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ABSTRACT 
We introduce the first forearm-based EMG input system that 
can recognize fine-grained thumb gestures, including left 
swipes, right swipes, taps, long presses, and more complex 
thumb motions. EMG signals for thumb motions sensed from 
the forearm are quite weak and require significant training 
data to classify. We therefore also introduce a novel approach 
for minimally-intrusive collection of labeled training data for 
always-available input devices. Our dual-observable input 
approach is based on the insight that interaction observed 
by multiple devices allows recognition by a primary device 
(e.g., phone recognition of a left swipe gesture) to create 
labeled training examples for another (e.g., forearm-based 
EMG data labeled as a left swipe). We implement a wearable 
prototype with dry EMG electrodes, train with labeled 
demonstrations from participants using their own phones, and 
show that our prototype can recognize common fine-grained 
thumb gestures and user-defined complex gestures. 
Author Keywords 
Always-Available Interaction; Dual-Observable Input; EMG. 
INTRODUCTION 
Thumbs have evolved to be strong and flexible, and we 
have become skilled at using their dexterity in manipulating 
tools. Input interfaces designed to take advantage of thumbs, 
such as touchscreen phones or video game controllers, 
are common and natural ways for people to interact with 
devices. If we can create wearable input devices that detect 
fine-grained thumb gestures, we can bring the advantages 
of thumb-based interaction to systems without physical 
transducers. For example, we imagine people using mid-air 
swipes of their thumb to navigate wearable displays. 

ThumbsUp is a forearm-based electromyography (EMG) 
input system that can recognize fine-grained thumb gestures. 
In particular, the gestures that ThumbsUp recognizes are 
the same motions that people use in daily interaction with 
their touchscreen phones. Because it is worn on the wrist, 
ThumbsUp can be used in situations where a person cannot 
physically touch a device (e.g., wearing gloves, working with 
materials that coat the hands) or where having a device in the 
hand is simply inconvenient (e.g., cooking, using other tools). 
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Although prior work demonstrates forearm-based recognition 
of finger gestures using EMG [15, 16, 17] or pressure [2], it 
is limited to coarse gestures requiring sustained pressure and 
the use of multiple fingers (e.g., pinches, flicks), which result 
in relatively strong EMG signals. Thumb gestures produce 
fairly weak corresponding EMG signals. The weakness 
of these signals means sensors are sensitive to placement, 
which can change each time a device is worn. Further, 
thumb gestures correspond to complex combinations of 
muscle motions, so EMG signals vary between people. 
Our experimentation has found classification of fine-grained 
thumb gestures using forearm EMG requires multiple 
demonstrations per gesture per sensor placement per person. 

We address this training data challenge via dual-observable 
input, a novel approach for minimally-intrusive collection 
of labeled training data for always-available input devices. 
The key insight is that people frequently perform thumb 
gestures on their phone touchscreen, and the phone can 
already recognize these gestures. An always-available 
input system like ThumbsUp can therefore obtain labeled 
demonstrations by observing this same gesture (i.e., using 
recognition by the phone to label EMG data captured from the 
same gesture). In addition, training data will be gathered over 
time, with a person performing the gesture across different 
sensor placements and environments. These demonstrations 
can then be used to train the always-available input system to 
recognize the same gestures performed without the phone. 

We prototype ThumbsUp as a custom Bluetooth-enabled 
EMG board with dry EMG electrodes and a set of Android 
apps. We train this prototype using dual-observable input in 
a study with participants providing labeled demonstrations 
through interaction with their phones during normal daily 
activities. We show we can use forearm-based EMG to 
distinguish between left swipe, right swipe, tap, and long 
press thumb gestures with an accuracy of 82.9%. We further 
show we can recognize complex user-defined gestures, and 
we briefly discuss potential applications of ThumbsUp and 
the dual-observable input approach to labeled training data. 

Specifically, we make the following contributions: 
1. We introduce a forearm-based EMG input system that can 

recognize fine-grained thumb gestures, including swipes 
and taps as well as complex user-defined gestures. 

