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Abstract

In his recent papers, entitled “Intelligence without Representation and “Intelligence with-
out Reason,” Brooks argues for studying complete agents in real-world environments and for
mobile robots as the foundation for Al research. This article argues that, even if we seek
to investigate complete agents in real-world environments, robotics is neither necessary nor
sufficient as a basis for Al research. The article proposes real-world software environments,
such as operating systems or databases, as a complementary substrate for intelligent-agents
research, and considers the relative advantages of software environments as testbeds for Al
First, the cost, effort, and expertise necessary to develop and systematically experiment with
software artifacts are relatively low. Second, software environments circumvent many thorny,
but peripheral, research issues that are inescapable in physical environments.

Brooks’s mobile robots tug Al towards a bottom-up focus in which the mechanics of
perception and mobility mingle inextricably with, or even supersede, core Al research. In
contrast, the softbols (software robots) we are advocating facilitate the study of classical Al
problems in real-world (albeit, software) domains. For example, our UNIX! softbot has led

us to investigate planning with incomplete information, interleaving planning and execution,
and a host of related high-level issues.

1UNIX is a trademark of AT&T Bell Labs.




Introduction

In his recent papers, entitled “Intelligence without Representation” [4] and “Intelligence
without Reason” [3], Brooks propounds a number of positions including;

o Complete agents in real-world environments: “At each step we should build complete

intelligent systems that we let loose in the real world with real sensing and real action”
[4, page 140].

¢ Robotics as the foundation for AI: “The agents should be embodied as mobile robots. . . the
new approach can be extended to cover the whole story, both with regards to building
intelligent systems and to understanding human intelligence.” [3, page 585].

This article argues that, even if we accept Brooks’s first position and seek to build complete
agents in real-world environments, we need not accept robotics as the foundation for Al
Clearly, robotics is an important and challenging enterprise, with much to contribute to Al
However, the article challenges Brooks’s position that the primary path to progress in Al is
“to study intelligence from the bottom up, concentrating on physical systems (e.g., mobile
robots), situated in the world, autonomously carrying out tasks of various sorts” [3, page
569].

The article proposes real-world software environments, such as operating systems or
databases, as a substrate for intelligent-agents research. Over the years, software environ-
ments have been explored as domains for machine learning {5, 6], intelligent user inter-
faces [21], planning [2], distributed AI[17, 19], and more. We argue for a unified conception:
complete, intelligent agents that interact with real-world software environments by issuing
commands and interpreting the environments’ feedback. We refer to such agents as softbots
(software robots) [9]:

¢ A softbot’s effectors are commands transmitted to the external environment in order
to change its state (e.g., UNIX shell commands such as mv or compress).

o A softbot’s sensors are commands that provide the softhot with information about its
external world (e.g., pwd or 1s in UNIX).

Softbots offer the methodological advantages of investigating complete agents in real-world
environments without the overhead associated with robotic agents.

The remainder of this article is organized as follows. First, we show how softbots satisfy
Brooks’s desiderata for Al research vehicles. Second, we consider some advantages of softbots
as a substrate for Al research.

Brooks’s Arguments and Softbots

Brooks advances a number of arguments for his positions. Below, we consider his method-
ological arguments for building complete agents that operate in real-world environments, and
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his argument for “embodiment” as a way to endow internal agent processing with meaning.
In both cases, we show that these arguments apply equally well to softbots, a possibility that

Brooks does not consider. Finally, we review and critique Brooks’s evolutionary argument
for robotics.

Engineering Methodology Argument

Brooks writes, “...I, and others, belicve that human level intelligence is too complex and lit-
tle understood to be correctly decomposed into the right subpieces at the moment and even
if we knew the subpieces we still wouldn’t know the right interfaces between them.” [4, page
140]. As Mitchell et al. put it: “[the] reductionist research strategy has reached the point of
diminishing returns.” [16, page 352]. While both statements are quite strong, it seems clear
that developing complete or integrated agent architectures has a distinct methodological
advantage: the researcher is less likely to make unrealistic assumptions about the inter-
laces between different components of the architecture and about what each component will
compute.

Given that one is committed to developing complete agents, Brooks argues that the
agents should be tested in the real world: “with a simplified world...it is very easy to
accidentally build a submodule of the systems which happens to rely on some of those
simplified properties. .. the disease spreads and the complete system depends in a subtle way
on the simplified world” [4, page 150]. Thus, Brooks is opposed to simulated worlds. After
all, the infamous Blocksworld is just yesterday’s simulated world.

