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Abstract

We continue the investigation of problems concerning
correlation clustering or clustering with qualitative in-
formation, which is a clustering formulation that has
been studied recently [5, 7, 8, 3]. The basic setup here is
that we are given as input a complete graph on n nodes
(which correspond to nodes to be clustered) whose edges
are labeled + (for similar pairs of items) and − (for dis-
similar pairs of items). Thus we have only as input
qualitative information on similarity and no quantita-
tive distance measure between items. The quality of a
clustering is measured in terms of its number of agree-
ments, which is simply the number of edges it correctly
classifies, that is the sum of number of − edges whose
endpoints it places in different clusters plus the number
of + edges both of whose endpoints it places within the
same cluster.

In this paper, we study the problem of finding clus-
terings that maximize the number of agreements, and
the complementary minimization version where we seek
clusterings that minimize the number of disagreements.
We focus on the situation when the number of clus-
ters is stipulated to be a small constant k. Our main
result is that for every k, there is a polynomial time
approximation scheme for both maximizing agreements
and minimizing disagreements. (The problems are NP-
hard for every k ≥ 2.) The main technical work is for
the minimization version, as the PTAS for maximizing
agreements follows along the lines of the property tester
for Max k-CUT from [13].

In contrast, when the number of clusters is not
specified, the problem of minimizing disagreements was
shown to be APX-hard [7], even though the maximiza-
tion version admits a PTAS.

1 Introduction

In this work, we investigate problems concerning an ap-
pealing formulation of clustering called correlation clus-
tering or clustering using qualitative information that
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has been studied recently in several works, including
[6, 17, 5, 7, 8, 3, 2, 4]. The basic setup here is to clus-
ter a collection of n items given as input only qualita-
tive information concerning similarity between pairs of
items; specifically for every pair of items, we are given
a (Boolean) label as to whether those items are similar
or dissimilar. We are not provided with any quantita-
tive information on how different pairs of elements are,
as is typically assumed in most clustering formulations.
These formulations take as input a metric on the items
and then aim to optimize some function of the pairwise
distances of the items within and across clusters. The
objective in our formulation is to produce a partition-
ing into clusters that places similar objects in the same
cluster and dissimilar objects in different clusters, to the
extent possible.

An obvious graph-theoretic formulation of the prob-
lem is the following: given a complete graph on n nodes
with each edge labeled either “+” (similar) or “−” (dis-
similar), find a partitioning of the vertices into clusters
that agrees as much as possible with the edge labels.
The maximization version, call it MaxAgree, seeks to
maximize the number of agreements: the number of +
edges inside clusters plus the number of − edges across
clusters. The minimization version, denoted MinDis-
Agree, aims to minimize the number of disagreements:
the number of − edges within clusters plus the number
of + edges between clusters.

In this paper, we study the above problems when
the maximum number of clusters that we are allowed to
use is stipulated to be a fixed constant k. We denote the
variants of the above problems that have this constraint
as MaxAgree[k] and MinDisAgree[k]. We note that,
unlike most clustering formulations, the MaxAgree
and MinDisAgree problems are not trivialized if we
do not specify the number of clusters k as a parameter
— whether the best clustering uses few or many clusters
is automatically dictated by the edge labels. However,
the variants we study are also interesting formulations,
which are well-motivated in settings where the number
of clusters might be an external constraint that has
to be met, even if there are “better” clusterings (i.e.,
one with more agreements) with a different number of
clusters. Moreover, the existing algorithms for, say
MinDisAgree, cannot be modified in any easy way



to output a quality solution with at most k clusters.
Therefore k-clustering variants pose new, non-trivial
challenges that require different techniques for their
solutions.

In the above description, we have assumed that ev-
ery pair of items is labeled as + or − in the input. In
a more general variant, intended to capture situations
where the classifier providing the input might be unable
to label certain pairs of elements are similar or dissim-
ilar, the input is an arbitrary graph G together with
± labels on its edges. We can again study the above
problems MaxAgree[k] (resp. MinDisAgree[k]) with
the objective being to maximize (resp. minimize) the
number of agreements (resp. disagreements) on edges
of E (that is, we do not count non-edges of G as ei-
ther agreements or disagreements). In situations where
we study this more general variant, we will refer to
these problems as MaxAgree[k] on general graphs and
MinDisAgree[k] on general graphs. When we don’t
qualify with the phrase “on general graphs”, we will
always mean the problems on complete graphs.

Our main result in this paper is a polynomial time
approximation scheme (PTAS) for MaxAgree[k] as
well as MinDisAgree[k] for k ≥ 2. We now discuss
prior work on these problems, followed by a more
detailed description of results in this paper.

1.1 Previous and related work The above prob-
lem seems to have been first considered by Ben-Dor et
al. [6] motivated by some computational biology ques-
tions. Later, Shamir et al. [17] studied the compu-
tational complexity of the problem and showed that
MaxAgree (and hence also MinDisAgree), as well
as MaxAgree[k] (and hence also MinDisAgree[k])
for each k ≥ 2 is NP-hard. They, however, used the
term “Cluster Editing” to refer to this problem.

Partially motivated by some machine learning prob-
lems concerning document classification, Bansal, Blum,
and Chawla [5] also independently formulated and
considered this problem. In particular, they initi-
ated the study of approximate solutions to MinDis-
Agree and MaxAgree, and presented a PTAS for
MaxAgree and a constant factor approximation algo-
rithm for MinDisAgree (the approximation guaran-
tee was a rather large constant, though). They also
noted a simple factor 3 approximation algorithm for
MinDisAgree[2]. Charikar, Guruswami and Wirth [7]
proved that MinDisAgree is APX-hard, and thus one
cannot expect a PTAS for the minimization problem
similar to the PTAS for MaxAgree. They also gave a
factor 4 approximation algorithm for MinDisAgree by
rounding a natural LP relaxation using the region grow-
ing technique. Recently, Ailon et al [2] presented an

elegant combinatorial factor 3 approximation algorithm
with a clever analysis for MinDisAgree; they also get
a factor 5/2 approximation using LP techniques on top
of their basic approach.