2. We	 introduce dual-observable input as an approach to 
collecting training data for always-available input devices. 

3. We	 build a prototype forearm-based EMG device and 
demonstrate the feasibility of training gesture recognition 
through dual-observable interactions with a phone. 
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Figure 1: Interaction with a dual-observable input system: (1) An always-available input system is initially untrained, requiring per person per gesture 
training demonstrations. (2) A person wears the always-available device during normal activities. (3) Normal interactions with other devices collect labeled 
training demonstrations for the always-available input system. (4) The always-available system is available for interaction, but also continues to learn. 

RELATED WORK 
EMG has previously been used for detecting finger and 
hand gestures with a forearm device [18]. Saponas et al. 
propose a wearable EMG armband enabling interaction in 
scenarios where a display is not available (e.g., eyes-free 
control of a music player), a person’s hands are busy 
(e.g., carrying something, steering a vehicle), touching a 
display is undesirable (e.g., cooking, gardening, sculpting, 
changing engine oil), or in playful new contexts (e.g., using 
air guitar gestures to control a video game) [15, 16, 17]. They 
recognize lifting, pressing, and pinching, even while gripping 
an object [15, 16, 17]. Ju et al. explore use of data from 
multiple people to perform the same pinch gesture [8]. These 
gestures involve multiple fingers and significant pressure, 
resulting in a signal at the forearm that is much more 
prominent than those we recognize here. Additional work 
has recognized sign language gestures [10, 11, 21], which are 
again much more prominent in the signal domain. 

A number of additional efforts examine always-available 
input [13]. Kim et al. use a wrist-worn 3D infrared camera to 
recognize finger gestures [9]. However, cameras can suffer 
from line-of-sight occlusions and raise privacy issues that 
might limit them from being always available. Pressure 
and bio-acoustic sensors have also been used for designing 
forearm-based devices. Deyle et al. use piezoelectric sensors 
to distinguish among gestures (e.g., flick, multi-finger snap, 
rubbing thumb over the index finger, moving the foot in 
different directions) [3]. Dementyev et al. use an array of 
force-sensitive resistors to detect finger pinch gestures [2]. 
Because their signals change each time the device is removed 
and put back on, they note a need for new approaches to 
collecting training data. Rekimoto proposes GestureWrist, 
a watch-like device that recognizes hand gestures using 
accelerometers and capacitance changes associated with 
different hand shapes [14]. Commercial systems such as the 
Myo [19] use a combination of accelerometers and EMG, but 
it is unclear if they can detect fine-grained finger gestures. 

We are not aware of prior work using dual-observable 
input to train always-available recognition. Harada et al. 
propose using speech to provide training labels for activity 
recognition, as the act of providing a label can interfere 
with the activity itself [6]. We also propose obtaining labels 
via a separate channel, but further identify existing natural 
interactions as a minimally-intrusive approach to training. 
Lyons et al. propose dual-purpose speech, in which speech 
that is appropriate for human conversation also provides 
input to a system [12]. Our focus is similarly on preserving 

Figure 2: Our prototype hardware, a custom EMG board with dry EMG 
electrodes and Bluetooth communication. The setup is fully mobile and 
can be worn relatively comfortably for a significant period of time. 

and leveraging existing natural interactions, but further 
considering how they might help train always-available 
recognition systems. Finally, Chen et al. [1] coordinate 
motion and touch input between a phone and a watch for 
multi-device gestures and sensing. We similarly leverage a 
combination of devices for new interactions. 

We propose that always-available devices can be trained by 
gestures performed on everyday devices such as phones. 
A mirror of our motivation is that everyday gestures normally 
performed on devices such as phones can be performed 
without that phone. Gustafson et al. pursue this in their work 
on imaginary interfaces [4], including their proposal of an 
imaginary phone [5]. Their prototype imaginary phone uses 
a shoulder-mounted camera to detect taps and slides on an 
empty non-dominant hand, mapping that input to an actual 
phone. A key challenge of imaginary interfaces is a person’s 
ability to manipulate the interface without feedback, a point 
we revisit in our analysis of dual-observable interaction. 

