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Abstract. In the increasingly important market of online search adver-
tising, a multitude of parameters affect the performance of advertising
campaigns and their ability to attract users’ attention enough to pro-
duce clicks. Thus far, the majority of the relevant literature assumed an
advertisement’s probability of receiving a click to be dependent on the
advertisement’s quality and its position in the sponsored search list, but
independent of the other advertisements shown on the same webpage.
We examine a promising new model [1, 16] that incorporates the ex-
ternalities effect based on the probabilistic behavior of a typical user.
We focus on the Generalized Second Price mechanism used in practice
and examine the Nash equilibria of the model. We also investigate the
performance of this mechanism under the new model by comparing the
efficiency of its equilibria to the optimal efficiency.

1 Introduction

Online search engine advertising is an appealing approach to highly targeted
advertising, and is the major source of revenue for modern web search engines
such as Google, Yahoo! and MSN. The most common setup is as follows: when
a user performs a query at a search engine, she is shown a collection of organic
search results that contains the links the search engine has deemed relevant
to the search, together with a list of sponsored links, i.e., paid advertisements.
If the user actually clicks on a sponsored link, she will be transferred to the
advertiser’s web site. For each such click, in which the advertiser receives a
potential customer, the advertiser pays the search engine.

Keyword auctions determine which ads get assigned to which keywords (sea-
rch terms) and how much each advertiser pays. Because of the explosive growth
of online advertising and the rising economic importance of ad auctions, a
great deal of recent research has focused on developing mathematical models
of these systems, with an eye towards understanding their equilibria, dynam-
ics and other properties from the perspective of users, advertisers and search
engines [20, 2, 11, 19, 6].

Most keyword auction models assume that each advertisement shown has
an inherent click-through rate that depends only on the slot allocated to that
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advertisement and on the advertisement itself, regardless of the other advertise-
ments that are shown. However, this does not take into account externalities:
the success of an advertisement depends to a significant extent on which other
advertisements are shown alongside it. This is because high-quality competitive
ads shown at the same time may detract from each other. Moreover, low-quality
ads may deter the viewer from continuing to examine ads shown on the same
page.

The importance of the phenomena of externalities has motivated a number of
recent papers [12, 1, 16, 9]. Building on work of Craswell et al [8], independently,
Kempe and Mahdian [16], and Aggarwal, Feldman, Muthukrishnan and Pal [1]
have defined a new Markovian user model. Their model postulates that users scan
through the ads in order. For each ad a, users decide probabilistically whether
to click, with some ad-specific probability ra, as well as whether to continue the
scanning process, that depends on a different ad-specific probability qa (as well
as the slot the ad is in). This probabilistic continuation models the externality of
prematurely terminating the scanning process as a result of either a frustrating
irrelevant ad, or a very high-quality web site leading to a purchase. The papers
of Kempe et al and Aggarwal et al focus on the problem of computing the
efficient allocation given this model, and the efficient (in terms of computational
complexity) implementability of an incentive-compatible mechanism (the VCG
mechanism).

In this paper, we consider the impact of the new Markovian model on equi-
libria under the Generalized Second Price (GSP) mechanism. This is important
because GSP is the standard mechanism used in practice. Moreover, it is highly
unlikely that even if the Markovian model is accurate that the search engines
will switch to VCG. Thus, it is of great interest to understand the effects of the
new model when GSP is used.

1.1 Results

The focus of our research is on understanding the equilibria of GSP under the
new user model. Our main results are the following:

We show that in the new model, in contrast to the most important result
about the standard model [20, 11], GSP does not necessarily have an equilibrium
in which efficiency is maximized. This raises two key questions: First, does GSP
have pure equilibria? And second, how bad can these equilibria be in terms of
their efficiency?

The answer to the first question is yes. In Section 3, we give a general con-
struction showing that no matter what the parameters of the system, GSP does
have pure Nash equilibria in the new model.

We then turn to the study of the efficiency of GSP equilibria. Our main result
here, in Section 4, is that the efficiency of the worst Nash equilibrium under GSP
can be a factor of k smaller than optimal but no worse, where k is the number of
slots in the system. Thus, the so-called price of anarchy [18] of GSP with respect
to efficiency is k. This latter result depends on the assumption that no advertiser
ever bids more than their value. On the other hand, when advertisers can bid



more than their value, the efficiency of the worst Nash equilibrium under GSP
can be arbitrarily smaller than optimal.