The problems on general graphs have also received
attention. It is known that both MaxAgree and
MinDisAgree are APX-hard [5, 7]. Using a con-
nection to minimum multicut, several groups [7, 11,
12] presented an O(log n) approximation algorithm for
MinDisAgree. In fact, it was noted in [12] that
the problem is as hard to approximate as minimum
multicut (and so this log n factor seems very hard to
improve). For the maximization version, algorithms
with performance ratio better than 0.766 are known for
MaxAgree [7, 18]. The latter work by Swamy [18]
shows that a factor 0.7666 approximation can also be
achieved when the number of clusters is specified (i.e.,
for MaxAgree[k] for k ≥ 2).

Another problem that has been considered, let us
call it MaxCorr, is that of maximizing correlation, de-
fined to be the difference between the number of agree-
ments and disagreements. A factor O(log n) approxima-
tion for MaxCorr on complete graphs is presented in
[16, 8], and an O(log θ(G)) approximation is presented
in [3] for general graphs G, where θ(·) is the Lovász
Theta Function. Alon et al [3] showed an integrality gap
of Ω(log n) for the standard semidefinite program relax-
ation for MaxCorr (the largest such integrality gap
for a graph is called the Grothendieck constant of the
graph — thus these results establish the Grothendieck
constant of the complete graph on n vertices to be
Θ(log n)). Very recently, Arora et al [4] proved a factor
logα n inapproximability result for the weighted version
of MaxCorr for some α > 0.

1.2 Our results The only previous approximation
for MinDisAgree[k] was a factor 3 approximation
algorithm for the case k = 2 [5]. The problems were
shown to be NP-hard for every k ≥ 2 in [17] using
a rather complicated reduction. In this paper, we will
provide a much simpler NP-hardness proof and prove
that both MaxAgree[k] and MinDisAgree[k] admit
a polynomial time approximation scheme for every k ≥
2.1 The existence of a PTAS for MinDisAgree[k]
is perhaps surprising in light of the APX-hardness of
MinDisAgree when the number of clusters is not
specified to be a constant (recall that the maximization
version does admit a PTAS even when k is not specified).

It is often the case that minimization versions of

1Our approximation schemes will be randomized and deliver
a solution with the claimed approximation guarantee with high
probability. For simplicity, we do not explicitly mention this from
now on.



problems are harder to solve compared to their com-
plementary maximization versions. The APX-hardness
of MinDisAgree despite the existence of a PTAS for
MaxAgree is a notable example. The difficulty in
these cases is when the optimum value of the minimiza-
tion version is very small, since then even a PTAS for the
complementary maximization problem need not provide
a good approximation for the minimization problem. In
this work, we first give a PTAS for MaxAgree[k]. This
algorithm uses random sampling and follows closely
along the lines of the property testing algorithm for
Max k-Cut due to [13]. We then develop a PTAS for
MinDisAgree[k], which is our main result. This re-
quires more work and the algorithm returns the bet-
ter of two solutions, one of which is obtained using the
PTAS for MaxAgree[k].

The difficulty in getting a PTAS for the minimiza-
tion version is similar to that faced in the problem of
Min k-sum clustering, which has the complementary ob-
jective function to Metric Max k-Cut. We remark that
while an elegant PTAS for Metric Max k-Cut due to
de la Vega and Kenyon [10] has been known for sev-
eral years, only recently has a PTAS for Min k-sum
clustering been obtained [9]. We note that the case of
Min 2-sum clustering though was solved in [14] soon
after the Metric Max Cut algorithm of [10], but the
case k > 2 appeared harder. Similarly to this, for
MinDisAgree[k], we are able to quite easily give a
PTAS for the 2-clustering version using the algorithm
for MaxAgree[2], but we have to work harder for the
case of k > 2 clusters. Some of the difficulty that sur-
faces when k > 2 is detailed in Section 4.1.

In Section 5, we also note some results on the com-
plexity of MaxAgree[k] and MinDisAgree[k] on gen-
eral graphs — these are easy consequences of connec-
tions to problems like Max CUT and graph colorability.

Our work seems to nicely complete the understand-
ing of the complexity of problems related to correlation
clustering. Our algorithms not only achieve excellent
approximation guarantees but are also sampling-based
and are thus simple and quite easy to implement.

2 NP-hardness of MinDisAgree and MaxAgree

In this section we show that the exact versions of
problems we are trying to solve are NP-hard. An NP-
hardness result for MaxAgree on complete graphs was
shown in [5]; however their reduction crucially relies on
the number of clusters growing with the input size, and
thus does not yield any hardness when the number of
clusters is a fixed constant k. It was shown by Shamir,
Sharan, and Tsur [17], using a rather complicated
reduction, that these problems are NP-hard for each
fixed number k ≥ 2 of clusters. We will provide a

short and intuitive proof that MinDisAgree[k] and
MaxAgree[k] are NP-hard.

Clearly it suffices to establish the NP-hardness of
MinDisAgree[k] since MaxAgree[k] can be easily
reduced on a complimentary graph. We will first
establish NP-hardness for k = 2, the case for general
k will follow by a simple “padding” with (k − 2) large
collection of nodes with + edges between nodes in each
collection and − edges to everywhere else.

