions on Circuit
Theory, 6(5):176–186, 1959.

[50] D. Gottesman and I. Chuang. Demonstrating the viability of universal quantum com-
putation using teleportation and single-qubit operations. Nature, 402(6760):390–393,
1999.

[51] J. A. Grochow and Y. Qiao. Algorithms for group isomorphism via group extensions
and cohomology. 2013, 1309.1776.

[52] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219,
1996, quant-ph/9605043.

[53] P. Hall. On the Sylow systems of a soluble group. Proceedings of the London Mathe-
matical Society, s2-43(1):316–323, 1938.

[54] S. Hallgren, C. Moore, M. Rötteler, A. Russell, and P. Sen. Limitations of quantum
coset states for graph isomorphism. In Proceedings of the Thirty-eighth Annual ACM
Symposium on Theory of Computing, pages 604–617, 2006.

[55] A. W. Harrow and D. J. Rosenbaum. Uselessness for an oracle model with internal
randomness. Quantum Information and Computation, 14(7&8), May 2014, 1111.1462.

[56] C. M. Hoffmann. Group Theoretic Algorithms and Graph Isomrophism. Springer, 1982.

[57] P. Høyer and R. Špalek. Quantum fan-out is powerful. Theory of Computing, 1(5):81–
103, 2005.

[58] T. Hungerford. Algebra. Graduate Texts in Mathematics. Springer, 1974.

[59] T. Junttila and P. Kaski. Engineering an efficient canonical labeling tool for large
and sparse graphs. In Proceedings of the Ninth Workshop on Algorithm Engineering
and Experiments and the Fourth Workshop on Analytic Algorithms and Combinatorics,
pages 135–149, 2007.

[60] W. Kantor. Polynomial-time algorithms for finding elements of prime order and Sylow
subgroups. Journal of Algorithms, 6(4):478–514, 1985.

[61] W. Kantor and D. Taylor. Polynomial-time versions of Sylow’s theorem. Journal of
Algorithms, 9(1):1–17, 1988.

http://arxiv.org/abs/1309.1776
http://arxiv.org/abs/quant-ph/9605043
http://arxiv.org/abs/1111.1462

221

[62] H. Katebi, K. A. Sakallah, and I. L. Markov. Graph symmetry detection and canonical
labeling: Differences and synergies. 2012, 1208.6271.

[63] T. Kavitha. Linear time algorithms for Abelian group isomorphism and related prob-
lems. Journal of Computer and System Sciences, 73(6):986–996, 2007.

[64] A. Y. Kitaev. Quantum measurements and the abelian stabilizer problem. 1995,
quant-ph/9511026.

[65] M. Klin, C. Rücker, G. Rücker, and G. Tinhofer. Algebraic combinatorics in mathemat-
ical chemistry. methods and algorithms. i. permutation groups and coherent (cellular)
algebras. Match, 40:7–138, 1999.

[66] G. Kuperberg. Another subexponential-time quantum algorithm for the dihedral hid-
den subgroup problem. 2011.

[67] G. Kuperberg. A subexponential-time quantum algorithm for the dihedral hid-
den subgroup problem. SIAM Journal on Computing, 35(1):170–188, 2005,
quant-ph/0302112.

[68] S. A. Kutin. Shor’s algorithm on a nearest-neighbor machine. 2006,
quant-ph/0609001.

[69] S. Lang. Algebra. Springer, 2002.

[70] F. Le Gall. Efficient isomorphism testing for a class of group extensions. 2008,
0812.2298.

[71] M. Lewis and J. Wilson. Isomorphism in expanding families of indistinguishable groups.
Groups-Complexity-Cryptology, 4(1):73–110, 2012.

[72] R. Lipton. An annoying open problem. Gödel’s Lost Letter and P = NP, 2011.

[73] R. Lipton. The group isomorphism problem: A possible polymath problem? Gödel’s
Lost Letter and P = NP, 2011.

[74] R. Lipton, L. Snyder, and Y. Zalcstein. The Complexity of Word and Isomorphism
Problems for Finite Groups. Defense Technical Information Center, 1977.