The softbot paradigm escapes these quandaries by committing to full realism at every
step. Softbots operate in dynamic, real-world environments that are not engineered by
the softbots’ designers. In the UNIX environment, for example, other agents (particularly
humans) are continually changing the world’s state by logging in and out, creating and
deleting files, etc. Softbots are forced to cope with changes in their environment (where did
that file go?) in a timely fashion. To succeed, softhbots have to make sense of the flow of
information through their limited bandwidth sensors, and respond appropriately.

Brooks emphasizes that an agent ought to have some purpose; it ought to be useful
(cf. [18]). The preponderance of problems such as feature shock (the paralysis a user feels
when facing a bewildering array of complex, poorly-documented features [12]) and informa-
tion anziety (a user’s emotional response to the increasing volume and diversity of electronic

data [15, 22]) suggest that there is no shortage of useful tasks for a softbot. Some simple
examples are:

e Filtering electronic mail, and sending routine messages such as meeting reminders, talk
announcements, and so on.

e Scheduling meetings [3, 14].
¢ Performing system maintenance tasks (e.g., around-the-clock intrusion detection).

In short, softhots satisfy every facet of Brooks’s engineering methodology.
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Symbol Grounding Argument

Brooks claims that “only through a physical grounding can any internal symbolic or other
system find a place to bottom out, and give ‘meaning’ to the processing going on within
the system” [3, page 584]. Standard semantic accounts of representational languages define
‘meaning’ and ‘truth’ in terms of an underlying model or logical interpretation. But what
do the symbols in the underlying model mean? Brooks argues that only the physical world
can ground an agent’s internal representation. This rather abstract observation actually has
practical ramifications for intelligent agents.

As Agre and Chapman put it: in classical Al planners, the truth of a Blocksworld propo-
sition such as on(a,b) is determined by checking whether a relation corresponding to on
applies to objects corresponding to a and b. The check is performed in the planner’s model,
not in the external world. Similarly, an agent satisfies the goal on(a,b) by updating its
internal model to include the effects of executing the action stack(a,b), not by interacting
with the external world.

This “practice of allowing primitive actions to traffic in constant symbols” hides an im-
portant problem [1]. Since physical entities do not have tags associated with them, saying
“I correspond to internal symbol a,” an agent operating in the physical world has to develop
methods that reliably map from perceptual experiences in the world to internal representa-
tions and conversely. This process, and related problems of linking perception with internal
representation, are ignored by classical Al planners, but have to be confronted by a robotic
agent operating in a physical environment.

Again, this argument supports the softbot paradigm equally well. In contrast to a
Blocksworld-style simulated world, there is no privileged relationship between a softhot’s
internal symbols and the entities in its external world. For instance, suppose the softbot
is instructed to format and print the most recent draft of a particular AAAI paper rep-
resented internally by file-object-35. The softhot has to decide whether the file called
learning.tex, which it perceives in the directory /ai/papers/, corresponds to its internal
symbol file-object-35 or not. The software objects in the softbot’s external world give
meaning to its internal symbols. Although the mechanics of software perception are more
manageable, and the nuisance of sensory noise is eliminated, the fundamental problem of
mapping perceptual experiences to internal symbols remains.

Evolutionary Time Argument

Brooks points out that biological evolution, “spent” most of its multi-billion year history
developing insects, reptiles, and primates. Humans arrived a mere 2.5 million years ago, and
invented writing only recently. Brooks writes “this suggests that problem solving behavior,
language, expert knowledge and application, and reason, are all pretty simple once the
essence of being and reacting are available” [4, page 141]. Based on this observation, Brooks
advocates studying intelligence ‘bottom up,’ starting with insects, eventually moving up to
reptiles, and so on.

Whatever the merits of Brooks’s bottom-up research strategy, his evolutionary argument
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has to be elaborated. Brooks argues that since higher cognitive functions appeared, quite
recently on an evolutionary time scale (a mere 2.5 million years ago), they are “pretty simple”
in some sense. This claim presupposes a direct relationship between evolutionary time and
some undefined measure of complexity. However, evolution is not a smooth, gradual process.
Many evolutionary theorists subscribe to the theory of punctuated equilibria which asserts
that the rate of evolutionary change is highly variable. As Gould puts it in a popular account,
“the fossil record with its abrupt transitions offers no support for gradual change, and the
principle of natural selection does not require it—selection can operate rapidly” [10, page
188]. We should not underestimate the amount of evolutionary change underlying our higher
cognitive functions.