Theorem 2.1. MinDisAgree[2] on complete graphs
is NP-hard.

Proof. We know that Graph Min Bisection, namely
partitioning the vertex set of a graph into two equal
halves so that the number of edges connecting vertices
in different halves is minimized, is NP-hard. From
an instance G of Min Bisection with n(even) vertices
we obtain a complete graph G′ using the following
polynomial time construction.

Start with G and label all existing edges of G as +
edges in G′ and non-existing edges as − edges. For each
vertex v create an additional set of n vertices. Let’s call
these vertices together with v, a “group” Vv. Connect
with + edges all pairs of vertices within Vv. All other
edges with one endpoint in Vv are labeled as − edges
(except those already labeled).

We will now show that any 2-clustering of G′ with
the minimum number of disagreements, has 2 clusters
of equal size with all vertices of any group in the same
cluster. Consider some optimal 2-clustering W with 2
clusters W1 and W2 such that |W1| �= |W2| or not all
vertices of some group are in the same cluster. Pick
some group Vv such that not all its vertices are assigned
in the same cluster. If such a group cannot be found,
pick a group Vv from the larger cluster. Place all the
vertices of the group in the same cluster obtaining W ′

such that ||W ′
1| − |W ′

2|| is minimized.
Let’s assume that V 1

v vertices of group Vv were in
W1 and V 2

v in W2. Wlog, let’s assume that W ′ is
obtained by moving the V 1

v group vertices in cluster
W2.

W ′
1 = W1 \ V 1

v ,W ′
2 = W2 ∪ V 1

v

We now observe the following facts about the dif-
ference in the number of disagreements between W ′ and
W .

• Clearly the number of disagreements between ver-
tices not in Vv and between one vertex in V 2

v with
one in W ′

1 remains the same.

• The number of disagreements is decreased by |V 1
v | ·

|V 2
v | based on the fact that all edges within Vv are

+ edges.



• It is also decreased by at least |V 1
v | · |W ′

1| − (n− 1)
based on the fact that all but at most n − 1 edges
connecting vertices of Vv to the rest of the graph
are − edges.

• The number of disagreements increases at most
|V 1

v | · |W2 \V 2
v | because (possibly) all of the vertices

in V 1
v are connected with − edges with vertices in

W2 outside their group.

Overall, the difference in the number of disagree-
ments is at most |V 1

v | · |W2 \ V 2
v | − |V 1

v | · |V 2
v | − |V 1

v | ·
|W ′

1| + (n − 1). Notice that since ||W ′
1| − |W ′

2|| was
minimized it must be the case that |W ′

1| ≥ |W2 \ V 2
v |.

Moreover since a group has an odd number of vertices
and the total number of vertices of G′ is even, it follows
that |W ′

1| �= |W2 \V 2
v | and |W ′

1|− |W2 \V 2
v | ≥ 1. There-

fore the total number of disagreements increases at most
(n− 1)−|V 1

v | · (|V 2
v |+1). Since |V 1

v |+ |V 2
v | = n+1 and

V 1
v cannot be empty, it follows that |V 1

v | · (|V 2
v |+1) ≥ n

and the number of disagreements strictly decreases con-
tradicting the optimality of W .

Therefore the optimal solution to the
MinDisAgree[2] instance has 2 clusters of equal
size and all vertices of any group are contained in a
single cluster. It is now trivial to see that an optimal
solution to the Min Bisection problem can be easily
derived from the MinDisAgree[2] solution which
completes the reduction.

We are now able to easily derive the following NP-
hardness result.

Theorem 2.2. For every k ≥ 2, the problems
MaxAgree[k] and MinDisAgree[k] on complete
graphs are NP-hard.

Proof. Consider an instance of the MinDisAgree[2]
problem on a graph G with n vertices. Create a graph
G′ by adding to G, k−2 “groups” of n+1 vertices each.
All edges within a group are marked as + edges, while
the remaining edges are marked as − edges.

Consider now a k-clustering of G′ such that the
number of disagreements is minimized. It is easy to see
that all the vertices of a group must make up one cluster.
Also observe that any of the original vertices cannot
end up in one group’s cluster since that would induce
n+1 disagreements, strictly more than it could possibly
induce in any of the 2 remaining clusters. Therefore the
2 non-group clusters are an optimal 2-clustering of G.
The theorem easily follows.

3 PTAS for maximizing agreement with k
clusters

In this section we will present a PTAS for

MaxAgree[k] for every fixed constant k. Our algo-
rithm follows closely the PTAS for Max k-CUT by Gol-
dreich et al.[13]. In the next section, we will present
our main result, namely a PTAS for MinDisAgree[k],
using the PTAS for MaxAgree[k] together with addi-
tional ideas.2

Theorem 3.1. For every k ≥ 2, there is a polynomial
time approximation scheme for MaxAgree[k].

Proof. We first note that for every k ≥ 2, and every
instance of MaxAgree[k], the optimum number OPT
of agreements is at least n2/16. Let n+ be the number
of positive edges, and n− =

(
n
2

) − n+ be the number of
negative edges. By placing all vertices in a single cluster,
we get n+ agreements. By placing vertices randomly
in one of k clusters, we get an expected (1 − 1/k)n−
agreements just on the negative edges. Therefore
OPT ≥ max{n+, (1 − 1/k)n−} ≥ (1 − 1/k)

(
n
2

)
/2 ≥

n2/16. The proof now follows from Theorem 3.2 which
guarantees a solution within additive εn2 of OPT for
arbitrary ε > 0.

