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Abstract
We show for the first time that commodity devices can be used
to generate wireless data transmissions that are confined to
the human body. Specifically, we show that commodity input
devices such as fingerprint sensors and touchpads can be used
to transmit information to only wireless receivers that are in
contact with the body. We characterize the propagation of
the resulting transmissions across the whole body and run ex-
periments with ten subjects to demonstrate that our approach
generalizes across different body types and postures. We also
evaluate our communication system in the presence of interfer-
ence from other wearable devices such as smartwatches and
nearby metallic surfaces. Finally, by modulating the opera-
tions of these input devices, we demonstrate bit rates of up to
50 bits per second over the human body.
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INTRODUCTION
In this paper, we explore the following question: can we use
sensors on commodity devices such as smartphones and lap-
tops to generate wireless data transmissions that are confined
to the human body? A positive answer would enable a form of
physical layer security that is currently non-existent on com-
modity devices. Specifically, a communication primitive that
transmits information directly through the body would create
links immune to eavesdropping or man in the middle attacks.
For example, by simply touching a doorknob, a user could
transmit secret credentials from their smartphone through their
body to open the door, without leaking secret information over
the air. It can also be used to create secret keys that are neces-
sary for establishing secure wireless connections for wearable
devices [37, 31]. For instance, instead of manually typing in a
secret serial number or password for wirelessly pairing medi-
cal devices such as glucose or blood pressure monitors with
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(a) Authenticating door locks (b) Secret keys for wearables

Figure 1: Example applications for on-body communication using
the fingerprint sensors on smartphones. The smartphone can securely
send information to doorknobs or glucose sensors over the body.

smartphones [12, 33], a smartphone could directly transmit
arbitrary secret keys through the human body.

The challenge in achieving this is that mobile devices like
smartphones and laptops currently rely on radios such as Blue-
tooth and Wi-Fi for communication. These radios are designed
to do the opposite of restricting a transmission to the body,
and hence are inherently insecure. Specifically, Bluetooth and
Wi-Fi chipsets are designed to transmit data as far as possible
over air; an attacker familiar with the communication standard
can easily intercept these wireless transmissions. In fact, re-
searchers have raised security and privacy concerns about the
vulnerability of even custom radio protocols for wearable and
implantable devices [17, 21].

To achieve our goal of transmitting over the body, we look be-
yond traditional radios and examine other components found
on mobile devices. The requirements for on-body communi-
cation are three-fold: 1) the component should be in direct
contact with the body, 2) it should reliably produce electro-
magnetic (EM) signals required to implement the physical
layer of a body-coupled communication system and, 3) since
EM signals above tens of megahertz do not propagate well
through the body [5], it should generate EM signals below
these frequencies.

In this paper we show that fingerprint sensors and touchpads
that are common on smartphones and laptops satisfy the above
three constraints. Specifically, inherent to being input devices,
they are in direct contact with the body. Further our analysis
shows that while these devices are not designed to be active
radio transmitters, during normal operation they produce char-
acteristic EM signals, which are consistent and at frequencies
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below 10 MHz. Finally, we show experimentally that these
low frequency signals propagate well on the human body but
degrade significantly over air, enabling our goal of secure
on-body data transmissions.

Building on our observations, we design an on-body com-
munication system that modulates the EM signals produced
by fingerprint sensors and touchpads. We design receiver
algorithms to filter the EM signals and decode the data trans-
mitted by these input devices. To evaluate our design, we
first characterize the signal propagation on the human body
using fingerprint sensors on the iPhone 5s, the iPhone 6s and
the Verifi P5100 USB fingerprint scanner as well as a Lenovo
T440s touchpad and the Adafruit touchpad. We provide an
extensive empirical analysis of how the signals generated by
these devices are affected by a user’s posture and motion, as
well as the user’s height and weight.

Finally, by modulating the scanning operation on a Verifi
fingerprint scanner in software, we demonstrate bit rates up
to 25 bps over the body. We also show that by power cycling
an Adafruit touchpad we can achieve on-body communication
at bit rates of up to 50 bps. We believe that these rates can
enable our target applications of transmitting secret keys and
establishing secure connections.

While capacitive and galvanic coupling mechanisms have been
demonstrated for on-body communication [48, 35], to the best
of our knowledge, existing solutions require custom transmit-
ter hardware to send data over the body. This significantly
raises the bar for adoption since it requires integrating yet
another custom radio into smartphones just for the purpose of
on-body communication. Further, such a transmitter has to be
located on the phone such that it is in contact with the user and
couples well with the body. In contrast, our contributions are:

1. We show for the first time that commodity devices can
be used to generate wireless data transmissions that are
confined to the human body. To achieve this, we reuse
fingerprint sensors and touchpads that are increasingly com-
mon on mobile devices, and thus, lower the bar for enabling
on-body communication applications.

2. We demonstrate that by reusing devices designed for human
touch, we achieve good coupling to the body. We analyze
the channel properties of the resulting transmissions across
the whole human body and empirically analyze the effect of
different body postures as well as the effect of interference
from other wearable devices.

3. Finally, we present a receiver design that can reliability
decode our data transmissions and demonstrate bit rates of
50 bps by modulating the operations of these input devices.

