
Appears in 'omm. of ACM, July '94

A Softbot-Based Interface to the Internet

Oren Etzioni and Daniel Weld
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195

{etzioni, weld}~cs.washington.edu

The Internet Softbot (software robot) is a fully-
implemented AI agent developed at the University of
Washington (Etzioni, Lesh, & SegaI1993). The softbot
uses a UNIX shell and the World- Wide Web to interact
with a wide range of internet resources. The softbot's
effectors include ftp. telnet. mail, and numerous
file manipulation commands. Its sensors include inter-
net facilities such as archie. gopher. netf ind, and
many more. The softbot is designed to incorporate new
facilities into its repertoire as they become available.

The softbot's "added value" is three-fold. First,
it provides an integrated and expressive interface to
the internet. Second, the softbot dynamically chooses
which facilities to invoke, and in what sequence. For
example, the softbot might use netfind to determine
David McAllester's e-mail address. Since it knows that
netfind requires a person's institution as input, the
softbot would first search bibliographic databases for
a technical report by McAllester which would reveal his
institution, and then feed that information to netfind.
Third, the softbot fluidly backtracks from one facility
to another based on information collected at run time.
As a result, the softbot's behavior changes in response
to transient system conditions (e.g., the UUCP gate-
way is down). In this article, we focus on the ideas
underlying the softbot-based interface.

mail, from mosaic, or through an X-windows graphical
user interface. A filled-in form is automatically trans-
lated into a softbot goal (Figure 2). In principle, any
dialog modality (e.g., natural language, speech, and
pen interfaces) could be used to communicate with the
softbot; we need only add a module to translate to and
from the softbot's logical language.

Interface Design Principles

In designing our interface, we have de-emphasized the
"look and feel" of the interface, and focused on how to
leverage the softbot's AI capabilities to increase the
interface's expressive power and flexibility. Specifi-
cally, our softbot-based interface embodies the follow-
ing ideas:

1. Goal oriented: a request indicates what the human
wants. The softbot is responsible for deciding how
and when to satisfy the request.

2. Charitable: a request is not a complete and correct
specification of the human's goal, but a clue or a
hint that the softbot attempts to decipher and then
satisfy.l

3. Balanced: the softbot has to balance the cost of
finding information on its own, against the nuisance
value of pestering the human with questions.

4. Integrated: the softbot provides a single, expres-
sive, and uniform interface to a wide variety of in-
ternet services and utilities.

The following scenario illustrates these ideas.

The Softbot in Action

Consider the task "Send the budget memos to Mitchell
at CMU ." A human assistant would handle this request
with ease, but most existing software agents would
not. Even if one solves (or circumvents) the problem
of natural-Ianguage understanding, the agent still has
to figure out:

A Softbot-Based Interface

By acting as an intelligent personal assistant, the soft-
bot supports a qualitatively different kind of human-
computer interface. A person can make a high level
request, and the softbot uses search, inference, and
knowledge to determine how to satisfy the request.
Furthermore, the softbot is able to tolerate and re-
cover from ambiguity, omissions, and errors in human
requests.

At its core, the softbot can handle goals specified
in an expressive subset of first order logic. In partic-
ular, conjunction, disjunction, negation, and universal
quantification can be composed to specify goals for the
softbot. Since naive users are uncomfortable with log-
ical notation, we have implemented a menu of request
forms (Figure 1) which can be sent to the softbot via e-

lWhen the request is unethical or dangerous, the most
appropriate response may be to alter or even refuse the
request (Wilensky et al. 1988; Weld & Etzioni 1994).

Figure 1: The request form for sending a document. Note how the graphical interface supports the logical power of
universal quantification (all documents) and negation ("draft" not present as a string in the file). In general, users
need only provide a partial specification of the desired goal. The softbot disambiguates the request and plans how
to achieve it, subgoaling and backtracking as required.

.Which Mitchell was intended?

.Which document should I send?
(and where is it located?)

.How do I send the memos?
(e-mail, fax, remote printing, etc.)

.What if the memos are confidential?

.What if Mitchell is out of town ?

As this simple example illustrates, even mundane
human requests are incompletely specified, potentially
ambiguous, or even impossible to satisfy (what if there
is no Mitchell at CMU?).