Theorem 3.2. On input ε, δ and a labeling L of the
edges of a complete graph G with n vertices, with
probability at least 1 − δ, algorithm MaxAg outputs
a k-clustering of the graph such that the number of
agreements induced by this k-clustering is at least OPT−
εn2/2, where OPT is the optimal number of agreements
induced by any k-clustering of G. The running time of
the algorithm is n · kO(ε−3 log(k/(εδ))).

The proof of this theorem is presented in Section
3.2, and we now proceed to describe the algorithm in
Figure 1.

3.1 Overview. Our algorithm is given a complete
graph G(V,E) on n vertices. All the edges are marked
as + or −, denoting whether adjacent vertices are on
agreement or disagreement respectively. For a vertex
v, let Γ+(v) be the set of vertices adjacent to v via +
edges, and Γ−(v) the set of vertices adjacent to v via −
edges.

The algorithm works in m = O(1/ε) steps. At each
step we are placing Θ(εn) vertices into clusters. We
will show that with constant probability our choices of
Si’s will allow us to place the vertices in such a way
that the decrease in the number of agreements with
respect to an optimal clustering is O(ε2n2) per step,
thus the algorithm outputs a solution that has O(εn2)
less agreements than any optimal solution.

2This is also similar in spirit, for example, to the PTAS for Min
2-sum clustering based on the PTAS for Metric Max CUT [14, 10].



Algorithm MaxAg(k, ε):
Input: A labeling L :

(
n
2

) → {+,−} of the edges
of the complete graph on vertex set V .
Output: A k-clustering of the graph, i.e., a parti-
tion of V into (at most) k parts V1, V2, . . . , Vk.

1. Construct an arbitrary partition of the graph into
roughly equal parts, (V 1, V 2, . . . , V m),m = � 4

ε�.
2. For i = 1 . . . m, choose uniformly at random with

replacement from V \ V i, a subset Si of size
r = Θ

(
1
ε2 log k

εδ

)
.

3. For each clustering of all the sets Si

into (Si
1, . . . , S

i
k) do

(a) For i = 1 . . . m do the following
(i) For each vertex v ∈ V i do

(1) For j = 1 . . . k, let
βj(v) = |Γ+(v) ∩ Si

j | +
∑

l �=j |Γ−(v) ∩ Si
l |.

(2) Place v in cluster argmaxjβj(v).
(b) If the current clustering has more agreements

than the currently stored one, store it.
4. Output stored clustering.

Figure 1: MaxAg(k, ε) algorithm

3.2 Performance analysis of MaxAg(k, ε) algo-
rithm. Consider an arbitrary optimal k-clustering of
the graph D ≡ (D1, . . . , Dk). We consider the subsets
of each cluster over our partition of vertices, defined as

for j = 1, . . . k, Di
j ≡ Dj ∩ V i

Di ≡ (Di
1, . . . , D

i
k)

Let’s also call the clustering output by our algorithm
W ≡ (W1, . . . ,Wk) and define in the same fashion.

for j = 1, . . . k, W i
j ≡ Wj ∩ V i

W i ≡ (W i
1, . . . ,W

i
k)

We will now define a sequence of hybrid clusterings,
such that hybrid clustering Hi, for i = 1, 2, . . . ,m + 1,
consists of the vertices as clustered by our algorithm
up to (not including) the i’th step and the rest of the
vertices as clustered by D.

Hi ≡ (Hi
1, . . . , H

i
k)

Hi ≡ (Hi
1, . . . ,Hi

k)
for j = 1, . . . k, Hi

j ≡ (∪i−1
l=1W l

j) ∪ (∪m
l=iD

l
j)

for j = 1, . . . k, Hi
j ≡ Hi

j \ V i

Since we are going through all possible clusterings
of the random sample sets Si, for the rest of the analysis
consider the loop iteration when the clustering of each

Si exactly matches how it is clustered in Hi, i.e., for
j = 1, 2, . . . , k, we have Si

j = Si ∩Hi
j . Of course, taking

the overall best clustering can only help us.
The following lemma captures the fact that our

random sample with high probability gives us a good
estimate on the number of agreements towards each
cluster for most of the vertices considered.

Lemma 3.1. For i = 1 . . . m, with probability at least
1 − (δ/4m) on the choice of Si, for all but at most an
ε/8 fraction of the vertices v ∈ V i, the following holds
for j = 1, . . . k,

∣∣∣∣∣
|Γ+(v) ∩ Si

j |
r

− |Γ+(v) ∩Hi
j |

|V \ V i|

∣∣∣∣∣ ≤
ε

32
.(3.1)

(Note that if (3.1) above holds, then it also holds with
Γ−(v) in place of Γ+(v).)

Proof. Consider an arbitrary vertex v ∈ V i and the
randomly chosen set Si = {u1, . . . , ur}. For each
j ∈ {1, . . . , k}, we define the random variables

for l = 1, . . . r, αl
j =

{
1, if ul ∈ Γ+(v) ∩ Si

j ;
0, otherwise.

Clearly
∑r

l=1 αl
j = |Γ+(v) ∩ Si

j | and Pr[αl
j = 1] =

|Γ+(v)∩Hi
j |

|V \V i| .
Using an additive Chernoff bound we get that

Pr
[∣∣∣ |Γ+(v)∩Si

j |
r − |Γ+(v)∩Hi

j |
|V \V i|

∣∣∣ > ε
32

]
<

< 2 · exp(−2( ε
32 )2r) < εδ

32mk

Defining a random variable to count the num-
ber of vertices not satisfying inequality(3.1) and using
Markov’s inequality we get that for that particular j,
inequality(3.1) holds for all but a fraction ε/8 of vertices
v ∈ V i, with probability at least 1 − (δ/4mk). Using a
probability union bound the lemma easily follows.