Finally, we show that there are instances where the efficiency of the best Nash
equilibrium under GSP has efficiency which is a factor of k smaller than optimal.
Thus, even the price of stability [4] of GSP is k.

2 Model

We consider a model for sponsored search auctions with n participating players
(bidders or advertisers) {1, . . . , n}, bidding for k advertising slots {1, . . . , k}.
Each player i ∈ {1, . . . , n} has three associated values: The first, 0 ≤ ri ≤ 1,
represents the position-independent click-through rate, which is the probability
that the user will click on the ad, given that they look at it. It is a measure of
the relevance of the ad to the query as well as the general quality of the ad, and
can also perhaps be thought of as the probability that the user will click on the
ad if it is placed in the top slot. The second quantity, 0 ≤ qi ≤ 1 represents the
continuation probability, the probability that a user will look at the next ad in
the list, given that they look at ad i. The third quantity, Vi ≥ 0 represents the
expected value or profit of the advertiser given that the user clicks on his ad.

Each advertising slot s ∈ {1, . . . , k} has an associated fixed constant θs rep-
resenting the ad-independent probability that a user continues scanning adver-
tisements after the s-th slot, given that she scans the s-th slot.

Each player submits a bid and depending on the mechanism used (see dis-
cussion below), the search engine produces an allocation of the k slots π() such
that advertiser π(s) is assigned to slot s. An associated list of prices p is also
produced such that each time user π(s) receives a click he is charged a price of
ps.

We model the behavior of the end-user when presented with the sponsored
search results as follows. The user begins scanning the results list with some
probability θ0 which for simplicity we normalize to 1. The first slot is scanned
and the user clicks on the ad with probability rπ(1). Independently of whether the
user clicked on the first ad, she proceeds to scan the second slot with probability
θ1 · qπ(1), where she clicks on that ad with probability rπ(2). On the other hand,
with probability 1−θ1 ·qπ(1), the user stops scanning ads after the first and quits
the whole process. Given that the user scanned the second slot, she proceeds to
scan the third slot with probability θ2 · qπ(2) and so on.

Our main measure for evaluating the performance of the system will the
system’s efficiency. The efficiency of the system for a given ranking of the players
π is defined as the sum of the expected utilities of all the players.

efficiency = rπ1Vπ(1) + θ1qπ(1)

(
rπ(2)Vπ(2) + θ2qπ(2)

(
· · ·
(
Vπ(2)

)))
=

=
k∑
j=1

((
j−1∏
i=1

θiqπ(i)

)
· rπ(j)Vπ(j)

)
. (1)



Discussion

In this model, the probability that the user proceeds to scan the ad in slot s+ 1
given that she scanned the ad in slot s is dependent on both the slot s and the
the quality rπ(s) of the ad in slot s. The dependence on slot has been documented
in eye-tracking studies that show that the probability that a user looks at an ad
decays with the slot number [13, 15]. This description of the user’s eye movement
and clicking behavior has been studied under the term “directional market” in
several economics papers [5, 3]. As stated, in [3], “the directionality arises due
to cognitive burden as it is cognitively ‘costlier’ for a typical consumer to visit
sellers at the bottom of the list before visiting the sellers at the top of the listing”.

The dependence of continued scanning on the quality rπ(s) of the ad in slot
s is the combination of two phenomena. First, if the click on slot s results in a
conversion, the user is unlikely to continue scanning. Second, if the quality of
the ad in slot s is low, the user may be more likely to give up in “disgust”. These
factors and undoubtedly many others combine to give some ad-dependent prob-
ability of continuing to scan. This feature of the model captures the externalities
inherent in this setting.

2.1 Mechanisms

The VCG mechanism. One of the mechanisms under examination and our
main comparison point is the celebrated Vickrey-Clarkes-Groves (VCG) [21, 7,
14] mechanism. The VCG mechanism is a truthful mechanism which allocates
the slots such that efficiency, as defined in (1), is maximized.

