
On the Algorithmic Lovász Local Lemma

and Acyclic Edge Coloring∗

Ioannis Giotis† Lefteris Kirousis‡ Kostas I. Psaromiligkos§ Dimitrios M. Thilikos¶

Abstract

The algorithm for Lovász Local Lemma by Moser and Tar-

dos gives a constructive way to prove the existence of com-
binatorial objects that satisfy a system of constraints. We

present an alternative probabilistic analysis of the algorithm

that does not involve reconstructing the history of the algo-
rithm from the witness tree. We apply our technique to

improve the best known upper bound to acyclic chromatic

index. Specifically we show that a graph with maximum
degree ∆ has an acyclic proper edge coloring with at most

⌈3.74(∆− 1)⌉+1 colors, whereas the previously known best
bound was 4(∆ − 1). The same technique is also applied

to improve corresponding bounds for graphs with bounded

girth. An interesting aspect of this application is that the
probability of the “undesirable” events do not have a uni-

form upper bound, i.e. it constitutes a case of the asymmet-

ric Lovász Local Lemma.

1 Introduction

The Lovász Local Lemma (LLL) first appeared in 1975
in a paper by Erdős and Lovász [6].

“The proof is so elementary that it could, and
I think it should, be taught in a first course in
probability. It has had and continues to have
a profound effect on probabilistic method.”

J. Spencer wrote about it in the book on his Durango
lectures [16]. This elegant proof however was non-

∗Research co-financed by the European Union (European So-
cial Fund ESF) and Greek national funds through the Opera-
tional Program “Education and Lifelong Learning” of the Na-
tional Strategic Reference Framework (NSRF) - Research Funding
Program: ARISTéA II.

†Department of Mathematics, National Kapodistrian Univer-
sity of Athens, Greece and Computer Technology Institute Press
“Diophantus”, Patras, Greece, igiotis@cs.upc.edu

‡Department of Mathematics, National Kapodistrian Univer-
sity of Athens, Greece and Computer Technology Institute Press
“Diophantus”, Patras, Greece, lkirousis@math.uoa.gr

§Department of Mathematics, National Kapodistrian Univer-
sity of Athens, Greece, kostaspsa@gmail.com

¶Department of Mathematics, National Kapodistrian Univer-
sity of Athens, Greece, Computer Technology Institute Press
“Diophantus”, Patras, Greece, and AlGCo project-team, CNRS,
LIRMM, France, sedthilk@thilikos.info

constructive. Up until the seminal work by Moser
[13] and Moser and Tardos [14], and despite important
work on the question of supplying a constructive proof
by Beck [4], Alon [2], Srinivasan [18] and others, the
question and its answer succinctly given in the book on
the Durango lectures [16]: “Algorithm? Sometimes!”
remained valid.

The constructive proof of Moser [13] and Moser and
Tardos [14] essentially showed how to algorithmically
produce a satisfying assignment to a Constraint Sat-
isfaction Problem (CSP), given that the variables are
independent. Their randomized algorithm roughly did
nothing more than locating unsatisfied constraints and
resampling their variables. It continues doing so until
no constraint is left unsatisfied. They proved that the
expected time of steps for this algorithm to halt is lin-
ear in the number of variables, given that the degree of
the dependency graph of the constraints does not ex-
ceed a certain constant fraction of the inverse of the
probability of a constraint not to be satisfied. Their
proof depended on supplying a witness structure which
encodes the history of the random choices of the al-
gorithm. The average size of this structure cannot be
less than the entropy of the sequence of random choices
made by the algorithm. See [19] for a presentation of
this information theoretic argument known as “entropy
compression argument”. Another elegant presentation
of this approach is given by Spencer in [17].

In this work, we first analyze Moser’s algorithm
directly, using probabilistic arguments to estimate its
number of steps. The essence of our approach is
the observation (based on the Principle of Deferred
Decisions of Knuth [12]) that each resampling renders
the current assignment with the same as the original
distribution, conditional on the previous event being
satisfied. Thus we manage to express the probability
that at least n steps are needed until the algorithm
halts by a simple recurrence relation. This recurrence
relation is asymptotically analyzed by classical tools of
the Analysis of Algorithms. It turns out that given that
the degree of the dependency graph does not exceed
a certain constant fraction of the inverse probability
of an undesirable event to occur, the probability that

the algorithm lasts for n steps is exponentially small
in n, after a cutoff point (a result made known to us
by Achlioptas and Iliopoulos [1], but through a proof
based on the entropic method). We believe that this
direct and completely elementary probabilistic proof
avoids some of the intricacies of the entropy compression
argument. It also completely unveils, we think, the
extreme elegancy of Moser’s algorithm (we adopted the
original version of the algorithm in [13]).

We used our alternative approach to a particular
coloring problem, namely the acyclic edge coloring. The
entropy compression method had been used by Esperet
and Parreau [7] to find bounds for the acyclic chromatic
index, the least number of colors needed to properly
color the edges of a graph so that no bichromatic cycle
exists. Our approach leads to a direct and simple
probabilistic analysis that yields the upper bound of
⌈3.74(∆ − 1)⌉ + 1 for the acyclic chromatic index,
improving the bound of 4(∆− 1) given by Esperet and
Parreau. We also improve their bounds for graphs with
bounded girth.

2 Algorithmic Lovász Local Lemma

Let Xi, i = 1, . . . , l be mutually independent random
variables on a common probability space, taking values
in the sets Di, i = 1, . . . , l, respectively.