APPLICATION SCENARIOS
We outline three key application scenarios that motivate the
system described in this paper.

Authenticating electronic locks using touch. A compelling
application is to use the transmissions created by a fingerprint
sensor to send authentication codes through the body to a
doorknob. In this way, a system capable of securely transmit-
ting digital keys through the body could also be used to open

physical doors. Specifically, rather than relying on keypads or
cards that could be easily lost or stolen, such a system could
add biometric security to a door using fingerprint sensors on
phones. For instance, sending a numerical code with four num-
bers over the body requires less than 16 bits which can be sent
in less than a second using the techniques described in this
paper. The feedback for such a system is implicit, as the door
will unlock if the code is successfully accepted at the receiver.
We note that our approach would not require storing sensitive
fingerprint information at the doorknob, which is necessary
for conventional biometric based electronic lock systems.

Secure pairing for wearables. Security is of particular con-
cern in the field of wearable medical devices used for patient
monitoring or chronic disease treatment. In order to securely
communicate over wireless links, these devices encrypt data
based on a secret key or password. For example, continuous
glucose monitors [12] require patients to enter the sensor’s
serial number for pairing. We can envision that a user would
touch their fingerprint sensor, which would in turn transmit
a secret key to medical devices on the body. Once the secret
key is transmitted, an encrypted pairing process can be used
to establish a traditional wireless communication link, allow-
ing the wearable device to communicate with smartphones or
other devices. For instance, a 256-bit key can be sent on the
body to a wearable medical device from the fingerprint sensor
in less than 15 seconds using the system in this paper. If the
key is accepted by the receiver, the medical device can send
an acknowledgment using either Wi-Fi or Bluetooth back to
the phone and thereby establish a secure wireless connection
without the need for manually entered passwords.

Synchronization applications. Additionally, networks of sen-
sors on the body often require time synchronization to imple-
ment efficient MAC protocols [47, 44, 29]. Current solutions
require transmitting periodic beacon signals from wireless
devices or using measurements of physiological parameters
such as heart rate for synchronization [28]. Considering an
eavesdropper can intercept or interfere with wireless beacons
and that signals like heart rate are highly variable, there ex-
ists a need for novel synchronization solutions that address
these issues. Our system is capable of securely transmitting
information through the body with precise timing control.

COMMUNICATION SYSTEM DESIGN
Our goal is to create a communication system that enables
wireless transmissions on the body using commodity sensors.
These transmissions are then decoded on a wireless receiver
that is also in contact with the body. To do this, we first analyze
the physical characteristics of the human body itself and its
behavior as a communication channel. Next, we explain in
detail how touchpads and fingerprint sensors operate, and
design a transmission mechanism to send data through the
body. Finally, we explain how to design a receiver to decode
these data transmissions.

Human body as a wireless channel
We begin by explaining the electrical properties of human
tissue. The epidermis, which is the outermost layer of the
skin, has a high impedance as it is composed of dead cells and
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Figure 2: Capacitively coupled body communication. Circuit
diagram illustrating the signal path through the body and capacitive
coupling to earth ground. The outermost layer of the skin has high
impedance below which is conductive tissue. The transmitter and re-
ceiver do not have an explicit ground connection they are capacitively
coupled to earth ground.

cells with non-conductive fatty membranes [50, 46]. On the
other hand, the extracellular fluid in tissue beneath the skin
found in muscles and blood vessels is highly conductive. For
frequencies in the range of 100 kHz to 10 MHz, the complex
combinations of tissue and fluids within the body can be ap-
proximated as a lattice of lumped elements such as resistors
and capacitors [3].

Our design leverages capacitive coupling [50] to enable trans-
missions on the body. Specifically, the single metal contact of
fingerprint sensors can be thought of as one plate of a capacitor,
while the conductive body tissue beneath the skin is another,
as shown in Fig. 2. These two conductors are separated by the
epidermis, which acts as a dielectric. The receiver electrode
also makes a similar connection to the body. In the case of the
touchpads that do not have a metal contact touching the skin,
the non-conductive material of the touchpad can be thought of
as an additional dielectric layer.

Using this model of the body as a large capacitor separating
the transmitter and receiver, signals produced by the transmit-
ting devices effectively charge this capacitor and place the
body at a higher potential. Typically this potential would be
measured at the receiver as a voltage with respect to a com-
mon ground reference explicitly connected to the transmitter
to complete the circuit. We note that in our target application
scenarios the fingerprint sensor and the wireless receiver are
battery-powered and worn on separate hands, and therefore do
not share an explicit common ground. The lack of a shared
reference with the transmitter affects the voltage recorded at
the receiver. Although the transmitter and receiver grounds
each have a different potential, there still exists a weak electric
field between these terminals and the “earth ground”, which
may be modeled with a small capacitor Cearth that provides a
return path [50]. This capacitance affects the voltage seen by
the wireless receiver. One of the contributions of this paper is
to observe that commodity fingerprint sensors and touchpads
emit high voltage signals that can propagate over the whole
body despite the losses due to the lack of a common ground.