Recall that under the VCG mechanism, the expected payment charged to
player π′(j) at slot j is determined by OPT−π′(j) − (OPT − vπ′(j)) where

vπ′(j) =

(
j−1∏
i=1

θiqπ(i)

)
· rπ(j)Vπ′(j)

is the expected utility of this player, OPT is the optimal efficiency with all the
players and OPT−π′(j) is optimal efficiency without player π′(j). Since the most
commonly used charging scheme, both in literature and in practice, is on a per
click basis, the pay per click price for VCG is defined as

pj =
OPT−π′(j) − (OPT − vπ′(j))(∏j−1

i=1 θiqπ(i)

)
· rπ(j)

.

The GSP mechanism. Our main focus in this study will be the mechanism
most widely used in practice, the Generalized Second Price mechanism (GSP):

Definition 1. GSP mechanism



Player V r q VCG ranking VCG price(expected)

1 1 1 0.75 1 0.7
2 2 1 0.2 2 0.6
3 0.8 1 0.7 3 0

Fig. 1. Counterexample for the existence of the VCG equilibrium.

Each player i submits a bid bi representing the maximum amount they are
willing to pay for a click. The GSP mechanism ranks the players in decreasing
order of bi · ri. For the resulting ranking π(), the price per click of slot j is

pj = bπ(j+1)

rπ(i+1)

rπ(i)
.

The expected utility U(π(j)) of player π(j) occupying slot j is

U(π(j)) =

(
j−1∏
i=1

θiqπ(i)

)(
rπ(j)Vπ(j) − bπ(j+1)rπ(j+1)

)
.

We note that in the standard model (where qi = 1 for all i) the GSP ranking
maximizes efficiency with respect to the declared bids.1 In our model, this is
not the case: if we were to rank by declared efficiency, players with lower biri
might be placed in higher slots than players with higher biri, which would be
considered unfair.

3 Nash Equilibria in the GSP mechanism

Of particular interest in the literature on ad auctions [20, 10, 11] has been the
equilibrium that yields the same allocation and prices as the VCG mechanism
under the standard user model.2 It is of course very appealing to be able to
show that GSP has an equilibrium in which optimal efficiency and several other
appealing properties of the VCG equilibrium (such as envy-freeness) hold.

Unfortunately in our model the VCG equilibrium does not always exist. We
present a counterexample inspired by a similar counterexample for a different
purpose in [1]. Suppose we have 3 bidders and 2 slots with θ1 = 1. Given the
parameters defined in figure 1 it is easy to check that the ranking and VCG
prices are as stated in the figure. Notice that the prices in the figure are prices
per round or in expectation, therefore the pay per click prices would have to be
p1 = 0.7 and p2 = 0.6

θ1q1
= 0.6

0.75 = 0.8 and thus b2 = 0.7 and b3 = 0.8 which
cannot result in the desired ranking in the GSP mechanism. Despite the fact
the VCG equilibrium might not be achievable, we are able to prove that a pure
equilibrium always exists:
1 Since this mechanism is not truthful, the actual efficiency of the system is not guar-

anteed to be optimal as in VCG.
2 We will refer to this equilibrium as the VCG equilibrium.



Theorem 1. GSP Equilibria Existence
We assume the players are labeled in decreasing order of ri ·Vi. If the players’

bids are such that

bsrs =


V1r1 for s = 1,∑k+1
j=s−1

(∏j
i=s θi−1qi

)
Vjrj(1− θjqj+1) for 1 > s ≥ k

Vsrs for k > s,
(2)

or alternatively by the following recursive definition

bsrs =

Vsrs for k > s,
(1− θs−1qs)Vs−1rs−1 + θs−1qsbs+1rs+1 for 1 > s ≥ k
V1r1 for s = 1,

(3)

then the resulting allocation and prices of the GSP mechanism is a Nash
equilibrium in the new model.

The proof of this theorem is presented in the Appendix.

4 The efficiency of GSP equilibria

In light of the fact that the equilibria of GSP may not maximize efficiency, it is
interesting to ask how low the relative efficiency (and other properties) of these
equilibria can go. We do this using price of anarchy and price of stability style of
analysis.3 For the price of anarchy analysis we focus on the least efficient GSP
equilibrium and compare it against the VCG allocation and the most efficient
GSP equilibrium, while, for the price of stability, we compare the most efficient
GSP equilibrium against the VCG allocation.

We will also distinguish between two cases. In the first case, the players bid
in an unrestricted fashion while in the second case the players can only bid as
high as their value. While in reality it is possible for players to bid above their
values, it seems unlikely that such bidding behavior can be sustained in practice
as the players risk paying a price higher than their value. We therefore expect
the restricted case to be more interesting in practice. We will show that the price
of anarchy for efficiency can be bounded as per the following theorem.