Let Ej , j = 1, . . . ,m be a sequence of events, each
depending on a sequence of the random variables Xi.
The sequence of variables that an event Ej depends on is
called the scope of Ej and is denoted by ej. The events
Ej are considered “undesirable”, i.e., the objective is
to design a randomized algorithm that will return an
assignment α to the variables Xi for which none of the
events Ej hold.

We say that two events overlap, and write Ei ∼ Ej ,
if ei∩ej ̸= ∅. The binary, reflexive and symmetric binary
relation ∼ defines a graph with all vertices looped (but
no multiple edges) called the dependency graph of the
events.

For j = 1, . . . ,m, let Nj be the neighborhood of the
event Ej in the dependency graph, i.e. Nj = {Ei | Ei ∼
Ej} (observe that Ej ∈ Nj).

Let ∆ be the maximum of the cardinalities |Nj | (i.e.
the max degree of the dependency graph counting the
loop as contributing 1 to the degree) and let p be the
max of the probabilities Pr[Ej].

Theorem 2.1. (Lovász Local Lemma) If ep∆ ≤ 1,
then Pr[E1 ∧ E2 ∧ · · · ∧ Em] > 0, i.e. there exists an
assignment to the variables Xi for which none of the
events Ei hold.

The original proof of Theorem 2.1, first presented es-
sentially in this form in [15], was non-constructive, but

Algorithm

1: Sample the variables Xi (independently) and
let α be the resulting assignment of values to
them.

2: while there exist an event that occurs under the
current assignment, let Ei be the least indexed
such event do

3: Resample(Ei)
4: end while
5: Output current assignment α

Resample(Ei)

1: Resample the variables in the scope ei (inde-
pendently).

2: while some Ej ∈ Ni occurs under the current
assignment α, let Ej be the least indexed such
event do

3: Resample(Ej)
4: end while

Figure 1: Randomized sampling algorithm

was given for arbitrary events, i.e. without the assump-
tion that the events depended on independent random
variables. Below, we will give an algorithmic proof The-
orem 2.1 within the framework already described, i.e.
assuming the dependence of the events on independent
variables.

We first present our algorithm in Figure 1, which is
a direct derivation of the one given by Moser in [13]1.

On a particular execution of our algorithm, let us
call a phase the execution period within a root call of
Resample, more specifically the period spent in an
execution of Resample from line 3 of Algorithm. For
clarity, we will refer to calls of Resample from within
another Resample execution as recursive calls.

Our goal is to upper bound the probability that
Algorithm makes at least n Resample calls. We
first show that the number of phases in any execution
is bounded. Then, we argue that the probability of an
event occurring at a given step of the algorithm can still
be bounded by p conditional on the various resamplings
performed so far. These will allow us to bound the total

1The algorithm in [13] was presented and analyzed only for
the sat problem and an alternative algorithm for a collection
of arbitrary events determined by independent variables was
subsequently presented and analyzed by Moser and Tardos in [14];
the generalization of the original algorithm in [13] for arbitrary
events is straightforward, however the analysis in [13] does not
immediately generalize.

number of steps by a function of p.

Lemma 2.1. Consider an arbitrary call of
Resample(Ei). Let E be the set of events that
do not occur at the beginning of this call. Then, if the
call terminates, events in E will also not occur at the
end of the call.

Proof. Suppose some event Ej in E occurs during the
call. But this means that some variable in its scope
changed value. This implies that Ej is in the neighbor-
hood of some other event E′

j and a call Resample(E′
j)

was made, potentially a recursive call within our orig-
inal call Resample(Ei). But because of the “while”
loop of line 2 of Resample, the call Resample(E′

j)
will not terminate until all the events in the neighbor-
hood Nj′ of E′

j , and therefore Ej itself, do not occur.
Assuming Resample(Ei) terminates, Resample(E′

j)
must have also terminated and therefore at the end of
Resample(E′

j), Ej does not occur. The same argument
can be reapplied every time some event in E occurs, or
re-occurs, during the call.

By Lemma 2.1, we know that the set of events that do
not occur at the start of a phase cannot be smaller at
the end of the phase. Moreover, it will strictly increase
because the event for which the root call Resample
occured also has to not occur at the end of the call.
Therefore, a root call of Resample can only occur at
most once for each event.

Corollary 2.1. There are at most m phases in any
execution of Algorithm.

Let us now examine the probability distribution of
the variables after a resampling, caused by a call of
Resample(Ei).

Lemma 2.2. (Randomness lemma) Let α be a ran-
dom assignment sampled independently from the proba-
bility distribution of the variables X1, . . . , Xl and Ei an
event. Let α′ be the assignment obtained from α by re-
sampling (independently) the variables in ei if Ei occurs
under α, and let α′ be α otherwise. Then, conditional
that Ei occurs under α, the distribution of α′ is the dis-
tribution of assignments sampled independently from all
variables i.e. it is the same as the distribution of α.
Therefore the probability that any event E occurs under
α′ is equal to the probability that E occurs under α.

Proof. This immediately follows from the principle of
deferred decisions. One only needs to consider the
values of the variables in ei after the resampling and
since these are sampled from the same distribution, α′

can be seen as sampled from the same distribution as

α. Notice that without the conditional that Ei occurs
under α, the lemma is not, in general, correct as then
the resampling does not necessarily take place.