The vagaries of evolutionary theory aside, Brooks does not explain why biological evolu-
tion is relevant to Al research methodology. Suppose natural selection constrained evolution
to ‘design’ organisms whose chance to reproduce is maximal, preferring quick reflexes to
higher cognitive functions. Are Al systems subject to the same constraints? Certainly,
softbots are not. On the other hand, suppose we accept the relevance of evolution to Al
Shouldn’t we be emulating evolution much more closely than Brooks suggests? Brooks does
not justity ‘skipping’ the billions of years evolution spent developing multi-celled organisms.
[sn’t it equally plausible to argue that AT should focus on developing the appropriate hard-
ware (i.e., designing and manufacturing simple organisms), and the rest will fall into place
relatively quickly? On what basis does Brooks conclude that following evolution at a very
coarse grain (i.e., robotics before higher cognitive functions) is appropriate?

The Argument for Softbots

The previous section showed that Brooks’s methodological arguments actually support the
softhbot paradigm, and called into question his evolutionary argument. This section presents
an independent argument for softbots. The argument has both weak and strong versions.
The weak version is straight forward. Software environments (e.g., databases, computer
networks, operating systems) are the subject of intense study in computer science; software
agents are gaining prominence outside Al (e.g., Knowbots [11]), demonstrating their intrinsic
interest. Software environments are not idealizations of physical environments; developing
softbots is a difficult and exciting challenge in its own right. This challenge necessitates
its own research programme; developing mobile robots as a basis for softbots is about as
plausible developing softbots as a basis for mobile robots. Hence, robotics is not sufficient as a
foundation for Al Softbotics and robotics are complementary methodologies for investigating
intelligent agents in real-world environments. Clearly, physically-oriented research issues
(e-g., overcoming sensor noise, motion planning, representing liquids, shapes, etc.) are best
studied in physical environments, and software issues (e.g., responding to error messages,
cloning softhots on remote machines, modeling databases, users, etc.) are best studied in
software.

The strong version of the argument is that the study of many core Al issues is facilitated




by the softbots framework and potentially hindered by robotic testbeds.? An agent testbed
shapes and directs one’s research, providing a source of intuitions, motivating examples, sim-
plifying assumptions, stumbling blocks, test cases, etc. Robotic testbeds lead one to focus on
robotics, Thus, many core Al issues such as planning with incomplete information, ground-
ing of internal symbols, learning from experiments, and more, are better studied in software
domains. Brooks’s “complete agents in real-world environments” methodology is attractive,
but building mobile robots is not necessary to implement it. In many ways, softbots are
preferable. Below, we enumerate the pragmatic advantages of software environments over
physical environments in support of this claim.

In principle, mobile robots offer excellent testbeds for Al research. In practice, building
intelligent systems that successfully interact with an unpredictable physical environment is a
rigorous challenge, given existing technology. The cost of such robots (including laser range
finders, sonars, grippers, television cameras, etc.) is non-trivial, and the effort and expertise
required to assemble and operate such an apparatus are considerable.

Conducting experiments using mobile robots is often time-consuming and difficult. Ex-
periments are frequently hampered by a wide variety of hardware difficulties and malfunc-
tions [4, 20]. Days and even weeks go by in which the robot is not operational. Even when
the robot is operational, the mean time between failures can be short. As a result, carrying
out empirical Al research using robots can be quite tedious and slow. Furthermore, while
robotic task environments are much more realistic than the Blocksworld, introducing the
problems of sensing, uncertainty, and noise, the environments often remain highly unreal-
istic due to hardware limitations. Realism is lost when the agent’s external environment
is manipulated to improve the agent’s performance. For instance, Brooks describes how
Shakey, SRI’s mobile robot, operated in rooms where “the walls were of a uniform color, and
carefully lighted, with dark rubber baseboards, making clear boundaries with the lighter
colored floor ...” [3]. More recent Al robots operate in more realistic environments, but are
restricted to simple tasks such as avoiding walls and fetching soda cans. Much more realistic
robots have been built, of course, but they require orders of magnitude more investment of
time, money, and expertise in robotics before core Al research can take place.

Brooks acknowledges the frustrations and pragmatic difficulties attendant on Al research
utilizing mobile robotic agents. The mean time between failures, for one of his robots, was
as short as fifteen minutes [3, page 587]. Brooks himself writes “experimental work with
physical Creatures is a nontrivial and time consuming activity. ..as of mid-1987, our work in
learning is held up by the need to build a new sort of video camera and high-speed low-power
processing box to run specially developed vision algorithms at 10 frames per second.” [4, page
158].