Transmitter design
Our design uses fingerprint sensors and touchpads to transmit
signals through the body. Specifically, we show that these
input devices generate signals below 10 MHz and hence are
ideal for transmitting data over the body. In the remainder of
this section, we first understand the source of the EM signals
on these input devices. We then analyze the properties of these
signals and finally describe how we can transmit data using
these input devices.
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Figure 3: Circuit diagram of a fingerprint sensor in which a
drive signal is applied directly to the finger. The effect on the
capacitance values for a ridge and valley are shown in a) and b). A
drive signal Vdrive is applied to the finger, which results in an output
Vout that changes between ridges and valleys.

Understanding the source of EM signals
Both fingerprint sensors and touchpads are sensing devices
which operate by applying an excitation signal to the finger
and measuring voltage differences caused by changes in the
electric field due to touch. In the rest of this section, we first
outline the operations of a touchpad and then describe in detail
how commodity fingerprint sensors operate.

Touchpads. At a high level, capacitive touchpads typically
consist of a 2-D array of electrodes capable of measuring ca-
pacitance at each intersection point. The presence of a finger
affects the electric field at the point of touch and therefore
changes the capacitance. The capacitive sensing technique
used in touchpads can be classified as either being self ca-
pacitance or mutual capacitance based sensors [10, 6]. Self-
capacitance sensors measure the capacitance at a single elec-
trode with respect to ground by analyzing its response to an
AC signal. As previously described, the body consists of the
nonconductive epidermis overlaying various conductive tissue
and thereby provides an additional path for the AC current
flow and reduces the current at the receiver. Touching the
electrode therefore increases impedance at the node and can
be modeled by adding another capacitor to ground in parallel
with the electrode. Mutual capacitance on the other hand uses
the coupling between a row and a column to determine finger
location. When either the row or column is driven with an
input drive signal, an electric field is created at intersections
between rows and columns. When a finger is placed at this
intersection, part of the electric field is instead coupled to the
body and the mutual capacitance between the row and column
decreases. Both methods apply a strong drive signal to the sen-
sor that creates the EM signals we leverage in our design. We
modulate the drive signals used by these devices to transmit
data over the body.

Fingerprint sensors. At a high level, capacitive fingerprint sen-
sors use similar operating principles to the touchpads described
above. However, to achieve the high resolution necessary for
fingerprint sensing the entire grid of sensors is implemented on
a custom integrated circuit (IC). Rather than detecting the pres-
ence of the whole finger, this dense array of sensors instead
detects the presence of the ridges or valleys of fingerprints. A
problem for fingerprint sensors is that the IC must be protected
against electrostatic discharge from the human body consid-
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Figure 4: The figure shows the voltage signal measured on the metal
contact on the Verifi P5100 during a fingerprint reading.

ering they are repeatedly touched during normal use. Adding
a thicker protective layer makes the sensor more robust to
electrostatic discharge, but also increases the distance between
the sensor and the finger. Because capacitance is inversely
proportional to distance, a thicker protective coating makes
it more difficult to sense the subtle differences in capacitance
caused by ridges and valleys on the finger. In order to address
this, a number of capacitive fingerprint sensors use a metal
contact at the edge of the sensor to apply a drive signal directly
to the body.

Next, we describe the operations of a Verifi P5100 USB finger-
print scanner. The Verifi P5100 is based on the UPEK TCS1
fingerprint sensor [11] which is surrounded on all sides by a
conductive metal plate and recessed such that the user’s fin-
ger will necessarily be in contact with the metal during scans.
Although documentation for the TCS1 is not publicly avail-
able, a patent filed by UPEK describes in detail this method
of applying a drive signal to the body in order to improve
sensitivity [26], which we outline below.1

As shown in Fig. 3, the sensing circuit is an inverting ampli-
fier in which the feedback path is comprised of a switch in
parallel with the two unconnected sensor electrodes spaced
apart by less than the width of a fingerprint ridge or valley. An
electrode forms one side of a capacitor Cplate, and the other
is formed by the finger. When the sensor is below a ridge,
the distance between the plates of capacitor Cplate is simply
the thickness of the protective coating above the sensor; in
contrast, a valley will have an additional air gap between the
electrode and the skin causing Cplate to be lower. Additionally,
an electric field between the two electrodes creates a capaci-
tor, Cmutual , similar to the mutual capacitance case described
above. A ridge which directly touches the surface of the pro-
tective coating is analogous to a finger touch in the mutual
capacitance touchpad as it decreases Cmutual by disturbing the
electric field. In contrast, the additional air gap in a valley
causes less change in capacitance.

1Although implementation details about iPhone fingerprint sensors
are scarce, we believe that a similar method to the UPEK sensors
is most likely used. The company UPEK merged with another fin-
gerprint sensor company AuthenTec [18], which was later acquired
by Apple to develop a fingerprint sensor for the iPhone 5s. A patent
application filed by Apple in 2013 [23] suggests that like the UPEK
TCS1, the iPhone fingerprint sensor actively drives the conductive
metal ring surrounding the sensor. Later models such as the iPhone
6s also appear to have the same conductive metal ring.
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Figure 5: Experimental Analysis 1. We compare the strength of the
EM signals generated over the body versus air at different distances
between the wireless receiver and the input device. When the ratio
between the power of the EM signal and ambient noise is below 0 dB,
the EM signals are weaker than ambient noise.