[75] E. Luks. Hypergraph isomorphism and structural equivalence of boolean functions. In
Proceedings of the Thirty-First Annual ACM Symposium on the Theory of computing,
pages 652–658, 1999.

http://arxiv.org/abs/1208.6271
http://arxiv.org/abs/quant-ph/9511026
http://arxiv.org/abs/quant-ph/0302112
http://arxiv.org/abs/quant-ph/0609001
http://arxiv.org/abs/0812.2298
https://rjlipton.wordpress.com/2011/10/08/an-annoying-open-problem/
http://rjlipton.wordpress.com/2011/11/07/the-group-isomorphism-problem-a-possible-polymath-problem/
http://rjlipton.wordpress.com/2011/11/07/the-group-isomorphism-problem-a-possible-polymath-problem/

222

[76] E. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time.
Journal of Computer and System Sciences, 25(1):42–65, 1982.

[77] E. M. Luks. Permutation groups and polynomial-time computation. In Groups and
Computation 1991, volume 11, page 139, 1993.

[78] D. Maslov. Linear depth stabilizer and quantum fourier transformation circuits with
no auxiliary qubits in finite-neighbor quantum architectures. Physical Review A,
76(5):052310, 2007, quant-ph/0703211.

[79] R. Mathon. A note on the graph isomorphism counting problem. Information Pro-
cessing Letters, 8(3):131–136, 1979.

[80] B. McKay. Practical graph isomorphism, 1981.

[81] B. D. McKay and A. Piperno. Practical graph isomorphism, II. 2013, 1301.1493.

[82] D. A. Meyer and J. Pommersheim. On the uselessness of quantum queries. Theoretical
Computer Science, 412(51):7068–7074, 2011, 1004.1434.

[83] D. A. Meyer and J. Pommersheim. Single query learning from Abelian and non-Abelian
Hamming distance oracles. 2009, 0912.0583.

[84] G. L. Miller. On the nlogn isomorphism technique (a preliminary report). In Proceedings
of the Tenth Annual ACM Symposium on Theory of Computing, pages 51–58, 1978.

[85] A. Montanaro, H. Nishimura, and R. Raymond. Unbounded-error quantum query com-
plexity. In Algorithms and Computation, pages 919–930. Springer, 2008, 0712.1446.

[86] C. Moore. Quantum circuits: Fanout, parity, and counting. 1999, quant-ph/9903046.

[87] C. Moore, A. Russell, and L. Schulman. The symmetric group defies strong fourier
sampling. SIAM Journal on Computing, 37(6):1842–1864, 2008.

[88] C. Moore, A. Russell, and P. Sniady. On the impossibility of a quantum sieve algorithm
for graph isomorphism. SIAM Journal on Computing, 39(6):2377–2396, 2010.

[89] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

[90] E. A. O’Brien. Isomorphism testing for p-groups. Journal of Symbolic Computation,
17(2):133–147, 1994.

http://arxiv.org/abs/quant-ph/0703211
http://arxiv.org/abs/1301.1493
http://arxiv.org/abs/1004.1434
http://arxiv.org/abs/0912.0583
http://arxiv.org/abs/0712.1446
http://arxiv.org/abs/quant-ph/9903046

223

[91] P. Papakonstantinou. The depth irreducibility hypothesis. Electronic Colloquium on
Computational Complexity, 2014.

[92] P. Pham and K. M. Svore. A 2d nearest-neighbor quantum architecture for factoring
in polylogarithmic depth. Quantum Information & Computation, 13(11–12):937–962,
2013, 1207.6655.

[93] L. Pyber. Asymptotic results for permutation groups. In Workshop on Groups and
Computation, 1991.

[94] Y. Qiao, J. Sarma, and B. Tang. On isomorphism testing of groups with normal
Hall subgroups. In 28th International Symposium on Theoretical Aspects of Computer
Science, pages 567–578, 2011.

[95] R. Raussendorf and H. J. Briegel. A one-way quantum computer. Physical Review
Letters, 86(22):5188–5191, 2001.