The softbot's first task is disambiguation. It has to
decide what "objects" the request is referring to: for
instance, who is the intended recipient of the memos?
The request suggests that the memos ought to go to

a person named Mitchell at CMU, but there may be
several people at CMU that share the same last name.
The softbot could adopt the policy of asking the hu-
man to specify the recipient more clearly whenever his
full name is not provided, but this is inappropriate. A
last name could potentially pick out a unique individ-
ual. For example, suppose the last name provided is
"Satyanarayanan." In this case, the softbot's request
for clarification would be gratuitous and annoying. In
general, any description, however tenuous, might pick
out a unique individual. Before asking questions, the
softbot ought to check whether the given description is
ambiguous.

The softbot could consult its knowledge base to see
how many Mitchells it "knows" at CMU, but suppose
that the softbot is familiar with only one, can it be
sure that it is familiar with all the Mitchells at CMU?

(forall (?d :in files)
(if (and (file.type ?d memo.document)

(subject.of.document ?d "budget")
(not (string.in.file "draft" ?d))

(delivered.to ?d ?obj341)))

Figure 2: The form shown in Figure 1 is automati-
cally translated into an internal representation like the
one shown here. During this process, the softbot exe-
cutes actions as needed in order to find a unique person
object (i.e., ?obj341) with last name "Mitchell" and
institution "CMU" .Next the softbot planner will de-
termine how to achieve the delivery goal.

Since its knowledge of people on the internet is bound
to be radically incomplete, the softbot cannot afford to
make the closed world assumption made by many AI
and database systems (Reiter 1978). Thus, it cannot
automatically conclude that there is only one Mitchell
at CMU from the fact that it is familiar with only
one. Fortunately, it is easy to find all the Mitchells at
CMU (by executing finger mitchelllDcmu.edu). The
softbot executes this command, records who are the
various Mitchells at CMU, and (if necessary) prompts
the human with a request to choose the intended one.
The softbot also records, for future reference, that it is
now familiar with all the Mitchells at CMU. Despite its
incomplete knowledge, the softbot can recognize when
it has complete information on a particular topic or
locale (Etzioni, Golden, & Weld 1994).

To resolve ambiguity, the softbot could try to infer
who the intended Mitchell is, based on the documents
being sent and the context of the request (e.g., did
the human just receive an e-mail message from some
Mitchell at CMU?) .While plausible inference of this
sort can be encoded within our softbot framework, our
implementation is not that sophisticated, yet. Cur-
rently, the softbot attempts to find all individuals or
objects on the internet matching a given description.
If there is a single resource that provides this infor-
mation, the softbot will access it (e.g., finger in the
above example). Otherwise, the softbot will form a
plan to seek out matching individuals. If the descrip-
tion is not constrained appropriately, executing such
a plan can be very expensive. For instance, suppose
the human omits Mitchell's location in the above re-
quest. The softbot would be "tempted" to search the
entire internet looking for Mitchells. However, the bal-
ance principle implies that the softbot would be better
off asking the human to further constrain Mitchell's
description. Thus, before disambiguating, the softbot
estimates the cost of its disambiguation plan. When
the cost is high, the softbot prompts the human for
more information: "1 am not sure which Mitchell you
mean, can you tell me Mitchell's workplace, city, or
field of interest?"

Softbot Planning

To construct an integrated and goal-oriented interface,
we use AI planning techniques. The softbot planner
takes a logical expression describing the user's goal as
input. After searching a library of action schemata de-
scribing available information sources, databases, util-
ities and software commands, the planner dynamically
generates a sequence of actions that achieve the goal,
backtracking and subgoaling as necessary.

Unlike standard programs and scripts which are
committed to a rigid control flow determined a priori
by a programmer, the softbot's planner automatically
synthesizes and executes plans to achieve the goals
which were input. This avoids the problematic task of
writing programs that anticipate all possible changes
in system environment, network status, and error con-
ditions. In short, a softbot is worth a thousand shell
scripts.