Definition 2.1. A sequence of events E1, . . . , Ek is
called a witness sequence if the first k Resample
calls (recursive or root) of Algorithm are applied to
E1, . . . , Ek, respectively.

Notice that being a witness sequence is a random
property, as whether a sequence of events E1, . . . , Ek
is a witness sequence or not depends on the initial
random sampling of the variables X1, . . . , Xl and the
subsequent resamplings performed by the algorithm. In
particular, if α1, . . . ,αk is the sequence of the first k
assignments that the algorithm outputs and E1, . . . , Ek
is the corresponding witness sequence, then besides α1

being a sampling of X1, . . . , Xl and αi+1 being obtained
by resampling the variables in ei, i = 1, . . . , k − 1, we
necessarily (but not sufficiently) have that Ei occurs
under αi, i = 1, . . . , k. Notice however, that the
events in a witness sequence in addition to occurring
under the respective assignments, must additionally
satisfy conditions that correspond to characteristics of
Algorithm like e.g. that each time the least indexed
event that occurs is chosen and that the while loop in
a call Resample(E) lasts until no neighbor of E occurs
under the current assignment.

Now let P̂n be the probability that Algorithm
performs at least n Resample calls. Obviously,

(2.1) P̂n = Pr

[

there is some witness

sequence of length n

]

.

To bound the probability in (2.1), we will relax the def-
inition of a witness sequence. Towards giving a weaker
definition, we start by describing in the next paragraph
how the events in a witness sequence are structured. All
trees to be considered next (and throughout the paper)
are ordered, i.e. the children of any node are ordered,
and labeled, i.e. their nodes have labels from a given
set. Also forests are comprised of (ordered) sequences
of ordered labeled trees.

Consider first the ordering of events in a witness
sequence that appear within a root call Resample(E),
i.e. within a phase. Each such event, apart from the
root event E , is a neighbor, in the dependency graph, of
the event of the corresponding previous call. Therefore,
by following the order that the events appear in the
recursion stack of Resample(E), we can construct a
labeled rooted tree of out-degree at most ∆ whose root
is labeled with E whereas its non-root nodes are labeled
with the events that appear on the recursion stack on
top of E (possibly E again). The preorder of the labels of

this tree is the order they appear on the stack. Similarly,
a witness sequence corresponds to the preorder of the
labels of an ordered forest of ordered rooted trees, each
of out-degree at most ∆. Notice that by Lemma 2.1,
the indices of the successive root labels are strictly
increasing and the same is true for the labels of the
successive children of a node.

We now define:

Definition 2.2. A sequence of events E1, . . . , Ek is
called a valid sequence if

• there is a rooted forest with at most m trees labeled
with the events in the sequence so that the order
of the events in the sequence coincides with the
preorder of the labels of the forest (the same label
may appear more than once), and

• the label of a non-root node v in the forest is a
neighbor of the label of the parent of v, and

• the indices of the labels of the successive children
of any node are strictly increasing (hence the out-
degree of any node is at most ∆); the same is true
for the indices of the successive root labels of the
forest (hence there are at most m roots), and

• Ei occurs under the assignment αi, i = 1, . . . , k,
where α1 is obtained by sampling X1, . . . , Xl and
αi+1, i = 1, . . . , k − 1 is obtained by resampling the
variables in ei.

Being a valid sequence is also a random property,
however the property of a sequence being a witness
sequence is stronger than the property of it being a
valid sequence. Intuitively the property of being valid
is more general than the property of being witness in
the sense that (a) the label of a child of a node v is not
the least indexed event that occurs under the current
assignment; it is any event that holds under the current
assignment, as long as its index is larger than the index
of the preceding child, (b) the same is true for the root
labels and (c) it is not necessary that all neighbors of
the label of a node v do not occur under the assignment
that immediately follows the assignment corresponding
to the label of the last child of v. However, the (forest-)
tree-like structure that characterizes witness sequences
has been retained in the definition of a valid sequence,
because this tree-like structure is necessary to express
by a recurrence relation in n the probability that a valid
sequence of at least n terms exists. Also exactly as in
witness sequences, in a valid sequence, the indices of the
successive root labels are strictly increasing; the same is
true for the indices of the successive children of a node.

If we now define:

(2.2) Pn = Pr

[

there is some valid

sequence of length n

]

.

Assuming P0 = 1 and using (2.1) and (2.2), we have

(2.3) P̂n ≤ Pn.

Below, we will bound Pn. We first notice that by
repeated applications of Lemma 2.2, any assignment
αi+1, i = 1, . . . , k − 1 in the sequence α1, . . . ,αk of as-
signments that correspond to a valid sequence E1, . . . , Ek
is distributed randomly in the sense that follows the dis-
tribution of α1, i.e. the distribution obtained by sam-
pling the variables X1, . . . , Xl, independently.

A valid phase-sequence is defined as a valid sequence
with the restriction that the corresponding forest is a
tree. Let Qn, n ≥ 1 be the maximum probability over all
events E that a valid phase-sequence whose first event
is E and has length n exists. Let also also Q0 = 1.
Now since the root labels in a valid sequence are strictly
increasing, since the events have cardinalitym and since
we have assumed thatQ0 = 1 we immediately have that:

(2.4) Pn =
∑

n1+···+nm=n
n1,...,nm≥0

Qn1
· · ·Qnm .