Thus, software task environments have a number of pragmatic advantages over physical
ones. First, the mean time between hardware failures is much greater for a workstation sup-
porting a software environment than for a mobile robot. Second, rebooting a workstation
and restoring a softbot “from disk” is much easier than fixing a broken gripper in a physical

ZNote that, in contrast to Brooks [3, page 578], we believe that classical approaches (e-g., current work
on knowledge representation and on planning) still have much to contribute to Al




robot or identifying and replacing a malfunctioning chip. As a result, software experiments
are easier to perform, control, and repeat than robotic experiments, facilitating systematic
experimental research of the sort advocated by [13] and others. In addition, software facili-
tates the dissemination and replication of rescarch results. It is straight forward to distribute
multiple copies of a softbot, whereas the distribution of research-prototype robots is difficult.

Software environments are particularly well-suited for agent research. Providing a softbot
with basic execution and sensing mechanisms is easy. For instance, our UNIX softbots rely
on a simple program that sends and receives strings from a UNIX shell. Once the low-
level problems associated with vision (edge detection, stereoscopy, occlusion, sensory noise,
etc.) and other physical sensing modalities are eliminated, fascinating high-level problems
(e.g., how to plan sensory operations) emerge. Many difficult representation and reasoning
problems (e.g., liquids, shapes, physical actions, and much more) are avoided. This is a
disadvantage if one is interested in studying these problems, but an advantage if one wants to
focus on agent research and finds the formalization of physical knowledge to be a distraction.
Finally, many software environments are benign, giving a softbot an opportunity to survive
and engage in useful activities over time.

To summarize, software environments have three main advantages over physical ones:

» pragmatic convenience: the cost, effort, and expertise necessary to develop and sys-

tematically experiment with physical artifacts far exceeds that associated with software
artifacts.

¢ research focus: software environments circumvent many thorny, but peripheral, re-
search issues that have to be addressed in physical environments.

¢ easy embodiment: as a consequence of the first two items, providing an agent with
effective sensors and actuators is relatively easy in software environments.

Yet, in contrast to simulated physical worlds, software environments are readily available
(sophisticated simulations can take years to develop and perfect) and intrinsically interesting.
Furthermore, software environments are real,

Conclusion

This article argued that bottom-up research on mobile robots, though valuable, is neither
necessary nor sufficient as a foundation for core Al research. Robotics is not sufficient for Al,
because the challenge of developing intelligent software agents (or softbots) dictates its own
research agenda; robotics is not necessary, because many Al issues can be studied profitably
in real-world software environments such as operating systems or databases.

In fact, software environments are particularly well-suited for the study of complete
intelligent agents. The pragmatic convenience of software environments facilitates rapid
development of, and systematic experimentation with, software agents. Providing a softbot
with effective sensors and actuators is relatively straight forward, enabling researchers to




focus on high-level issues, and circumventing many thorny, but peripheral, problems that
are mescapable in physical environments.

A priori arguments only carry so much weight, though. The real test of the softbot
paradigm is whether it will yield fundamental contributions to core Al Our language for
planning with incomplete information (UWL [7]) is a modest example, but the jury is still
out. To paraphrase Brooks [4, page 158}, only experiments with real softbots in real software
worlds can answer the natural doubts about our approach. Time will tell.

A UNIX Softbot (INSERT SECTION)

To make the softbot paradigm concrete we briefly describe a general-purpose UNIX softbot
(called Rodney®) under development at the University of Washington. See [8] for a com-
prehensive description of Rodney. Rodney accepts high-level user goals and dynamically
synthesizes the appropriate sequence of UNIX commands. Rodney executes the sequence,
recovering from errors and retrying commands if necessary. The following are examples of
the types of requests that Rodney handles successfully:

1. Notification requests:

¢ Notify me if my disk utilization exceeds eighty percent.

o Let me know when Neal logs into his workstation.

¢ Show me any posts containing the string “bicycle” that appear on the market
bulletin board this week.

The choice of notification medium (a beep, a message displayed on the screen, or an e-
mail message.) is under the softbot’s control, as is the means of monitoring the events
in question.

2. Enforcing constraints:

e Keep all files in the directory /papers group-readable.
¢ Ensure that all my Postscript files are current (i.e., automatically generate a new
postscript file whenever the corresponding TgX file is modified).