SYSTEM DESIGN AND IMPLEMENTATION 
ThumbsUp is a forearm-based wearable EMG input device 
that can detect and classify thumb gestures (e.g., left swipes, 
right swipes, taps, long presses, user-defined gestures). 
We envision these gestures can in turn be used to interact 
with other devices (e.g., music players, ubiquitous computing 
environments, wearable computers). This section details our 
prototype of a forearm-based wearable EMG input device, 
our collection of training data via dual-observable input in a 
set of Android apps, and our algorithm for classifying thumb 
gestures based on collected training data. 

Hardware and Placement 
Our prototype is implemented with a custom EMG board that 
includes: a Texas Instruments ADS1298 analog front-end 
device, pins for connecting EMG electrodes, an on-board 
accelerometer, a microSD memory card for storing data, and 
a Bluetooth module for communicating with other devices 
during recognition and during training via dual-observable 
input. For dry EMG electrodes, we use silver chloride 
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electrode pellets connected to the board using EMG snap 
leads. For input, we use the on-board accelerometer and 
seven EMG electrodes, with two additional electrodes as an 
active ground. The accelerometer is sampled at 100 Hz, and 
the EMG signals are sampled at 250 Hz. 

The board and EMG electrodes are sewn onto three 
armbands, with labels indicating how they should be worn 
(Figure 2). When a person puts on the bands, the electrodes 
will be located such that they roughly correspond to the 
locations of the extrinsic hand muscles that control the thumb. 
The placement does not need to be exact, due to there being 
multiple sensors per muscle and because our dual-observable 
input approach can collect labels for varying placements. 

The setup is fully mobile, takes less than a minute to put 
on, and can be worn relatively comfortably for significant 
periods. The form and packaging could be improved in 
terms of appearance and physical robustness. Our current 
components also require Microsoft Windows drivers for the 
communication channel. Communication with an Android 
phone is therefore implemented using a tablet as a relay, thus 
requiring the device remain within 10 meters of the tablet. 
This impacts our study protocol presented in the next section, 
but could be readily addressed in a more refined prototype. 

Training via Dual-Observable Input 
A traditional approach might collect training data in specific 
training sessions. We have noted this is limited here due to 
a need for labeled demonstrations per sensor placement per 
person. We instead aim to collect labeled demonstrations 
through a person’s everyday interaction with their phone. Our 
dual-observable input approach has three advantages: (1) it 
enables collecting a large number of training demonstrations, 
(2) demonstrations are person-specific and therefore robust to 
individual variation, and (3) demonstrations will be gathered 
under a relatively wide variety of circumstances, including 
being robust to different specific sensor placements. 

One might maximize training data volume by capturing all 
phone touch events, but this presents two major barriers: 
(1) observing touch events across all applications requires 
root access, and (2) within a stream of raw touch events, it 
is difficult to know which correspond to purposeful gestures, 
thus compromising training data quality. We therefore pursue 
an approach of modifying the default Android launcher and 
lock screen. These can be replaced without root access, and 
our modifications preserve their appearance and functionality 
(e.g., lock screen security). The launcher allows observation 
of purposeful left swipes, right swipes, taps, and long presses. 
The lock screen further allows observation of user-defined 
gestures performed on a 3-by-3 grid of dots. Prior studies 
have found that people perform unlock gestures 10 to 200 
times per day [20], and we present a study in the next section 
which further examines the frequency of these gestures. 

Each time a person uses a gesture to manipulate the widgets in 
our modified apps, ThumbsUp uses the Bluetooth connection 
to inform the EMG board that a gesture has been performed. 
This allows the gesture to be associated with the previous few 
seconds of signals. We additionally filter any demonstrations 

Figure 3: We collect left swipe, right swipe, tap, and long press 
demonstrations from the Android launcher (left). We collect complex 
user-defined gestures from the Android lock screen (right). 

that the phone’s accelerometer detects were performed under 
acceleration greater than 0.2g. These are noisy because the 
forearm-based EMG signals are impacted by arm motions. 