Also,

(2.5) Qn ≤ p
∑

n1+···+n∆=n−1
n1,...,n∆≥0

Qn1
· · ·Qn∆

.

Above, the factor p appears because in order for a root
recursive call to execute at least one step, the event
of the root call should occur under the corresponding
assignment (because of the condition in the while loop
of step 2 of Algorithm).

Lemma 2.3. (Phase bound) Qn is asymptotically
bounded from above by

√

1 +
1

∆− 1

(

(

1 +
1

∆− 1

)∆−1

p∆

)n

<

√

1 +
1

∆− 1
(ep∆)n .

Proof. Let Q∗
n be a sequence of numbers such that

Q∗
0 = 1 and for n ≥ 1,

(2.6) Q∗
n = p

∑

n1+···+n∆=n−1
n1,...,n∆≥0

Q∗
n1

· · ·Q∗
n∆

,

i.e. Q∗
n satisfies the recurrence obtained by putting the

equality sign in (2.5). Obviously, Qn ≤ Q∗
n. Let Q(z)

be the OGF of Q∗
n. Multiply both its sides of (2.6) with

zn and sum for n ≥ 1 to get (since Q∗
0 = 1):

(2.7) Q(z)− 1 = zpQ(z)∆

Let now W = W (z) = Q(z)−1. Then by (2.7), we have
W = zp(W + 1)∆.

Let now φ(W) = p(W + 1)∆. Then Equation (2.7)
is equivalent to

(2.8) W (z) = zφ(W (z)).

Now apply Lagrange’s Inversion Formula (see e.g. [9,
Theorem A.2]) to get that for n ≥ 1:

Q∗
n = [zn]W = (1/n)[un−1](φ(u))n = (1/n)pn

(

∆n

n− 1

)

=
1

(∆− 1)n+ 1
pn
(

∆n

n

)

Therefore by Stirling approximation there is a constant
c′ > 0 (depending on ∆) such that:

Q∗
n <ec

′/n 1

(∆− 1)n+ 1

1√
2πn

√

1 +
1

∆− 1

(

(

1 +
1

∆− 1

)∆−1

p∆

)n

<ec
′/n

√

1 +
1

∆− 1

(

(

1 +
1

∆− 1

)∆−1

p∆

)n

<ec
′/n

√

1 +
1

∆− 1
(ep∆)n .

Lemma 2.4. (Algorithm bound) There is a con-
stant A > 1 (depending on ∆) such that Pn is bounded
from above by

(An)m
(

(

1 +
1

∆− 1

)∆−1

p∆

)n

< (An)m (ep∆)n .

Proof. By (2.4) and Lemma 2.3 we have that for some
A > 1 (depending on ∆), Pn is bounded from above by

∑

n1+···+nm=n
n1,...,nm≥0

A

(

(

1 +
1

∆− 1

)∆−1

p∆

)n1

· · ·

· · ·A
(

(

1 +
1

∆− 1

)∆−1

p∆

)nm

≤ (An)m
(

(

1 +
1

∆− 1

)∆−1

p∆

)n

.

Now to have that Pn becomes exponentially small in

n when
(

1 + 1
∆−1

)∆−1
p∆ < 1, we must have that

m logn+m logA+ n log

(

(

1 + 1
∆−1

)∆−1
p∆

)

< 0.

Therefore by inequalities (2.1) and (2.3) we have:

Theorem 2.2. Assuming p and ∆ are constants such

that
(

1 + 1
∆−1

)∆−1
p∆ < 1 (and therefore if ep∆ ≤ 1),

there exists an integer N , which depends linearly on
m, and a constant c ∈ (0, 1) (depending on p and
∆) such that if n/ logn ≥ N then the probability that
Algorithm executes more than n calls of Resample
is < cn.

The integer N in the above theorem is referred to as
a cut-off point because it marks the onset of subex-
ponential probability for the number of “steps” (calls
of Resample) that Algorithm takes before it stops.
Clearly, when the algorithm stops we have found an as-
signment such that none of the events occurs. And since
this happens with probability close to 1 for large enough
n, Theorem 2.1 easily follows.

3 The acyclic chromatic index

3.1 Preliminaries Let G = (V,E) be (simple) graph
with n vertices and m edges. The chromatic index of
G is the least number of colors needed to properly color
its edges, i.e. to color them so that no adjacent edges
get the same color. If ∆ is the maximum degree of G, it
is known that its chromatic index is either ∆ or ∆ + 1
(Vizing [20]).

A cycle of G of length s is a sequence vi, i =
0, . . . , s− 1 of distinct vertices so that ∀i = 0, . . . s− 1,
vi and vi+1 (mod s) are connected by an edge. The least
number of colors needed to properly color the edges of
G so that no cycle is bichromatic, i.e. so that there is
no cycle whose edges are colored with only two colors,
is called the acyclic chromatic index of G. Notice
that in any properly colored graph, any cycle of odd
length is necessarily at least trichromatic, i.e. its edges
have three or more colors. It has been conjectured
(J. Fiamčik [8] and Alon et al. [3]) that the acyclic
chromatic index of any graph with maximum degree
∆ is at most ∆ + 2. A number of successively tighter
upper bounds to the acyclic chromatic index has been
provided in the literature. Most recently, Esperet and
Parreau [7] proved that the acyclic chromatic index is at
most 4(∆− 1). Their proof makes use of the technique
of Moser and Tardos [14] that constructively proves
the Lóvasz Local Lemma. Actually, they describe a
randomized algorithm and they show that it produces
an acyclic edge coloring with positive probability. An
approach using the entropy compression method was

also used for the vertex analogue of the edge chromatic
number by Gonçalves et al. [11]