We define agree(A) to be equal to the number of
agreements induced by k-clustering A. Now consider
the placement of V i vertices in clusters W i

1, . . . ,W
i
k as

performed by the algorithm during step i. We will
examine the number of agreements compared to the
placement of the same vertices under Hi (placement
under the optimal clustering), more specifically we
will bound the difference in the number of agreements
induced by placing vertices differently than Hi. The
following lemma formalizes this concept.

Lemma 3.2. For i = 0, . . . m, we have agree(Hi+1) ≥
agree(D) − i · 1

8ε2n2



Proof. Observe that H1 ≡ D and Hm+1 ≡ W . The
only vertices placed differently between Hi+1 and Hi

are the vertices in V i. Suppose that our algorithm
places v ∈ V i in cluster x and v is placed in cluster x′ un-
der Hi. For each vertex v the number of agreements to-
wards clusters other than x, x′ remains the same, there-
fore we will focus on the number of agreements towards
these two clusters and the number of agreements within
V i.

The number of agreements we could lose by thus
misplacing v is

diffxx′(v) = |Γ+(v) ∩Hi
x′ | − |Γ+(v) ∩Hi

x| +
+|Γ−(v) ∩Hi

x| − |Γ−(v) ∩Hi
x′ |

Since our algorithm chose cluster x, by construction

|Γ+(v)∩Si
x|+|Γ−(v)∩Si

x′ | ≥ |Γ+(v)∩Si
x′ |+|Γ−(v)∩Si

x|
(3.2)
If inequality (3.1) holds for vertex v, using it for

Γ+(v) and Γ−(v) in both clusters x,x′, we obtain
bounds on the difference of agreements between our
random sample’s clusters Si

x, Si
x′ and the hybrid clusters

Hi
x,Hi

x′ . Combining with inequality (3.2) we get that
diffxx′(v) is at most 1

8εn. Therefore the total decrease
in the number of agreements by this type of vertices is
at most 1

8εn|V i| ≤ 1
8εn2

m .
By Lemma 3.1 there are at most (ε/8)|V i| vertices

in V i for which inequality (3.1) doesn’t hold. The total
number of agreements originating from these vertices is
at most 1

8ε|V i|n ≤ 1
8εn2

m . Finally, the total number of
agreements from within Vi is at most |V i|2 ≤ 1

4εn2

m .
Overall the number of agreements that we could lose

in one step of the algorithm is at most 1
2εn2

m ≤ 1
8ε2n2.

The lemma follows by induction.

The approximation guarantee of Theorem 3.2 easily
follows from Lemma 3.2. We need to go through all
possible k-clusterings of our random sample sets, a total
of kmr loop iterations. The inner loop (over i) runs m
times, and each of those iterations can be implemented
in O(nr) time. The claimed running time bound of our
algorithm thus follows.

4 PTAS for minimizing disagreements with k
clusters

This section is devoted to the proof of the following
theorem, which is our main result in this paper.

Theorem 4.1. (Main) For every k ≥ 2, there is a
PTAS for MinDisAgree[k].

The algorithm for MinDisAgree[k] will use the ap-
proximation scheme for MaxAgree[k] as a subroutine.

The latter already provides a very good approximation
for the number of disagreements unless this number is
very small. So in the analysis, the main work is for the
case when the optimum clustering is right on most of
the edges.

4.1 Idea behind the algorithm. The case of 2-
clusters turns out to be lot simpler and we use it to
first illustrate the basic idea. By the PTAS for maxi-
mization, we only need to focus on the case when the
optimum clustering has only OPT = γn2 disagreements
for some small γ > 0. We draw a random sample S and
try all partitions of it, and focus on the run when we
guess the right partition S = S1 ∪ S2, namely the way
some fixed optimal clustering D partitions S. Since the
optimum has a very large number of agreements, there
must exist a set A of size at least (1 − O(γ))n such
that each node in A has a clear choice of which side
it prefers to be on. Moreover, for each node in A, we
can find out its choice correctly (with high probability)
based on edges connecting it to nodes in the sample S.
Therefore, we can find a clustering which agrees with D
on a set A of at least 1−O(γ) fraction of the nodes. We
can then go through this clustering, and for each node
in parallel, switch it to the other side if that improves
the solution to produce the final clustering. Nodes in
A won’t get switched and will remain clustered exactly
as in the optimum D. The number of extra disagree-
ments compared to D on edges amongst nodes in V \A
is obviously at most the number of those edges which
is O(γ2n2). For edges connecting a node u ∈ V \ A to
nodes in A, since we placed u on the “better” side, and
A is placed exactly as in D in the final clustering, we can
have at most O(γn) extra disagreements per node com-
pared to D (this is the error introduced by the edges to
the misplaced nodes in V \A). Therefore we get a clus-
tering with at most OPT + O(γ2n2) = (1 + O(γ))OPT
disagreements.

Our k-clustering algorithm for k > 2 uses a similar
high-level approach, but is more complicated. The main
thing which breaks down compared to the k = 2 case is
the following. For two clusters, if D has agreements on
a large, i.e. (1 − O(γ)), fraction of edges incident on a
node u (i.e. if u ∈ A in the above notation), then we
are guaranteed to place u exactly as in D based on the
sample S (when we guess its correct clustering), since
the other option will have much poorer agreement. This
is not the case when k > 2, and one can get a large
number of agreements by placing a node in say one
of two possible clusters. Therefore, it does not seem
possible to argue that each node in A is correctly placed,
and then to use this to finish off the clustering.