We also note the launcher imposes a minimum threshold on 
the width of left swipe and right swipe gestures, as part of 
its own need to ensure the purposefulness of those gestures. 
We have informally observed that very small swipes use so 
little strength that they result in very weak EMG signals that 
are unlike signals obtained when people perform gestures 
without a phone. The launcher’s own minimum threshold 
was sufficient in this work, but this does surface a design 
consideration for future dual-observable input systems. 

Thumb Gesture Classification Algorithm 
Thumb gestures are classified by filtering and smoothing the 
signals, then matching them against training data using a 
k-nearest neighbor (KNN) algorithm with a custom similarity 
metric. Specifically, we perform the following: 

Filtering: For each EMG channel, we use the past 2 seconds 
of signal (2s × 250 Hz = 500 samples). We apply a 80 Hz 
high-pass Hanning window filter and take the absolute value. 
This helps reduce 60 Hz noise caused by power lines and 
helps remove drift caused by changing arm stance, changing 
environment, and movement of wires in our prototype. 

Smoothing: For each EMG channel, we divide the filtered 
signal by the standard deviation of that channel for the 
past 2 minutes. This normalizes the signal, allowing us to 
better compare signals from different environments. We then 
smooth the signal by summing windows of 20 samples, with 
10 samples overlap (i.e., channels now contain 49 samples). 

Classification: We then classify a gesture using KNN to 
compare with our filtered and smoothed training gestures. We 
currently set k=5 and use a similarity metric of the maximum 
value of the normalized cross correlation between gestures. 
For a pair of gestures, we calculate the normalized cross 
correlation of each channel, sum the resulting sequences, and 
find its maximum value (i.e., larger scores are more similar). 

For left swipe, right swipe, tap, and long press, we classify 
according to the majority label. Our user-defined gestures 
are unlock gestures, so we additionally want to know that 
the best match is a good match. We know the user-defined 
gesture is not one of our simple gestures, so we compare 
against other user-defined gestures and against some random 
noise samples, requiring the average similarity for the k=5 
best matches be above a threshold. 
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Figure 4: Gestures are classified by: (1) Considering the past 2 seconds of signal from each EMG channel. (2) Filtering and smoothing the 
signals. (3) Comparing against all alignments to training demonstrations using normalized cross correlation. (4) Using KNN to choose a class. 

This classification strategy provides two advantages. First, 
KNN accuracy will improve as observations are collected 
across varying placements and environments without 
requiring an explicit model of such variation, a good synergy 
with our dual-observable input approach to collecting a 
large number of labeled gestures. Second, cross correlation 
considers all offsets and thus allows gestures to be compared 
even when misaligned, so we do not need to precisely 
segment each gesture from its two second window. 

EVALUATION 
We evaluated the accuracy of ThumbsUp and its training 
via dual-observable input in a study with 7 people from our 
organization (2 female, 5 male, ages 21 to 27). None had 
extensive experience with EMG or other biomedical signals. 
All had an Android phone on which they were willing to 
allow us to install our apps, and all were willing to allow us to 
monitor their usage patterns with those apps. Each participant 
was compensated with a $30 Amazon gift card. 

We ultimately envision dual-observable input systems that 
are continuously worn and trained throughout our daily lives, 
but the previously discussed hardware limitations of our 
current prototype made that infeasible for our evaluation. We 
therefore devised a two-part study. Participants first used their 
phones normally for an entire day so that we could monitor 
how often they performed each gesture in our instrumented 
apps. We then arranged three EMG data collection sessions 
with each participant, wherein they worked normally in their 
normal work environment, interacted with their phone as 
normal, but were also prompted to interact with their phone 
by notifications that required unlocking the phone, navigating 
via the launcher to the alerting app, and pressing to dismiss 
the prompt. This section details our studies and our results. 