In this section, we modify the Esperet and Parreau
[7] technique in two important aspects: (a) instead
of the Moser and Tardos [14] algorithm, we use its
antecedent version by Moser [13] and (b) we analyze it
by using the approach described in the previous section,
which avoids the counting of witness-trees and depends
only on probability estimates. Also, our technique
does not refer to partial colorings. Thus we get a
direct probabilistic analysis that yields the upper bound
of ⌈3.74(∆ − 1)⌉ + 1 for the acyclic chromatic index,
improving over 4(∆ − 1) in [7]. Generalizing to graphs
with bounded girth, we also get improved numerical
results some specific values of which are sampled in
Figure 2.

Girth Number of colors Previously known [7]
- 3.731(∆− 1) + 1 4(∆− 1)
7 3.326(∆− 1) + 1 3.737(∆− 1)
53 2.494(∆− 1) + 1 3.135(∆− 1)
219 2.323(∆− 1) + 1 3.043(∆− 1)

Figure 2: Our results

An interesting aspect of this application is that the
probability of the “undesirable” events do not have a
uniform upper bound, i.e. it constitutes a case of the
asymmetric LLL.

To be more specific, the algorithm that we will give
in the next subsection obviously produces an acyclic-
edge coloring if it ever stops. We analyze it, along the
same lines of the previous section, to prove that the
probability of the algorithm taking more than n steps
is exponentially small in n.

To facilitate notation, we call a proper edge-coloring
s-acyclic if it contains no bichromatic cycle of length s
or less (s is an even natural). We call the corresponding
graph parameter the s-acyclic chromatic index.

We start by mentioning the following fact, proved
in Esperet and Parreau [7]:

Fact 3.1. 2(∆−1)+1 = 2∆−1 colors suffice to produce
a 4-acyclic edge coloring of G.

Proof. [Sketch] Successively, in any order, color the
edges using, at each step, a color that does not destroy
4-acyclicity (hence, by definition, neither properness).
To show that 2(∆ − 1) + 1 colors suffice, notice that
for each edge e, one has to avoid the colors of all edges
adjacent to e, and also for each pair of homochromatic
(of the same color) edges e1, e2 adjacent to e at different
endpoints, one has to avoid the color of the at most
one edge e3 that together with e, e1, e2 define a cycle of

length 4. So at each step, one has to avoid 2(∆ − 1)
colors.

Assume now that we have K = ⌈(2+γ)(∆−1)⌉+1 col-
ors, where γ is a nonnegative constant to be computed,
so that the randomized Moser-type algorithm that we
will give will halt with positive probability. Actually for
the value of γ to be computed, the probability of it mak-
ing more than n steps will be shown to be exponentially
small in n.

We assume below that the edges are ordered accord-
ing to a fixed ordering.

Notice that the number of cycles of length 2k that
contain a given edge e is at most (∆ − 1)2k−2. Also,
we assume that cycles that contain a given edge e are
ordered according to a fixed ordering.

Below we will first give some results that refer to
the distribution of the colorings obtained by certain
randomized processes we describe below:

Sample

• Successively color the edges ofG (in their ordering),
choosing, at each step, among the colors that do not
destroy 4-acyclicity (hence, by definition, neither
properness), one uniformly at random.

End Sample

Fact 3.2. Let e, e1, . . . , en be edges and c, c1, . . . , cn be
colors. Assume e ̸= ei, i = 1, . . . , n. Then the probabil-
ity that Sample assigns the color c to e conditional it
assigns the colors c1, . . . , cn to e1, . . . , en, respectively,
is at most 1

γ(∆−1)+1 .

Proof. [Sketch] If the probability of assigning c to e,
conditional c1, . . . , cn are assigned to e1, . . . , en, respec-
tively, is positive, then c is among the colors that can
be assigned to e when Sample assigns a color to e. The
result follows since by Fact 3.1 we have at each step of
Sample at least ⌈γ(∆− 1)+ 1⌉ colors to choose from.

Given now cycles C1, . . . , Ck of G consider the following
randomized process:

Sample & Cycle-Recolor

1. Successively color the edges ofG (in their ordering),
choosing, at each step, among the colors that do not
destroy 4-acyclicity, one uniformly at random.

2. For i = 1, to k, if Ci is bichromatic, do

• recolor the edges of Ci (in their ordering) so
that at each step the color of the current edge
of Ci is chosen uniformly at random between
the colors that do not destroy 4-acyclicity.

End Sample & Cycle-Recolor

Lemma 3.1. (Randomness lemma) Let e, e1, . . . , en
be edges and c, c1, . . . , cn be colors. Assume e ̸= ei, i =
1, . . . , n. Then the probability that Sample & Cycle-
Recolor assigns the color c to e, conditional it assigns
the colors c1, . . . , cn to e1, . . . , en, respectively, and also
conditional that the output assignment is produced by
going through phase (2) and without exiting the for loop
is at most 1

γ(∆−1)+1 .

Proof. [Sketch] Similarly as in Fact 3.2. The going
through phase (2) without exiting the for loop is re-
quired to guarantee that whenever we expose informa-
tion that might enlarge the upper bound 1

γ(∆−1)+1 on
an edge’s e probability of getting a specified color, then
e is recolored, to retain this upper bound.