Theorem 2. Price of Anarchy
The price of anarchy of GSP equilibria both against VCG and the best GSP

equilibrium is k (the number of slots) in the restricted case, and infinite in the
unrestricted case.

Proof. We first look at the efficiency of GSP equilibria in the restricted case. Fix
ε and δ arbitrarily small positive constants and consider the following setting.
We have n = k+ 1 players {1, 2, . . . , k, k+ 1} bidding for k slots with θi = 1 for
all 1 ≤ i ≤ k. The players’ parameters are illustrated in figure 2.
3 The price of anarchy was originally introduced by Koutsoupias and Papadimitriou

in [18] (see also [17] for a survey) as a measure of the performance degradation by
selfish autonomous users in the absence of a coordination mechanism.



Player 1 2 3 . . . k − 1 k k + 1

V X X − δ X − 1− δ . . . X − 1− δ X − 1− δ X − 1− δ
q 0 1

1+δ
1 . . . 1 1 1

r 1 1 1 . . . 1 1 1

Fig. 2. Example for the price of anarchy regarding efficiency in the restricted case.

It is easy to check that, for large enough X, the most efficient ranking is
[k + 1, k, . . . , 4, 3, 1], with total efficiency kX − (k − 1)(1 + δ) ≥ kX − εX.
Although this ranking is not achievable under GSP, an equilibrium with the
ranking [2, 3, . . . , k, 1] can be achieved if all players bid their values except
player 1 who bids X − 1 − δ. The efficiency of this equilibrium is X − δ +

1
1+δ ((k − 1)X − (k − 2)(1 + δ)) ≥ 1

1+δkX − εX for large enough X.
On the other hand, consider the case under GSP where the players are

bidding their values except player 2 who bids X − 1. The resulting allocation is
[1, 2, . . . , k − 1, k] and we can verify that this results in an equilibrium. Clearly,
all players are getting zero utility without being able to improve it. Player 1 is
getting utility X − (X − 1) = 1 while if he were to bid lower to obtain slot j he
would still get 1/(1 + δ)(X − (X − 1− δ)) = 1. The efficiency of this equilibrium
is just X. We conclude that for both against VCG and over all GSP equilibria,
the price of anarchy regarding efficiency can be bounded by

1
1+δkX − εX

X
≥ 1

1 + δ
k − ε.

We are also able to show that this bound is tight. Indeed, assume we have an
arbitrary system of players and slots and consider the least efficient equilibrium
of GSP. Focusing on a player x for which rxVx = maxiriVi, we will show that
the efficiency of this equilibrium is at least rxVx. Indeed, consider the case where
x is not awarded the top slot. In this case some other player y gets the first slot
while player x is at slot j with probability of the user getting to that slot φj .
From the equilibrium conditions regarding player x’s “desire” to get the first
slot by bidding higher than y’s bid by, we have

rx(Vx − by
ry
rx

) ≤ φjrx(Vx − pj)

and using our bidding restriction, we can bound both sides of the inequality.

rxVx − ryVy ≤ rx(Vx − by
ry
rx

) ≤ φjrx(Vx − pj) ≤ φjrxVx

rxVx − ryVy ≤ φjrxVx
rxVx ≤ φjrxVx + ryVy

The efficiency of the equilibrium is at least ryVy + φjrxVx ≥ rxVx. But both
the VCG mechanism and most efficient GSP equilibrium cannot have efficiency
more than k · rxVx, hence the price of anarchy is at most k.



For the unrestricted case, consider a setting of 1 slot and two players such
that r1V1 = 0, r2V2 = X. It is easy to see then when b1 > X and b2 = 0 we have
an equilibrium of 0 efficiency. On the other hand, the VCG or optimal GSP
equilibrium allocations yield efficiency X. We conclude that for both of these
cases the price of anarchy is unbounded.

We next turn our attention to the price of stability of GSP equilibria relative
to the VCG mechanism. Here our goal is to understand how the best GSP
equilibrium in the worst case compares in performance to the VCG outcome.

Theorem 3. Price of Stability

The price of stability of GSP equilibria against the VCG mechanism is k in
the restricted case, and between k/2 and k in the unrestricted case.