However, what we can show is that nodes in A that



are incorrectly placed, call this set B, must be in small
clusters of D, and thus are few in number. Moreover,
every node in A that falls in one of the large clusters that
we produce, is guaranteed to be correctly placed. (These
facts are the content of Lemma 4.3.) The nodes in B
still need to be clustered, and even a small additional
number of mistakes per node in clustering them is more
than we can afford. We get around this predicament
by noting that nodes in B and A \ B are in different
sets of clusters in D. It follows that we can cluster B
recursively in new clusters (and we are making progress
because B is clustered using fewer than k clusters).
The actual algorithm must also deal with nodes outside
A, and in particular decide which of these nodes are
recursively clustered along with B.

With this intuition in place, we now proceed to the
formal specification of the algorithm that gives a factor
(1+ε) approximation for MinDisAgree[k] in Figure 2.
We will use a small enough absolute constant c1 in the
algorithm; the choice c1 = 1/20 will work.

4.2 Performance analysis of the algorithm. We
now analyze the approximation guarantee of the above
algorithm. We need some notation. Let A ≡ A1 ∪A2 ∪
· · ·Ak be any k-clustering of the nodes in V . Define
the function valA : V → [0, 1] as follows: valA(u) equals
the fraction of edges incident upon node u whose labels
agree with clustering A (i.e., we count negative edges
that are cut by A and positive edges that lie within
the same Ai for some i). Also define disagr(A) to be
the number of disagreements of A w.r.t. labeling L.
(Clearly disagr(A) = n−1

2

∑
u∈V (1 − valA(u)).) For

a node u ∈ V and 1 ≤ i ≤ k, let A(u,i) denote
the clustering obtained from A by moving u to Ai

and leaving all other nodes untouched. We define the
function pvalA : V × {1, 2, . . . , k} → [0, 1] as follows:
pvalA(u, i) equals the fraction of edges incident upon u
that agree with the clustering A(u,i).

In the following, we fix D to be any optimal k-
clustering that partitions V as V ≡ D1 ∪ D2 ∪ · · · ∪
Dk. Let γ be defined to be disagr(D)/n2 so that the
clustering D has γn2 disagreements w.r.t. the input
labeling L.

Call a sample S of nodes, each drawn uniformly at
random with replacement, to be α-good if the nodes in
S are distinct3 and for each u ∈ V and i ∈ {1, 2, . . . , k},

|pvalS̃(u, i) − pvalD(u, i)| ≤ α(4.3)

3Note that in the algorithm we draw elements of the sample
with replacement, but for the analysis, we can pretend that
S consists of distinct elements, since this happens with high
probability.

for the partition S̃ of S as ∪k
i=1Si with Si = S ∩ Di

(where pvalS̃(·, ·) is as defined in the algorithm). The
following lemma follows by a standard Chernoff and
union bound argument similar to Lemma 3.1.4

Lemma 4.1. The sample S picked in Step 2 is β-good
with high probability (at least 1 − O(1/

√
n)).

Therefore, in what follows we assume that the
sample S is β-good. In the rest of the discussion, we
focus on the run of the algorithm for the partition S̃
of S that agrees with the optimal partition D, i.e.,
Si = S ∩ Di. (All lemmas stated apply for this run
of the algorithm, though we don’t make this explicit in
the statements.) Let (C1, C2, . . . , Ck) be the clusters
produced by the algorithm at end of Step 4(c) on this
run. Let’s begin with the following simple observation.

Lemma 4.2. Suppose a node u ∈ Ds is placed in cluster
Cr at the end of Step 4(b) for r �= s, 1 ≤ r, s ≤ k. Then
pvalD(u, r) ≥ pvalD(u, s) − 2β = valD(u) − 2β.

Proof. Note that since u ∈ Ds, valD(u) = pvalD(u, s).
By the β-goodness of S (recall Inequality (4.3)),
pvalS̃(u, s) ≥ pvalD(u, s) − β. Since we chose to place
u in Cr instead of Cs, we must have pvalS̃(u, r) ≥
pvalS̃(u, s). By the β-goodness of S again, we have
pvalD(u, r) ≥ pvalS̃(u, r) − β. Combining these three
inequalities gives us the claim of the lemma.

Define the set of nodes of low value in the optimal
clustering D as Tlow

def= {u | valD(u) ≤ 1− c1/k2}. The
total number of disagreements is at least the number
of disagreements induced by these low valued nodes,
therefore

|Tlow| ≤ 2k2disagr(D)
(n − 1)c1

=
2k2γn2

(n − 1)c1
≤ 4k2γn

c1
.(4.4)

The following key lemma asserts that the large clusters
produced in Step 4(c) are basically correct.

Lemma 4.3. Suppose γ ≤ c1
16k3 . Let Large ⊆

{1, 2, . . . , k} be the set of large clusters as in Step 4(c)
of the algorithm. Then for each i ∈ Large, Ci \ Tlow ≡
Di \Tlow, that is w.r.t. nodes of large value, Ci precisely
agrees with the optimal cluster Di.

Proof. Let i ∈ Large be arbitrary. We will first prove the
inclusion Ci \ Tlow ⊆ Di \ Tlow. Suppose this is not the
case and there exists u ∈ Ci\(Di∪Tlow). Let u ∈ Dj for

4Since our sample size is Ω(log n) as opposed to O(1) that was

used in Lemma 3.1, we can actually ensure (4.3) holds for every
vertex w.h.p.