Given a sequence C1, . . . , Ck of cycles, for the rest
of this paper, and perhaps by abuse of the standard
terminology, we define:

Definition 3.1. A 4-acyclic coloring produced by
Sample & Cycle-Recolor as applied to C1, . . . , Ck

by going through phase (2) without exiting the for loop
is called random.

A consequence of Lemma 3.1 is:

Lemma 3.2. The probability for a random coloring that
an edge e belongs in a cycle of length 2k is at most
1
γ

(

1− e−
1

γ

)2k−3
.

Proof. At first, we will prove that given an edge e′ =
{u, v}, the probability that some other edge stemming
from v has a specific color (say white) is bounded by

1 − e−
1

γ . Indeed, the probability that one edge ̸= e′

stemming from v does not have a specified color is at
least

(3.9) 1− 1

γ(∆− 1) + 1
,

so the probability that none of them (at most ∆− 1 in
number) is at least

(

1− 1

γ(∆− 1) + 1

)∆−1

.

Now we use the inequality

1− x > e−
x

1−x , ∀x < 1, x ̸= 0

(see e.g. [5, inequality (4.5.7)]), for x = 1
γ(∆−1)+1 , which

implies, after elementary operations, that the expression

Coloring Algorithm

1: Color all edges following their ordering and
choosing at each step a color uniformly at
random among those that retain 4-acyclicity.

2: while some edge belongs to a bichromatic cycle
let e be the least such do

3: Recolor(e)
4: end while

Recolor(e)

1: Let C be the first bichromatic cycle that con-
tains e. Recolor the edges of C (following
their ordering) choosing at each step uniformly
at random a color among those that retain 4-
acyclicity.

2: while some edge of C belongs to a bichromatic
cycle, let e′ be the least such do

3: Recolor(e′)
4: end while

Figure 3: Randomized coloring algorithm

in (3.9) is at least e−
1

γ , so the probability that a white

edge ̸= e′ stemming from v does exist is at most 1−e−
1

γ .
Suppose now that e′ is colored red. A bichromatic

cycle of length 2k can start with∆−1 ways, say with the
color white, then for each of the 2k−3 next steps there is
probability at most 1− e−

1

γ that the cycle will continue
in the same pattern (red, white, red. . .), and finally for
the last edge to be correctly colored the probabliity is
at most

1

γ(∆− 1) + 1
<

1

γ(∆− 1)

(the last edge, whose both endpoints are determined,
must be white). So, overall the probability that a
bichromatic cycle with 2k edges which contains e′ exists,
is at most

(∆− 1)
(

1− e−
1

γ

)2k−3 1

γ(∆− 1)
=

1

γ

(

1− e−
1

γ

)2k−3
,

which completes the proof.

3.2 The algorithm We consider the randomized
algorithm in Figure 3, which is the algorithm we will
analyze:

Obviously, if Coloring Algorithm ever stops it
outputs an acyclic edge-coloring of G. In analogy to
Lemma 2.1, we have:

Lemma 3.3. Consider an arbitrary call of
Recolor(e). Let E be the set of edges that do

not belong to any bichromatic cycle at the beginning of
this call. Then, if the call terminates, the edges in E
will also not belong to a bichromatic cycle at the end of
the call.

Proof. Suppose some edge e′ in E becomes part of a
bichromatic cycle during the call. But this means that
e′ belonged to a cycle C that was recolored during a
call Recolor(e′′) which either coincides with or is a
recursive call within our original call Recolor(e). But
the call Recolor(e′′) will not terminate until all edges
in C do not belong to a bichromatic cycle. Assuming
Recolor(e) terminates, Recolor(e′′) must have also
terminated. The same argument can be reapplied
every time e′ becomes part of bichromatic cycle during
Recolor(e).

Let now a phase be the execution period within a root
call of Recolor. Notice that at the end of each phase,
the edge e to which the root call of Recolor that
started the phase is applied does not belong to any
bichromatic cycle. Therefore, using the previous lemma,
we get:

Corollary 3.1. Coloring Algorithm can have at
most as many phases as the number of the edges of the
graph.

3.3 The recurrence relation For language conve-
nience, and also to stress the analogy with the previous
section, we will refer to an edge also as an event, which
occurs when the edge belongs to a bichromatic cycle.

Given a random (in the sense of Definition 3.1) 4-
acyclic coloring α and a cycle C which is bichromatic
under α, the process of recoloring the edges of C by
choosing at each step uniformly at random a color so
that 4-acyclicity is retained is called a random recoloring
of the cycle C. We thus obtain a random coloring.
Define:

Definition 3.2. A sequence of events e1, . . . , es is
called a witness sequence if the first s Recolor calls
(recursive or root) of Coloring Algorithm are ap-
plied to e1, . . . , es, respectively.

Now let P̂n be the probability that Coloring Algo-
rithm performs at least n Recolor calls. Obviously,

(3.10) P̂n = Pr

[

there is some witness

sequence of length n

]

.