In the sensing phase, the switch is opened and a drive signal
Vdrive is applied to the finger. Based on the equations for the
gain of this switched capacitor amplifier, the output voltage can
be written as, Vout =−Vdrive

Cmutual
Cplate

. The voltage Vout therefore
varies depending on whether the sensor is below a ridge or a
valley and scales with Vdrive. The dependence of the output on
Vdrive demonstrates the fingerprint sensor should necessarily
transmit a high amplitude signal to the body. To validate
this, we use an oscilloscope to measure the voltage of the
metal contact on the Verifi P5100 during a fingerprint reading
(sensing phase). Fig. 4 suggests that Vdrive is an 800 kHz 4 V
peak-to-peak signal. Our design leverages this high amplitude
signal applied to the finger to transmit data on the body.

Analyzing the generated EM signals
To better understand the EM signals generated by our input
devices, we run experiments with the following setup: we
use a PCB coil antenna connected to a software-defined radio
(SDR) as our wireless receiver. The SDR is composed of a
USB TV tuner based on the RTL2832u chipset preceded by a
125MHz upconverter to translate the low frequency signal to
be within the receiver’s bandwidth. To avoid having a common
ground reference between the devices, the transmitter and
receiver are battery-powered. We run experiments with both
the Adafruit touchpad and Verifi fingerprint sensor to analyze
the EM signals they produce.

Experimental Analysis 1. We first compare the propagation of
the EM signals over the body versus air. Specifically, we place
the input device at a fixed location and move the receiver along
a straight line from the input device. We run experiments in
two different scenarios: 1) the input device and the wireless
receiver are separated by air and 2) the input device and the
wireless receiver are in contact with an outstretched arm. We
measure the strength of the EM signals and of the ambient
noise as observed at the wireless receiver at various distances
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Figure 6: Experimental Analysis 2. The plots show the frequency
spectrum of the EM signals from the fingerprint sensor and the touch-
pad at a receiver placed at two different distances over air.

from the input device. For each device we analyze a 10kHz
bandwidth about the frequency at which the device produces
the maximum amplitude signal. Fig. 5 shows the results for
both the fingerprint sensor and the touchpad. The plots show
that the signal strength is fairly uniform over the body as the
distance between the input device and the wireless receiver
increases. In contrast, over air, the signal strength rapidly
decreases and the EM signal approaches the noise floor at
distances of 6 cm and 20 cm for the fingerprint sensor and the
touchpad respectively. This both confirms that our approach is
secure considering an eavesdropper would have to be conspic-
uously close to a user to receive the EM signals, and that the
signal propagates well through the body as predicted by the
model described above.

Experimental Analysis 2. Next, we measure the frequency re-
sponse of the input device across a bandwidth of 100-350 MHz
to show that it does not produce additional strong signals at
other frequencies that could be exploited by an attacker. To
check this, we run two sets of experiments for each of our
input devices. In the first set of experiments, we place an
antenna directly above the input device and measure the spec-
trum using a Tektronix MDO4054B-3. In the second set of
experiments, we place the antenna 20 cm from the input device
and again measure the same spectrum. Fig. 6 shows the results
for both the fingerprint sensor and the touchpad. The plots
show the following:

• The EM signal has a number of higher frequency harmon-
ics. This is because of the time-domain properties of the
signal generated by these devices. For instance, as depicted
in Fig. 4 the signal generated by the fingerprint sensor is
similar to a square wave which in turn generates harmonics
in addition to the primary frequency of the square wave.
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• As the distance increases to 20 cm, signals across the whole
spectrum are close to ambient noise; this demonstrates that
these signals follow a near-field propagation on the air and
hence are secure from far-field adversaries.

Transmitting data using input devices
Unlike a traditional radio, the signals produced by fingerprint
sensors and touchpads are not designed to be modulated for
data transmission. We can however amplitude modulate the
EM signals they generate by starting and stopping operation
of these devices. Specifically, we represent a one bit by the
presence of the EM signals and a zero bit by their absence.
By continuously modulating these signals, we can transmit
sequences of bits on the human body.

On the Verifi P5100 USB fingerprint sensor, such a data trans-
mission can be triggered in software. Specifically, to transmit
a one bit, we set the fingerprint sensor to perform its scan-
ning operation; to transmit a zero bit, we do not perform the
scanning operation. To control the duration of each bit, we
set time out values in software that allows us to terminate the
scan operation before completing the full fingerprint scan. We
note that Apple devices currently do not allow this level of
control in software and rather abstract the use of the fingerprint
sensor into the Local Authentication framework. Thus, the
above bit modulation requires sleep cycling the whole phone,
severely limiting the data rate. Our proof-of-concept with the
Verifi USB device however demonstrates that similar hard-
ware has the capability to be controlled at a finer grained time
resolution.

To enable transmissions on the touchpad, we power cycled the
touchpad device to either start or stop the EM signal generation.
In our implementation, we automate this procedure by using
an ATmega328p microcontroller to switch the touchpad ON
and OFF at a specified rate. We however believe that with
finer-grained control of the touchpad, one can achieve higher
data rates than the 50 bps demonstrated in this paper.

Receiver design
A simple way to receive the above signals is to connect an
antenna to an oscilloscope or other standard test equipment
connected to a power outlet. The problem however is these
devices have a connection earth ground which provides a low
impedance return path from the transmitter to the receiver.