[96] R. Raussendorf, D. Browne, and H. Briegel. Measurement-based quantum computation
on cluster states. Physical Review A, 68(2):022312, 2003.

[97] R. Raussendorf, D. E. Browne, and H. J. Briegel. The one-way quantum computer–a
non-network model of quantum computation. Journal of Modern Optics, 49(8):1299–
1306, 2002, quant-ph/0108118.

[98] O. Regev. A subexponential time algorithm for the dihedral hidden subgroup problem
with polynomial space. 2004, quant-ph/0406151.

[99] O. Regev and L. Schiff. Impossibility of a quantum speed-up with a faulty oracle.
In Proceedings of the 35th international colloquium on Automata, Languages and Pro-
gramming, Part I, pages 773–781, 2008.

[100] H. G. Rice. Classes of recursively enumerable sets and their decision problems. Trans-
actions of the American Mathematical Society, pages 358–366, 1953.

[101] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[102] D. Robinson. A Course in the Theory of Groups. Graduate Texts in Mathematics.
Springer-Verlag, 1996.

[103] S. Roman. Fundamentals of Group Theory: An Advanced Approach. Springer, 2011.

http://arxiv.org/abs/1207.6655
http://arxiv.org/abs/quant-ph/0108118
http://arxiv.org/abs/quant-ph/0406151

224

[104] S. Roman, S. M. Roman, and S. M. Roman. Advanced linear algebra, volume 3.
Springer, 2005.

[105] H. E. Rose. A Course on Finite Groups. Springer, 2009.

[106] D. J. Rosenbaum. Beating the generator-enumeration bound for solvable-group iso-
morphism. December 2014, 1412.0639. Submitted to Transactions on Computation
Theory.

[107] D. J. Rosenbaum. Bidirectional collision detection and faster deterministic isomor-
phism testing. April 2013, 1304.3935.

[108] D. J. Rosenbaum. Breaking the nlogn barrier for solvable-group isomorphism. In Pro-
ceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1054–1073, January 2013, 1205.0642.

[109] D. J. Rosenbaum. Optimal quantum circuits for nearest-neighbor architectures. In
Eigth Conference on the Theory of Quantum Computation, Communication and Cryp-
tography, volume 22, pages 294–307, May 2013, 1205.0036.

[110] D. J. Rosenbaum. Quantum algorithms for tree isomorphism and state symmetrization.
August 2010, 1011.4138.

[111] D. J. Rosenbaum and F. Wagner. Beating the generator-enumeration bound for p-
group isomorphism. December 2013, 1312.1755. Submitted to Theoretical Computer
Science.

[112] J. Rotman. An Introduction to the Theory of Groups. Graduate Texts in Mathematics.
Springer, 1995.

[113] C. Savage. An O(n2) algorithm for Abelian group isomorphism. Computer Studies
Program, North Carolina State University, 1980.

[114] Á. Seress. Permutation Group Algorithms. Cambridge Tracts in Mathematics. Cam-
bridge University Press, 2003.

[115] P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring.
In Annual Symposium on Foundations of Computer Science, 1994.

[116] D. R. Simon. On the power of quantum computation. SIAM Journal on Computing,
26(5):1474–1483, 1997.

http://arxiv.org/abs/1412.0639
http://arxiv.org/abs/1304.3935
http://arxiv.org/abs/1205.0642
http://arxiv.org/abs/1205.0036
http://arxiv.org/abs/1011.4138
http://arxiv.org/abs/1312.1755

225

[117] C. Sims. Computation with permutation groups. In Proceedings of the second ACM
symposium on Symbolic and algebraic manipulation, pages 23–28. ACM, 1971.

[118] D. Slepian. On the number of symmetry types of boolean functions of n variables.
Canadian Journal of Mathematics, 5(2):185–193, 1953.

[119] D. Spielman. Faster isomorphism testing of strongly regular graphs. In Proceedings
of the Twenty-Eighth Annual ACM Symposium on the Theory of computing, pages
576–584, 1996.