Define:

Definition 3.3. A sequence of events e1, . . . , es is
called a valid sequence if

• there is a sequence of cycles C1, . . . , Cs of length
2k1, . . . 2ks, respectively, and

• there is a rooted forest, labelled with events from
the sequence, so that the order of the events in the
sequence coincides with the preorder of the labels of
the forest, and

• if the parent of a node w in the forest is v, and their
respective labels are ei and ej then ei belongs to Cj,
and

• the labels of the successive children of any node are
strictly increasing (in the ordering of edges), and
therefore a node labelled with ei can have at most
2ki children, and

• the successive root labels of the forest are increasing
(and therefore there are at most m trees), and

• the cycles C1, . . . , Cs are bichromatic for the color-
ings αi, i = 1, . . . , s, respectively, where α1 is a ran-
dom coloring (in the sense of Definition 3.1) and
αi+1, i = 1, . . . , s − 1 is obtained from αi by recol-
oring Ci.

Notice that the random property of being a valid
sequence is weaker than the random property of being
a witness sequence. Besides the differences pointed out
for the respective definitions of the previous section,
here we have that for an event e in a witness sequence,
because it is an event where a call of Recolor is
applied, its corresponding cycle C is the first cycle that
contains e and is bichromatic under the current coloring.
No such demand on being the first is made on the cycles
of a valid sequence.

If we now define:

(3.11) Pn = Pr

[

there is some valid

sequence of length n

]

.

Assuming P0 = 1 and from (3.10) and (3.11), we have

P̂n ≤ Pn.

Below, we will bound Pn. We first notice that any
coloring αi, i = 1, . . . , s in the sequence α1, . . . ,αs of
colorings that correspond to a valid sequence e1, . . . , es
is random in the sense of Definition 3.1.

Define a valid phase-sequence to be a valid sequence
with the restriction that the corresponding forest is a
tree. Let Qn, n ≥ 1 be the maximum probability over
all events e that a valid phase-sequence whose first event
is e and has length n exists. Let also also Q0 = 1.
Now since the root labels in a valid sequence are strictly

increasing, since the events have cardinalitym and since
we have assumed thatQ0 = 1 we immediately have that:

(3.12) Pn ≤
∑

n1+···+nm=n
n1,...,nm≥0

Qn1
· · ·Qnm .

Also, because by Lemma 3.2 the probability of an edge
e belonging to a bichromatic cycle of length 2k for a

random coloring is 1
γ

(

1− e−
1

γ

)2k−3
, we have:

Qn ≤
∑

k≥3

[

1

γ

(

1− e−
1

γ

)2k−3

·
∑

n1+···+n2k=n−1
n1,...,n2k≥0

Qn1
· · ·Qn2k

]

.

(3.13)

3.4 Analytic asymptotics Consider the recurrence
relation:

Q∗
n =

∑

k≥3

[

1

γ

(

1− e−
1

γ

)2k−3

·
∑

n1+···+n2k=n−1
n1,...,n2k≥0

Q∗
n1

· · ·Q∗
n2k

]

,

(3.14)

with Q∗
0 = 1. Obviously Qn ≤ Q∗

n. We will asymptot-
ically analyze the coefficients of the OGF Q(z) of Q∗

n.
Towards this end, multiply both sides of the first equal-
ity in (3.14) with zn and sum for n = 1, . . . ,∞ to get

(3.15) Q(z)− 1 =
∑

k≥3

[

1

γ

(

1− e−
1

γ

)2k−3
zQ(z)2k

]

,

with Q(0) = 1. Setting W (z) = Q(z)− 1 we get
(3.16)

W (z) =
∑

k≥3

[

1

γ

(

1− e−
1

γ

)2k−3
z(W (z) + 1)2k

]

,

with W (0) = 0. For notational convenience, set W =
W (z). Then from (3.16) we get:

W =z
1

γ

(

1− e−
1

γ

)3
(W + 1)6(3.17)

· 1

1−
(

1− e−
1

γ

)2
(W + 1)2

.

Set now

φ(x) =
1

γ

(

1− e−
1

γ

)3
(x+ 1)6(3.18)

· 1

1−
(

1− e−
1

γ

)2
(x+ 1)2

,

to get from (3.17):

(3.19) W = zφ(W).

By [9, Proposition IV.5] (it is trivial to check that the
hypotheses in that Theorem are satisfied for γ > 0), we
obtain that , if we set

(3.20) ρ =
φ(τ)

τ
,

where τ is the (necessarily unique) solution in the
interval (0, R), where R = 1

(

1−e
−

1
γ

) − 1 is the radius

of convergence of the series representing φ at 0, of the
characteristic equation (in τ):

(3.21) φ(τ) − τφ′(τ) = 0,

then [zn]u ◃▹ ρn (i.e. lim sup ([zn])1/n = ρ, see [9,
IV.3.2]).

Now by a simple search (through Maple, for the
code see [10]) we found that for γ = 1.73095, the unique
positive solution of (3.21) in the radius of convergence
is τ = 0.1747094762, and this value of τ gives to ρ in
(3.19) ρ = 0.9999789027 < 1. Therefore by making use
of (3.12) and working as in the previous section, we get:

Theorem 3.1. Assuming ∆, the maximum degree of
the graph G, is constant, and given the availability of at
least 3.74(∆− 1) + 1 colors, there exists an integer N ,
which depends linearly on m, the number of edges of G,
and a constant ρ ∈ (0, 1) such that if n/ logn ≥ N then
the probability that Coloring Algorithm executes
more than n calls of Recolor is < ρn.