Figure 9: Velcro wrist strap covered in conductive copper tape used
to couple the SDR receiver to the body.

This causes a higher current at the receiver and as a result
skews the results such that they would not be representative of
a realistic use case in which both transmitter and receiver are
battery powered and have no explicit ground connection. To
prevent this, we implement our design on a software-defined
radio running on a battery with no explicit connection to earth
ground. Rather than designing a custom receiver circuit, we
use the RTL2832U based SDR platform [1] to implement our
receiver in software. The receiver is composed of a USB TV
tuner based on the RTL2832u chipset preceded by a 125MHz
upconverter to translate the low frequency signal to be within
the receiver’s bandwidth. To avoid a common ground refer-
ence, we connect the SDR to a battery powered laptop. In
addition to providing the flexibility to be used with the various
input devices tested, this SDR provides a convenient small
form factor platform for performing measurements across the
body. We connect the input of the SDR to a velcro wrist strap
covered in conductive copper tape shown in Fig. 9 that can be
attached tightly at different points on the user’s body.

At a high level our receiver first bandpass filters the received
signals to isolate the frequencies at which the EM signals have
the highest amplitude. The parameters for this are determined
based on the transmitting devices, as they each produce a
different characteristic signal. After isolating the strongest fre-
quency range the resulting signal is low pass filtered to remove
the carrier frequency and decode the amplitude-modulated
data.

To efficiently process the raw data generated, the process-
ing steps described above are split into multiple blocks and
the data is down-sampled in between. Fig. 7 shows a block
diagram of the steps used for decoding data transmissions.
Specifically, the raw sampled data is first passed through a
finite impulse response band pass filter 14 kHz bandwidth.
The output of the band pass filter is then down sampled by a
factor of 50. We then apply a 1 kHz FIR low pass filter on
the resulting signal. We then again down sample the resulting
signals by an additional factor of 10. Finally, we apply a low
pass filter with a cutoff frequency four times the data rate.
This results in the signal as shown in Fig. 8 which represents
an alternating sequence of zeros and ones transmitted from
our fingerprint sensor. To decode the bits from this signal, we
compare the output to a threshold value and output a one bit
whenever the received signal is greater than the threshold and
a zero bit otherwise.

EVALUATION
We run experiments with commodity fingerprint sensors and
touchpads. We use the fingerprint sensors on Apple iPhone
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(b) iPhone 6S
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(c) Adafruit Touchpad
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Figure 10: Spectrograms of the four input devices.The white
arrows are shown in the graphs for emphasis.

5s and 6s as well as the Verifi P5100 USB fingerprint sensor.
We also run experiments with the Lenovo Thinkpad T440s
trackpad and the Adafruit capacitive touchpad. To receive
and analyze the transmissions from these sensors, we use
our software defined radio (SDR) implementation described
earlier. We set the low noise amplifier gain for the SDR to
36.4 dB and keep this value consistent across our experiments.
All our devices including the touchpads, fingerprint sensors
and the SDR-based wireless receiver were battery-operated to
ensure that they do not share a common ground.

In the rest of this section, we first show the frequency response
of the signals generated by these devices. We then analyze
how these signals propagate throughout the body as well as
the effects of posture, movements and body size on the signal
strength. We then evaluate the effect of interference from
other wearable devices on the reliability of our communication
system. Finally, we provide results for different data rates we
achieved using our input devices.

Frequency response of input devices
As described above, fingerprint sensors and touchpads have
unique frequency responses measurable through the human
body that we repurpose to enable on-body communication. In
this section, we characterize the frequency response of our
input device. Specifically, we evaluate the fingerprint sensors
on an Apple iPhone 5s and iPhone 6s, as well as an Adafruit
capacitive touchpad and a Lenovo Thinkpad T440s trackpad.
To do this, we run experiments with a single participant who is
a co-author of this paper; later we demonstrate that our results
generalize across multiple participants. We ask the participant
to touch the fingerprint sensor on the phone or the touchpad
as they would during normal use, and place our SDR receiver
on the opposite wrist. We note that the frequency response is
similar throughout the body, which we later confirm with ad-
ditional experiments. We compute a spectrogram showing the
frequency response of the transmitting devices as a function of
time. Specifically, we apply a Hamming window and compute
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Figure 11: Signal strength across the body. The plot shows the SNR measured when the transmitting device was touching fingers on the right
or left hand and the receiver was placed at the different marked locations.

a 1024 point DFT over one second intervals to generate the
spectrogram.

Fig 10 (a) and (b) show the spectrogram over a period of one
second for the fingerprint sensors on the iPhone 5s and 6s.
Apple’s Local Authentication Framework, which controls the
fingerprint sensor, does not allow repeated scanning, but rather
prompts a user for fingerprint verification. In order to test the
fingerprint sensor we instructed users to repeatedly scan their
finger while the phone was locked to trigger multiple scans.
The plots indicate that both of the fingerprint sensors create
distinct signals at specific frequencies as well as what appear to
be weaker harmonics of the signals at adjacent frequencies. We
note that frequency response of phones do not differ between
different phones of the same model. However iPhone 5s and 6s
do have a different response, most likely due to improvements
made to the fingerprint sensor [41].