Algorithm MinDisAg(k, ε):
Input: A labeling L :

(
n
2

) → {+,−} of the edges of the complete graph on vertex set V = {1, 2, . . . , n}
Output: A k-clustering of the graph, i.e., a partition of V into (at most) k parts V1, V2, . . . , Vk.

0. If k = 1, return the obvious 1-clustering.
1. Run the PTAS for MaxAgree[k] from previous section on input L with accuracy ε2c2

1
32k4 .

Let ClusMax be the k-clustering returned.
2. Set β = c1ε

16k2 . Pick a sample S ⊆ V by drawing 5 log n
β2 vertices u.a.r with replacement.

3. ClusVal = 0; /* Keeps track of value of best clustering found so far*/
4. For each partition S̃ of S as S1 ∪ S2 ∪ · · · ∪ Sk, perform the following steps:

(a) Initialize the clusters Ci ≡ Si for 1 ≤ i ≤ k.
(b) For each u ∈ V \ S

(i) For each i = 1, 2, . . . , k, compute pvalS̃(u, i), defined to be 1/|S| times the number of
agreements on edges connecting u to nodes in S if u is placed in cluster i along with Si.

(ii) Let ju = arg maxipvalS̃(u, i), and valS̃(u) def= pvalS̃(u, ju).
(iii) Place u in cluster Cju

, i.e., Cju
≡ Cju

∪ {u}.
(c) Compute the set of large and small clusters as

Large ≡ {j | 1 ≤ j ≤ k, |Cj | ≥ n
2k}, and Small ≡ {1, 2, . . . , k} \ Large.

Let l = |Large| and s = k − l = |Small|. /* Note that s < k. */
(d) Cluster W

def=
⋃

j∈Small Cj into s clusters using recursive call to algorithm MinDisAg(s, ε/3).
Let the clustering output by the recursive call be W ≡ W ′

1 ∪ W ′
2 ∪ · · · ∪ W ′

s

(where some of the W ′
i ’s may be empty)

(e) Let C be the clustering comprising of the k clusters {Cj}j∈Large and {W ′
i}1≤i≤s.

If the number of agreements of C is at least ClusVal, update ClusVal to this value, and
update ClusMin ≡ C.

5. Output the better of the two clusterings ClusMax and ClusMin.

Figure 2: MinDisAg(k, ε) algorithm

some j �= i. Since u /∈ Tlow, we have valD(u) ≥ 1−c1/k2,
which implies pvalD(u, j) ≥ 1 − c1/k2. By Lemma 4.2,
this gives pvalD(u, i) ≥ 1 − c1/k2 − 2β. Therefore we
have

2(1 − c1/k2 − β) ≤ pvalD(u, i) + pvalD(u, j) ≤
≤ 2 − |Di| + |Dj | − 1

n

where the last step follows from the simple but powerful
observation that each edge connecting u to a vertex
in Di ∪ Dj is correctly classified in exactly one of the
two placements of u in the i’th and j’th clusters (when
leaving every other vertex as in clustering D). We
conclude that both

|Di|, |Dj | ≤ 2(
c1

k2
+ β)n + 1 .(4.5)

What we have shown is that if u ∈ Ci \ (Di ∪ Tlow),
then u ∈ Dj for some j with |Dj | ≤ 2(c1/k2 + β)n + 1.
It follows that |Ci \ (Di ∪ Tlow)| ≤ 2(c1/k + βk)n + k.
Therefore,

|Di| ≥ |Ci| − |Tlow| − 2(
c1

k
+ βk)n − k ≥

≥ n

2k
− 4k2γn

c1
− 2(

c1

k
+ βk)n − k >

> 2(
c1

k2
+ β)n + 1

where the last step follows since γ ≤ c1
16k3 , k ≥ 2,

c1 = 1/20, and β is tiny. This contradicts (4.5), and
so we conclude Ci \ Tlow ⊆ Di \ Tlow.

Now for the other inclusion Di\Tlow ⊆ Ci\Tlow. If a
node v ∈ Di \(Ci∪Tlow) is placed in Cq for q �= i, then a
similar argument to how we concluded (4.5) establishes
|Di| ≤ 2( c1

k2 +β)n+1, which is impossible since we have
shown Di ⊇ Ci \ Tlow, and hence |Di| ≥ |Ci| − |Tlow| ≥
n
2k − 4k2γn

c1
> 2( c1

k2 +β)n+1, where the last step follows
using γ ≤ c1

16k3 and k ≥ 2 for the choice c1 = 1/20.

The next lemma states that there is a clustering
which is very close to optimum which agrees exactly
with our large clusters. This will enable us to find
a near-optimal clustering by recursing on the small
clusters to recluster them as needed, exactly as our
algorithm does.



Lemma 4.4. Assume γ ≤ c1
16k3 . There exists a cluster-

ing F that partitions V as V ≡ F1 ∪ F2 ∪ · · ·Fk that
satisfies the following:

(i) Fi ≡ Ci for every i ∈ Large

(ii) The number of disagreements of the clustering F is
at most disagr(F) ≤ γn2

(
1 + 4k2

c1

(
β + 2k2γ

c1

))

Proof. Suppose w ∈ Tlow is such that w ∈ Cr, w ∈ Ds

with r �= s. Consider the clustering formed from D
by performing the following in parallel for each w ∈
Tlow: If w ∈ Cr and w ∈ Ds for some r �= s, move
w to Dr. Let F ≡ F1 ∪ · · · ∪ Fk be the resulting
clustering. By construction Fi ∩ Tlow ≡ Ci ∩ Tlow for all
i, 1 ≤ i ≤ k. Since we only move nodes in Tlow, clearly
Fi \ Tlow ≡ Di \ Tlow for 1 ≤ i ≤ k. By Lemma 4.3,
Ci \ Tlow ≡ Di \ Tlow for i ∈ Large. Combining all these
equalities we conclude that Fi ≡ Ci for each i ∈ Large.