Now if the graph has girth 2l− 1 for l ≥ 4, the previous
arguments carry over with minimal changes. Namely,
equation (3.14) becomes:

Q∗
n =

∑

k≥l

[

1

γ

(

1− e−
1

γ

)2k−3

∑

n1+···+n2k=n−1
n1,...,n2k≥0

Q∗
n1

· · ·Q∗
n2k

]

, Q∗
0 = 1.

(3.22)

Also in (3.15) and (3.16), the starting point of the
summation is changed from 3 to l. Moreover, equation
(3.17) becomes:

W = z
1

γ

(

1− e−
1

γ

)2l−3
(W + 1)2l

· 1

1−
(

1− e−
1

γ

)2
(W + 1)2

(3.23)

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

0 50 100 150 200 250
Girth

γ

Figure 4: γ as a function of girth

and equation (3.18) becomes:

φ(x) =
1

γ

(

1− e−
1

γ

)2l−3
(x + 1)2l

· 1

1−
(

1− e−
1

γ

)2
(x+ 1)2

.
(3.24)

Working as before, we get numerical results depicted in
Figure 4 with sample specific values explicitly given in
Figure 2.

4 Discussion

We plan to apply our technique to other problems, e.g.
to the vertex coloring problem where results were very
recently announced by Gonçalves et al. [11].

Acknowledgements

We are grateful to J. Rué for showing to us how to
deal with the asymptotics of the coefficients of inverse
generating functions. We are grateful to D. Mitsche on
one hand and to D. Achlioptas and F. Iliopoulos, on
the other, for pointing out errors in previous versions
of this paper; the second and fourth authors are also
indebted to the latter two for initiating them to this
line of research. We are indebted to S. Messaris and
Z. Terzopoulou, both undergraduate students, for their
valuable comments during informal presentations of the
results in this work.

References

[1] D. Achlioptas and F. Iliopoulos. Untitled notes. 2013.
Unpublished private communication.

[2] Noga Alon. A parallel algorithmic version of the local
lemma. Random Structures & Algorithms, 2(4):367–
378, 1991.

[3] Noga Alon, Benny Sudakov, and Ayal Zaks. Acyclic
edge colorings of graphs. Journal of Graph Theory,
37(3):157–167, 2001.

[4] József Beck. An algorithmic approach to the Lovász
local lemma. I. Random Structures & Algorithms,
2(4):343–365, 1991.

[5] NIST Digital Library of Mathematical Functions.
http://dlmf.nist.gov/4.5.7, Release 1.0.9 of 2014-
08-29. Online companion to [?].

[6] Paul Erdős and László Lovász. Problems and results on
3-chromatic hypergraphs and some related questions.
Infinite and finite sets, 10:609–627, 1975.

[7] Louis Esperet and Aline Parreau. Acyclic edge-
coloring using entropy compression. Eur. J. Comb.,
34(6):1019–1027, 2013.

[8] J. Fiamčik. The acyclic chromatic class of a graph (in
Russian). Math. Slovaca, 28:139–145, 1978.

[9] Philippe Flajolet and Robert Sedgewick. Analytic
Combinatorics. Cambridge University Press, New
York, NY, USA, 1 edition, 2009.

[10] Ioannis Giotis, Lefteris Kirousis, Kostas I.
Psaromiligkos, and Dimitrios M. Thilikos. Maple code.
http://www.lsi.upc.edu/~igiotis/bichromatic_calc.zip.

[11] Daniel Gonçalves, Mickaël Montassier, and Alexandre
Pinlou. Entropy compression method applied to graph
colorings, 2014. arXiv:1406.4380.

[12] Donald Ervin Knuth. Stable marriage and its relation
to other combinatorial problems: An introduction to
the mathematical analysis of algorithms, volume 10.
American Mathematical Soc., 1997.

[13] Robin A Moser. A constructive proof of the Lovász
Local Lemma. In Proceedings of the 41st annual ACM
Symposium on Theory of Computing, pages 343–350.
ACM, 2009.

[14] Robin A Moser and Gábor Tardos. A constructive
proof of the general Lovász Local Lemma. Journal of
the ACM (JACM), 57(2):11, 2010.

[15] Joel Spencer. Asymptotic lower bounds for Ramsey
functions. Discrete Mathematics, 20(0):69 – 76, 1977.

[16] Joel Spencer. Ten lectures on the probabilistic method,
volume 64. SIAM, 1994.

[17] Joel Spencer. Robin Moser makes
Lovász Local Lemma algorithmic! 2010.
http://cs.nyu.edu/spencer/moserlovasz1.pdf.

[18] Aravind Srinivasan. Improved algorithmic versions
of the Lovász Local Lemma. In Proceedings of the
nineteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 611–620. Society for Industrial and
Applied Mathematics, 2008.

[19] Terence Tao. Mosers entropy compression argument.
2009. http://terrytao.wordpress.com/2009/08/05/
mosers-entropy-compression-argument.

[20] Vadim G Vizing. Critical graphs with a given chro-
matic class. Diskret. Analiz, 5(1):9–17, 1965.

http://dlmf.nist.gov/4.5.7
http://www.lsi.upc.edu/~igiotis/bichromatic_calc.zip
http://arxiv.org/abs/1406.4380
http://cs.nyu.edu/spencer/moserlovasz1.pdf

	Introduction
	Algorithmic Lovász Local Lemma
	The acyclic chromatic index
	Preliminaries
	The algorithm
	The recurrence relation
	Analytic asymptotics

	Discussion