Next we show the spectrograms for the Adafruit touchpad and
the Lenovo trackpad in Fig. 10 (c) and (d). The plots show
that these devices create more harmonics than the fingerprint
sensors. Further, these devices continuously create these EM
signals on the body while they are powered on. Finally, the
spectrograms confirm that both the touchpads and fingerprint
sensors create signals with distinctive frequency responses.

Signal strength across the body
In practice, the physical distance between the finger print
sensor and wireless receiver will vary for different applications
as well as the receiver’s location on the body. We evaluate how
well the signals from these input devices propagate to different
locations on the body. To do this, we again run experiments
with the fingerprint sensors on the iPhone 5s and 6s as well as
the Adafruit touchpad and the Thinkpad trackpad. With each
of these sensors we compute the signal to noise ratio (SNR)
defined as follows:

SNR = 10log10

(
PON

POFF

)
Here PON and POFF are defined as the average measured power
when the input device is ON (performing its operation) and
OFF respectively. To compute PON and POFF , we band pass
filter the incoming signal to isolate frequencies between 2.642
to 2.652 MHz. We then average the signal power over a

symbol period to obtain PON and POFF . We repeat the above
measurements five times for each of these computations.

We run experiments to test the effect of placing the wireless
receiver at different locations on the body. Specifically, we
place the wireless receiver at the locations shown in Fig. 11b
including the wrist, ankle and the chest. The participant holds
the touchpad in either their left or right palm. In the case
of the fingerprint sensor, the participant places their thumb
on the sensor while for the touchpad the participant places
all the fingers except the thumb on the touchpad. We run
these experiments with a participant who is 68.1 inches tall
and weighed 154 lbs. The experiments were run in a lab
setting with a number of other machines and computers on
the desk nearby including a desktop, multiple mobile phones
and a laptops. Fig. 11a shows the SNR computed for various
positions for the wireless receiver and the input device. The
plots show the results for all our four input devices. The graphs
show negligible differences in attenuation of 2-3 dB across
the body. This result indicates that devices placed anywhere
on the surface of the body can receive transmissions from
fingerprint sensors and touchpads.
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Figure 12: Signal strength for different body postures and locations
of the wireless receiver and input device.



Effect of Posture
Next, we evaluate whether the signal propagation through the
body changes with the subject’s posture. To do this, we per-
form measurements when the subject is standing, seated, and
lying down. We test the scenario in which the participant is
seated in a typical office desk chair and lying down horizon-
tally on their back on a leather couch. We run experiments
with the iPhone 6s fingerprint sensor and the Adafruit touch-
pad. For each posture we place the input device at the user’s
right or left palm and the wireless receiver on their chest or
legs. Figs. 12 (a) and (b) show the measured SNR values
as a function of different posture with the iPhone 6s and the
touchpad. The figure shows a minimal change of 1–2 dB
across postures demonstrating that the system is applicable for
a variety of different use cases.
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Figure 13: Signal strength for different movement scenarios with
the Adafruit touchpad.
Effect of motion
We evaluate how the signal propagation is affected by mo-
tion. In order to characterize the effect of motion we compare
the propagation of the signal between a user’s hands when
stationary, when only the hands are in motion, and when the
user is walking. Specifically, the subject touches the Adafruit
touchpad with four fingers on their right hand and wears our
wireless receiver on the wrist of the left hand. We measure
the SNR values using the same method described above in
these different mobility scenarios. Specifically, we ask the
subject to move both arms in a continuous marching motion
at the maximum speed of around 0.11 meter per second as the
first mobility scenario. For the second mobility scenario, the
subject walks while moving their arms. We also perform the
experiments in the absence of motion, as a baseline. Fig. 13
shows the SNR measurements across these scenarios. The
plots show that hand motion does not significantly affect the
observed SNR values; however, walking causes more attenu-
ation than just arm motion. This is likely due to inconsistent
contact with the touchpad or receiver electrode while walking.
The key observation is that the SNR is greater than 10 dB
across all the tested scenarios, which is sufficient for commu-
nication. For comparison, Wi-Fi requires an SNR of 3-5 dB to
operate at its lowest bit rate of 1 Mbps.

Effect of height and weight
The above experiments were performed on a single subject
for consistency. Next, we evaluate the efficacy of our design
across ten different adult subjects with varying heights and
weights. Specifically, we place the wireless receiver and the
input devices at different points on the subject’s body and
measure the SNR values as described before. We run experi-
ments with the fingerprint sensor on iPhone 6s as well as the
Adafruit touchpad. Fig. 14 (a) and (b) show the results for
each of the ten subjects along with their heights and weights
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Figure 14: Measurements of signal propagation across different
body types.