3. Locating and manipulating objects:

e Print my file on any nearby printer that is not busy, and tell me where to find it
when the print is done.

e Locate Melanie Mitchell
(utilizing whois, netfind, staffdir, finger, and more)

3Brooks’s early robots were named Herbert, Allen, Seymour, etc.




These classes are neither exhaustive nor mutually exclusive, but illustrate our main point:
Rodney enables a user to specify what to accomplish, leaving the decision of how to accom-
plish it to the softbot. In essence, Rodney raises the level of discourse between the user and
the machine. This goal-oriented approach offers a number of advantages over conventional
operating-system interfaces. Although an expert programmer could conceivably write a shell
script to satisfy the individual goals we have listed above, the programmer could not create a
shell script to accomplish every conceivable user goal or combination of goals. Furthermore,
as new system facilities become available, the shell scripts would need to be continually
updated and modified.

In contrast, the softbot represents UNIX commands (and applications such as netf ind)
as STRIPS-style operators, and utilizes general-purpose planning algorithms to dynamically
generate a plan that satisfles the user’s goals [7, 8]. Once the softbot “knows” about a
new facility, that facility becomes immediately available to its planning process, and is
automatically invoked to satisfy relevant user goals. Furthermore, unlike a shell script, the
softbot is not locked into a rigid control flow. It fluidly backtracks from one option to the
next, based on information collected at run time. If one printer is jammed, the softbot will
try another; if whois fails, the softbot will try netfind, and so on. The nature and ordering

of the softbot’s options are subject to learning, which enables the softbot to improve its
performance over time.
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Letter to the Editor, in reply to letters by Drs Miller, Stein, and Wellman.
All letters appeared in AI Magazine (Summer 94 issue).

To readers who have just tuned in, here is the story to date. In a series of important
papers, Rodney Brooks argued for a number of positions including Build Complete Agents
in Real-world Environments, Robotics is the Foundation of Al, The World is Its Own Best
Model, and many more. In a recent Al Magazine article (December '93), 1 argued that we
can accept Brooks’s compelling methodological idea (Build Complete Agents in Real-World
Environments), without buying into the rest of the Brooksian agenda. In particular, we
can build softbots — complete Al agents that interact with real software worlds such as the
internet. Most people, the letter writers included, seem to accept this idea. (The softbot
paradigm was more ground breaking when we first articulated it in 1991.)

My article did not consider other elements of Brooks’s multi-faceted position. Instead, I
made a second, more controversial, claim: “the study of many core Al issues is facilitated
by the softbot framework and potentially hindered by robotic testbeds.” Note that this
claim only speaks to someone who is interested in core Al (i.e., the fields of knowledge
representation, automated reasoning, planning, machine learning, etc.). I did not attempt
to argue for core Al — only to explore the implication of different agent testbeds for its
imnvestigation.

I’d now like to clarify a number of points raised in the letters received.

Softbots # UNIXbots: despite Miller’s focus on UNIX, a softbot may interact with any
real-world software environment. My own group is currently focusing on internet softbots,
and other groups are investigating a wide range of generic tasks including e-mail management,
information gathering, visitor scheduling, and more.

Softbots # shell scripts: the representation of software commands as planning oper-
ators is a central aspect of our softbot’s architecture. As a result, we are able to provide a
human user with an expressive goal language that allows logical combinations (e.g., nega-
tion, disjunction, and universal quantification)} of the predicates mentioned in the operators.
When a new system facility becomes available, we need only write the appropriate operator
models and search control rules to update the softbot. We are also investigating the use of
learning techniques to help automate this task. This approach offers many advantages over
trying to code and maintain a shell script for each goal the user might have in mind. As
Dan Weld is fond of saying “a softbot is worth a thousand shell scripts.”

Softbots leverage existing software: Miller points to the challenge of writing UNIX.
But just as Brooks did not have to erect an office building to for his artificial insects, we
did not need write UNIX (or other software environments) to build our softbots. Softbots
interact with ezisling software environments. Contrary to Miller’s letter, we did not pay for
a UNIX source license, because we never look at the source code. Instead, our softbot relies
on the “pre-fabricated” tools and utilities available to human computer users — tools for
sending mail, printing files, internet utilities such as netfind, etc. Mobile robots have yet to
achieve the physical analog — using vacuum cleaners and lawn mowers, reading maps, etc.
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Softbots and humans share primitive tools: in many cases, the software commands
used by our softbot are similar, if not identical, to those used by humans. Consider the task
of printing a file. Both the human and the softbot use the UNIX command l1pr. To monitor
a print job, both use 1pq. The challenge to the softbot is cognitive: which printer should it
use? What if the closest printer is busy or jammed? Should the softbot use a color printer?
a high-speed one? What if its human “boss” is late to a meeting in another building? What
if the file to-be-printed is confidential?