The softbot's planner accepts an expressive goallan-
guage, enabling the softbot to accept goals contain-
ing complex combinations of conjunction, disjunction,
negation, and nested universal and existential quan-
tification. Furthermore, the softbot's use of planning
yields an integrated interface -users can write ex-
pressive goals, even when dealing with services that
don't support them directly. Consider the task "Get
all of Ginsberg's technical reports that aren't already
stored locally." Through planning, the softbot can use
ftp to handle this request, even though the ftp utility
doesn't know which files are local, and does not handle
this combination of universal quantification and nega-
tion. The softbot will determine which of Ginsberg's
reports are not stored locally, and will issue ftp com-
mands to obtain them.

The softbot planner is implemented as a search pro-
cess over partially specified action sequences called
plans. The planner is able to decompose complex
goal expressions into their constituents and solve them
with divide and conquer techniques. Interactions be-
tween sub goals are automatically detected and re-
solved. Space precludes comprehensive discussion of

Once the appropriate Mitchell (and memos) have
been determined, the softbot's second task is to ac-
tually send the memos to Mitchell. The softbot may

) decide to e-mail the memos, but first it has to find
Mitchell's e-mail address, and reason about document
format. For example, if a document contains figures,
then sending the postscript version is more appropri-
ate than sending the ~TEX source. Furthermore, if
Mitchell is out of town, or if the memos are confiden-
tial, the softbot has to ensure that the memos reach
their recipient in a timely and secure manner .

In general, after the softbot has figured out what the
human wants, it considers how to satisfy the human re-
quest. The softbot solves this problem by invoking an
automatic planning algorithm. We describe our soft-
bot's planning capabilities in the next section.

the algorithm (see (Weld 1994; Golden, Etzioni, &
Weld 1994)); however, we note that modern planning
algorithms are provably:

.Complete: if a plan exists, the planner will find it,
and

.Sound: if the planner outputs a plan, that plan is
guaranteed to achieve its goal (modulo certain ex-
plicit assumptions).

While these formal guarantees do not ensure that
the planner is efficient, we have not found efficiency to
be a problem in practice. The softbot planner accepts
control heuristics, specified in a high-Ievel, declarative
language, which constrain the planner's search by in-
structing it to prefer certain options over others, avoid
blind alleys, etc.. These heuristics can be hand-coded
or generated automatically via machine learning tech-
niques (Etzioni 1993a; Minton 1990).

We now consider the benefits derived from the soft-
bot's use of a modern planning algorithm.

Subgoaling
If the softbot cannot satisfy its goal directly, it will
automatically subgoa/ on an indirect way of satisfy-
ing the goals. For example, if looking up the phone
number of a graduate student fails, the softbot will
subgoal on identifying the student's office-mates and
finding their phone number. The softbot relies on an
inference rule which states that office-mates share the
same telephone.

Incomplete Specification-+ Search

The softbot accepts incompletely specified goals, and
searches for missing information whenever possible.
For example, if asked to print a file on "any free printer
in the building," the softbot will find the printer list
in a database, and will check the status of each printer
until it finds one that is free. Similarly, if a human asks
to be notified when Etzioni logs in to some machine at
the University of Washington, the softbot will search
for machines where Etzioni has an account and will
monitor these machines until he appears. In general,
the softbot's goal language allows the human to state
three kinds of goals:

.Ground goals: notify me when Etzioni logs in to the
machine called June.cs.washington.edu.

.Existentially quantified goals: notify me when Et-
zioni logs in to some machine.

.Constrained goals: notify me when Etzioni logs in
to some computer-science machine at the University
of Washington.

Empirically, we have found that constrained goals
strike a useful balance between burdening the user with
endless questions, and sending the softbot on a massive
search of the internet.

The use of a modern algorithm for planning with
incomplete information is one of the most distinc-
tive features of our softbot. In contrast, much of
the current work on intelligent software agents focuses
on task-specific "bots" for visitor scheduling (Kautz
et al. 1994), meeting scheduling (Dent et al. 1992), e-
mail filtering (Maes & Kozierok 1993), white-page ser-
vices (Droms 1990) , etc. While each of these agents has
its strengths, none share the benefits of the planning
approach including a highly expressive goal language,
automatic backtracking and subgoaling, and more.

Resource Integration

The planner relies on a logical model of the available
internet resources, which answers two questions: how
can the softbot invoke or access the resource, and what
is the effect of doing so? This sort of "resource model"
can be viewed as a generalization of a Prolog infer-
ence rule to allow for multiple effects, nested univer-
sal and existential quantification, and state change.
The precise syntax and semantics of our representa-
tion language are described in (Etzioni et al. 1992;
Etzioni, Golden, & Weld 1994).