Data Feasibility Study 
Prior to participation in any EMG data collection, participants 
installed our apps to monitor their gesture usage patterns with 
regard to the feasibility of training via dual-observable input. 
We collected data from each participant for an entire day, with 
no intervention except the installation of our instrumented 
apps. Figure 5 shows how often each participant performed 
each gesture. Participants performed an average of 34 left 
swipe, 31 right swipe, 62 tap, 5 long press, and 54 unlock 
gestures in our instrumented apps. This suggests a large 
amount of potential training data that could be gathered 
through our approach to dual-observable input. 

Figure 5: Participant gesture usage in our instrumented apps for a day. 

Data Collection Study 
We collected data in three sessions for each participant. 
Sessions were held in their normal work environments 
(except where electrical noise interfered with the EMG 
sensor itself, in which case data collection occurred in a 
common work space). Participants were free to move as 
desired, including walking around and performing gestures 
in any pose. We have noted hardware limitations required 
participants stay within 10 meters of a data collection relay, 
but we positioned this to allow each participant to work 
normally. Sessions were an hour long, distributed across 
multiple days whenever possible, with our EMG device 
completely removed and put back on between sessions. 
Participants also defined their own complex unlock gestures 
(e.g., Figure 10 shows several participant-defined gestures). 

Training data was collected with participants gesturing with 
their phone during the first 40 minutes of each session. 
Demonstrations were captured whenever the participant 
interacted with the launcher or lock screen. To ensure 
adequate data collection during this abbreviated schedule, we 
also prompted participants, with the goal of obtaining a total 
of 8 to 10 training demonstrations per gesture per session. 

Test data was collected with participants gesturing without 
their phone during the final 20 minutes of each session. 
Gesturing without a phone feels different, but people can 
adapt to this difference. We advised not to make other 
large motions while performing a gesture and to use some 
strength in performing a gesture (e.g., an index finger can 
be treated like the screen when performing left swipe, right 
swipe, tap, and long press thumb gestures, an opposing hand 
can be treated like a surface when performing a complex 
unlock gesture). Participants were able to rehearse, with 
live recognition feedback, until they reported they were 
comfortable performing the gestures without the phone. We 
then collected 5 test demonstrations per gesture per session. 
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Figure 6: ThumbsUp has an overall 82.9% accuracy at classifying left 
swipe, right swipe, tap, and long press thumb gestures. 

Figure 7: Randomly sampling from all 3 training sessions, recognition 
accuracy begins to plateau after training with 40 demonstrations. 

RESULTS 
Figure 6 shows our overall 82.9% accuracy classifying left 
swipe, right swipe, tap, and long press thumb gestures. Results 
were obtained by training a per-participant model with data 
from all three training sessions, then testing on all three test 
sessions. This is consistent with continuously collecting 
per-person labels via dual-observable input (i.e., more 
realistic than testing between-person or between-session). 

Figure 7 next examines how accuracy improves with the 
number of available training demonstrations. Results were 
obtained by randomly sampling from the training pool 
used above, thus drawing upon all three training sessions. 
Accuracy grows from 33.8% with 10 demonstrations, to 
81.7% with 40 demonstrations, then more slowly to 82.9% 
with the full 120 demonstrations. Figure 8 asks a slightly 
different question, examining how accuracy improves when 
the demonstrations from randomly chosen training sessions 
are made available. More sessions notably improve the 
model, from 67.6% with 40 demonstrations in 1 session, to 
76.0% with 80 demonstrations in 2 sessions, to 82.9% with 
the full 120 demonstrations in 3 sessions. These analyses 
suggest ThumbsUp benefits from training data collected 
under different conditions more than it does from a larger 
number of training demonstrations under similar conditions. 
Dual-observable input is a good fit for continuously collecting 
such diverse demonstrations (e.g., different environments, 
different times, minor differences in sensor placement). 

Imaginary interfaces face the fundamental challenge that 
people perform input without the visual or tactile feedback 
found in traditional interfaces [4, 5]. We observed some 
participants initially found it difficult to perform thumb 
gestures without the phone. Even after participants reported 
being comfortable, we believe some of the classification 
errors in Figure 6 are due to differences in performing the 

Figure 8: Recognition accuracy continues to improve with data from 
additional sessions. Collecting data in different conditions is more 
valuable than collecting larger volumes of data in similar conditions. 