Softbot perception and actuation are relatively easy: the structured and reliable
nature of most software tools makes softbot perception and actuation relatively easy. For
example, parsing the highly structured output of we (and likewise pwd, hostname, lpq,
1s, and many other commands) is straightforward. Exceptions include tools that require
natural language understanding, on-line video and audio, etc. Note, though, that postscript
files can be converted to ASCII and that information read by humans in a graphical format
(e.g. a MOSAIC page) often has a softbot-accessible format as well (e.g. an HTML file).

Stein is correct that building a softbot has some overhead, but that overhead is relatively
small. She speculates that we are forced to deal with arcane and “bizarre” details of UNIX. In
fact, less than 10% of the softbot code is devoted to the low level of mechanics of perception
and actuation, and much of that code was written by undergraduate programmers. The bulk
of the softbot (and of our research!) involves domain independent algorithms for planning,
reasoning, and learning.*

In contrast, robotic vision, hearing, and fine motor coordination are far inferior to their
human correlates. Consider fetching a printout. For a robot, this task is fraught with motor
and sensory pitfalls. How does the robot open the door to the printer room? How does it find
the appropriate printout? How does it separate the pages of different printouts? To borrow
Tom Dean’s phrase, robots are “perceptually challenged.” From a core Al point of view,
the largest overhead associated with robotics is the research required to achieve adequate
perception and actuation.

Is Robotics Necessary? there is no question that robotics is a valuable, necessary,
and exciting field of endeavor. In the article [ wrote “Clearly, robotics is an important and
challenging enterprise, with much to contribute to AL” Nevertheless, a core Al researcher
need not build robots to satisfy Brooks’'s Complete Agents methodology. Softbots are an
attractive alternative. This is the sense in which “bottom-up research on mobile robots,
though valuable, is neither necessary nor sufficient as a foundation for core Al research.” I
regret that this carefully qualified point was misinterpreted as the “outrageous conclusion
that robotics research is utterly unnecessary.”

General lessons from softbots: Stein raises a key question. Should we “expect lessons
learned in the decidedly artificial world of the computer to carry over to the extremely
different world in which we live?” Stein is dubious. Indeed, although parallels between
physical and software worlds abound, there are also many differences. A softbot can easily

*In a recent project, we linked the softbot to the telephone network by using the Macintosh’s telephony
suite, and writing operators to model dialing a phone number, listening for a busy signal, etc. No change
was necessary to the softbot’s basic algorithims.
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clone itself, store snapshots of itself on disk, even revert to a previous “self.” Thus, as
we delve more and more deeply into the investigation of software agency, we might find
that softbots and humans diverge. Still, could we create a software intelligence, but fail to
understand human intelligence? Shouldn’t our theory of intelligence be general enough to
encompass both software and physical agents?

In fact, we have been surprised by the extent to which ideas discovered and explored in
software domains have natural physical analogues. For example, we have found that while
the softbot cannot obtain complete information about all the files and people accessible on
the internet, it can obtain complete information about a particular locale, such as a UNIX
directory, a file archive, or an FTP site. We have devised a polynomial-time algorithm for
inferring and updating logical sentences of this sort (Etzioni, Golden, & Weld, KR’94).
Clearly, a locale need not be a software construct. A person (or a robot} can obtain informa-
tion about the contents of a drawer, the occupants of a room, etc. Our algorithm is domain
independent. I do not mean to suggest that softbots are a way of pursuing robotics — they
are not. However, I want to emphasize that while we rely on UNIX tasks for illustration and
validation, the theoretical results we report are domain independent.

Finally, as suggested by Wellman, the internet and the emerging national information
infrastructure provide us with an opportunity to contribute not only to a deeper under-
standing of intelligence, but also to the U.S. economy and to society at large. The operating
systems, information technology, and user interface communities are all struggling to make
“cyberspace” palatable and accessible to millions of new computer users with tools such
as Mosaic, gopher, WAIS, etc. In the next few years, the opportunity (and implicit chal-
lenge) we face is to demonstrate that Al technology can add value and power to this rapidly
evolving set of services and tools.
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