This declarative representation enables the softbot
to integrate multiple, independent internet facilities in
service of its goal. For instance, as mentioned in the in-
troduction, the softbot's model of netfind (Figure 3)
tells it that it has to know a person's institution (or
city) before accessing the netfind facility. Thus when
necessary, the softbot subgoals on finding this informa-
tion by invoking different facilities (e.g., it might ac-
cess the INSPEC database or grep through local biblio-
graphic databases). Furthermore, the softbot is poised
to leverage new internet resources. When a new facility
becomes available, we need only write the appropriate
logical models and search control rules to update the
softbot. We are also investigating the use of learning
techniques to help automate this task.

Softbot Safety

VVe've argued that in order to provide an integrated,
goal-oriented interface, one needs powerful tools such
as the softbot. However, the softbot also requires
safety features. Of course, this is true of any soft-
ware tool (e.g. I the Macintosh refuses to reformat one's
startup disk), but safety is more important for more
powerful tools. Just as in the carpentry domain (where
a table saw can slice through a tendon), internet power
tools, like the softbot, are capable of inflicting damage
when used indiscriminately.

The greatest danger lies in the softbot's very abil-
ity to plan how to achieve the user's goal. Note that
using a sound planner (i. e. I one that only generates
plans which are guaranteed to achieve the goal) is not
sufficient, since there may be many such plans with dif-
ferent side effects. Consider the task "Reduce disk uti-
lization below 90%." If the softbot succeeded by delet-
ing irreplaceable UTEX files without backing them up
to tape, then users might prefer less "powerful" tools!

Postconds:

(userid ?person !userid)

(person.machine ?person !machine)

Name: (netfind ?person)
Preconds:

(current.shell csh)
(isa netfind.server ?server)
(firstname ?person ?firstname)
(lastname ?person ?lastname)
(or (person.city ?person ?keyword)

(person. institution ?person ?keyword))

A cknow ledgments

We would like to thank our co-softboticists Tony
Earrett, Greg Fichtenholtz, Terrance Goan, Keith
Golden, Cody Kwok, Aaron Pulkka, Mike Perkowitz,
Richard Segal, Ying Sun, and Rob Spiger. We thank
Alan Eorning and Steve Hanks for helpful comments.
This research was funded in part by Office of N aval
Research Grant 92-J-1946, by a grant from the Uni-
versity of Washington Royalty Research Fund, and by
National Science Foundation Grants IRI-9211045 and
IRI-9357772.

We believe that the softbot's safety mechanism
should ensure the following qualities:

.Safe: the softbot should refuse to make destructive
changes to the world.

.Tidy: the softbot should restore the world as close
as possible to its original state (i. e. , recompress files
after searches etc.)

.Thrifty: the softbot should limit its use of valuable
resources.

.Vigilant: the softbot should block human actions
that have unintended consequences.

See (Weld & Etzioni 1994) for a formalization of
some of these ideas in a manner that supports com-
putationally tractable implementation. Since the ideas
reported therein are preliminary and as yet unimple-
mented, we acknowledge that softbot safety is an area
that deserves substantially more investigation.

Conclusion
Software environments such as the internet are attrac-
tive testbeds for AI research (Etzioni 1993b). Softbots
circumvent many thorny issues that are inescapable
in physical environments. Furthermore, the cost, ef-
fort, and expertise necessary to develop and experi-
ment with software artifacts are relatively low. Yet,
in contrast to simulated worlds, software environments
are readily available, economically important, and real.
In the past three years, the focus of the Internet Soft-
bots project has been on the AI problems of designing
and building an agent capable of effectively exploring
the internet. See (Etzioni et al. 1992; Etzioni, Golden,
& Weld 1994; Golden, Etzioni, & Weld 1994) for a
sample of technical AI results achieved in this context.

We are now leveraging the softbot's AI capabilities
to develop an expressive, goal oriented, and charitable
interface to the internet. In contrast to a loosely struc-
tured browser such as Mosaic, our long-term objective
is to enable naive users to effectively locate, monitor ,
and transmit information across the net.