for different locations of the wireless receiver on the body.
The plots show that despite a standard deviation of 3.57 inches
and 27.25 pounds in height and weight respectively of the
subjects, the resulting SNR measurements have a maximum
standard deviation of 0.7 dB when measured from the arm
to leg for the touchpad and 1.43 dB for the corresponding
measurements using the iPhone 6s. While these values would
have been significant at very low SNRs, since the observed
signal to noise values are above 10 dB, it does not impact the
performance of our communication system.
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Impact of interference
Although our design does not interfere with high frequency
radio transmissions such as Wi-Fi and Bluetooth, we notice
that devices with LCD screens or touchscreens/touchpads are
known to produce low frequency EM signals. Fig. 16 shows
the frequency spectrum measured when a LG Nexus 5X phone
screen is ON versus OFF using our SDR receiver connected
to a wire coil placed in contact with the phone screen. To
evaluate how this noise can affect our communication system
we run experiments with an LG Nexus 5X smartphone and a
Samsung Galaxy Gear S2 smartwatch. Additionally we eval-
uate the impact of large metal objects such as tabletops that
could potentially reflect or radiate signals from the environ-
ment [2] by touching a 1.72 ft2 steel surface. We place the
user’s right wrist in contact with the interfering object and
place the Adafruit touchpad on the same arm 20 cm above the
wrist. We place the receiver on the user’s left wrist positioned



50 cm away from their right arm to guarantee the signal was
propagating through the body and not coupling directly to the
receiver through the air.

 0

 200

 400

 600

 800

 1000

 2.5  3  3.5  4  4.5  5  5.5

T
im

e
 (

m
s)

Frequency (MHz)

-70

-65

-60

-55

-50

P
o

w
e

r/
F

re
q

u
e

n
cy

 (
d

B
/H

z)
Figure 16: EM signals from the screen of a Nexus 5X smartphone
captured by an antenna placed on top of the phone.

Fig. 15 shows the results for each of these scenarios. The plots
show high SNR indicating that signals from the environment
or other wearable devices do not couple as well to the body.
We confirm this by measuring the EM signals of the LG Nexus
5X phone screen over the body. While the signals were clear
on an antenna placed right on top of the phone, we could not
see any signal over the body. Thus, the EM signals generated
by the screens of such devices do not propagate well over
the body and hence do not cause interference. This not only
suggests that the system is robust to interference from existing
devices, but also suggests that it would be difficult for an
attacker to transmit an external signal on the air to either jam
transmissions or send false information. This experiment also
confirms that the dominant source of noise in the system will
be from the receiver circuit rather than outside interference.

Different data rates
Finally, we analyze the data rates achieved by our commu-
nication system using the Adafruit touchpad and the Verifi
fingerprint sensor. As noted earlier, on the Verifi P5100 USB
fingerprint sensor such a data transmission can be triggered in
software. Specifically, to transmit a one bit, we set the finger-
print sensor to perform its scanning operation; to transmit a
zero bit we do not perform the scanning operation. We note
that the API for the device does not allow direct control of
the drive signal and rather is designed for discrete high level
tasks such as fingerprint verification. In order to use the sensor
to transmit information, we utilize the timeout functionality
exposed by the API to begin and terminate fingerprint scans
rapidly. We observe however only specific time delays could
be realized achieving bit rates of 0.92, 1.7, 2, 3.6, 5.8 and
25 bps. To transmit bits using the touchpad, we power cycled
it to either start or stop the EM signal generation and generate
different bit rates between 1 and 50 bps.

We run experiments where we place the input device on the
palm of the right hand and attach the wireless receiver to the
left arm. We measure the SNR values at different bit rates as
observed by the receiver. Fig. 17 shows the measured SNR
values as a function of the bit rates used for both the fingerprint

sensor and the touchpad. The plot shows that for the touchpad,
as the bit rate increases the SNR slightly decreases. This is
most likely because as the bit rate increases the touchpad has
less time to power up the circuit. Given a finite rise time
for the circuit, the signal strength slightly reduces as the bit
transitions occur at a higher rate. For the fingerprint sensors on
the other hand, the SNR is consistently between 16 and 20 dB
across the bit rates. This demonstrates that we can achieve
data rates between 25–50 bits per second using commodity
fingerprint sensors and touchpads. We emphasis here that the
achievable bit rates are currently limited by the API provided
in software and are not fundamentally limited to the values we
demonstrate. With an API that provides a more fine-grained
access to the hardware, we believe that one could achieve even
higher data rates.
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Figure 17: SNR as a function of bit rate. We can achieve 25 and
50 bps with the fingerprint sensor and touchpad respectively.

RELATED WORK
Related work falls in three main domains.

Body-coupled communication. Researchers have explored a
variety of approaches to send information through the human
body [4, 24, 7]. Detailed models and measurements of the
human body as a communication channel have been developed
in [25, 50, 3, 5]. The focus of these works, however, has
been to characterize the transmission properties of the body in
order to build custom transceiver solutions. This paper builds
on this foundational work to show instead that commodity
input devices with fingerprint sensors or touchpads produce
EM signals that propagate on the human body and can be
repurposed to transmit data through the body. Below we
describe the prior work in this domain in greater detail.