The proof of this Theorem is similar in spirit to the proof of Theorem 1 and
is omitted from this short version of this paper.

5 Conclusions

We have examined a simple and elegant model for keyword auctions introduced
in a series of papers [8, 1, 16] that is able to capture effects that appear in
practice but are not considered by the standard model. This model incorporates
externalities by modeling the effects advertisements have on the probability that
a typical user will scan or click on other ads.

Our model makes use of player parameters that are considered a priori de-
termined by the search engine. The use of the click-through probability ri is
generally considered acceptable and these values are probably computed by sea-
rch engines by sampling the click performance of an ad when the listing is placed
randomly in different slots. However, it is not clear if similar techniques can be
used to estimate the new parameters qi. Although determining qi is not nec-
essary to run the GSP mechanism, if it can be computed efficiently it would
certainly open up possibilities for more efficient ranking and pricing schemes.

We have shown that the GSP mechanism always has a pure Nash equilib-
rium. On the other hand, unlike the standard model, it may not have a Nash
equilibrium which maximizes efficiency. We thus attempted to quantify the dif-
ference in efficiency between GSP and VCG by examining the price of anarchy
and stability. Although the derived bounds appear to make a strong statement
in favor of the VCG mechanism, it remains undetermined how these two mech-
anisms would compare in practice.

An empirical study with real or simulated auction data would potentially
reveal more practical results on the performance of GSP and it would be ex-
tremely interesting to evaluate its performance against alternative mechanisms
that take advantage of the extended information of this model.
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Appendix

A Proof of Theorem 1

Proof. It is easy to check that the two definitions are equivalent. Also, it can be
easily seen from the recursive definition that the resulting bids are ordered in the
right way as each bsrs is a linear combination of bs+1rs+1 and the s−1’th player’s
expected valuation. By the initial conditions of the recursive definition it follows
that the bids are correctly ordered and the following equilibrium conditions are
satisfied

–
(∏s−1

i=1 θiqi

)
(Vsrs − bs+1rs+1) ≥ 0 for all s ≤ k,

–
(∏j−1

i=1 θiqi

)
(rsVs − bjrj) ≤ 0 for all j ≥ k > s.

or in other words, all the winning players have greater than or zero utility and
the losing players cannot get positive utility by bidding higher.

It remains to show the remaining equilibrium conditions, or that the winning
players do not have an incentive to alter their bid so as to get a different slot.
Assume an arbitrary winning player s. We need to show that

– For all slots j < s,
(∏s−1

i=j θiqi

)
(Vsrs − bs+1rs+1) ≥ Vsrs − bjrj .

– For all slots k ≥ j > s, Vsrs − bs+1rs+1 ≥
(∏j−1

i=s θiqi+1

)
(Vsrs − bj+1rj+1) .

To prove the first case, we proceed as follows.

Vsrs − bjrj = Vsrs − ((1− θj−1qj)Vj−1rj−1 + θj−1qjbj+1rj+1)
and since Vsrs ≤ Vj−1rj−1

≤ Vsrs − ((1− θj−1qj)Vsrs + θj−1qjbj+1rj+1)
= θj−1qj(Vsrs − bj+1rj+1)
≤ . . . (similarly substituting using the recursive definition)
≤ θj−1qjθj · · · qs−1θs−1qs(Vsrs − bs+1rs+1)

≤

s−1∏
i=j

θiqi

 (Vsrs − bs+1rs+1) , since θj−1qs ≤ 1.



To prove the second case, for j > s, we proceed similarly.

Vsrs − bs+1rs+1 = Vsrs − ((1− θsqs+1)Vsrs + θsqs+1bs+2rs+2)
= θsqs+1(Vsrs − bs+2rs+2)
= θsqs+1 (Vsrs − (1− θs+1qs+2)Vs+1rs+1 − θs+1qs+2bs+3rs+3)
≥ θsqs+1 (Vsrs − ((1− θs+1qs+2)Vsrs + θs+1qs+2bs+3rs+3))
= θsqs+1θs+1qs+2(Vsrs − bs+3rs+3)
≥ . . .
≥ θsqs+1 · · · θj−1qj(Vsrs − bj+1rj+1)

≥

(
j−1∏
i=s

θiqi+1

)
(Vsrs − bj+1rj+1) .