Authors
Oren Etzioni received his bachelor's degree in com-
puter science from Harvard University in June 1986,
and his Ph.D. from Carnegie Mellon University in Jan-
uary 1991. He joined the University of Washington
as Assistant Professor of Computer Science and En-
gineering in February 1991. In the fall of 1991, he
launched the Internet Softbots project. In 1993, Et-
zioni received an NSF Young Investigator Award. Et-
zioni is the president of the AI Access Foundation, a
nonprofit corporation devoted to the electronic dissem-
ination of scientific results in AI. He is on the editorial
and advisory boards of the Journal of AI Research,
and has served on the program committees for AAAI
and IJCAI. Most recently, he chaired the AAAI spring
symposium on software agents.
Daniel Weld received bachelor's degrees in both
Computer Science and in Biochemistry at Yale Uni-
versity in 1982. He landed a Ph.D. from the MIT Ar-
tificial Intelligence Lab in 1988 and immediately joined
the Department of Computer Science and Engineering
at the University of Washington where he is now As-
sociate Professor. Weld received a Presidential Young
Investigator's award in 1989 and an ONR Young In-
vestigator's award in 1990. He is associate editor for
the Journal of AI Research, was guest editor for Com-
putational Intelligence, and has served on the program
committee for the National Conference on Artificial In-

telligence. Weld has published fifty refereed technical
papers and has two books to his name.

Wilensky, R., Chin, D., Luria, M., Martin, J ., May-
field, J., and Wu, D. 1988. The Berkeley UNIX Con-
sultant project. Computational Linguistics 14(4):35-
84.References

Dent, L., Boticario, J., McDermott, J., Mitchell, T.,
and Zabowski, D. 1992. A personal learning appren-
tice. In Proc. lOth Nat. Conf. on A.I., 96-103.

Droms, R. 1990. Access to Heterogeneous Directory
Services. In IEEE INFOCOM '90, 1054-1061.

Etzioni, 0., Hanks, S., Weld, D., Draper, D., Lesh,
N ., and Williamson, M. 1992. An Approach to
Planning with Incomplete Information. In Proc. 3rd
Int. Conf. on Principles of K nowledge Representation
and Reasoning. Available via FTP from publail at

cs.washington.edu.
Etzioni, 0., Golden, K., and Weld, D. 1994. Tractable
closed-world reasoning with updates. In Proc. 4th Int.
Conf. on Principles of Knowledge Representation and
Reasoning.
Etzioni, 0., Lesh, N., and Segal, R. 1993. Building
soft bots for UNIX (preliminary report) .Technical Re-
port 93-09-01, University of Washington. Available
via anonymous FTP from publetzionilsoftbotsl
at cs.washington.edu.

Etzioni, 0. 1993a. Acquiring search-control knowl-
edge via static analysis. Artificial Intelligence

62(2):255-302.
Etzioni, 0. 1993b. Intelligence without robots (a re-
ply to brooks). AI Magazine 14(4). Available via
anonymous FTP from publetzionilsoftbotsl at
cs.washington.edu.
Ginsberg, M., ed. 1987. Readings in Nonmonotonic
Reasoning. San Mateo, CA: Morgan Kaufmann.

Golden, K., Etzioni, 0., and Weld, D. 1994. Om-
nipotence without omniscience: Sensor management
in planning. In Proc. l2th Nat. Conf. on A.I.

Kautz, H., Selman, B., Coen, M., Ketchpel, S., and
Ramming, C. 1994. An experiment in the design of
software agents. In Proc. l2th Nat. Conf. on A.I.

Maes, P., and Kozierok, R. 1993. Learning interface
agents. In Proceedings of AAAI-93.

Minton, S. 1990. Quantitative results concerning the
utility of explanation-based learning. Artificial Intel-
ligence 42(2-3).
Reiter, R. 1978. on closed world databases. In Gal-
laire, H., and Minker, J., eds., Logic and Data Bases.
Plenum Press. 55-76. Reprinted in (Ginsberg 1987).

Weld, D., and Etzioni, 0. 1994. The first law
of robotics (a call to arms). In Proc. l2th Nat.
Conf. on A.I. Available via FTP from publail at

cs.washington.edu.
Weld, D. 1994. An introduction to least-commitment
planning. AI Magazine. Available via FTP from
publ ail at cs .washington. edu.