With Phone Without Phone 
Classification Accuracy 89.2% 82.9% 

Figure 9: Comparing recognition accuracy with and without the phone, 
we see that participants perform gestures differently without the phone. 

Figure 10: Examples of user-defined complex unlock gestures.
 
Gestures ranged from simple geometric shapes, to more intricate paths.
 

gesture without the phone (e.g., pressing too hard against the 
index finger during a tap, thus activating the same muscles 
normally used in a left swipe). Figure 9 examines this by 
comparing the classification accuracy of gestures performed 
with and without the phone. We evaluate accuracy of 
gestures performed with the phone using a leave-one-out 
cross-validation with a participant’s entire training data. 
The results show that differences in how people perform a 
gesture without the phone does impact accuracy, and that 
dual-observable input systems therefore need to consider 
how consistently people can perform gestures without the 
feedback provided by a data collection device. 

Evaluation of user-defined gesture recognition is highly 
dependent upon the specific gesture chosen by each 
participant and the acceptable balance between precision and 
recall. For the gestures chosen by our participants, a recall 
of 70% results in a precision of 91%. Most errors appear 
to be due to two participants. Restricting definition to more 
distinguishable gestures could likely improve recognition. 

DISCUSSION AND CONCLUSION 
We introduce the first forearm-based EMG input system that 
can recognize fine-grained thumb gestures, including left 
swipes, right swipes, taps, long presses, and more complex 
thumb motions. We achieve this using dual-observable 
input as an approach to collecting labeled training data 
for always-available input devices. We demonstrate and 
explore our approach using a prototype implementation of a 
forearm-based wearable EMG input device, a set of Android 
apps for collecting training data via dual-observable input, 
and algorithms for classifying thumb gestures based on 
collected training data. 

We also implemented two simple applications demonstrating 
potential usage of ThumbsUp, presented in Figure 11 and our 
associated video. The first is a presentation remote control, 
in which a right swipe advances to the next slide and a left 
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Figure 11: As demonstrations, we implement a ThumbsUp presentation 
remote control (left) and a Google Glass music player (right). 

swipe returns to the previous. The second is a music player 
on Google Glass. It supports a right swipe to go to the next 
song, a left swipe to the previous, a tap to pause/play, and a 
long press to dim the screen for power saving. 

These applications require a method for online detection of 
when a gesture is performed and should be classified. We 
implemented this by using the wearable’s accelerometer to 
ensure the arm is steady (i.e., arm-related EMG signal is low), 
then applying an energy threshold to the EMG signals. 

In addition to our contributions to forearm-based EMG 
recognition of fine-grained thumb gestures, we imagine 
a variety of opportunities for the dual-observable input 
approach. One opportunity for forearm-based EMG is 
suggested by Harrison et al.’s TapSense, in which a phone 
responds differently to taps with a finger, nail, knuckle, 
or stylus [7]. Their implementation cannot preview these 
different behaviors because it is unaware of which type of 
tap a person intends to perform. We can imagine using 
dual-observable input with forearm-based EMG to learn what 
arm poses precede different types of taps, thus enabling 
previews before the different types of taps are performed. 
We can also imagine dual-observable approaches with very 
different sensors (e.g., Kinect limb-tracking within a game 
used to train a wearable sensor used away from the camera). 

Dual-observable input is not a panacea. We have noted 
that people can perform gestures differently absent feedback, 
impacting recognition. Our informal experimentation has 
also found limitations of forearm-based EMG for recognizing 
fine-grained thumb gestures. Even with training examples, 
differentiating down swipe and up swipe thumb gestures from 
left swipe and right swipe gestures remains challenging. A 
minimum swipe size was imposed by the Android launcher, 
and we informally noted that smaller gestures would have 
been difficult to recognize. Designers of dual-observable 
input will need to account for such constraints in creating 
effective systems. But when it can be applied, our results 
demonstrate the potential for dual-observable input to enable 
interactions for which it would be otherwise infeasible to 
gather necessary per-person training data. 
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