[120] M. Sudan. Algebra and computation. Lecture notes, 2005.

[121] Y. Takahashi and S. Tani. Collapse of the hierarchy of constant-depth exact quantum
circuits. 2011, 1112.6063.

[122] Y. Takahashi, S. Tani, and N. Kunihiro. Quantum addition circuits and unbounded
fan-out. Quantum Information and Computation, 10(9):872–890, 2010, 0910.2530.

[123] B. M. Terhal and D. P. DiVincenzo. Adaptive quantum computation, constant depth
quantum circuits and Arthur-Merlin games. 2002, quant-ph/0205133.

[124] R. Van Meter and K. M. Itoh. Fast quantum modular exponentiation. Phys. Rev. A,
71(5):052320, 2005.

[125] N. Vikas. An O(n) algorithm for Abelian p-group isomorphism and an O(n log n)
algorithm for Abelian group isomorphism. Journal of Computer and System Sciences,
53(1):1–9, 1996.

[126] F. Wagner. On the complexity of group isomorphism. Electronic Colloquium on Com-
putational Complexity, 2011.

[127] F. Wagner. On the complexity of group isomorphism. Electronic Colloquium on Com-
putational Complexity, 2012. Revision 2.

[128] R. Wilson. The Finite Simple Groups. Springer, 2010.

[129] Y. Wong. Hierarchical circuit verification. In Proceedings of the Twenty-Second ACM-
IEEE Design Automation Conference, pages 695–701, 1985.

http://arxiv.org/abs/1112.6063
http://arxiv.org/abs/0910.2530
http://arxiv.org/abs/quant-ph/0205133

	Introduction
	Overview of results
	Quantum computing
	Isomorphism testing
	Chapter roadmap

	Group theory basics
	Groups and subgroups
	Normal subgroups and quotients
	Group homorphisms and isomorphisms
	Abelian groups
	Series of subgroups
	Permutation groups
	Isomorphisms and automorphisms of graphs

	Quantum computing basics
	Quantum states and operations
	Tensor products and qubits
	Elementary operations
	Quantum teleportation
	The swap test
	Grover's algorithm
	The hidden subgroup problem

	Quantum computing
	2D quantum circuits
	Introduction
	Quantum teleportation chains
	Depth complexity in the kD CCNTC model
	Controlled operations in the kD NANTC model
	Fanout operations
	Optimality
	More Examples
	Conclusion

	Uselessness and infinity-vs-one separations
	Introduction
	Conventions for oracles
	Examples of infinity-vs-one query-complexity separations
	Uselessness for oracles with internal randomness
	Amplifying separations
	Alternate proofs of uselessness
	Bounded-error infinity-vs-one separations
	Relation between uselessness and unbounded query complexity

	A quantum algorithm for tree isomorphism
	Introduction
	A quantum algorithm for state symmetrization
	A quantum algorithm for tree isomorphism
	Conclusion

	Isomorphism testing
	The color automorphism problem
	Introduction
	Group actions
	Permutation-group algorithms
	Bounded-degree graph isomorphism
	The WL algorithm
	Zelmyachenko's degree reduction lemma and general graph isomorphism
	Conclusion and open problems

	Previous algorithms for group isomorphism
	The generator-enumeration algorithm
	Testing isomorphism of Abelian groups
	Other algorithms for group isomorphism

	p-group isomorphism
	Introduction
	Reducing group isomorphism to composition-series isomorphism
	Composition-series isomorphism and canonization
	Algorithms for p-group isomorphism and canonization

	Solvable-group isomorphism
	Introduction
	Reducing solvable-group isomorphism to -composition pair isomorphism
	-composition-pair isomorphism and canonization
	Algorithms for solvable-group isomorphism and canonization

	Bidirectional collision detection
	Introduction
	Bidirectional collision detection lemmas
	General group isomorphism
	Solvable-group isomorphism
	Ring isomorphism
	Worst-case graph isomorphism
	Conclusion

	Conclusion
	Open problems

	Bibliography