Now the only extra edges that the clustering F can
get wrong compared to D are those incident upon nodes
in Tlow, and therefore

disagr(F)−disagr(D) ≤ (n−1)
∑

w∈Tlow

(valD(w)−valF (w))

(4.6)
If a node w belongs to the same cluster in F and D (i.e.,
we did not move it), then since no node outside Tlow is
moved in obtaining F from D, we have

valF (w) ≥ valD(w) − |Tlow|/(n − 1) .(4.7)

If we moved a node w ∈ Tlow from Ds to Dr, then
by Lemma 4.2 we have pvalD(w, r) ≥ valD(w) − 2β.
Therefore for such a node w

valF (w) ≥ pvalD(w, r) − |Tlow|/(n − 1)
≥ valD(w) − 2β − |Tlow|/(n − 1) .(4.8)

Combining (4.6), (4.7) and (4.8), we can conclude
disagr(F) − disagr(D) ≤ (n − 1)|Tlow|

(
2β + |Tlow|

n−1

)
. The

claim now follows using the upper bound on |Tlow| from
(4.4) (and using n2/(n − 1)2 ≤ 2).

Lemma 4.5. If the optimal clustering D has γn2 dis-
agreements for γ ≤ c1

16k3 , then the clustering ClusMin
found by the algorithm has at most γn2(1 + ε/3)

(
1 +

4k2β/c1 + 8k4γ/c2
1

)
disagreements.

Proof. We note that when restricted to the set of
all edges except those entirely within W , the set of
agreements of the clustering C in Step 4(e) coincides
precisely with that of F . Let n1 be the number of
disagreements of F on edges that lie within W and let
n2 be the number of disagreements on all other edges.

Since W is clustered recursively, we have the number
of disagreements in C is at most n2 + n1(1 + ε/3) ≤
(n1 + n2)(1 + ε/3). The claim follows from the bound
on n1 + n2 from Lemma 4.4, Part (ii).

Theorem 4.2. For every ε > 0, algorithm
MinDisAg(k, ε) delivers a clustering with number
of disagreements within a factor (1+ε) of the optimum.

Proof. Let OPT = γn2 be the number of disagree-
ments of an optimal clustering. The solution ClusMax
returned by the maximization algorithm has at most
OPT+ ε2c2

1n2

32k4 = γn2
(
1+ ε2c2

1
32k4γ

)
disagreements. The so-

lution ClusMin has at most γn2(1 + ε/3)
(
1 + 4k2β/c1 +

8k4γ/c2
1)

)
disagreements. If γ >

εc2
1

32k4 , the former is

within (1 + ε) of the optimal. If γ ≤ εc2
1

32k4 (which
also satisfies the requirement γ ≤ c1/16k3 we had in
Lemma 4.5), the latter clustering ClusMin achieves ap-
proximation ratio (1 + ε/3)(1 + ε/2) ≤ (1 + ε) (recall
that β ≤ εc1

16k2 ). Thus the better of these two solutions
is always an (1 + ε) approximation.

To conclude Theorem 4.1, we examine the running
time of MinDisAg. Step 4 will be run for k|S| =
nO(k4/ε2) iterations. During each iteration, the place-
ment of vertices is done in O(n log n) time. Finally,
observe that there is always at least one large cluster,
therefore the recursive call is always done on at most
(k − 1) clusters. It follows that the running time of
MinDisAg(k, ε) can be described from the recurrence
T (k, ε) ≤ nO(k4/ε2)(n log n + ·T (k − 1, ε/3)) from which
we derive that the total running time is bounded by
nO(9k/ε2) log n.

5 Complexity on general graphs

So far, we have discussed the MaxAgree[k] and
MinDisAgree[k] problems on complete graphs. In this
section, we note some results on the complexity of these
problems when the graph can be arbitrary. As we will
see, the problems become much harder in this case.

Theorem 5.1. There is a polynomial time factor 0.878
approximation algorithm for MaxAgree[2] on general
graphs. For every k ≥ 3, there is a polynomial time fac-
tor 0.7666 approximation algorithm for MaxAgree[k]
on general graphs.

Proof. The bound for 2-clusters case follows from the
Goemans-Williamson algorithm for Max CUT modified
in the obvious way to account for the positive edges.
The bound for k ≥ 3 is obtained by Swamy [18] who
also notes that slightly better bounds are possible for
3 ≤ k ≤ 5.



We note that in light of the recent hardness result for
Max CUT [15], the above guarantee for MaxAgree[2]
is likely the best possible.

Theorem 5.2. There is a polynomial time O(
√

log n)
approximation algorithm for MinDisAgree[2] on gen-
eral graphs. For k ≥ 3, MinDisAgree[k] on general
graphs cannot be approximated within any finite factor.

Proof. The bound for 2-clustering follows by the simple
observation that MinDisAgree[2] on general graphs re-
duces to Min 2CNF Deletion, i.e., given an instance
of 2SAT, determining the minimum number of clauses
that have to be deleted to make it satisfiable. The
latter problem admits an O(

√
log n) approximation al-

gorithm [1]. The result on MinDisAgree[k] for k ≥ 3
follows by a reduction from k-coloring. When k ≥ 3, it
is NP-hard to tell if a graph is k-colorable, and thus even
given an instance of MinDisAgree[k] with only nega-
tive edges, it is NP-hard to determine if the optimum
number of disagreements is zero or positive.
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