It is known that signals can be transmitted through the body in
one of three ways: galvanic coupling, capacitive coupling, and
magnetic resonant coupling. [25] developed a detailed model
of the body for galvanic coupling based on tissue character-
istics. Zimmerman et. al [50] first introduced the concept of
communication through the body with capacitive coupling in
which the environment is used as the return path. Following
this work, [7] presents an experimental characterization of the
human body channel for capacitive coupling. [3] improves
upon this work and gives a detailed explanation of galvanic and
capacitive coupling including careful experimental characteri-
zation of attenuation through this channel in which grounding
effects are isolated. [48, 14, 49] demonstrates custom transmit-
ter and receiver hardware that can stream information through
the body in a capacitively coupled system. Applications of
body coupled communications have been outlined in [30],
which presents a wrist worn system based on capacitive cou-
pling for use as a personalized key with custom designed



transmitters and receivers. [35] explores pulse width modu-
lation for body coupled communication schemes. Additional
work has also modeled propagation loss through the body
channel including fading due to motion [32]. [40] designs a
custom transmitter-receiver pair that use electro-optic effect
and laser light to achieve a sensitive electric field sensor for
on-body communication. [36] briefly explores magnetic reso-
nant coupling, but to date a communication system using this
method has not been demonstrated.

DiamondTouch [13] presents an interactive touch surface that
transmits capacitively coupled signals through the human body.
The authors use a custom built table embedded with antennas
to transmit the signals. Microchip Technology’s Bodycomm
system is a commercial version of a capacitive human body
communication system [43], however it requires integration
of a separate custom radio chip into the transmitting device.
In contrast to all the above work, we demonstrate for the
first time that input devices such as fingerprint sensors and
touchpads available on commodity devices can be used to send
information on the human body.

Finally, prior work [22, 45] has shown that touchscreens can
be used to receive signals through the body. However, these
design still require custom transmitter hardware. In contrast,
we show for the first time that one can use commodity devices
to transmit through the body. We also note that the custom
transmitter hardware in [22, 45] was worn on the same arm as
the hand using the touch screen and has not been demonstrated
to work across the whole body. In contrast, we demonstrate
that the transmissions generated by our design can propagate
across the whole body.

EM emanations. Prior work has demonstrated that the EM
signals radiated from devices such as power supplies and com-
puter monitors can be used to extract cryptographic keys [15]
as well as recognize gestures [9, 8]. [20] demonstrate that
these signals can be modulated to transmit information over
the air. [27] classifies the EM noise emitted by electrical and
electromechanical objects to identify kitchen appliances, com-
puting devices, power tools and automobiles. In contrast, we
show that commodity fingerprint sensors and touchpads can
be used to transmit data and that they effectively propagate
throughout the human body.

Secure wireless pairing. Wirelessly pairing two devices has
been an active area of research in the security community.
The simplest approach involves a physical wired connection
between the devices, however such an approach is cumber-
some and impractical for sensors worn on the body. Visual
and gesture based approaches [38, 39, 31] are susceptible to
eavesdropping by a person or camera with line of sight to
the user. Acoustic solutions [19, 42] and far field wireless
transmitters [37] face similar challenges. Near field wireless
transmitters such as NFC or RFID require a central device in
close proximity to each sensor for pairing. In contrast, our
solution simply requires devices to be in contact with the body.
Physical layer techniques [16] use measurements of the de-
vices’ communication channel to establish secret keys. [34]
uses biometric measurements such as heart rate to agree on
the keys and for synchronizing devices on the human body,

however such a solution would be difficult for patients with
cardiovascular diseases affecting their heart rhythm. Using a
device such as a touchpad or fingerprint sensor has similar se-
curity advantages to biometric methods, but has the advantage
of being able to send arbitrary data bits over the human body.

DISCUSSION AND CONCLUSION
We show that commodity fingerprint sensors and touchpads
can be used to generate wireless data transmissions that are
confined to the human body. We present a receiver design that
can reliability decode our data transmissions and demonstrate
bit rates of up to 50 bps by modulating the operations of these
input devices. We now discuss some of the potential directions
for improving the design presented in this paper.

High data rates. While the data rates demonstrated in this
paper are sufficient for our target application scenarios, we
believe that with better access to the hardware functionality
of fingerprint sensors and touchpads, one can achieve higher
data rates. In the case of the fingerprint sensor for example,
the existing API was not designed with our communication
application in mind and therefore it arbitrarily restricts the
minimum transmission length, thereby limiting our data rate.
Our measurements show that these devices are clearly capable
of applying the pulses of the drive signal at a faster rate; en-
abling finer grained software control over this would greatly
increase the achievable data rates.

Custom versus commodity receivers. The focus in this paper
is to enable on-body transmissions using commodity finger-
print sensors and touchpads. We use a custom receiver to
decode these transmissions. This is acceptable for our target
applications since the wireless receiver can be integrated into
doorknobs or medical devices, while allowing the users to use
ubiquitous mobile devices such as smartphones to transmit
data on the body. We note that even with only the ability to
broadcast data to all receiving nodes on the body, our system
does provide a means to receive feedback from these devices.
For example, in the case of pairing, a device could use a
different channel to indicate failure or success by sending ac-
knowledgment over Wi-Fi/Bluetooth or even blinking an LED.
In the case of the door application, the user gets an implicit
feedback when the door successfully opens. Future work could
also explore the possibility of receiving feedback from sensors
on the body or from touching objects in the environment using
touchscreens or other sensors designed to measure changes in
electric fields, without the need for custom receivers.

Secure MAC protocols. We demonstrate a secure physical
communication link through the body and discuss how such
signals could be used to provide time synchronization in a
secure MAC protocol for body area networks. Building such
secure MAC protocols to enable a network of sensors on the
body to be synchronized using signals from a phone is an
interesting direction that is worth exploring in the future.
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